UNIVERSITY OF CALIFORNIA Radiation Laboratory

Contract No. W-7405-eng-48

-

STOPPING POWER AND ION DENSITY
Edward Vaughan
July 24, 1953

Berkeley, California

STOPPIGG PGMBR AND ION DENSITT
Edvard Vaughan
Radiation Laboratory, University of California Berkeley, California
July 24, 2953

A. Surrey

1. A "partiele" of charge Ze moves with velocity' V , mass M , energy $E=\operatorname{Mv}\left(1-v^{2} / c^{2}\right)^{-\frac{1}{2}}$, through a "substancd of atomic number z_{0}, density If atcms/ cm^{3}. We have to consider the process of slowing down, and the nature of the trail of ions produced. Very slow particles are of little interest, as their range is very short. If Z is large, or if the particle is an electron, there are complications which we postpone. Thus, our considerations wil1 apply partieularly to protons, deuterons, α-particles, and mesions.
2. The important quantities ares

I \rightarrow (a) Density of ions per on of path ("Specific Iontzation" I)
(Can be counted in cloud chamber and mision work, and is frequentiy employed in estimates of the mass of an ionising particle.) Can also be determined by use of shallor ionization chamber, depth amall enough so that ion density doesn't vary in a path of length $=$ this depth. Plot as function of path length traversed is "Brags Ourre".
$\mathrm{n} \rightarrow$ (b) Total Ionization Produced (a). This determines pulse size in ion chamber or proportional counter.
$\mathrm{R} \rightarrow(\mathrm{e})$ Range (R). This is an important limiting factor in various experimental techniques. Being readily measured, it gives a useful measure of initial energy of particles. ("Range-Energy relation").

UCRI-2287

$z \rightarrow(d)$ Stoppins Pomer, or rate of energy loss per en (F). This is not. obeervable, but provides the theoretical bawis for treating the others.
$E_{0} \rightarrow(e) W e$ may add the initial energy E_{o}, thith determines the range.
3. Elementary observations--above all, tracke are straight and of unfforn length. (Meson tracks are not straight, however.)
(a) The energy required to produce an ion pair depends on the stoppling
 volts in air. Thus, $n \in E_{0}$, and $I \propto P$.
(b) Geiger Rule. Roc $\mathrm{K}_{0}^{3 / 2}$ for modernte s_{0}. For exnmple morks for or -particles with ranges from 3 to 8 en of air.
(c) Bragt Rule. Atomie stopping power" $=\frac{?}{\pi}$ is roughly proportional
to $z_{0}^{\frac{3}{2}}\left(A^{\frac{3}{2}}\right.$ in original statement; A a atome veight) or "mass stopping powert $=\frac{F}{i k}$ is roughty proportional to $A^{\frac{1}{2}}$.
4. Concept of "air equivalent", ete. Columns of two substanese whese Lengths are in inverse proportion to their reopentive atoping powers F will otwiously produce the same energy loss in a partiele, provided the columns are short comparnd to ranges. It is found that the rinal provision is unnecessary, so that equivalent thicknesses of two substances can be found for ary range.

B. Basie Theory.

1. Momentum transfer in a ainche collision. Let particle velocity $=v$; therefore put $x=$ vt. Describe the collision by
the "Impact parameter" b. Suppose v so large and b so mann that the electron behaves as if free, but that b is not so mall that the
 electron's final velocity is comparable to V . According to the inter
assumption, the electron will not move
var during the time the particle is close enough to it to interact appreciably.

