PRATT & WHITNEY AIRCRAFT DIVISION CONNECTICUT OPERATIONS - CANEL

WELDING & BRAZING DEVELOPMENT GROUP
ADVANCED TOOL ENGINEERING

TH COLL O

Interim Report - Project 1047

June 17, 1959

Bonding of Tantalum

Object:

This investigation was undertaken to determine the necessary requirements for obtaining sound bonded joints on tantalum.

Equipment:

P & H 300 amp Arc Welder - TIG Sciaky 50 KVA Resistance Welder Vacuum Chamber Plastic Bag Chambers Tantalum Sheet - XM-238A - 1/16" Thick

LEGAL NOTICE

This report was properly as an account of theoremson span series work, further the transfer flative, the first interesting, ten my preparations acting on the first of the Construction.

A. Makes and was ready or representation, comprehend or imprint, eith respect to the account of the construction of the report of the first one of the reference of the relevant operation, apparatus, method, or processes the times of the report one account of the construction of t

use of any coloration, apparellat, method, or previous discinuaries in this expert.

An extend in the above, "persons acting an induction of the Commissions of any coloration and on the commission of the Commissions," in the observation of the Commission of the Co

Summary:

Corrosion and Mass Transfer Loops LTTN 237A and 427 called for fabrication of 430 stainless steel clad tantalum tubing. Since there was little or no experience at welding this material at CANEL, specimens were welled using vacuum chambers and plastic chambers as normally used for loop fabrication. XM-238A material was used for this work, which was vacuum are cast and cold rolled from three inch minimum diameter ingots.

Tantalum, like other refractories, has a strong affinity for oxygen, nitrogen, the halogens, carbon monoxide and water vapor at temperatures between 600°F and 2200°F. Degasing can be accomplished at temperatures above 3300°F in vacuo. Hy rogen causes embrittlement. It is soluble in hydrofluoric acid, strong alkalies and solutions containing free sulfur trioxide.

Carbon arc welling under a liquid cover of carbon tetrachloride is described in literature, however, attempts to reproduce this method at CANEL were unsuccessful. The main reason being that the liquid rapidly clouds up to the extent that the joint cannot be followed. Adequate ventilation must be provided to carry off the noxious fumes produced by this process.

Resistance welding was performed without the use of a special atmosphere producing sound bonds. See Fig. III.

TABLE I

Spec.	Joint	Weld Method	Remarks		
4	Lap - 1/16 Sheet	Spot Weld	Diffusion Type Bond		
		50 KVA - 65% Phase Shift			
		Cool Cycles 3	Grain Size Base - Cold Worked Structure		
		Heat Cycles 10	Numget - ASTM 5-6		
2		Squeeze Cycles 3			
		Impulses 3			
		600# Constant High Pressure			
5	Lap - 1/16 Sheet	Same as above	Shear Strength - 51,000 PSI		

Butt joints were fusion welded both in vacuum chambers and plastic bags. Specimens were degreased and pickled for six minutes in a solution of 16% hydrofluoric and 20% nitric acids, prior to welding. Specimens were then X-Rayed and metallurgically examined. See Fig. I and II.

TABLE II

Spec.	Joint	Weld Chamber	X-Ray Remarks
6	1/16 Sheet Butt	Vacuum-Argon	No Defects Incomplete penetration
7			
8			
9	1/16 Sheet Butt .020 Filler	Plastic-Argon	No Defects
10	1/16 Sheet Butt .032 Filler	Plastic-Argon	No Defects Weld sound and clean - small amount of second phase in spheroidal form dispersed through matrix of weld. Base HAZ Weld
	-3		Grain Size Cold 2 to >1 >1
			Hardness-DPH 219 146 142
11	1/16 Sheet Butt	Plastic-Argon	No Defects
12	1/16 Sheet Butt Welded both sides	Vacuum-Argon	No Defects
13			Poor Fusion
14	1/16 Sheet Butt Braided 1/64 Filler both sides		Porosity A few small voids
15	1/16 Sheet Butt Braided 1/64 Filler		No Defects Michined weld was bent through 180° flat against itself
16	1/16 Sheet 1/32 Filler Welded both sides		No Defects Same as Spec. #10 Grain Size Base HAZ Weld
			Hardness-DFH 219 149 130
17		-	No Defects Tensile Tested 62,000 PGI

Specimens were brazed with Coast Metals #52 and Nicrobraz 130 in helium. Flow with Microbraz 130 was poor while Coast Metals 52 produced a sound joint although ductility was poor.

