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SUMMARY

The main part of this thesis is devoted to the derivation and 
study of formulas for the probability of survival of the haploid and di
ploid yeast cell, based on models proposed by Zirkle and Tobias. 
Some properties of so-called completely monotonic functions are de
veloped, and the results are applied to the investigation of some of the 
more complicated formulas. Finally the theoretical expressions are 
compared with the experimental data obtained by Tobias. If the “sensi
tive sites'* can be identified with the genes, and if the number of vital 
gene pairs in the diploid cell is n, then the comparison between theory 
and experiment leads to the following conclusions:

1) n is between 2 and 50,
- 2) at least some of the genes in the diploid cell must 

be close together.

Furthermore some of the data suggest that homologous chromosomes 
are paired, so that homologous genes are close together.

It is emphasized that more data are necessary to make bet
ter conclusions, and that a more complete theory is necessary to ex
plain better the response of yeast cells to radiation.

• Submitted in partial satisfaction of the requirements for the degree 
of Doctor of Philosophy.
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I, INTRODUCTION

The material presented in this thesis is based on radiation 
experiments on yeast cells. performed by Dr. Cornelius A. Tobias and 
co-workers in Donner Laboratory of Medical Physics, University of 
California. Berkeley, California, and by Dr. Raymond E. Zirkle, 
Chicago, who collaborated with Dr. Tobias during his visit to Berkeley. 
A joint paper by Zirkle and Tobias is in preparation, but has unfortu
nately not been published yet. In spite of this both investigators will be 
quoted freely throughout this thesis.

The experiments by Zirkle and Tobias were designed to study 
the action of high energy radiation on single cells, in particular with 
respect to survival of the cells, in an attempt to understand the mecha- 
nism by which high energy radiation affects living organisms. Yeast 
cells were chosen for various reasons. One of the reasons is that there 
exists an artificially produced haploid strain (see: LINDEGREN (1949)) 
derived from the naturally occurring diploid strain so that it is possible 
to compare the two strains in their response to radiation. Since the 
experimental results have shown a great difference between the diploid 
and haploid cells in their response to radiation, they strongly suggest 
that the damage caused by the radiation is primarily done to the genes 
or chromosomes. rather than to the cytoplasm. It is for this reason 
that the various mathematical models proposed to describe the action 
of radiation on yeast cells, are only concerned with what happens to the 
genetic material.
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This thesis will be concerned mainly with the derivation and 

study of formula* describing the probability of surviva of the haploid 

and the diploid cell as a function of the radiation dose, on the basis of 

various mathematical models. Secondly the dependence of these sur- 

vival cur res upon the type of radiation will be studied. Finally the 

theoretical results will be compared with the experimental results. in 

order to check whether the theory presented may have some validity. 
In addition, the comparison may load to a choice between the various 

mathematical models, which, in turn, would furnish us with some in- 

formation about the geometrical arrangement of the chromosomes and/ 
or genes relative to each other. However, it must be emphasised that 

due to the tremendous experimental difficulties there are only few data 

available so that any conclusions drawn from comparison of theory and 

experiment should be regarded as preliminary. pending future work. 
Moreover, all experiments indicate that either of the mathematical 
models proposed so-far is unable to explain all the observed effects, 
so that most certainly nature is more complicated than described by 

any of our mathematical models; as a result we should consider these 

models and their theoretical consequences only important as a basis 

for future developments.
The material presented in this thesis is original except 

when indicated otherwise, in which cases references will be given.
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n. MATHEMATICAL MODELS FOR THE HAPLOID AND DIPLOID CELL

As wus pointed out in Chapter 1, the mathematical models are 
concerned with damage done to the genetic material of the call. It is not 
known, though, whether thin damage is done to individual genes or to * 
chromosomes a* a whole, e.g- through chromosome breakage. Zirkle 
and Tobias lea we this question open, and speak of “sensitive sites" in 
the genetic material. However, we shall assume for the moment that 
these sensitive sites can be identified with the genes, and shall return 
to the question later whether this concept should be modified.

The model proposed by Zirkle and Tobias for the haploid cell 
in ata respome to high energy radiation is as follows: Among all the 
genes of the haploid cell there is a number of n genes vital to the func- 
tioning of the cell. If the radiation damages any of these vital genes 
the cell will die (it may divide a number of times, but will not form a 
big colony). The number n may be equal to the total number of genes, 
or may be le**.

The diploid cell has, as is well known, a double set of chromo- 
somea. Two corresponding chromosomes are called homologous chromo- 
somea and two corresponding genes are called homologous genes. It is 
not known whether of a homologous gene pair both genes are active in 
the biochemical reactions, or only one of them. It is well known, though 
that if the homologous genes are different (heterozygotism), frequently 
one of the genes impresses its character upon the appearance of the 
organism (dominance). It seems reasonable to assume that in those cases 
only the dominant gene takes part in the biochemical reactions, so that 
apparently the cell can function well with only one gene of the homologous 
gene pair active. It then seems reasonable to assume that if one gone of 
a homologous gene pair is irreparably damaged by the radiation, the 
other gene will keep the cell functioning. Thus the model for the diploid 
cell proposed by Zirkle and Tobi** is as follows. There are n homolo
gous gene pairs, vital to th* functioning of th* cell (the same number n 
a* in the haploid cell). If of any of these n pair* both gene* are damaged 
by th* radiation th* cell will not survive. If of each of the n gene pair* 
at least one gene escape* damage the cell will survive.
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III. MODEL FOR THE IHTKRACT1OM BBTWRXN RADIATION AMD GtNP

For the sake of facilitating the terminology we shall say that 
a gene is "hit" when it is affected by radiation in such a way that it may 

cause the death of the cell. These exist several theories concerning the 

mechanism by which the radiation produces a hit. The "direct hit" .theory 

(see e.g. : LEA (1946)) proposes that the gene is ionised or excited di- 

rectly by the incident radiation (more precisely: by the electric field of 

one of the charged particles present in the radiation). The direct hit 

theory predicts correctly the shape of the survival curves if the type of 

radiation is kept constant and the dose is varied, but it predicts incor
rectly the relative biological effect of different types of radiation on yeast 

cells. Experimentally it is observed that radiation consisting of heavy 

particles, such as a -particles, which produce dense ionisation tracks, 
is more effective in its lethal action on yeast cells than X-rays, which 

produce thin ionization tracks from the electrons emitted by the photo- 
or Compton effect. According to the direct hit theory, on the other 

hand, the lethal effect should decrease as the track density increases. 
This can be understood qualitatively as follows: The shape of the hap
loid survival curve is a simple decreasing exponential in the dose and 

thus indicates that a single hit is sufficient to cause a lethal effect. If 

the track density is increased it becomes more probable that a track 

passing through a gene produces more than one hit, so that some hits 

are wasted since one hit would have been sufficient. It is then clear 

that a higher dose is necessary to give the same biological effect, or, 
in other words, the effectiveness of the radiation decreases. In view 

of this disagreement with experiment the direct hit theory was abandoned 

in favor of an "indirect hit" theory, also called "migration" theory, 
proposed by Tobias. In this theory the major gene damage is done by 

