

brookahaven mational laborazory Associated Universities, Inc. Upton, L.I., N.Y.
ACCELERATOR DEPARTMENT
Internal Report

LONG COIL MEASUREMENTS SATISFY TWO-DIMERSIONAL

FIELD EQUAZZONS
R. A. Beth
R. A. Beth

March 1, 1963
-LEGAL NOTLCE
anconverno manc. taver an ture

 men

The amount by which the field of a magnet bends the path of a charged particle is proportional to the integral of By ds along the trajectory. Instead of making tedious point by point measurements of B in magnets and performing the integrations numerically, it has been found useful to measure

$$
\begin{equation*}
I_{y}=I_{y}(x, y)=\int_{z_{1}}^{2} B_{y} d z \tag{1}
\end{equation*}
$$

directly, by using a search coil whose winding consists of long and narrow turns extending through the magnet gap from z_{1} to z_{2} in the direction of the trajectory. It should be noted that the integral Iy is taken along a straight $x=$ constant, $y=$ constant line and not along the actual curved trajectory path; for small curvature the difference is small.

It may be shown as follows that I_{y} and I_{x} from long coil measurements satisfy two-dimensional field equations:

Let the field in the region under discussion have a potential $\Omega=\Omega(x, y, z)$ and assume constant permeability, μ, throughout the region. Then we integrate

$$
\begin{equation*}
\frac{\partial^{2} \Omega}{\partial x^{2}}+\frac{\partial^{2} \Omega}{\partial y^{2}}+\frac{\partial^{2} \Omega}{\partial z^{2}}=0 \tag{2}
\end{equation*}
$$

over z from z_{1} to z_{2} at constant x and y. The third term yields (at fixed x and y)

$$
\begin{equation*}
\int_{z_{1}}^{z_{2}} \frac{\partial^{2} \cap}{\partial z^{2}} d z=\int_{1}^{2} d\left(\frac{\partial \cap}{d z}\right)-\left.\frac{\partial \varrho}{\partial z}\right|_{2}-\left.\frac{\partial \Omega}{d z}\right|_{1}=\left(H_{z}\right)-\left(H_{z}\right)_{2} \tag{3}
\end{equation*}
$$

Therefore, by keeping the ends of the coil in z e constant planes, z_{1} and z_{2}, so that

$$
\begin{equation*}
\left(\mathrm{H}_{z}\right)_{1}=\left(\mathrm{H}_{z}\right)_{2} \tag{4}
\end{equation*}
$$

for all x, y positions used, the result of integrating (2) is

$$
\begin{align*}
& \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0, \text { where } \tag{5}\\
& v=v(x, y)=\int_{z_{1}}^{z_{2}} n(x, y, x) d z \tag{b}
\end{align*}
$$

The condition (4) may be satisfied in various ways: by extending the long coil completely through the magnet so that both ends lie in regions of negligible field or by having one (or both) ends in $a z=$ constant plane where $H_{z}=0$, e.g. in the middle symmetry plane of a magnet. Obviously, any superimposed $H_{z}=$ constant field will still satisfy (4).

$$
\begin{align*}
& \text { Since } B_{y}=\mu H_{y}=-\mu \frac{\partial \cap}{\partial y} \text { we have } \\
& I_{y}=-\mu \frac{\partial V}{\partial y}=\int_{z_{1}}^{z_{2}} B_{y} d z \tag{6}\\
& I_{x}=-\mu \frac{\partial V}{\partial x}=\int_{z_{1}}^{z_{2}} B_{x} d x . \tag{b}
\end{align*}
$$

Hence, irom (5) and (6)

$$
\begin{align*}
& \frac{\partial I_{x}}{\partial x}+\frac{\partial I y}{\partial y}=0 \tag{7}\\
& \frac{\partial I x}{\partial y}=\frac{\partial I_{y}}{\partial x} \tag{b}\\
& \frac{\partial^{2} I x}{\partial x^{2}}+\frac{\partial^{2} I x}{\partial y^{2}}=0 \tag{c}\\
& \frac{\partial^{2} I y}{\partial x^{2}}+\frac{\partial I_{y}}{\partial y^{2}}=0 . \tag{d}
\end{align*}
$$

In other words, the integrals I_{x} and I_{y} behave just like the components of a two-dimensional ficid vector as long as (4) is satisfied with constant z_{1} and z_{2}.

One can also prove (7)(u) by applyiag Gauss' theorem to a rectangular parallelepiped with cross section Δx by Δy extending from z_{1} to z_{2}. The condition (4) says that no flux goes through the ends of the parallelepiped. (7) (b) can be obtained by integrating the z component of hcurl $H=0$ from z_{1} to z_{2} (7)(c) and (d) follow from (a) and (b) by suitable differentiation and combination to eliminate I_{y} or I_{x}.

This long coil theorem provides an internal check on measurements of any component of I as a function of x and y; alternatively, if (as in our beam separator megnetic mcasuresca: 3 ? I_{y} is measured as a function of x only on the median plane $(y=0)$ the theorem enables us to predict values above and betov the macian plawe with confidsace. The theoren helps in considertag the effect of fring-rg fields on particle trajactories; thus it vould" apply from the middle of one magnet to the midale of another so long as (4) is satisfied.

RAB/yew
3/4/63
Distr.: AD B1, B2, B3