The momentum Δp acquired $b y$ the electron is given by $\int_{-0}^{\infty} F d t$, where F is the force acting on the electron. Since it is assumed free, the only force in the coulomb force due to the particle. As the electron doesn't move far during the collision, we compute F for a stationary electron. It is clear from symmetry that the component of ΔP parallel to v is $\int_{2}^{\infty} F_{/ n} d t=0$

$$
F_{\perp}=\frac{z e^{2}}{r^{2}} \frac{b}{r}
$$

$$
v=\frac{d x}{d t}
$$

$$
d t=\frac{d x}{v}
$$

$$
r=b / \sin \theta
$$

$$
x=-b / \tan \theta
$$

$$
d x=b \frac{\operatorname{sac}^{2} \theta}{\tan ^{2} \theta} d \theta=\frac{b d \theta}{\sin n^{2} \theta}
$$

$$
\Delta p=\Delta p_{\perp}=\int_{0}^{2}\left(\frac{z \theta^{2} b}{b^{3} / \sin ^{3} \theta}\right)\left(\frac{b d \theta}{v \sin ^{2} \theta}\right)=\frac{z \theta^{2}}{\nabla b^{2}} \quad \int_{0}^{2} \sin \theta d \theta=\frac{2 z \theta^{2}}{v b} .
$$

Note: (a) Foceept for the factor 2 , this result can be gotten by a dizenAtonal argument.
(b) The factor $\frac{1}{V}$ appears, because ΔP is proportional to time of collision, and time of collision is inversely proportional to v. It might be thought that a faster particle could hit the electron harder and transfer more momentum. This is indeed true, but as we shall see only affects close impacts; which aren't considered here.
2. Energy Lias. The energy transferred to the electron-whose initial momentum is supposed $<\angle A P /=$, and therefore talcen as wero-4 $1 s$ $\frac{\Delta p^{2}}{2 r}=(\Delta T)_{b} \cdot$ Then $\frac{-d s}{d x}=F=\int(\Delta T)_{b} \cdot$ (no. of impacts per cm with Impact parameter b$)=\int\left(2 \pi \mathrm{~m}^{\prime} \mathrm{b} d \mathrm{~b}\right) \mathrm{s} z_{0}(\Delta \mathrm{~T})_{\mathrm{b}}$. Therefore,

$$
\begin{aligned}
F=\int_{\min }^{b_{\max }} \frac{(\Delta p)^{2}}{2 m}+z_{0} 2 \pi b d b & =\int_{b_{\min }}^{b_{\max }} \frac{4 \pi z^{2} e^{4}}{v^{2} b^{2} m} z_{o} b d b \\
& =\frac{b \pi z^{2} e^{4} \pi z_{0}}{v^{2} m} \ln \frac{b_{\max }}{b_{\min }}
\end{aligned}
$$

$b_{\text {min }}$ and $b_{\text {max }}$ are to be determined as limits on range of validity of our approximation. Due to logarithm, the determination need not be accurate.
3. Discussion of Apraroodmation.
(a) First approximation is use of classical (not quantum) mechanics. This is O.K. so long as well-defined classical orbits exiet--i.e., so long as the de Broglie wavelength is much waller than the distance of closest approach b. Me know $\overbrace{\text { part }}=\frac{h}{N^{\gamma}}$. But we get a
larger number by considering a coordinate system with pertiele at rust, and electron coming past with velocity v. Then $\pi_{\text {elve }}=\frac{\pi}{i n}$. and this is the quantity b mast be greater than if we want to use elasaical mechanics. In fact, since the electron (as seen from the partiele) may be arghere within a region of this sise, we see that Δp can no longer incrase as $1 / \mathrm{b}$ when b decreases below λ elec We then have the condition

$$
b \gg \frac{\pi}{m \pi} .
$$

(b) Second approximation is that electron stands atill shile struck.

This is $0 . K$. If electron gete a velocity small compared to V . Therefore, $\frac{\Delta p}{w} \ll V$. A dirferent approach is to note that, even in a headion collision, the electron only gets a veloeity 2 F . For the particie may be supposed to have mass, and in a coordinate system moving with it, the electron approaching with velocity V can at most be reflected back with velocity $+v$. Thus, our expression for Δ_{P} cannot possibly be right if it leads to $\Delta p>2 m v$, and is presumably right only if $\Delta p \lll 2 \mathrm{FW}$. This is the same condition as before.

$$
\text { Since } \begin{aligned}
\Delta p=\frac{2 z \theta^{2}}{b v} & , \text { we have } \\
b & >\frac{z 0^{2}}{\frac{1}{2} m v^{2}} .
\end{aligned}
$$

Wote this is the distance at which the potential energy $\frac{z e^{2}}{b}=$ the total anerge $\frac{1}{2}=\psi^{2}$; i.e., it is the elassionl turnine point. We then see that the electron wontt stand atill ir the diatanice of closest approach to its initial position is less than the elassical turning pointthis is obvious, and gives another way to derive the condition.
(e) Third approximation is that the electron is free.