certain chemicals which are liberated by the radiation anywhere in the 

cell, and which subsequently diffuse toward the gene. The increase in 

lethal effect with increase in track density is then theoretically obtained 

by proposing that there are two kinds of chemicals (or possibly more)
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produced by the radiation and that the more active of the wo chemicals 
is produced in a greater proportion relative to the less active one as the 
track density increases. There is some evidence that the more active 
chemcal is the H2O2 molecule and the less active one the OH radical. 
As the track density increases, the spacing between the OH radicals at 
the time of their formation becomes smaller on the average, so that the 
probability that two OH radicals will diffuse toward each other and form 
an H2O2 molecule becomes larger. However, the exact nature of the 
damaging chemicals and the mechanism of their formation is not impor
tant for the theoretical developments of the following chapters, since we 
shall not attempt to make a quantitative theory of the relative biological 
effect as a function of the radiation track density. For a more detailed 
justification of the migration theory the reader is referred to the forth
coming paper by Zirkle and Tobias.
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IV. PROBAB1UITY OF G2WK DAM ACK FROM RADIATION TRACKS

In this and the following chapters we shall make some sirnpl- 

tying assumptions, which however, leave the problem in its essential 
form. These assumptions are:

1)
2)

3)

each gene has the same probablty of being hit.
all n vital genes (gene pairs) are located in the same 
chromosome (chromosome pair).
the damagng molecules are formed by the radiation 
in straight lnes.

A remark about the assumption (2) will be made later an this chapter.
Basic for all calculations in this chapter as the calculation of 

the probability that a "poisonous" molecule, formed by the radiation at 

a distance r from a certain gene, will by diffusion eventually reach this 

gene and damage it. While the molecule. which we shall denote by A. 
diffuses through the cell. It may be removed by undergoing a chemical 
reaction with one of the cell constituents, other than the gene under con
sideration. Therefore, the medium in which A moves as both scattering 

and absorbing- Since it is safe to assume that all relevant distances us 

this problem are small compared to the dimensions of the cell, we may 

consider the medium in which A moves as infinite.
Suppose first that we have only one gene. which we consider 

as a sphere of radius ro. embedded in an infinite scattering and absorbing 

medium, and suppose that a particle A is at a distance r from the center 

of the gene. The probability p{r) ’.hat A will eventually reach the gene 

is calculated in the Appendix, and is essentially given by:

(1)

in which d as a constant with the dimension of a length. We shall call 
d the diffusion length since it is essentially the distance over which 

A can diffuse before being absorbed in the medium.
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In reality we will have more than one gene in the cell. It is 
ampossible to treat this case in general, beause not only do we not 
know how the genes are spaced relativeto’each other, but even if we 

would know that, it would be a prohbitively difficult mathematical 
problem to calculate the probability that A reached a certain gene by 

diffunion. The boat we can do is to consider two extreme cases which 

we can treat with good approximation: 1) genes far apart compared to 

d. and 2) genes close together to d.
Here we want to insert a remark about the assumption (2), 

mentioned in the beginning of this chapter. Let us consider the haploid 

cell, and suppose that the n genes are located in several chromosomes. 
It is reasonable to assume that these chromosomes are far apart. If 

the genes in each chromosome are far apart (case 1), it obviously does 

not matter whether the genes are in one or in more than one chromosome. 
On the other hand, if the genes in a chromosome are close together (case 

2). we have groups of genes, two genes in one group being close together, 
but two genes in different groups being far apart. However, we can con
sider this case as a mixture of the cases 1 and 2 for one group of genes 

(one chromosome), so that it makes sense to treat these two cases sepa
rately for one chromosome. The reasoning goes in the same way for 

the diploid cell.
In case I the genes do not disturb each other (approximately), 

so that the probability that A reaches a gene is still given by (1). in which 

r is the initial distance between A and th* gene under consideration.
In case 2 the gene complex may be considered as one unit, 

and distances large compared to the sis* of the complex may be measured 

from any point within the complex. The probability that a particle A. 
being a distance r from the gene complex, will diffuse toward any of the 

genes in the complex is approximately a function of r only. and given by 

(1) except for a multiplicative constant. To see this we may imagine a 

sphere of radius A. large compared to, and concentric with the gene 

complex. If Pn(r) is the probability that A will reach the gene complex
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consisting of n genes, and P(r,R) is the probability that A will at some 
time pass through the sphere R, then

Pn(r) . P(r. R) Pn(R),
if the gene complex consists of one gene only, then the corresponding 
equation is

p(r) . P(r.R) p(R).
with the same function P. By dividing the first equation by the second 
one we obtain P; =PE= constant. If the gene complex consists of 

n genes. n > 1. then it is obvious that Pn(r)> p(r). Since we treat all the 
genes in the complex on equal footing the probability per gene is equal
to Pn(r). lt is also clear that this probability per gene should be less
than if only one gene were present i. e. 1 Pn(r) < p(r). since some par-

tides A which would otherwise have reached a particular gene may now 
be caught by neighboring genes. We may now put the probability per 
gene equal to an p(r), with an < 1. The probability that A hits any of the 
n genes is then n an p(r), and the probability that any gene out of a sub
group of k genes is hit (k n) is

Pn. k(r) = k an P(r) (2)

Since from physical considerations the probability for a whole gene com
plex Pn(r) = n an p(r) increases with n, whereas the probability per gene
- Pn(r) = an p(r) decreases with a. have for an the two relations

3”
a> > 1 < 2 a2 < 3

(A)
(A2)

The incident radiation produces ionisation tracks, which we 
consider as straight and parallel. If they are not parallel, we may pre
tend they are without changing the results of the calculations. We shall 
ignore 6-rays. The number of ion padre per unit length along the track 
will be denoted by nx- According to the model described in Chapter III 
these ion pairs will be converted into at least two kinds of damaging
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molecules A and B. We shall assume that there are only these two 
kinds of molecules; a generalisation to more than two kinds of mole
cules is easily made. Suppose that the density of A along the track 
is fnx and of B f2nx in which f1 and f2 are functions of ny, and 
04 fj4 1, 0 4 f2< 1. For our purpose the particles A and B differ only 
in their diffusion lengths, which we denote by dj and dz respectively. 
We assume B to be much more effective in its damaging action, so 
that we have d2>> dj. The two extreme cases we shall treat in the fol
lowing are: 1) genes far apart compared to dz, 2) genes close together 
compared to dp

If two particles from the same track each hit a gene (the 
same or different ones) the probabilities for these hits to occur are 
not statistically independent due to the special correlation of the dam
aging particles. On the other hand particles from two different tracks 
produce independent hits, since the tracks ars formed at random.

