ACCELERATOR DEVELOPMENT DEPARTMENT
Internal Report
EROOKHAVEN NATIONAL I.ABORATORY
JPB-11 Associated Universities, Inc. Upton, I. I., N. Y.

ON THE DESIGN OF QUADRUPOLE FOCUSING SYStEMS
MASter
J. P. Blewett

October 2, 1958

1. Introduction

In this report we present solutions of the design problem in which a system of quadrupole lenses is required to carry a particle beam from given focal lines in the x and y planes to other given focal lines. Particular attention will be given to the case of the anastigmatic lens system which takes a bean from one focal point to another focal point.

Since the general problem is almost impossibly complicated a simplification is introduced by breaking the lens system into two parts. The first part of the lens system is required to bring the initial beam to the state where it is parallel to the z axis in both planes. The second part carries the initially parallel beam to the required final condition. Bach part will involve two quadrupoles so that the complete system will consist of four quadrupeles; usually, however, the field gradients in the second and third quadrupoles can be made identical so that these quadrupoles can be combined into one and the system becomes a three quadrupole system.

The configuration of the lens element will be as shown in the figures below. These figures indicate also the general character of the beam path in the two planes.

2. Symbols

The portinont lengths (all to bo measured in meters) aro indicated in the figures in the preceding section.

The characteristics of the particle bean are as follows:

$$
\begin{aligned}
& \text { velocity } \quad=\mathrm{v} \text { meters por second } \\
& \text { kinetic enorgy }=T \text { electron volts } \\
& \text { total energy }=W \text { electron volts }
\end{aligned}
$$

Quadrupole 1 has magnotic field gradients $G_{1}=\frac{\partial B_{x}}{\partial y}=\frac{\partial B_{y}}{\partial x} \quad$.
Quadrupole 2 has magnetic field Gradients G_{2}.

We shall moke extonsive use of the symbols α_{1} and a_{2} whore

$$
\begin{aligned}
& a_{1}=\sqrt{\frac{G_{1} c^{2}}{v W}} \quad\left(=\sqrt{\frac{G_{2} v}{2 T}} \quad\right. \text { for non-relativistic particles) } \\
& a_{2}=\sqrt{\frac{G_{2} c^{2}}{v W}} \quad\left(=\sqrt{\frac{G_{2} v}{2 T}} \quad\right. \text { for non-relativistic particles) }
\end{aligned}
$$

c is the velocity of light $=2.996 \times 10^{8}$ metons por second.

For calibration of future results we tabulate a few $\alpha^{*} s$ for field gradients of 1000 gauss per centimeter: (the particles are assured to be protons)

Particle enurgy: $750 \mathrm{kev} 50 \mathrm{Mev} 3 \mathrm{Bev} 10 \mathrm{Bev} \quad 25 \mathrm{Bev}$
a :
8.9
$3.1 \quad 0.87$
0.52 0.34

The initial conditions for the particle beam as it enters Quadrupole 1 are (as indicated in the figures):

$$
\begin{array}{ll}
x=x_{0} & \dot{x} / v=x_{0} / x_{x} \\
y=y_{0} & \dot{y} / v=y_{0} / r_{y}
\end{array}
$$

Wo shall also make use of the following abbreviations:

$$
\begin{array}{ll}
c_{1}=\cot a_{1} s_{1} & c_{2}=\cot a_{2} s_{2} \\
K_{1}=\operatorname{coth} a_{1} s_{1} & K_{2}=\operatorname{coth} a_{2} s_{2}
\end{array}
$$

3. Exit Parameters fri Quadrupole ?

The displacement and velocity components in the x plane as the particle leaves Quadrupole 2 are given by
$\binom{x}{\dot{x} / v}-\left(\begin{array}{lll}\cosh & a_{2} s_{2} & \frac{1}{a_{2}} \\ \sinh & a_{2} s_{2} \\ a_{2} \sinh & a_{2} s_{2} & \cosh a_{2} s_{2}\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos a_{1} s_{1} & \frac{1}{c_{1}} & \sin \\ a_{1} s_{1} \\ -a_{1} \sin & a_{2} s_{1} & \cos \\ a_{1} s_{1}\end{array}\right)\binom{x_{0}}{x_{0} / r_{x}}$
$=\frac{x_{0}}{f_{x}} \sinh a_{2} s_{2} \sin c_{1} s_{2}\binom{\left(f_{x}+L\right) K_{2} c_{1}+\left(\frac{1}{a_{1}}-a_{1} f_{x} L\right) x_{2}+\frac{c_{2}}{a_{2}}-\frac{a_{1} f_{x}}{a_{2}}}{K_{2} c_{1}-a_{1} f_{x} g_{2}+c_{2}\left(f_{x}+L\right) c_{1}+\frac{a_{2}}{a_{1}}-a_{1} a_{2} f_{x}^{I}} \cdot$

