UNCLISSIFIED

UnIVEESITY OF CALIPORNTA
Radiation Laboratory
Contract Ilo. W-7405-eng-48

CALCULATIO OF GEOMETRICAL EPFICIEACY OF COUIFTRRS
Louis R. Henrich
Auguat 8, 1952

This report has been photostated to fill your request as our supply of copies was exhausted. If you should find that you do not need to retain this copy permanently in your files, we would greatly appreciate your returning it to TIS so that it may be used to fill future requests from other AEC installations.

Bericolog, California

CALCULATION OF GEONETRICAL EFFICIEMCY OF COUNIERS

Louis R. Henrich
Radiation Laboratory, Department of Physics University of California, Berkeley, California

August 8, 1952

Let F be the flux of radiation going from a sample of radius R_{2} tio a counter of radius R_{1} then Φ the emitted intensity of radiation per unit solid angle. Then the flux between two elements of area $d \sigma_{1}$ and $d \sigma_{2}$ will be given by

$$
\begin{equation*}
d F=\varnothing \frac{\cos \phi}{r^{2}} d \sigma_{1} d \sigma_{2} \tag{1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\cos \phi=\frac{h}{r}=\frac{h}{\sqrt{h^{2}+B^{2}}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d F=\bar{\Phi} \frac{h_{3}}{r} d \sigma_{1} d \sigma_{2} \tag{3}
\end{equation*}
$$

a. Point Source $\left(R_{1} \geq R_{2}\right)$

If there is only one element of area emitting $\left(\mathrm{dO}_{2}\right)$ then the total emitted $P l u x$ is $4 \pi \Phi d \sigma_{2}$ and the geometrical counting officiency will be given by

$$
\begin{equation*}
d a=\frac{d F}{4 \pi \Phi^{d \sigma_{2}}}=\frac{h}{r^{3}} d \sigma_{3} \tag{4}
\end{equation*}
$$

To integrate over σ_{1} we set

$$
\begin{equation*}
d \sigma_{1}=\mathrm{Ed} d \boldsymbol{d} \tag{5}
\end{equation*}
$$

Then by symmetry wo can limit $0 \leqslant \alpha \leqslant \Pi$ and put in a factor 2 so that in this case

$$
\begin{equation*}
d G=\frac{h}{2 \pi^{\prime} \pi} d d \alpha \tag{6}
\end{equation*}
$$

Then integrate first over \propto.
For $R_{2}+R \leqslant R_{1}, 0 \leqslant * \leqslant \pi$;
and for $E_{2}+\mathrm{R}_{2} \geq \mathrm{R}_{1}$
the upper limit on of is determined by

$$
R_{1}^{2}=R^{2}+R_{2}^{2}-2 R_{2} R \cos \alpha,
$$

(7)
or

$$
\begin{equation*}
\psi=\cos ^{-1}\left[\frac{R^{2}+R_{2}^{2}-R_{1}^{2}}{2 R_{2} R}\right] \tag{8}
\end{equation*}
$$

s

$0=\frac{1}{2}\left[1-\frac{h}{\sqrt{\left(R_{1}-R_{2}\right)^{2}+h^{2}}}\right]+\frac{h}{2 \pi} \int_{R_{1}-R_{2}}^{R_{1}+R_{2}} \cos ^{-1}\left\{\frac{R^{2}+R_{2}^{2}-R_{1}^{2}}{2 R_{2} R}\right\} \frac{R d R}{r^{3}}$.
(10)
b. Point Source $\left(\mathbf{R}_{2} \geq \mathbb{R}_{1}\right)$

In this case of is determined
as in Eq. (8). The limits on Integraion are different so that here we have

$\theta=\frac{h}{2 i} \int_{R_{2}^{-R_{1}}}^{R_{1}+R_{1}} \cos -1\left\{\frac{R^{2}+B_{2}^{2}-R_{1}^{2}}{2 R_{2} R}\right\} \frac{R^{2} d R}{r^{3}}$

This agrees with the stated expression in Calvin, "Isotopic Carbon", App. IV, for $Z_{2}>B_{1}$.
b. Circular Source $\quad \mathbf{R}_{1} \geq \mathbf{R}_{2}$

In this case the total flux is $4 \pi \Phi\left(\pi R_{2}^{2}\right)$ so that
$d \sigma=\frac{d F}{4 \pi^{2} R_{2}^{2} \Phi}=\frac{h}{4 \pi^{2} R_{2}^{2}} \frac{d \sigma_{1} d \sigma_{2}}{r^{3}}$.
Let

$$
\begin{align*}
& d \sigma_{2}=r_{2} d r_{2} d \theta \tag{13}\\
& d \sigma_{1}=R d R d \theta \tag{14}
\end{align*}
$$