Suppose a track passes a gene complex, consisting of n 
genes, at a distance s. We pick out a subgroup of k genes and consider 
the probability Pn, k(s) that any of the particles A or B hits at least 
one of the genes of the subgroup. We shall say, in this case, that the 
subgroup receives a track hit. Pn,k(s) can be calculated as follows: 
The average number of particles A reaching the subgroup is 
fj n, J"Pn,k(r) dx, where Pn, k(r) is given by (2) and (l) with d replaced 
by di, and x is a coordinate along the track such that on the positive 
axis * = /r^ - s2. After the substitution x = Sinh t the integral is trans
formed into k an fj n, ro Cexp [-(a/dj) Cosh t] dt=kan2n,=. K,(s/d, 

(see: WATSON (1922)), in which K, is the second Bessel function of 
imaginary argument. For the particles B we have a similar expression. 
For the sake of abbreviation we introduce

f(s) =2nxro (fj Ko(s/d,) + f2 K.(s/d2)) (1)

so that the average number of either kind reaching the subgroup is 
k an f(s). It can be argued that, due to the randomness of distribution
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of A and B along the track. the number of particles reaching the sub
group fellows a Poisson distribution*). Thus the probability of no hit 
from the track is e-kanf(s), and therefore:

Pn,k(s) -1 - e-kan’s) (4)

Next we want to average (4) over s in order to find the probability Qn, k 

that the subgroup of k genes out of the complex of n genes is not hit. 
We imagine a plane perpendicular to the tracks. consider the points of 

intersection of the tracks with this plan*, and observe that due to the 

nature of the radiation these points are distributed at random over the 

plane, with an average density of D/nx per unit area. As a result the 

number of track hits follows a Poisson distribution with average 

Pn,k(s) Z«s ds, so that the probability of no track hit in the

subgroup is exp k(a) 2ma ds , and. using (4):

Qn,k = exp{■ n, p ■ e-kan4a)) 2*s ds (5)

It should be noted that the integration over s has been extended to s a 0, 
i.e. into a region in which (1) strictly does not hold. However, we may 

make this simplifying approximation in view of the fact that d is sup
posed to be large compared to the size of the gene complex.

We shall introduce the following notation:

cn.k=1 <1 - e-kanf(s)) 2v* ds • "x • (6)

which will be useful for the following chapters. In the special case 

n=k=1 we shall write simply Cj. Since aj = 1, we have:

h, G"a - e"f<*b 2s ds (6a)
With help of (6). equation (5) can be written shorter as:

k a e-Cn, k D

and in the special case k ■ n • 1:

Q, « e-cD

(7)

(7.)

• A Poisson distribution P(n) is given by the formula P(n) « e-Xxn/n! , 
in which x ■ fl is the avsrage value of n. The probability that n ■ 0 
is P(0) « e-X.

1
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The coefficients Cn, k depend, besides on the indices n and k, on the 
track density nx (f(s) depends on nx not only through a factor nx, but 
also through the functions f| and 2. see (3)). If it is necessary, we 
shall label the cn k with the type of radiation under consideration, 
e.g. with X for X-radiation.

We may consider X-rays as radiation tracks in the limit 
nx—»0. In that case we can evaluate the integral in (6). Using (3). 
and assuming that with X-rays only the particles A are formed. an 
that 4 ■!. {2 • 0. we obtain (cn, »x • h, , kanK(s) 2*s da = kan 4==ad.2 •

Ko(x) * dx, and since the latter integral is equal to unity, we have:

(cn,1)x ’ k an 4=Fo d,2. (6b)

• result which caa be obtained more easily by integrating over the 
whole volume at once, instead of first over a track. It is seen from 
(6b) that in the case of X-rays:

(cn,k)x = k (Cn,1x• (8)

a relationship which will be used in Chapter VIII.
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V. PROBABILITY OF SURVIVAL OF THE HAPLOID AND DIPLOID

Survival of the haploid cell. We shall treat the extreme cases 1 and 2. 
Case 1. genes far apart compared to dz. The probability that a partic
ular gene is not hit is C. given by (7a). The a genes are independent, 
therefore the probability that none is hit isS= Qn. or:

S ■ e-^jD (9)

Case Z. genes close together compared to dp The probability that 
none of the n gepes of the gene complex is hit is 
with han, or:

n» given by (7)

(10)

Survival of the diploid cell. We have to make a further distinction 
between the two extreme cases: a) chromosomes far apart compared 
to d2; b) chromosomes close together compared to dj (1. e. homologous 
genes close together compared to dp. Together with the two extreme 
cases 1 and 2 of gene proximities in each chromosome we have four 
different extreme cases, which we shall denote by la, 1b, 2a, and 2b. 
Case ia, genes and chromosomes far apart. All genes are far apart, 
therefore hits in different genes are statistically independent. The 
probability that a certain gene is not hit is Q. given by (7a), and the 
probability that it is hit is 1 -Q- The probability that both homologous 
genes are hit is (1 - Q)“, so the probability that of a pair of homologous 

genes at least one survives is 1 - (1 - Q,)2 = ZQ - Q2. Since we have 
n independent gene pairs, the probability of survival of the diploid cell 
is S • (2Q, • Q»)n. or. with help of (7a):

S • (2 e-cD - e-2c.Dyn (11)

Case lb. chromosomes close together, genes in a chromosome far 
apart. The n gene pairs are still statistically independent of each other, 
but the two homologous genes of a pair are not independent since they

/
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are close together compared to d- Hence, the probability that one of 
the genes is not hit, regardless of what happens to the other homolo- 
gous gene, is Q2,1 given by (7) with n = 2. k = 1. whereas the probabil
ity that both genes are hit is Qz, 2. A simple calculation leads then to 
the probability that not both genes are hit as 2Q2, 1 - Q2, 2* The proba
bility of survival of the diploid cell is then 8 = (2 Q2, 1 - Q2, z)n, or, 

using (7):
S • (2 e-c2,1D - e-c2, 2D)"

(12)

Before treating cases 2 a and 2 b we shall derive a formula 
for the probability Pn,k that in a gene complex of n genes every gene 
of a subgroup of k genes is hit, and every gene of the remaining n-k 
genes is not hit. We want to express the Pn,k in terms of the Q, k- 

We consider a subgroup of p genes. The probability that 
any q out of these p genes are hit, and no other gene is hit. is (B) Pn, q- 

If we let q run from 0 to p we get the probability Qn,n-p that a specific 
group of n-p genes is not hit:

, n-p = c Pn, q (15)

As a rule we shall not explicitly indicate the limits of sum
mation. since they may be taken as - and 4co . The unwanted terms 
will be automatically aero due to the property of the binomial coef
ficient (b) that it is only different from sero ifa and b > 0 and 
a > b. This fact enables us also to interchange the order of two sum
mations without having to worry about the limits of summation.