In the y plane, the position and velocity are given by changing all α^{\prime} s to ja's and all x^{t} s to $y^{*} s$ in the above transformation so that

$$
\binom{y}{y / v}-\frac{y_{0}}{f_{y}} \sinh \alpha_{1} s_{1} \sin \alpha_{2} s_{2}\left\{\begin{array}{l}
\left(r_{y}+L\right) K_{1} c_{2}+\left(\frac{1}{\alpha_{1}}+\alpha_{1} f_{y} L\right) c_{2}+\frac{K_{1}}{\alpha_{2}}+\frac{\alpha_{1} f^{y}}{\alpha_{2}} \tag{2}\\
K_{1} c_{2}+\alpha_{1} f_{y} c_{2}-\alpha_{2}\left(f_{y}+L\right) K_{1}-\frac{\alpha_{2}}{\alpha_{1}}-\alpha_{1} a_{2} f y
\end{array}\right)
$$

4. Relations between the Iens Parameters

The relations between parameters which give a lens section yielding a beam parallel to the axis in both planes will be obtained by setting $\dot{x}=\dot{y}=0$. This equation can be written

$$
\begin{equation*}
L=\frac{1}{a_{1}}\left(\frac{a_{1} f_{x} c_{1}+1}{a_{1} f_{x}-c_{1}}\right)-\frac{K_{2}}{a_{2}}=\frac{c_{2}}{a_{2}}-\frac{1}{a_{1}}\left(\frac{a_{1} f_{y} K_{1}+1}{a_{1} f_{y}+K_{1}}\right) \tag{3}
\end{equation*}
$$

If we eliminate L betwoen the equations (3) we obtain

$$
\begin{equation*}
\frac{k_{2}+c_{2}}{a_{2}}=\frac{1}{c_{1}}\left\{\frac{a_{1} f_{x} c_{1}+1}{a_{1} f_{x}-c_{1}}+\frac{a_{1} f^{k_{1}}+1}{a_{1} f_{1}+k_{1}}\right\} \tag{L}
\end{equation*}
$$

If equations (3) are satisfied, our lens has the desired property. In this case it is fairly easy to show that the displacements as the particle leaves Quadrupole 2 are givon by

$$
\begin{align*}
& x=\frac{x_{0}\left(\alpha_{1} f_{x} \sin \alpha_{1} s_{1}-\cos \alpha_{1} s_{1}\right)}{\alpha_{2} f_{x} \sinh c_{2} s_{2}}, \tag{5}\\
& y=\frac{y_{0}\left(a_{1} f_{y} \sinh a_{1} s_{1}+\cosh a_{1} s_{1}\right)}{\alpha_{2} f_{y} \sin a_{2} s_{2}} . \tag{6}
\end{align*}
$$

The latter expression, for the displacement in the initially defocusing plane, gives the maximun displacement anywhere in the system and will be the expression which defines the aperture for the whole system.

For completeness we include the expression for the maximum displacement in Quadrupole 1 in the initially focusing plane. It is

$$
\begin{equation*}
x_{1}=\frac{x_{0}}{a_{1} f_{x}} \sqrt{1+\alpha_{1}{ }^{2} f_{x}^{2}} \tag{7}
\end{equation*}
$$

This expression defines the aperture required in Quadrupole 1.

5. Combination of Lens Elerients to form a complets Lens

When a double quadrupcle system has been designed by satisfying equations(3) (for quick methods see Section 8), it can be combined with another combination satisfying the same equations to give a complete lens system. In this fashion, a beam emerging from focal lines distant f_{x} and f_{y} from the entry point of the first quadrupole can be restored to focal lines distant f_{x}^{\prime} and f^{\prime} from the exit of the last quadrupole. The system will now look like this

Quadrupole 1 Quadrupcle 2 Quadrupole 2: Quadrupole 1'
Generally it will be possible to set $a_{2}=a_{2}^{1}$. If this is done, Quadrupoles 2 and 2^{1} can be combined into one quadrupole so that the complete iens consists of three quadrupoles in all.

Once a lens system has been set up, it is possible to change the location of the focal lines within wide limits by changing a_{1} and a_{2} without making any changes in lens geometry.

6. Anastigmatic Lenses

If the bean emerges from a focal point instead of from two focal lines, the design formulae (3) are modified only by setting $f_{x}=f_{y}=f$ where f is the distance of the focal point from the entry into the first quadrupole. The element so derived can be combined with another elenent having a focal distance fi to restore the beam to ancther focal point distant f^{i} from the point of exit.