We can integrate readily over θ and restrict $0 \leqslant \alpha \leqslant \pi$ so that we get
$d a\left(r_{2}, E, q\right)=\frac{h}{\pi R_{2}^{2}} \frac{r_{2} d r_{2} R d R d \in}{r^{3}}$.
Mow integrate over \propto

$$
\begin{equation*}
d G\left(r_{2}, E\right)=\left(\frac{h}{\pi R_{2}^{2}} \frac{R_{-} d R}{r^{3}}\right)\left(\alpha r_{2} d r_{2}\right) \tag{16}
\end{equation*}
$$

How either we shall have

$$
\alpha=\pi
$$

or

$$
\begin{equation*}
\phi=\cos ^{-1}\left\{\frac{\mathrm{R}^{2}+r_{2}^{2}-\mathrm{R}_{1}^{2}}{2 r_{2} R}\right\} \tag{17}
\end{equation*}
$$

depending on the elreumstances.

We now want to find out over what ranges the integration of \mathbf{R} and r_{2} must be carried for different values of \mathcal{O}. If we take a fixed r_{2} we can draw as follows the ranges of integration for R.

$$
\text { Let } r_{2} \leqq R_{1} \text { then }
$$

for $r_{2}+R \leqslant R_{1} ; \quad \alpha=\mathbb{T}$ and $0 \leqslant R \leqslant R_{1}-r_{2}$

$$
\begin{array}{r}
r_{2}+R \geq R_{1} ; \quad \gamma=\cos ^{-1}\left\{\frac{R^{2}+r_{2}^{2}-R_{1}^{2}}{2 r_{2} R}\right\} ; \text { and } \\
R_{2}-r_{2} \leq R \leqslant R_{1}+r_{2} .
\end{array}
$$

while for $r_{2} \geq R_{1} ; \alpha=\cos ^{-2}\left\{\frac{R^{2}+r_{2}^{2}-R_{1}^{2}}{2 r_{2} R}\right\} ;$ and

$$
r_{2}-R_{1} \leqslant R \leqslant r_{2}+R_{1}
$$

These regions may be plotted in two dimensions as follows in the $\mathrm{R}, \mathrm{r}_{2}$ plane

If we change the order of integration to an integration over r_{2} first, we have various regions to consider.
b1 $\quad\left(R_{1}>R_{2}\right)$
Region

A_{1}	$0 \leqslant r_{2} \leqslant R_{2} ;$	$0 \leqslant R \leqslant R_{1}-R_{2}$
A_{2}	$0 \leqslant r_{2} \leqslant R_{1}-R ; R-R_{2} \leqslant R \leqslant R_{1}$	

$B_{1}+B_{2}$
$R_{1}-R \leqslant r_{2} \leqslant R_{2} ; \quad R_{1}-R_{2} \leqslant R \leqslant R_{1}$
Eq. (17)
B_{3}
$R-R_{1} \leqslant r_{2} \leqslant R_{2} ; \quad R_{1} \leqslant R \leqslant R_{1}+R_{2}$
$b_{2} \quad\left(R_{1}<R_{2}\right)$
Region
Linits
α

A
$0 \leqslant r_{2} \leqslant R_{1}-R \quad 0 \leqslant R \in R_{1}$
π
B_{1}
B_{2}
$R_{1}-R \leqslant r_{2} \leqslant R+R_{1} ; \quad 0 \leqslant R \leqslant R_{2}-R_{1}$
Eq. (17)
$R_{1}-R \leqslant r_{2} \leqslant R_{2} \quad ; \quad R_{2}-R_{1} \leqslant R \leqslant R_{1}$
Eq. (17)
B_{3}
$R-R_{1} \leqslant r_{2} \leqslant R_{2} \quad R_{1} \leqslant R \leqslant R_{1}+R_{2}$

Eq. (17)

Wow to evaluate the expressions for G in the two cases we have to integrate expressions of the type

$$
\int d r_{2} d r_{2}
$$

where \quad of $=\pi$ or $\gamma=\cos ^{-1}\left[\frac{R^{2}+r_{2}^{2}-R_{1}^{2}}{2 R r_{2}}\right]$
for $\quad \int_{a}^{b} \sigma r_{2} d r_{2}=\left.\frac{\pi}{2} r_{2}{ }^{2}\right|_{a} ^{b}$