When we look more carefully, we wee that really the only approximation about the electron is that it stands still while struck. Being free Just means that the binding forces don't cause it to move turing the collision. This will be the case if the collision time t is small compared to times which characterise the motion of the bound electron.

Te estimate the latter, we recall that a bound particle has a multiply periodic motion, with a set of frequencies $\mathrm{w}_{1}, \mathrm{w}_{2}$, etc., and thur a set of times $\frac{1}{x_{2}}, \frac{1}{x_{2}}, \ldots$. We now note that the electron is found in an atom, and that the frequencies associated with the set of z_{o} electrons in the atom are simply those of the ines of its absorption spectrum. This includes the continues spectrum, as well as the discrete spectrum. Me may in fact, in the dipole approximation, treat an atom as a set of osesilators of these frequencies, the oscillator of frequency w_{i} being treated, not as a single degree of freedom, but as f_{1} degrees of freedom. f_{1} is the "oscillator ut rength", and is elear2y usually frentional, since there is a not unnatural sum rale $\sum_{2} r_{1}=z_{0}$ and there is an oo of frequencies w_{1} to run over.

Expression $z_{0} 2_{n} \frac{b_{\max }}{b_{\min }}$ should be replaced by $\sum_{i} i_{1} Q_{n}\left(\frac{b_{m o x}}{b_{m i n}}\right)$. We now haver
(1) $\quad \ll \frac{1}{w}$. To estimate the eellialon time \geqslant, note that the main contribution to $\int \sin \theta d \theta$ is from $-\frac{\pi}{4}<\theta<\frac{\pi}{4}+\left[2 . \theta, \quad \int_{2}^{2} \sin \theta d \theta=\sqrt{2}\right.$, (the largest part of 2) $]$.

Therefore γ is time for particles to go from $a=-b$ to $x=b$, or $\gamma=\frac{2 b}{5}$. Then,

$$
\mathrm{b} \ll \frac{v}{2 \pi_{1}}
$$

If this condition fails, we may consider the other extreme case, namely, $\quad \sim \gg \frac{1}{w_{1}}$. In this cases, we can use the adiabatic approximation; the electron will adjust its orbit to the slowly changing condition, and will be left in the same state it started in, i.e.. there is an elastic collision. We see that for $b \gg \frac{v}{2 w_{i}}$, there is no contribution to the ionization.
(2) Dipole approximation mast hold. This means $b \gg a_{0}$. where a_{0} is the radius of the atom. But this condition is only a condition on the validity of the approximation used to establish the relation $b \ll \frac{\psi}{2 w_{1}}$. that is, what it really means is only

$$
\frac{\pi}{2 x_{1}} \gg a_{0}
$$

We note that the frequencies w_{1} which differ in order of magnitude are associated with different electrons, eng-, I x-rays with electrons in K-ahell, ste. So we should put for each m_{1} sone a_{1} which measures the radius, not of the whole atom, but just of the proper shell. Then

$$
\frac{\pi}{2 v_{1}} \gg x_{1}
$$

(d) The fourth approximation is neglect of relativity.