We operate on both sides of (13) with F cp (-I)k*P and obtain

E (p) (-1)**P On, n-p =cp (-1)**P E (J) Pn, q- On the right hand side 

of this equation we interchange the order of summation. The sum over 

pisgc (J) (-,**P • (-1,**3 d E (-1)P-3 c-> - (-)**3 (q) - 5,,

where Sa, b is the usual Kronaecker 6-symbol. The summation over q
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gives then simply Z Pn, q Sk q = Pn k- so that we have:

Pn.k = (-1)*" (14). n-P

Case Za, chromosomes far apart, genes in a chromosome close to- 
gethe r. The probability of survival is obtained by considering all 
cases in which at most one gene in each homologous gene pair is hit. 
The probability that m gene pairs are affected in such a way that k 
genes in one chromosome are hit, m-k in the other, and the remain
ing n-m gene pairs not at all, is Pn k Pn m-k' We have made use 
of the fact that two genes in different chromosomes are statistically 
independent. For fixed m there are (m) ways of choosing the affected 
gene pairs, and for any of these choices and fixed k there are (k) ways 

of distributing the hit genes over the m gene pairs. Thus we get for 
the probability of survival:

*S=z,(m) () Pn,k Pn,m-k- m, k
After the substitution of (14), interchanging the order of summations 
and summing over m and k, we obtain:

S=p.q (-103 On,n-p-n,n-

in which (pq) stands for n! /(p! q! (n-p-q)!). Byusing (7) we obtain:

S = E
p. q

(p) (-I)n-P-9 e-En,n-p ♦ Cn,n-q D (15)

Case Zb, all genes close together. We pick out k specific gene pairs 
and consider the probability that in each of these pairs one and only 
one gene is hit, whereas the remaining n-k gene pairs are unaffected. 
Since in each gene pair either of the two genes may be the hit one, we
have k- We can make (h) different assign
ments of the affected k gene pairs, and if we let k run from 0 to n we

*
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get for the probability of survival S = jC dr) 2* Pan.- Using (14), inter

changing the order of summation and summing over k leads to :

S = p dp (-I"-P 2PQ2n,2n-p-
After substitution of (7) we obtain:

S - X dp (-1)"-P 2P e-f2n,2n-PD (16)

Formulas (11). (12), (15) and (16) are in general for radiation 
producing tracks with track density n,- We may consider X-rays, 
especially hard X-rays as the limiting case » 0. Due to the re
lation (8) the expression for the probability of survival under X-radia
tion. which we shall denote by Sx. will be essentially of the form (11) 
in each of the four cases la through 2b. In case la Sx is. of course, 
given exactly by (11). In case lb we have c2 2 ■ 2 c2 1, so that:

(case 1b) Sx = (2 • „1.D - e-(e2,1xD,n (12*)

By using relation (8) we can perform the summations in (15) and (16). 
with the result:

(cue 2*)

(case 2b)

sx ■ (2 e-ten,•xP - e-2ten,1xP,a

s, - (2 e-(e2n,»xD - .-2(62n,»xP,=
(15*)

(16a)

Equations (12a). (15a) and (16a) can also be obtained at once, by fol
lowing the reasoning given in case la. after observing that in the case 
of X-radiation all the hits are statistically independent.
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VI. PROPERTIES OF THE THEORETICAL 5DRV1VAL CURVES, (I)

The curve representing the probability of aurvival of the cell 
aa a function of the radiation done is called the aurvival curve.

The haploid survival curves, given by eqs. (9) and (10). are 
simple decreasing expone ntiais in the dose. If in S is plotted as a func
tion of D, a straight line through the origin is obtained with slope -nc 
and -cn n respectively.

The diploid survival curves are not easy to handle. The 
simplest one is (11), which depends only on two parameters. For each 
value of n the survival 5 can be plotted as a function of cD, so that 
the shape of the function can be studied in detail. It turns out that the 
shape is of the so-called "sigmoid-type", i.e. a curve with approxi- • 
mately the shape of a reversed S. The curve is monotonic decreasing, 
since it is a product of monotonic decreasing factors:

d -2cD, -SD - e-2P) 4 0.
4The equal sign in this inequality holds if D = 0, so that dr ■ 0 at D = O, 

or in words: the initial slope of the survival curve (11) is zero.
The next simplest case is the survival curve given by (12). 

Even to prove that the curve is monotonic decreasing requires a pro
perty of the c’s which we have not proved yet. It is from (6) obvious 
that Cn,k increases with k, but it is not so obvious that (l/k) cn,k 
decreases with k. This property, which depends upon the fact that 
(1/*) (l-e-x) is a decreasing function of x (Chapter VII, Corollary 3). 
will become clear in Chapter Vin. Assuming the truth of this state
ment for the moment, we have, in particular. C2,14c2,2<2c2.1-
With help of this we get by differentiation:
• 2 c2. i e-z,1D - c2.2 e'c2. 2D

(2 e-c2,1P - e’c2. 2D)
2.1 < e-c2,1P

that, indeed, eq. (12) represents a monotonic decreasing curve.
initial slope is not aero, as in case la, but equal to - .1 * c

The
2, 2).
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The expressions for S in the cases 2a and 2b, given by 
equations (15) and (16) are quite difficult to handle. It is not even obvi - 
ous mathematically that the expressions are non-negative, since in the 
sums positive an well as negative terms occur. We shall return to the 
treatment of these curves in Chapter VIII.

In order to study the dependence of the diploid survival curves 
on the type of radiation, i.e. on n,. we propose the following procedure: 
On the theoretical side we introduce a new variable x, proportional to 
the dose D, in such a way that all the haploid curves are given by the 
equations 3 a e-X. The coefficient of proportionality between x and D 
is different in the various cases: in case I x ■ ncD and in case 2, x = 
cn,nD, as is clear from (9) and (10). It should be kept in mind that c, 
and cn n depend on ng- The object is to compare the diploid curves 
for particle radiation with the diploid curves for X-rays. after they are 
written in terms of the new variable x. We shall call the process out
lined above normalisation. and shall denote the probability of survival 
represented by the normalised expression, bys’n. Normalization of 

(11), (12). (15) and (16) gives the following equations:

(case la) s(n) (2 exp- 5 - exp- z " (11b)

(case lb) s’n) (zexp- ^.1
Ci -exp - 2,2 n (lib)

(case Za) s’n) a 2 (P)(-)n-P-Qexp-(c
P,Q L

+c ) X__  n,n-P n,n-q‘ Cn,n (15b)

(case 2b) s"= g d) (-1)"-P 2P exp-c2n, 2n K

-P Cn,n (16b)

In particular for X-rays wo have, ta view of (8) and (6b):

(cane lb) . (2 .’•i » - e-2)•

(ease 2a) s’g a F . d~) (-1"-P-9 e-fC *4

(12c)

) * (15c)



-21- UCRL-2045

(case 2b) s‘‘ . F (p) (-i)"-P exp 2n-Px (16c)

while in case la s’g) is still given by (lib). Eqs. (5c) and (16c) are left 

in the form of a sum in order to facilitate comparison with (15b) and 
(16b).

It is seen that in case la the normalized curves for X-rays 
and for particle radiation coincide, since they are both given by (11b). 
In cases lb, 2a and 2b the X-ray curves are different from the particle 
radiation curves. Our aim is to prove that in all these cases the par
ticles radiation curve lies entirely below the X-ray curve.