For the other case

$$
\left.\begin{array}{rl}
\int_{\mathrm{a}}^{\mathrm{b}}\left\{\begin{array}{c}
\left.\cos ^{-1}\left[\frac{\mathrm{R}^{2}-\mathrm{R}_{1}^{2}+r_{2}^{2}}{2 R r_{2}}\right] r_{2}\right\} d r_{2} \\
\end{array}\right. & =\left\{\begin{array}{c}
\frac{r_{2}^{2}}{2} \cos ^{-1}\left[\frac{R^{2}-R_{1}^{2}+r_{2}^{2}}{2 R r_{2}}\right]-\frac{R_{1}^{2}}{2} \sin ^{-1} \frac{R^{2}+R_{1}^{2}-r_{2}^{2}}{2 R R_{1}}
\end{array}\right\} \\
-\frac{1}{4} \sqrt{4 r_{2}^{2} R^{2}-\left(R^{2}-R_{1}^{2}+r_{2}^{2}\right)^{2}}
\end{array}\right\}
$$

Evaluating this \int at the various limits needed, we find that

$$
\begin{align*}
& \int^{R_{2}} \cos ^{-1}\left[\frac{R^{2}-R_{1}^{2}+r_{2}^{2}}{2 R r_{2}}\right] r_{2} d r_{2} \\
&= \frac{R_{2}^{2}}{2} \cos ^{-1}\left[\frac{R^{2}-R_{1}^{2}+R_{2}^{2}}{2 R R_{2}}\right]-\frac{R_{1}^{2}}{2} \sin ^{-1}\left[\frac{R^{2}+R_{1}^{2}-R_{2}^{2}}{2 R R_{1}}\right] \\
&-\frac{1}{4} \sqrt{4 R_{2}^{2} R-\left(R^{2}-R_{1}^{2}+R_{2}^{2}\right)^{2}}+c \\
&= \frac{\pi R_{2}^{2}}{4}-\frac{\pi R_{1}^{2}}{4}+r\left(R_{2}\right)+c \tag{20}
\end{align*}
$$

where
$r\left(R_{2}\right)=\frac{R_{1}^{2}}{2} \cos ^{-1}\left[\frac{R^{2}+R_{2}^{2}-R_{2}^{2}}{2 R_{1}}\right]-\frac{R_{2}^{2}}{2} \sin ^{-1}\left[\frac{R^{2}+R_{2}^{2}-R_{1}^{2}}{2 R R_{2}}\right]$

$$
\begin{equation*}
-\frac{1}{4} \sqrt{4 R^{2} R_{1}^{2}-\left(R^{2}+R_{1}^{2}-R_{2}^{2}\right)^{2}} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\int^{R_{1}-R} \cos ^{-1}\left[\frac{R^{2}-R_{1}^{2}+r_{2}^{2}}{2 R r_{2}}\right] r_{2} d r_{2}=\frac{\pi}{2}\left(B_{1}-R\right)^{2}-\frac{\pi}{4} R_{1}^{2}+c \tag{204}
\end{equation*}
$$

$$
\begin{align*}
& \int^{R_{1}} \cos ^{-2}\left[\frac{R^{2}-R_{1}^{2}+r_{2}^{2}}{2 R r_{2}}\right] r_{2} d r_{2}=-\frac{\pi}{4} R_{1}^{2}+c \\
& \int_{(20 b)}^{R_{1}+R} \cos ^{-1}\left[\frac{R^{2}-R_{1}^{2}+r_{2}^{2}}{2 R \cdot 2}\right] r_{2} d r_{2}=\frac{\pi R_{1}^{2}}{4}+c \quad(20 \mathrm{c}) \\
& \int_{\left(R_{2}\right.}^{R_{2}} \cos ^{-1}\left[\frac{R^{2}-R_{1}^{2}+r_{2}^{2}}{2 R r_{2}}\right] r_{2} d r_{2}=\frac{T_{R_{2}}^{2}}{4}-\frac{\pi R_{1}^{2}}{4}+r\left(R_{2}\right)+c . \tag{20d}
\end{align*}
$$

We now substitute the limits in the expression for G.
Case b_{1}. $\quad\left(R_{1}>R_{2}\right)$

$$
\sigma=\frac{h}{\pi R_{2}^{2}}\left\{\begin{array}{l}
\int_{0}^{R_{1}-R_{2}} \frac{R d R}{r^{3}}\left[\frac{\pi}{2} R_{2}^{2}\right] \int_{R_{1}-R_{2}}^{R_{1}} \frac{R d R}{r^{3}} \frac{\pi}{2}\left(R_{1}-R\right)^{2} \\
+\int_{Z_{1}-R_{2}}^{R_{1}} \frac{R d R}{r^{3}}\left[\frac{\pi R_{2}^{2}}{4}-\frac{\pi R_{1}^{2}}{4}+r\left(R_{2}\right)-\frac{\pi}{2}\left(R_{1}-R\right)^{2}+\frac{\pi}{4} R_{1}^{2}\right] \\
+\int_{R_{1}}^{2} \frac{R_{2}}{r^{2}}\left[\frac{R d R}{4}\left[\frac{\pi R_{2}^{2}}{4}-\frac{\pi^{2} R_{1}^{2}}{4}+r\left(R_{2}\right)+\frac{\pi}{4} R_{1}^{2}\right]\right.
\end{array}\right.
$$