The effect of relativity is to flatten the field (reducing its extent parsilel to x-axis) and to increase its transverse component r_{\perp}. Due to the first erect, conditions at distance x should be replaced by those at $\frac{x}{8}=\sqrt{1-\beta^{2}} \approx$. This moans $t \rightarrow \sqrt{1-\beta^{2}}$, and in particular the collision time t mast be reduced by a factor γ. Due to the second effect. \boldsymbol{r}_{\perp} is increased ty a factor γ, and we see that r_{\perp} at is unchanged. Thus, the previous calculation of the momentum transfer leads to the correct result: However, the oomlition $\supsetneq \ll \frac{1}{x_{1}}$ mast be replaced by $\sqrt{1-\beta^{2}} \gamma \ll \frac{1}{\alpha_{1}}$, and we get

$$
b \ll \frac{\eta Y}{2 v_{1}} .
$$

4. Determination of $b_{\text {min }}$ and bax Result in and Rance of Validity. (a) The result depends on $\mathrm{b}_{\text {min }}$ and $b_{\text {max }}$ only through $\boldsymbol{l n}_{\mathrm{n}}^{\mathrm{b}_{\text {max }}}$. Thus, we need not give an sceurate estimate, and conditions of the form $b \ll \alpha$ or $b \gg \beta$ can be replaced by $b<\alpha$ and $b>\beta$. so that of $=b_{\max }, \beta=b_{\min }$.
(b) We accordingly take
and

$$
b_{\text {max }}=\frac{r}{2 v_{1}}
$$

$$
b_{m i n}=\left\{\begin{array}{l}
\pi / m v \\
\frac{2 z v^{2}}{m v^{2}}
\end{array}\right\} \text { anschever is greater - }
$$

-9-

Therefore,

$$
F=4 T N \frac{z^{2} e^{4}}{m v^{2}} \sum_{1} I_{2} \ln _{n}\left\{\begin{array}{l}
\frac{\gamma \pi v^{2}}{2 \pi w_{1}} \\
\\
\frac{\gamma \equiv v^{3}}{4 z e^{2} w_{1}}
\end{array}\right\} \text { whichever is mailer. }
$$

(c) We recall that if $b \gg b_{\text {max }}$, the collision is adiabatic, and therefore elastic. Also, if $b_{m a a} \gg b_{\text {min }}$, than most of the scattering involves $b>b_{\text {min }}$, so it is safe to neglect collisions for which $\mathrm{b}<\mathrm{b}_{\text {min }}$. these occurring rarely, and not involving larger momentum transfers than are involved in our approximation ty those having $\mathrm{b}=\mathrm{b}_{\text {min }}$. Thus, by including all impact parameter y $\mathrm{b}_{\mathrm{min}}<\mathrm{b}<\mathrm{b}_{\text {max }}$ we get all which contribute appreciably to the energy loss. But this involves the condition $b_{\text {min }}<\mathrm{b}_{\text {max }}$, and in fact (as we see from our result containing $\left.\ln _{n}^{b_{\text {max }}}\right) b_{\text {min }} \ll b_{\text {max }}$ is necessary in order for these collisions to produce a large energy loss, and thus mask whatever may have been neglected to the roughness of our approximations.

Me conclude

$$
b_{\text {max }} \gg b_{\text {min }}
$$

is a necessary condition for the validity of the calowlations. Here, we ennnot replace \gg by $>$.
(d) (f) Using both expressions for bean, we Find we must have both

$$
\frac{v}{2 x_{i}} \gg \frac{\pi}{m v} \quad \text { and } \quad \frac{v}{2 x_{i}} \gg \frac{2 z z^{2}}{m v^{2}} \text {. (We shall see that }
$$

these non-relativistic expression are good enoubl) We rail also the condition for validity of dipole approximation in estimating $b_{\text {max }}$ was $\frac{v}{2 \alpha_{1}} \gg a_{1}$.