When the theoretical and experimental curves are compared, 
the experimental diploid curves for different types of radiation are also 
plotted on such a dose scale that their corresponding haploid curves are 
all given by e"". In other words, we also normalize the experimental 

curves.
The curves (12b) and (12c) will be compared in this chapter, 

although we shall need some results from the next chapters. It is clear, 
from the asymptotic behavior of (12b) and (12c), that a necessary condi
tion for s’n) to lie below s‘) is a^ < cz,1/c,. or

2/2,1 < 1 (17)

From Chapter IV, relation (Al). it follows that a2n < an- so that if 
k > 0 and f(s) > 0 we have k a2n f(s) § k a, f(«X Using the result of 
Chapter VII. Corollary 3, we have

—--- (1 - e-k“2n‘e)) > —— (1 - e-kn‘())“2n “n
and after integration over • and bringing all factors to one side. we
obtain: e

An o***”^*1) e da
J“a - e-ka2nK(») • da



-22- UCRL-2045

Comparing this with (6) we see that we have proved for arbitrary n, k:

2n Eg.k, { 1
an C2n, k f

(18)

from which (17) follows by tairing n = l. k = 1.
We shall show now that (17) is also a sufficient condition that 

s‘) lies below s‘ in case lb. Putting b=a2 c/c, j w have by (17) 

b4 1. Putting y=(c, /c,) (x/n) we have a,/n = by. so that by (IZe)

s‘) . (Z e-by - e-2byyn.
Equation (12b) in terms of y is:

s(n) = (2e-y -e-(c2,2/c2,1 V
In the last equation C2 I € 2 (nee Chapter VW). no that

Z e-Y -e-(e2.
• Z o~

2,1 ‘ < z e- - e-2! = i - < i - (1-e-b))2
. which proves s‘n)c s‘ for all x.

Before we are able to treat the diploid curves in cases Zo and 
Zb we have to develop some more powerful mathematical tools. This 
will be the purpose of the next chapter.

%
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VII. MATHEMATICAL INTERLUDE: COMPLETELY MONOTONIC 
FUNCTIONS

In this chapter we shall develop the properties of completely 
monotonic functions only so far as we need for our applications. We 
shall give a list of definitions and theorems first, and give the proofs 
of the theorems afterwards. Some of the first theorems in our list 
are mentioned by WIDDER (1941) without proof. 
Definition 1. A function f(x) is called completely monotonic in an 
interval (ab) if f(x) has derivatives of all orders, and

(-1)" QE > 0 (n = o,1.......
Definition 2. A sequence a, 
(-1)n an a, > 0, where the n 

) in the interval (ab).

is called completely monotonic if 
difference operator An is defined by

the recursion relation an a, = An-l - A"*1

Definition 3. A function f(x) is called absolutely monotonic in an . 
interval (ab) if f(x) has derivatives of all orders and 3°. ,, nax1*u
(n = 0.1...............) in the interval (ab).
Notation, In the following, completely monotonic will be denoted by 
CM. absolutely monotonic by AM. The intervals in which the functions 
are CM or AM will not always be mentioned in the following theorems.
Theorem 1.
Theorem Z.
Theorem 3.
Theorem 4.
Theorem 5.
Theorem 6.

if f(x) is CM in (ab). then f(b-x) is AM, 0 < x < b-a.
If f(x) is AM and 4 (y) is AM, then 4 (f(x)) is AM.
If f(x) is CM and 4 (y) is AM. then • (f(x)) is CM. 
The sum of two CM functions is CM.
The product of two CM functions is CM.
if f(x, y) is a CM function of x for every y in interval (ab). 

and g(y) > 0 a continuous function of y, then j f(x. y) g(y) dy is a 
CM function of x.
Definition 4, The nth difference function dif"f(x) of a function f(x) 
is defined by the recursion relation dif"£(x) = difn-1 f(x) - difn-1 f(x+l).

n=1,2 and dif° f(x) = f(x). (It is customary to define the nth

h
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difference aa a" f(x) « aP{x + 1) - a"4x). but for our purposes the 

function difn f(x) ia more convenient. By comparison we have difl
« (-1)" A".) 

Theorem 7.
1,2,....................
Corollary 1. 
Theorem 8.

If f(x) la CM then all difference 
are CM. ) N

If f(x) ia CM then difn f(x) > 0.

functions difn f(x), n ■ o,

The nth difference function of f(x) can be written as the

following sum:

ALo () (-1k f(x + k).

Corollary 2. If f(x) ia CM then

2 () (-l)k f(x +k)> 0.
k x 0

Theorem 9. The nth difference function of a product of two functions 

f(x) and g(x) can be written aa the following sum:

difn (f(x)g(x)) = (R) dif* f(x) dif®"* g(x ♦ k>.
k « 0

Theorem 10. If g(x) ia CM and f(x) = x 2-” g(*). then dif f(x) > 0 

ifx> n.
Theorem 11. If of a function f<x) the derivative ie CM, then e--*) 

ia a CM function of x.
Theorem 12.

a are CM.
Theorem 13.
0. then f(x) '

If of two functions f(x) and g(x) the derivatives and 

and e-f”) . . h(x) <g(x) - f(xD. then h(x) ia CM.

If of a function f(x) the derivative ia CM. and f(0> • 
x g(x). in which g(x) is CM.

Examplea of AM functions are xm (x > 0, m * 0.1. 2............. ), a” (a > 1)
and (1/x) (ex - 1).
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Examples of CM functions are x- (x> 0, m> 0); a*x (al), in partic
ular e-* and 2-*: (1/x) (I - e-”». That (1/x) (1 -e- is CM follows from 

the fact that f(x) = 1 - e-” satisfies the hypotheses of Theorem II. As 

a consequence we have the following corollary: 

Corollary 1. — (1 - e )isa monotonic decreasing function of a.

PROOFS OF THE THEOREMS ------- n .n
Proof of Theorem 1, if we put z=b-x, then -f(b-x) . (-1)" -mf(z)0

since {(z) is CM.
Proof of Theorem Z. The nth derivative of 4 (f(x)) is a sum of products 

of derivatives of 4 and derivatives of f, all of which are non-negative.
It follows thatdQn • (K(x)) > 0.

Proof of Theorem I. • If we put z = b - x. and f(x) e f(b-z) = g(s). then 

g(a) is AM by theorem I. and therefore 4 (g(z)) is AM by Theorem 2. 
It follows that (-!)“ • (f(x)) e • (a(=) > 0.

Proof of Theorem 4. This theorem follows immediately from the fact 
that the n^*1 derivative is a linear operator.

Proof of Theorem 5. The proof goes in the same way as the proof of 

Theorem 3, after observing that the product of two AM functions is 

obviously AM.
Proof of Theorem 6. The integral may be considered as the limit of a 

sum. in which case the theorem follows from Theorem 4, or one can 

differentiate under the integral sign and keep in mind that

(-1)90 f(x, y) 7 o.

Proof of Theorem 7. For the first difference function dif f(x we have 

(-1)"d9ndrx)-(-1)" 35W («(*) - K(x ♦ 1) • 7*1 (-I)* r KIy) dy>0.
since the integrand is > 0.
This proves that the first difference function of a CM function is CM, 
and for the difference functions of higher order it follows by induction.

• This proof was suggested to the author by Dr. R. M. Robinson, 
Department of Mathematics, University of California, Berkeley.