3

TABLE III

"T" Joint	Pickle	Braze Filler	Braze Temp.	Time at	Atmos.	Results
1	16 HF 20 IIN03 64 H ₂ 0	NB 130	1925	10 min.	Не	Poor flow, very brittle.
2		-	-	15 min.	Не	Poor flow, braze very porous. Brittle.
3	*	CM 52	-	15 min.	Не	Fair to good flow. Sound strong joint. Good Fillet. Poor ductility. Max. dilution 1 1/2 Mils

Physical Data:

Melting Point Annealing temperature Outgasing temperature Thermal expansion Tensile Strength Sheet, annealed Sheet, worked

5425° F above 1920° F in vacuo above 3300° F in vacuo 3.6 x 10° in/in/°F

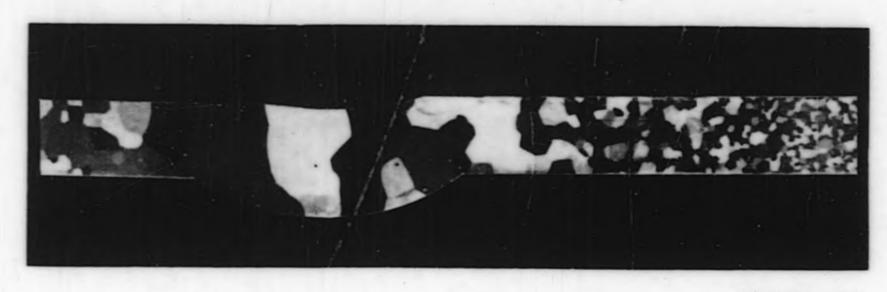
50,000 PSI 110,000

Chemical Specifications - XM-238A Carbon 200 PPM Hydrogen Oxygen 100

Hydrogen 10 PPM Nitrogen 30 "

Iron Tantalum Bal.

Conclusions:

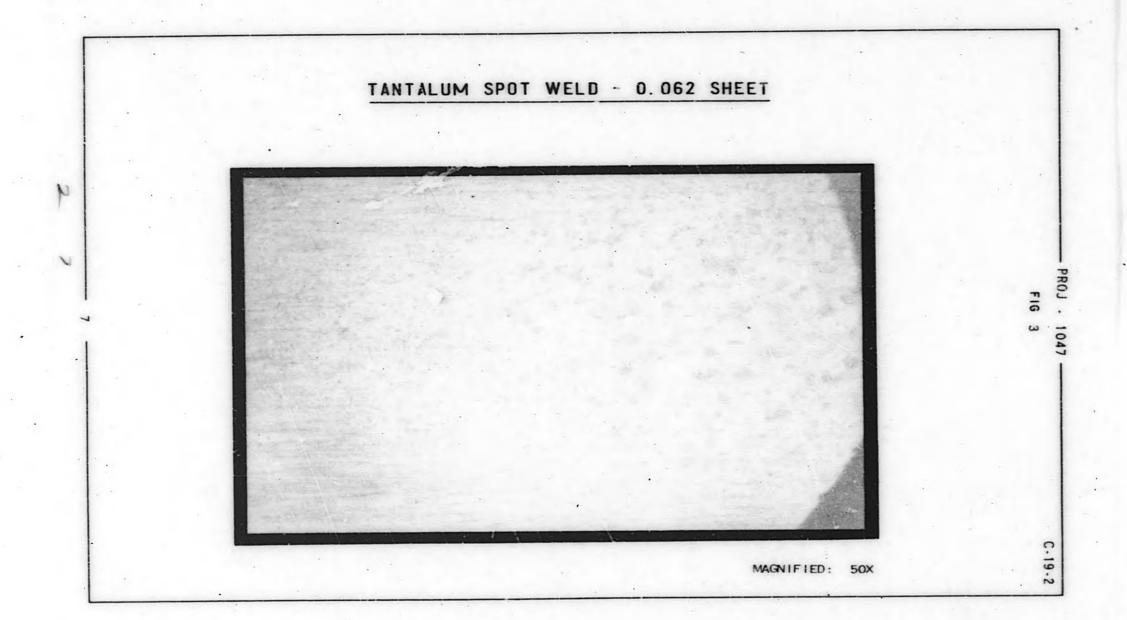

No difficulties are anticipated in tantalum to itself in loop applications.

Atmosphere purity precautions similar to those currently employed when welding other refractory metals should be adhered to. Chill bars can be used to advantage to reduce grain growth and the extent of heat affected zones. This is domonstrated by comparing Figures I and II where the latter specimen utilized chill bars. There was no appreciable difference between welds made in vacuum chambers and plastic chambers. The main fault in weld joints was the frequent lack of complete penetration, attributable to the operators inexperience with this high melting metal.

Approved by Almanons


SLR:mg

BUTT WELDED IN PLASTIC CHAMBER 0.062 SHEET



MAGNIFIED: 16X

BUTT WELDED BOTH SIDES IN VACUUM CHAMBER 0.062 SHEET

MAGNIFIED: 16X