TCRL-2287

(β) We know that

$$
\pi \pi_{i} \approx \frac{z_{1} e^{2}}{s_{1}} \approx \frac{m_{2}^{2}}{w_{i}} \quad \text { (viral theorem) }
$$

where $\mathbf{v}_{1}=$ velocity of electron in shell associated with frequency w_{i}, and z_{i} is the effective charge acting on the said shell. $1 \leqslant z_{1} \leqslant z_{0}$ We also have the uncertainty relation $m v_{1} a_{1} \sim \pi$. Therefore

$$
\pi x_{1} a_{1} \approx \frac{m}{2} v_{1}^{2} a_{1} \sim \frac{1}{2} \pi v_{1} \quad ; \quad v_{1} a_{1} \sim \frac{1}{2} v_{1}
$$

($\left(\right.$ Then the third condition becomes $v \gg v_{1}$. The first condition is $\frac{1}{2}=v^{2} \gg-\frac{\pi}{x_{1}} \approx \frac{1}{2} m v_{i}^{2}$, or again $v>v_{i}$. We see that the dipole approximation is always good, if the calculation can bo done at all, since the condition for its validity is the same as the condition $b_{\text {max }} \gg b_{\text {min }}$ Q.M.
(8) Second condition is:

$$
v \gg\left(4 z e^{2} w_{1} / m\right)^{2 / 3}=\left(2 \frac{z}{z_{1}} v_{1}^{2} x_{1} w_{1}\right)^{1 / 3} \approx v_{1}\left(\frac{z}{z_{1}}\right)^{2 / 3}
$$

From $z_{i} \geq 1$ follows $\frac{z}{z_{2}}<z$. merefore if $v \gg v_{i} z^{1 / 3}$, it will follow a fortiont that condition 2 is satisfied. This $w 111$ follow from $v \gg \mathbf{v}_{i}$ for protons and deuterons $(z=1)$ and of -particles $(z=2)$. It will fall for fission fragments and the Minnesota heavy particles.
(E) The ratio of

$$
\frac{b_{\min } \text { class }}{b_{\min Q . M .}}=\frac{2 z e^{2}}{i^{v}}=\frac{2}{v_{2}} \frac{z}{z_{1}} w_{1} a_{1}=\frac{2}{z_{1}} \cdot \frac{v_{1}}{v}<2 \frac{v_{1}}{v} .
$$

Therefore condition for use of Q.M., not classical min is $v \gg 2 \mathrm{v}_{1}$.
-11-

This again Follows from $v \gg \nabla_{i}$. For p, d, γ, but may rail at Low v for Fission fragments and the Minnesota particles.
(e) Results.
(\varnothing (If $\frac{1}{2} m t^{2} \gg 2 \pi w_{1} \quad$ (tor all i); then

$$
F=4 \pi n \frac{z^{2} p^{4}}{\frac{v^{2}}{i}} \sum_{1} i_{1} \operatorname{Cn} \frac{\gamma=v^{2}}{2 \pi w_{1}}
$$

(阝) If $\frac{1}{2}=\nabla^{2} \gg \pi w_{1}$ but not $\gg z \pi w_{1}$; then

$$
F=4 \pi \frac{z^{2} \cdot 4}{m v^{2}} \sum_{1} x_{1} Q_{n} \frac{\gamma_{m} v^{3}}{4 z v^{2} w_{1}}
$$

(\%) If $\frac{1}{2}=v^{2}$ is not $\gg \pi w_{1}$ for any particular w_{1}; then that v_{i} will not be included in the sum. This is because the failure of our approximations is indicated by the contribution to energy lose being small. Only if there is no w_{1} for which $\frac{1}{2}=v^{2} \gg \pi w_{1}$ holds, will the calculation fail completely. But when this happens, we met say the particle is practically stopped, so the above formulae for f can be used dom to $\mathrm{v}=0$ in estimating the range!

Note use of non-reletivintic approximation throughout the section (id). It is clear that condition $b_{\text {max }} \gg h_{\text {min }}$ will hold even better if bank is increased by a factor $\%$.
(6)

$$
\begin{aligned}
& \sum_{1} x_{1} Q_{n} \frac{\gamma \pi^{2}}{2 \pi w_{1}}=\theta_{n} \frac{\partial v^{2}}{2} \sum_{1} r_{1}-\sum_{1} r_{1} \theta_{n} r_{1} \\
& =z_{0} \theta_{n} \frac{\gamma \operatorname{miv}^{2}}{2}-z_{0} \theta_{n} z_{1}
\end{aligned}
$$