-26- UCRL-2045

Proof of Theorem 8 (Compare: JORDAN (1947), page 8). Proof by indue - 
tion. The formula is obviously true for n = 0. Assume the formula to be 
true for n-1, then we have dif" f(x) - dif"'1 f(x) - dif”'1 {x + 1) =

X c) <-l)k {x + k) - z c") (-1)* Kx+1+k) 
K k
ge» <-l>k Kx * M «- (-1)* Ktx + k)

g( <-Dk r<« + m. since (Vb + c- • c.
Proof of Theorem 9 (Compare JORDAN, page 94). Proof by induction. The 
theorem is true for n=O. Assume that the theorem is true for n-1. then 
we have dif" (K(x)g(*» = dif-((x)g(*)) - aif-(K(x + 1) g(x + 1)) -

E ck aix) dif"-Ukg(x ♦ k) - d*K(x + 1) difn-i-kg(x + 1 ♦ k)} .
After subtracting and adding dif"{(x) difn-l-kg(x + 1 + k) the expression in 

curly brackets may be written as

dif*<(x) difn-kg(x ♦ k) + difkt<x) difn-l-kgx + 1 + k) 

and we get dif"(f(x)g(x)) =

pck» did-k
gck -k

g(x ♦ k) + r (\‘>

g(* ♦ m f «R-b dif*Kx) d-

l-ka(x ♦ 1 + k) «

“g(x ♦ k),

from which Theorem 9 follows, inview of cnk» + • cD».
Proof of Theorem 10. We make use of the following lemma: if h(xj=x 2-* 
then dif" h(x) « (x - n) 2-‘**n). This lemma follows immediately from 
application of Theorem 9 (we have dif x = -1. dif’x = dif 3x = . . . . ■ 0 and 
dif" 2-* ■ 2-**n)). After applying Theorem 9 again we have:

df A*) = g(R) dif"h(x) dif"-"g(* + k).

Since g(x) is CM, dfn-" g(x + k) > O for all k. According to the lemma 
di?1 h(x) = (x - k) 2-’**) which is > O if k € x. Since k runs from 0 to n 

all terms in the sum are >0ifx >n.
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Proof of Theorem 11. Consider the function F(x) ■ C - f(x), where C ia 
an arbitrary real constant. C can be chosen ao large that F(x) 0 in
some interval (ab). Since 
ao that F(x) is CM in (ab).

df 
ax ia CM we have in (ab): (-1)n

Since e
dQn F{x) > 0

ia an AM function of y, we have
by Theorem 3 that eFe*) = e- e-ff*) is a CM function of x in (ab). Since 

C may be chosen arbitrarily large, and therefore F(x) >0in any arbi
trary interval, we conclude that e-f*) is CM in any interval in which 

— is CM. 
dx 
Proof of Theorem 12. The function h(x) may be written as

1
e -(-8) y dy =

o
G1 e-Y f*) - (1-y) 8(*) 

o
dy. In the latter integral a-(y f(x) + (1-y) g(x))

ia CM for 0 aince 4 and dE are CM. By Theorem 11 the integrand

ia a CM function of x, and by Theorem 6 thia holds then for the integral too.

Proof of Theorem 13. If k = h(x), h(x) CM, then f(x) = J* h(y) dy, where

a ia aome conatant. From f(0) = 0 it follows that a = 0, ao f(x) h(y) dy.

We have for the function g(x): g(x) = 1 f(x) * L 
o

o
X zlh(y) dy = ( h(xi) dx,

o
and since h(xz) is a CM function of x, it follows from Theorem 6 that g(x) 
is CM.



-28- UCRL-2045

VIII. PROPERTIES OF THE THEORETICAL SURVIVAL CURVES. (II)

In this chapter we shall discuss the properties of the diploid 
curves in cases 2a and 2b, using the properties of completely monotonic 
functions developed in the previous chapter. We shall show that in both 
these cases:

1) S(D) > 0 for all D > 0; 
A2) -ar 0 for all D > 0, therefore S is monotonic 
decreasing;

3) s‘ (x) - s’n) (x) > 0 for all x > 0. i.e. the 

normalized particle radiation curve lies entirely 
below the normalized X-ray curve.

The key to the proofs is the study of the dependence of the 
c . on k, k = 1, 2,.............. c , given by (6). Equation (6) defines a con-n, K Te K
tinuous function of k, for k > 0, which we shall denote by cn(k). The
c , are the values of c (k) in the integers k = 1.2 n, K n The function
c,(k) has the following properties: cn(O) = 0 (since ifk=O the integrand 
in (6) is 0), and

daC* = f " e-k an f(s) a f(s) 2ws ds 
o n

is a CM function of k since e-kan‘5) is * CM function of k for all s, and 

because of Theorem 6. By Theorem 11 we have then:

-A cn(k) is a CM function of k (19)

in which A is an arbitrary constant > 0. By Theorem 13 we have:

cn(k) = k g(k). g(k) being CM *) (20)

A second observation is that the sums in (15) and (16) can be 
related to the sum in Theorem 8. Finally we make use of Corollary 2 
to prove the desired inequalities.

* There will be * different function g(k) for each value of n.



-29- UCRL-2045

1) Proof that S > 0 for eil D > Q.
Caae 2a. S is given by (15). We shall suppress the first index on the c's 
and write c. instead of c . . We introduce a new summation variable

E n • K ~ m m m mk = n-p-q, so that n-q = p + k, and (pq) = (pk) = (p) ( k” )• If we keep in 
mind the remark about the limits of summation. made in Chapter V. we 
can write (15) as

s=cp e-n-pD E c (-l)k e'c (15d)

By (19) we have that e-e(Ptk) D is CM, and since c,. * c(p+k) for

k = 0.1. we have by Corollary 2:

E cn-P) (-1)k
k K

-Cp+kP > 0.

Since also (p) e-Sn-p D > 0 for all p, we have proved S > 0.

Case 2b. S is given by (16). We shall suppress the first index on the c's 
and write c, instead of c, . > After introducing the summation « ariable 
k»n-p, we can write (16) in the form

S = 22n z (v) (-l)k 2-(n+k) e-Sn+k D 
k (16d)

In (16d) 2-ntk) is CM and e-Sn+k D is CM by (19). so that 2-en*k) e-En±k D
is CM by Theorem 5: Hence S>o by Corollary 2.
2) Proof that-dS, > 0 for all D > 0.

In the notation we shall again suppress the first indices on the c's.
Case 2a. By differentiating S given by (15) we obtain:

a " ?.q <S” (-1)"-P-9 (Sn-p*n-q e-Sn-p*n-? "

=22 (pq) (-1yn-P-9 cn e-‘En-p*Sn-q D 
p. q P

<
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and after introducing k = n-p-q:

- s • 2 zcp en-p e-Sn-PD E (-1)*

In the last equation the factors (p) c,_ e-En-pD are all > 0. and the sum 

over k has already been shown to be non-negative in the proof of S 0 in 
c

case 2a. This completes the proof that - ar > 0 for all D>0.
Case Zb. By differentiating (16d) we get:

dS „2n-an=2 go(-a" .2-"*-
and since by (20) c_.= (n+k, g{n+k), in which g is CM. we have:n•K

dS 
- HD

_22n (-1)k (n+k) 2-n*k) g(n+k) e-Cn+k D

if we put f(k) = k 2-k g(k) e-Sk P. then - S9 = 24n difn {n). according to
Theorem 8. Since g(h) e-Sk D is CM by (19) and Theorem 5 we have difn
f(n) > 0 by Theorem 10, which proves - S > 0 for all D > O.