It should be emphasized that this is not a true lens since it will not restore a beam from another point on the axis to a new focal point. As the point of origin of the beam is displaced, the final focal point will move to different points in the $x z$ and $y z$ planes.

To illustrate this and other properties of anastigmatic lenses we consider the special case of a symmetric lens designed to have $f=f^{\prime}=1$ meter. This lens is to be used with 750 kev protons and has a gradient of 200 gauss per cm . Consequently $\alpha=$ 4. We allow a space of 10 cm between lens elements. From the tables of Section 9 we find $a a_{1}=0.618$ and $a s_{2}=0.502$, whence $s_{1}=15.4 \mathrm{~cm}$ and $s_{2}=12.5 \mathrm{~cm}$. The whole lens will thus consist of initial and final quadrupoles 15.4 cm long and a central quadrupole 25 cm long. Including the two 10 cm spaces, the total length of the lens is 75.8 cm .

First we use equations (3) to study the motion of the point at which the beam is parallel to the axis as the point of origin is displaced from $f=1$ meter. By some graphical manipulation we can rather easily derive the shift in the final focal points in the two planes. The results are summarized in the following table.

Distance of initial focal point from point of entry into first quadrupole (meters)
0.70
0.80
0.90
1.00
1.10
1.20
1.30

Distance from point of exit of final focus in $x z$ plane (meters)
1.41
1.25
1.11
2.00
0.91
0.83
0.77

Distance from point of ext.t of final focus in yz plane (meters)
1.53
1.30
1.13
2.00
0.92
0.85
0.80

These figures illustrate the splitting of the final focus as the initial focal point is displaced from the design point.

Once a lens has been set up, it is of interest to determine whether it can be used as an anastigratic system for different focal distances merely by changing the field gredients without changing quadrupole lengths or positions. It car be shown, using equations (3) that this is indeed possible. We illustrate this point by tabulating the necessary gradients in the lens just discussed for various focal distances. It is assumed that we wish to keep the lens symmetric so that the initial focal distanie f remains equal to the exit focal distance f^{q}. The results are as follows:

f (meters)	Gradient in first and final quadrupoies (ganss/cn)	Gradient in central quadrupole (gauss/cm)
0.6	268	243
0.8	227	217
1.0	200	200
1.2	280	186
1.4	165	174
1.6	154	166

7. Choice of Lens Paraneters

Obviously equations (3) can be satisfied by many combinations of parameters. The final choice will be governed by such practical consicierations as aperture available, maximum field gradient attainable and sc forth.

If we are interested in minimum sperture, the particles must be deflected as rapidly as possible with a minimum cirift distance ir which, after defocusing, the particle can drift away Irom the axis. This means that high field gradients should be used and the $a^{\mathbf{i}}$ s should be as large as possible. At the same time L should be kept as small as possible.

6. Mrocedure for Lens Design

In the next section we have tabulat i numerical solutions of equationsí3) for the special case where $f_{x}=f_{y}=f$ ard $\alpha_{1}=\alpha_{2}=a_{1}$. If an anastigmatic lenss of this type is desired, its parameters can be derived directly irom the table.

If a lens is to be designed for focal distances f_{x} and i_{y} which are different in the two planes, the tables can still be used in a rapid successive approximation method. This method makes use of the fact that the ratio $\left(a_{1} f_{y} K_{1}+1\right) /\left(\alpha_{1} f_{y}+K_{1}\right)$ which appears in equations (3) does not vaually differ very much from unity. The quantity f_{y} does not appear anywhere else in these equations; consequently, to a first order, whe parametor of the lens are independent of f_{y} and the lens pararoters taken from the table for the casc f the desired value of f_{x}, will be a first order approximation to the parameters of the desired lens. To proceed from this approximation to the case of a lens having focal distances f_{x} and f_{y} and having the same gradients in botr lens sections (so $a_{1}=a_{2}=a$) the method is as follows:
We use the formulae (derived by rewriting equations (3)):

$$
\begin{equation*}
c_{2}=\frac{a f_{v} K_{1}+1}{a f_{y}+K_{1}}+a \dot{d} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}=\frac{a f_{x} K_{2}+a^{2} f_{x} L-1}{a\left(f_{x}+L\right)+k_{2}} \tag{9}
\end{equation*}
$$

The following steps are necessary:
a) Chocse a value of a consistent with the particle energy, esvinated aperture and quadrupcle pole-tip field considered desirable.
b) Choose a value of I. If small aperture is important, L should be barely long enough to allow space for the end windings of the quadrupoles.
c. In the tables of Section 9 look up the value of $a s_{1}$ for the given values of $a L$ and $a f_{x}$.
d. Look up K_{I} in a table of hyperbolic cotangents (all of the necessary tables can be found in the Chemical Rubber Publishing Company's "Handbook of Chemistry and Physics").
e) From equation (8) derive C_{2}.
i) Look up as_{2} in a table of cotangents.
g) Look up K_{2} in a table of hyperbolic cotangonts.
in) From equation 9 dorive C_{2}.
i) From a cotangerit table find the new value of $a s_{1}$.
j) Repeat (d) to (i) until the process converges - usually about three times will be sufficient.
k) Compute the maximum aperture from equation (6).