$\mathrm{E}_{\mathrm{I}}=$ average ionization energy is defined by this equation

$$
\theta_{n} w_{0}=\theta_{n} \frac{E_{I}}{\frac{1}{2}}=\frac{2}{2_{0}} \sum_{i} I_{1} \theta_{n} w_{1} .
$$

We get for $p, A_{2} \boldsymbol{\gamma}$
provided

$$
\frac{3}{2} m^{2} \gg \pi x_{i} \quad \text { or } \quad E_{\text {part }} \gg \frac{x}{a} \pi w_{i}
$$

for all atomic absorption frequencies w_{1}.
(5) Bloch's Estimate of EI_{I}. Use Fermi-Thomes at ion model. Electrons have momentum P , and are confined to volume of radius a. Betaenon uncertainty relation and exclusion principle, get $p^{3} a^{3} \sim z \pi^{3}$ or $p A \sim z^{1 / 3}$. By the Viral theorem, the potential and kinetic energies are of the same order of magnitude, so that

$$
\frac{z_{0} 0^{2}}{z^{2}} \sim \frac{p^{2}}{22} \quad \text { or } \quad p^{2} a \sim z_{0}
$$

Therefore,

$$
p \sim z_{0}^{2 / 3}, \quad a \sim z_{0}^{-1 / 3}
$$

Instead of now estimating the energy

$$
=\sim \frac{z^{2} e^{2}}{z} \equiv z_{0}^{7 / 3}
$$

Bloch argues that (in the spirit of the harmonic oscillator approximation) it is now necessary to compute the frequency of vibrations in the Terni gan. He says this is given by $w \sim w / a$, where $T a$ sound velocity in the gas. But V should be the same order of magnitude as electron velocity;

UCRL-2287

$$
-13-
$$

therefore ~P , so that

$$
=\sim p / a \sim z_{0}
$$

Thus,

$$
E_{1}=k z_{0}
$$

Therefore

$$
F=4 \pi \pi z_{0} \frac{z^{2} e^{4}}{\operatorname{mv}^{2}} \ln \frac{2 \gamma v^{2}}{\psi z_{0} \pi \pi}
$$

k is a numerical constant (not given by Bloch's estimate). Experiments on gold (quoted by Heitler) give $k=2 \pi /$

Note

$$
\text { veer }=R \mathrm{~h}=13.5 \text { volts (For air, } z_{0} \sim \gamma 4 \text {. }
$$

This gives $k Z_{0}$ fief $\sim 9 e$ volts. Experiment gives B0, which is a good enough check, considering crudeness of the Bloch argument.) "Serber Says" quotes a value kif $=11.5$ volts obtained by Wheeler from experiments by wilson, on $2-4$ Mev of s in aluminum.
C. Comparison of Theory and Experinent-Definitive Retolte-Application-

1. Stopping Pourer
(a)

This holds provided $\frac{\mathrm{F}_{\mathrm{K}}}{\frac{\mathrm{K}}{2}} \gg$ energy of $\mathrm{K}-$ electrons. The Formula shows that F decreases rapidly as E increases, until E becomes relativistic. Then $\frac{1}{\mathrm{Kt}^{2}}$ ceases to increase, while E continues to increase, giving a slow (logarithale) increase of F. There is thus a minimum of F in the transition region frow non-relativietie to extreme relativistic E. This is at perhaps $3 \mathrm{M} \mathrm{C}^{2}$.

(b) The minimum is hand to detect-or rather the rise at higher energies. This rise cosses at quite high energies due to the Fermi effect. This effect comes in strongly when v io greater than the velocity of light in the stopping substance. The effect is a strong polarisation of the medium by the field of the particle, which shields the more distant parts of the medium, and thus cute off the increase of bax by the factor γ.