It is easily established that dirn f(n) ■ 0 if and only if g(h) e-Sk D 

is a constant in h. This can happen only at D = 0. and even then g{k) is 

only constant in the case of X-rays. If we have particle radiation g(k> is 
strictly decreasing, so that - d5 > 0 for all D > 0. In particular we have 

the result: the initial slope of the particle radiation survival curve in 

case Zb is negative.

3) Proof that S(n) >0 for all x >0.

Case Za. is given by (15c), by (15b). We shall suppress the
first index n on all the c’s and write C, instead of c, W- We have:

s(n) s(n) = z (g (_yn-P-Q (e-(n-P*n-9)x/n_e-(en-p*©n-q)x/en) 
X p. q
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After introducing k a n-P-Q we get:

s' - S^1 - E (pk) (-1)k 
p* k

Since (n-pepk)x/n (• x/n) and k (c(n-p)+c(p+k)x/en(-"R*) 

are both CM functions of k. we have, by Theorem 12:

e-(n-p+p+k)x/n - -(-++*/ -hQk) (En-p + £
Cn ’

n-P . P*k) x,a n

in which h(k) is CM. By making this substitution we get

s'x - s'm) a * z , (-1)* h0a) (CM - "P (-1)* Mk> fE
■ (S, + s,).

n )

where S stands for the first sum and S2 for th* second one. We shall

The only property of the Ck of which we shall make use is

ck). koCnn” f 0< M » (21)

IL-

a

b

*
A

k—-

I 
I 
• 
I
I 
•
I 
I 
* 
I 
n

To see this we recall that “aw is CM. so that 

dcfk) 4 0 and therefore c(k) is concave. Th* 
curves c(k)/cn and k/a have been plotted 
qualitatively in Fig. 1. Curve a represents 
c(h)/cn and curve b represents k/a. The 
two curves intersect in k a 0 and in k = a.
It is seen that curve a lies above curve b in
th* interval (On), which establishes (21)-

We can write S, aa

=z(p» (£AdP Cn
(-1)k h(k).
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For O € a we have p (-n,P - “iP) Oby (21). and

E dP (-1)* h(ke) > 0 by Corollary 2. ao

la S2 we introduce a new summation variable q a P+k, and 
after interchanging th* order of summation we obtain:

s2 * z cEg - P E d (-1)* h(k) c-b.
We have 0 < q € a, since otherwise c-b would be zero, ao that by (21)

c

cn- > o,
repeating this process we get difh • cn--m» >0. m - 0.1....
Since h(k) is CM. th* sequence h(k) cq-b

Fo (-11

is CM and thus

This proves that S2 > 0. and
since s‘) - 

a >0.
Caa* 2b. S 
obtain:

s’n) • x (S, ♦ s,). we ha** proved sS‘ - s‘n> 0 for all

is given by (16c). s’n) by (16b). By putting p • n-k we

sX - s") . 22 E « <a)k 2-’** (exp ntk a2nx 
n a. - exp -c _K2a. n+k Cn n >.

Using Theorem 12 we can writ* for th* form in brackets

h(n*k) (c2n(n+k) c", n+k 2.
• an

a Mn*k) a E2n.n. ( E2n(ntk) . 
ea. a c2n.n

tin En,n ntk ). in which b la a CM function of k. W* put A2n Sn.n a b. 
an F2n,n n Bn c2n n

•o that we have b $ 1 by (18). By applying (20) to c. (n+k). by keeping in 

mind that E2n(n±k) and ntk ar* equal at k • 0, and by absorbing all
C2n‘n) n
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constants of k in the function g(k). wo can write:

22n a C2n,n C2n(n±k) . b “ X,* • (n+k) (g(n+k) - b g(n)). in which
En,n c2n.n "

g(k) is CM. In this way we obtain:

s‘) . s<“» -E( (-1)k (n+k) 2-<»♦*> h(n+k) (g(n+k) - b g(n)).

If we put f(k) • k z-k h(k) and G(k) • g(k> - b g(n) then

s’g . s’m) - dif" (n)G(m» = dif*G(n) difn-"Kn+k) by Theorems • 
ana 9. By Theorem 10 dimn-k fn+k) > 0. and for k 0 dif* G(n) = dick gin) 

since G(k) and g(k) differ by a constant. Since g(k) is CM we have
> 0. so df" G(n) > 0 for k a 1. 2............. For keowe have

di® G(n) • G(n) • (1 . b) g(n> > 0 since i - b > 0. This completes tbs 
proof that s’g) - s’m) > O for all x > 0.

*
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IX. COMPARISON WITH EXPERIMENT. CONCLUSIONS

Some of the experimental results. obtained by Tobias and co- 
workers. have been plotted in Fig. 2. at the end of this chapter. The 

X-ray data of the haploid and diploid cells have been marked by circles, 
the a-particle data by crosses. The a-particles were from Polonium 

and were slowed down to a rate of energy loss of approximately 
2 Bev/g/cm2).

It is seen in Fig. 2 that in S for the haploid, both for X-ray 

and a-particles, is represented well by a straight line for a dose not too 

large. At larger doses considerable deviations occur, which cannot be 

explained by the present theory. It will be necessary in the future to 

develop a better theory, based on a more complicated model. which will 
be able to explain properties of the yeast cell which are not now under
stood. In the meantime we shall ignore the so-called "tail" of the 

haploid survival curve and make use only of the first part of the curve.
In Fig. 2 the haploid curves for the X-rays and the a-particles 

have been plotted on different dose scales, in such a way that these curves 

coincide. Thus the data of the survival of the diploid cell under X-rays 

and a-particle radiation appear in their normalised form (see Chapter VI). 
It is seen in the figure that th* a-particle data lie considerably below the 

X-ray data. It has been shown in Chapter* VI and VIII that the normalised 

a -particle curve lies entirely below the normalised X-ray curve in the 

case* lb. 2a and 2b. whereas these curves coincide in case la. Thus the 

comparison between theory and experiment enable a us to reject the pos
sibility of occurence of case is (all genes far apart), so that we may 
conclude- 

either:

or:

two homologous chromosomes are close 

together (1b or 2b).
two homologous chromosomes are far 

apart, but the genes in a chromosome 

are close together (2a).