This whole procedure takes about a half hour. As an example we derive the parameters of a lens to focus a beam, radiating from two focal lines in the two planes, to a single point focus. The bean will consist of 50 Mev protons. The focal line in the $x z$ plane will be at $z=0$, the focal line in the $y z$ plane will be at $z=1$ meter, and the focal point to which the beam is to be restored will be at $z=6$ meters. We shall study the case where the beam dimensions are such that a field of 900 gauss/cm gradient is appropriate so hat a (from Section 2) is 3.0 . We start the lens arbitrarily roughly midway between the focal points at $z=3.0 \mathrm{~m}$. so that $a f_{x}=9.0$ and $a f_{y}=6.0$. Between lens elemerts we leave a space of 25 cm for end windings; thus al is 0.75 .

From the tables of Soction 9 we find a starting value of $a s_{1}$ for $a f=9.0$ and $C I=0.75$. This value is $a s_{1}=0.362$. The equations (8) and (9) for this case are:

$$
\begin{align*}
& c_{2}=\frac{6.0 K_{1}+1}{6.0+K_{1}}+0.75=\frac{6.75 K_{1}+5.50}{6.0+K_{1}}, \tag{8a}\\
& c_{1}=\frac{9.0 K_{2}+5.75}{9.75+K_{2}} . \tag{9a}
\end{align*}
$$

We now carry through the procedure (d) to (i) with the following results:

First
Approximation

$\alpha s_{1}=$	0.362	0.370
$K_{1}=$	2.87	2.82
$c_{2}=$	2.80	2.78
$\alpha s_{2}=$	0.343	0.345
$K_{2}=$	3.03	2.99
$c_{1}=$	2.58	2.56

Third
Approximation
0.372
2.81
2.78

The final result is $a s_{1}=0.372$ and $a s_{2}=0.345$ whence $s_{1}=12.4 \mathrm{~cm}$ and $s_{2}=11.5 \mathrm{~cm}$. From equation 6 the maximum aperture in this section is given by $y / y_{c}=1.65$. This completes the design of the first half of the lens which now extends to $z=3.0+0.124+0.25+0.115=3.489 \mathrm{~m}$. The second half of the lens can be taken directly from the tables of Section 9. It must meet the requirement that $s_{1}^{\prime}+L^{\prime}+s_{2}^{\prime}+f^{t}=5.0-3.489=2.511 \mathrm{~m}$. We use the same a and L as before. By interpolation in the table we find for this lens $a s_{1}^{1}=0.437$ and $a s_{2}^{1}=0.367$; hence $s_{1}^{1}=14.6 \mathrm{~m}, s_{2}=12.2 \mathrm{~cm}$ and $\mathrm{f}^{2}=1.99 \mathrm{~m}$. The whole lons system is: (all lengths are shown in meters)

9. Tabulation of Paraneters for Anastigmatic Lenses

The writer is indebted to Mr. K. Jellett who has computed the essential parameters tabulated below for a wide range of possible anastignatic quadrupole lens elements. Since focal distances are usually given and field gradients and quadrupole spacings are determined by practical considerations, the numerical data are presented in terms of the parameters a.C and al. All cases tabulated are for equal gradients in both quadrupcles. For each combination of af and al three numbers are tabulated. The first numbcr is $a s_{1}$, the second is $a s_{2}$ and the third is the ratio y / y_{0} which is a measure of the maximum necessary aperture.

For changing the focal distance in a riadrupcle already constructed and in position it is not possible (as we have shown in Section 6) to keep a_{1} equal to a_{2} * No quick method for deriving the appropriate changes has yet been evolved. Consequently it would be desirable tc have tabulations of $\alpha_{1} s_{1}, a_{2} s_{2}$ and aperture for othor values than unity of the ratio $a_{1 /} a_{2}$. With these additional tabulations the appropriate changes in gradient for changing focal distances could be derived quickly by interpolation. Tabulations of the required forn are now in precess of preparation for values of the ratio $\alpha_{1 /} a_{2}$ of $0.8,0.9,1.1$ and 1.2 . It is hoped that they can be available during the next few months.

END