VCRL-2287
-15-
(c) Brace rule: $\quad \frac{F}{F} \sim z_{0}^{\frac{1}{2}}$. This appears to hold simply because $z_{0}^{\frac{3}{2}}$ is a fair approximation to $z_{0} Q_{n} \frac{\alpha}{z_{0}}$ when $\frac{x}{z_{0}}>1$. (d) We will see that the Deiger rule (RoC $B_{0}^{3 / 2}$) moans $F \propto v^{-1}$, or F oC E^{-1}, but in fact, Roc $E^{-1} \operatorname{Ln} \frac{F}{F}$, which ought to be closely Fog B^{-2}, since the θ_{n} varies slowly. Here are two suggestions.
(i) $z^{-\frac{1}{2}}$ is a good approximation to E^{-2} En $\frac{E}{F}$ in the range where the Geiger rule holds.
(14) Teller observes that slow particles can not excite inner shell electrons; therefore as particles blow down below $\frac{\mathrm{K}}{\mathrm{m}}$ - K-onerigy they are able to excite fever and fewer electrons; thus, the stepping power doesn't decrease as fast as expected. In fact, the number of electrons remaining is about proportional to * (Teller sags), giving $\mathrm{E}^{-\frac{1}{2}}$ outside the logarithm.
2. Range.

$$
R=\int d x=\int \frac{d x}{d s} d E=\int_{0}^{E_{0}^{0}} \frac{d B}{F(E)}=
$$

A180,

$$
\frac{d R}{d E_{0}}=\frac{1}{F\left(E_{0}\right)}
$$

(a) Geiger rule:

$$
\operatorname{Rec} E_{0}^{3 / 2}, \quad \frac{d R}{d E_{0}} \propto \mathbb{E}_{0}^{\frac{1}{2}} \text {; therefore, } F\left(E_{0}\right) \propto 8 E_{0}^{-\frac{1}{2}}
$$

(b) Theory

$$
\begin{aligned}
& F(B) \propto E^{-1} \theta_{n} \frac{z}{\beta} \sim E^{-1} . \\
& \operatorname{Roc} \int_{\rho}^{\mathrm{F}} \frac{d \mathrm{E}}{\mathrm{HE}} \mathrm{~m} \mathrm{E}_{0}^{2} \text {. }
\end{aligned}
$$

In fact, when E_{0} is greater than in the Geiger rule range, the rule breaks down by E varying more rapidly than $E_{0}^{3 / 2}$, and tending toward E_{0}^{2}. On the other hand, when E_{0}^{\prime} is smaller, the mule falls by a slower variation.
(c) Aside from these rough rules, we can always do the theory more completely, integrate more accurately, and by comparison with experiment plot quite good range-energy curves. (See, eng., Bethe and Livingston.)

The range-energy relation is the best way to get energies of heavy particles, because (due to their mass) they are difficult to deflect In magnetic fields unluss their energies are low.
(d) Relation to mass:

$$
\begin{aligned}
-\frac{d E}{d x} & =-\frac{d}{d x}\left(\frac{\left.x v^{2}\right)}{d x}=-M v \frac{d v}{d x}=F .\right. \\
R & =\int_{0}^{\omega^{0}} \frac{d v}{d v / d x}=\int_{0}^{\sigma^{0}} \frac{R v d v}{P(v)}
\end{aligned}
$$

since $F(v)$ is independent of M, we have $\frac{z^{2}}{K}=f\left(v_{0}\right)$. Momentum is $P_{0}=\frac{\mathbf{K} v_{0}}{\sqrt{1-\frac{v_{0}}{\sigma^{2}}}}$. Thus, mass of meson can be measured in cyclotron, since p is known from HP , and range in emulsion can be measured. The function $f\left(v_{0}\right)$ can be determined for protons. Then for any particular track, only one value of if gives same value of F_{o} from both formulas (1.e., that for P_{0} and that for E).