$$
\begin{align*}
& \text { - } 11 \text { - } \\
& =\frac{h}{2} \int_{0}^{R_{1}-R_{2}} \frac{R d R}{r^{3}}+\frac{h}{4} \int_{R_{1}-R_{2}}^{R_{1}+R_{2}} \frac{R d R}{r^{3}}+\frac{h}{R_{2}^{2}} \int_{R_{1}-R_{2}}^{R_{1}+R_{2}} r\left(R_{2}\right) \frac{R d R}{r^{3}} \\
& =\frac{1}{2}\left[1-\frac{h}{\sqrt{h^{2}+\left(R_{1}-R_{2}\right)^{2}}}\right]+\frac{1}{4}\left[\frac{h}{\sqrt{h^{2}+\left(R_{1}-R_{2}\right)^{2}}}-\frac{h}{\sqrt{h^{2}+\left(R_{1}+R_{2}\right)^{2}}}\right] \\
& +\frac{h}{/ / R_{2}{ }^{2}} \int_{R_{1}-R_{2}}^{R_{1}+R_{2}} f\left(R_{2}\right) \frac{R d R}{r^{3}} \\
& =\frac{1}{2}\left[1-\frac{1}{2} \frac{h}{\sqrt{h^{2}+\left(R_{1}-R_{2}\right)^{2}}}+\frac{h}{\sqrt{h^{2}+\left(R_{1}-R_{2}\right)^{2}}}\right] \\
& +\frac{h}{\pi R_{2}^{2}} \cdot \int_{R_{1}-R_{2}}^{R_{1}+R_{2}} f\left(R_{2}\right) \frac{R d R}{r^{3}} \tag{22}
\end{align*}
$$

which is formula (4) in Calvin, "Isotopic Carbon", App. Iv.

Case $b_{2}\left(R_{1}<R_{2}\right):$

$$
\begin{aligned}
G=\frac{h}{\pi R_{2}^{2}} & \left\{\int_{0}^{R_{1}} \frac{R d R}{r^{3}}\left[\frac{\pi\left(R_{1}-R\right)^{2}}{2}\right]+\int_{0}^{R_{2}} \frac{R R_{1}}{r^{3}}\left[\frac{\pi R_{1}{ }^{2}}{4}-\frac{\left.\pi\left(R_{1}-R\right)^{2}+\frac{\pi}{4} R_{1}{ }^{2}\right]}{}\right.\right.
\end{aligned}\left\{\begin{array}{l}
\int_{R_{2}-R_{1}}^{R_{1}} \frac{R d R}{r^{2}}\left[\frac{\pi R_{2}^{2}}{4}-\frac{\pi R_{1}^{2}}{4}+f\left(R_{2}\right)-\frac{\pi\left(R_{1}-R\right)^{2}}{2}+\frac{\pi R_{1}^{2}}{4}\right] \\
+\int_{R_{1}}^{R_{1}+R_{2}} \frac{R d R}{r^{3}}\left[\frac{\pi R_{2}^{2}}{4}-\frac{\pi R_{1}^{2}}{4}+f\left(R_{2}\right)+\frac{\pi R_{1}^{2}}{4}\right]
\end{array}\right\}
$$

$$
=\frac{h}{\pi R_{2}^{2}}\left\{\frac{\pi R_{1}^{2}}{2} \int_{0}^{R_{2}-R_{1}} \frac{R d R}{r^{3}}+\frac{\pi R_{2}^{2}}{4} \int_{R_{2}-R_{1}}^{R_{1}+R_{2}} \frac{R d R}{r^{3}}+\int_{R_{2}-R}^{R_{1}+R_{2}} f\left(R_{2}\right) \frac{R d R}{r^{3}}\right\}
$$

$$
=\frac{\frac{1}{2}}{2}\left\{\frac{R_{1}^{2}}{R_{2}^{2}}\left[1-\frac{h}{\sqrt{h^{2}+\left(R_{2}-R_{1}\right)^{2}}}\right]+\frac{1}{2}\left[\frac{h}{\sqrt{h^{2}+\left(R_{2}-R_{1}\right)^{2}}}-\frac{h}{\sqrt{h^{2}+\left(R_{1}+R_{2}\right)^{2}}}\right]\right\}
$$

$$
+\frac{h}{\pi R_{2}^{2}} \int_{R_{2}-R_{1}}^{R_{2}+R_{1}} f\left(R_{2}\right) \frac{R d R}{r^{3}}
$$

(23)
which is formula (5) in Calvin.