।



-35-

I

UCRL-2045

The investigation of the X-ray data are the moat interesting. 
Since the theoretical expressions for S are the simplest in the case of 

X-rays. so that we can make a quantitative comparison with the experi- 

mental points. In all the cases the normalised X-ray curve is represented

s‘n=(2 n e-2cx/nyn
(22)

with c = a, 

C • I

in

tn case lb

in case 2a

_ in case 2b nC

which can be obtained from the eqa. (12c). (15c) and (16c) in Chapter VI. 
or by normalizing (12a). (15a) and (16a) in Chapter V.

From (22) it follows that for large dose in s’n) is asymptoti

cally represented by

In sn) n In 2 c x

In principle one could use this formula for determining n and c from the 

asymptotic behavior of the normalized diploid X-ray curve. However, 
this method seems rather inaccurate.

Equation (22) is easiest to handle in case (2a). since then 
c « l and s‘) depends only on one parameter, namely n. In case (lb) and 

(2b) s‘n)depends on the two parameters n and c. We could determine n 

and c by adjusting these parameters in such a way that they give the beat 

fit to the experimental points. However, it turns out that the experi
mental points are not very well represented by any equation of the form 

(22). It seems better to wait with an accurate determination of n and c 

until more reliable data are available. In the meantime a rough estimate 

of n will be made as follows. In the first place it is possible, on theo
retical grounds. to set an upper and lower bound on c. Indeed from 

relation (A,) in Chapter IV it follows that a, < l and a,n/a, < 1, and 

from (Ap it follows that a, > 1/2 and a,m/a, > 1/2. Therefore we have
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in all three cases 1/2 4c61. By plotting th* right hand side of (22) for 

various values of n, both with c=l and with e = 1/2, and by comparison 

with the experimental points, we can set a rough lower and upper bound 

on n. In Fig. 2 curves are drawn for c « 1, n=10 and n = JO. c = 1/2, 
n a 2 and n = 10. Since the experimental points are within bounds set 
by c • \/2., n • Z and c * 1, n = 10. we can conclude that n is somewhere 

between 2 and 10.

By looking at Fig. 2 there is a slight indication that the asymp
totic slope of the X-ray diploid curve is less than the haploid curve, i.e. 
c<1. If this is true it means that we can eliminate case 2a (in which c ■ 1), 

and the conclusion would be that two homologous chromosomes are close 

together. It is hoped that in the future X-ray measurements at high radia
tion dote may prove or disprove this suggestion. Some additional support 
for this suggestion is obtained from initial slope of the diploid a-particle 

curve. In Chapter VI and VIII .t was shown that in case 2a the initial slope 

of the survival curve is zero, whereas it is negative in cases 1b or 2b 

(chromosomes close together). By looking at the diploid a-particle data 

there is a slight indication that the initial slope is indeed negative. How
ever, more data at low dose are necessary to establish this fact more 

certainly.
We return now to the question mentioned in the beginning of 

Chapter 11, namely whether or not the radiation affects individual genes, 
or chromosomes as a whole. We are still not able to make a suggestion 

one way or the other, due to the fact that the value of n is still rather 

uncertain. As soon as n is determined more accurately we may be able 

to make a choice in favor of one or the other possibility of genetic damage. 
If n turns out to be large compared to unity, the damage is probably done 

to individual genes, whereas if n turns out to be comparable to unity 

( < 10 say) it is likely that the damage is done to chromosomes as a 

whole.

-



-37- UCRL-2045

APPENDIX. CALCULATION OF p(r).

(For a more detailed treatment of this problem the reader is referred to 

a forthcoming paper by the author in the June 1952 issue of the Bulletin 

of Mathematical Biophysics).

Consider a sphere of radius r. in an infinite scattering and 

absorbing medium. A point particle, originally at a distance r^ from 

the center of the sphere, moves in this medium with a velocity v which is 
constant in magnitude. The particle has a mean free path £ of being iso

tropically scattered. and a probability per unit time a of being absorbed 

by the medium. As soon as the particle passes through the surface of 
the sphere it is "caught" forever. We describe this by calling the sphere 

"‘black". The problem can be made spherically symmetric by distributing 

the particle homogeneously over the surface of a sphere of radius r., 

concentric with the black sphere. Furthermore the problem can be made 

time-independent by considering the spherical surface of radius r, as a 

particle source with a strength of one particle per unit time, and asking 

for the number of particles absorbed by the black sphere per unit time.*)
If o the problem reduces to a differential equation (dif

fusion equation). which. together with the boundary conditions. leads 

immediately to a solution of the form of eq. (1). However, it is not known 
whether the condition Ree is satisfied in reality. so that it is advisable 

to treat the problem in a better approximation and investigate the influence 

or 2 .
The position f of each particle is measured from the center 

of the black sphere. The direction of the particle velocity $ is given by 
the angle O between • and r. Instead of 0 we shall use u = cos 0. We now 
introduce a particle density function P(r.u). such that 4-r (r.u) dr dp 

is the number of particles between r and r + dr with velocity directions

* The reduction to a time-independent problem was suggested by Dr 
Robert Berber.
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between pa and u+du. Ysatisfiee the Boltzmann transport equation:

v„y .T1-• v.y"ar r >p r -1/2-*, Mr -rp (25)

in which V (r) =) V(r.u) dp is the particle density at r, and d ts the 
Dirac S-function. In eq. (2 5) the first two terms represent the loss of 

particles from interval dr dp as a result of their motion, the third term 

is the lose from collisions in drdp to other intervals, the fourth term 

is the loss through absorption in the medium, the fifth is the gain from 

collisions in other intervals to drdp, and the right hand side represents 

the spherical source at r.. There are two boundary conditions. At
r o the requirement is that there are no particles coming out of the 

black sphere, and at r —2c the particle density should approach zero:

V (ro) • 0 (H > 0)

lim r (r.u) . 0
r —>.0

(24)

Eq. (23) with boundary condition (24) cannot be solved exactly, but 
MARSHAK (1447) has proposed a convenient approximate method, called 

the "Spherical Harmonic Method", which we shall use in our problem.
The method constats of expanding , u) in a series of Legendre polyno-
minis P, (p) : V(r.p) = F (2+1/2)¥e (r) P(). and breaking the series off 

after a finite number of terms. We shall only keep the first two terms:

Y (r.p) * 1/2 Yo’r) ♦ 3/2 Yr) •
which is called by Marshak the "P, - approximation". In this approxi
mation we have to replace the first of the boundary conditions (24) by 

an approximate boundary condition, tor which we choose, with Marshak, 
the requirement that the total current leaving the black sphere be 0. 
Thus we replace (24) by: 

ct
J Y (Fo•H) dp w 0

lim Y(r.p) . 0
r —> co

(25)
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It is reasonable to assume that the absorption probability per 
scattering collision is small, i.e. a£/v<l. If we neglect compared
to 1, and put d ■ VLv/(3a), the P, - approximation leads to the solution

p(r,) - ( 4 24)-1 Fo -Fd/d 
* 3Fo rl

(26)

it can be shown that (26) is a good approximation if r,- It 
is seen from (26) that the influence of X is manifested in the form of a 

factor which is independent of r,. and therefore immaterial for the purpose 

of this thesis.
Equation (1) is obtained from (26) by omitting the factor con- 

taining L , and by neglecting r, compared to
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