Wote how the use of this theory to find mssses depends only on the fact that $F(v)$ is independent of M and varies an z^{2}. Thus, only velocity dependence gives trouble, but can be gotten rid of by calibration against a particle of known z and M. Note vis a handier parnmeter than \mathbb{E}.
3. Spocifie and Total Ionimation.
(a) The mean onerger rnquired to ionise is $k Z_{o} R \mathbb{R}$. Ionimation chamber measuremente show, however, that the number of ions produced in air is perhape three times the number $E_{o} / \kappa z_{o} R T$. This is explained by secondary effects; an electron produced in the primary process produces an average of two more ion pairs before stopping. (Bspecially fast primary electrons are $* 8$-raysm) The result is, howtwer, a proportionality between the enercy lows and the Lonleation. We thus haver
(1)

$$
I=K F_{3} \quad \text { (2) } \quad M=\mathbb{E E}_{0}
$$

α
(b) Ionieation chambers and proportional counters.

Due to their much greater total ioniattion, heavy particles are readily distinguished from light ones. Thus, it is possible to count of is in presence of β background. (How about vice versa?) Also, slow neutron counters can be ecnstructed with BF_{3}. The
-18-
reaction $B^{10}\left(\mathrm{n}, ~\right.$) Li^{7} yields heavily ionising of and La^{7}, which can be detected in presence of a β background.
(e) Early measurements of meson mass.
(o) Bride and Fretter. I IP could be measured, but not R . However, I could be measured (or at least a quantity proportional to it) by counting drops in cloud chamber tracks. Since I OS F , this means F (except for o constant factor) is measured. The constant can be gate, by calibration with protons. In fact, the whole' function can be gotten so.
$F(v)$ is independent of mass, so velocity is determined. From $H P$, know P. From $M=\frac{D}{\pi} \sqrt{1-\frac{v^{2}}{e^{2}}}$, got M.

Since $P(v)$ is alow lg varying near minimum, this method requires slow mesons. Thus, counting rates are low. (β) Powell, etc. HP colldn't be measured. But we known

$$
\frac{E}{E}=r\left(v_{0}\right) \quad \text { and } \quad I=E F(v)
$$

thus, the "residual range" at a place where I is measured is $\frac{8}{6}=\phi(I)$, where ϕ in a universal function. with I in arbitrary unite (the grain density, measured soesehat subjectively, 011 right if reproducible for A given observer), is gotten for protons (for which M ia known) and then X for mesons. The method requires meson and proton tracks to be formed in the emulsion at nearly the same time, as I (observed) is affected by the age of the tracks.

UCRL-2287

-19

D. Large Farticlag: (1) Fission Prappenti:-

(2) Particien of Varge z Seen in Compte Rays hy the Minnesota Group.

Here it is possible for the classical beln to be larger than the quantum bain- A more important effoct is possibility of capture of electrons by the partiele, reducing ite erfective charge, and thus its apesifie ionlaation. Ap a result, I decreases toward the end of the range, instead of increasing to in the Brage curve. (See Teller, P. 32 of Li-24. 41so, Rasetti, p. 51, for gain ant loss of eleetrons by α 's.)

Tracks of fission particles have small branches, which, at end of track, incrase to form a tuft like the feather of an arrow. Ihle is due to collisions with nuclei. See Teller, P- 32 of LA-2h, for account of this.

It was by thein very dense ionisation (proportional to Z^{2}) and to the dearease in I at the ends of tracks that the Minnesote group recognized the large z of the particles seen by the in cosmie rays at great heighte.
E. Seatterring and stregeling.
2. Due to the nature of the Lenisution procesp-namely, many mall energr loseew-the tracks of $\alpha{ }^{\prime} s$ are quate straight, and the ranges uniform. It is this more than anvehing elee shieh suggests that the stopping power of matter is dee primerily to its electrons.
2. Nevartheless, due to flucteations in mmber of collisions, and also
to eapture and lose of electrons, α *s don't have a perfoctly wniform range, bit atragele a little. The orfect is amall for of "o (See Rapetti), bet presumbly larger for mesons.
3. The same hold for seattering. The maltiple scattering io a distinetive featere of meon tracks in emlalon, and has been used by Powell to estinate their mass. On the other hand, it inposes a derinite lindt on IP mesouremente in eloud chanber mase deterninations.
4. Oceasianaliy, an α scatters off a macleus. (Rutherford scattering-)

