UNGLASSIFIED

UCRT-1919
Speoial Distribution

aEC RESEARCH AND DEVELOPMENT REPORT

UNIVERSITY OF CALIFCENTA
Radiation Laboratory

Contract No. W-7405-eng-48

[^0]THRES LECTUEES OH
CONTROLIED THERNONUCLEAR POWRR - PRODUCTICN
Herbert F. York
August 29, 1952
Photostat Charge far for
Accest Permittees
Available fram
Technical Information Service
P. O. Box 1001 , Oak Risige, Tennessee

RESTRIC DATA

UCRI-1919

THPEE LBCTUABS OM
CONTROLIED THEFWONUCLEAR PONER PRODUCTICF
Herburt F. York
Radiation Laboratory, Departieent of Paysioa University of California, Berkeley, California

Auguat 29, 1952

This report vas uritten from the notes used by Dr. York in delivering his three lectures on considerations pertinent to the problem of utilising controlled thermonuelear reactions for the production of power. Suggestions, additions, and corrections have been made by H. Brovn, J. Hadiey, R. Jastrow, C. Laith, R. LaLevier, E. Nartinelli, and J. Roberts.

The firat lecture diseussed fundensintal properties of the DD and Dr reactions and the reacting substances. The second leeture deaeribed the stellarator, a proposed machine for the controlled produetion of pover frem the above resetions. This lecture wes eseentially an abetraet of a report vritton by Lyman Spitawri and primarily dealt with the atilisation of the DF raaction. The third lecture deacribed the pinch efract and eonsidered its poseible applieation to the thermonuelear power probles.

SECRET

$$
213002
$$

SECRET

UCRL-1919
Special Distribution

THRES LECTURES OS
CONTHOLLED THERUONUCLEAR POWER PRODUCTICH
Herbert F. York
Radiation Laboratery, Depertment of Fhysica Oniversity of California, Berkeley, California

August 29, 1952

Piret Lecture
Fumpayeartais

The Reactione

The subatances that we are considering for our source of power are deuterium and a deuterius-tritium mixture. The use of nuelei of higher \mathbf{Z} does not seen desirable for a couple of reasons. The power lost from the reaction mixture by radiation varies as z^{3}, and the presence of the higher coulomb berriers vould greatly diminish the nuclear reaction rate. These effecte would require much higher operating temperatures.

The chief reaction of the deuterium-tritium mixture is
$\mathrm{D}+\mathrm{T} \longrightarrow \mathrm{He}^{4}+\mathrm{n}+17.6 \mathrm{Mev}$.
The n produced can preaumably be used for making more T .
With pure deuteriun one has two primary reactions of approximately
equal erose mection taking place:
$\mathrm{D}+\mathrm{D} \xrightarrow{20 \%} \mathrm{~T}+\mathrm{P}+3.98 \mathrm{Nev}$
and so for each DD reaction one has essentially

$$
\begin{aligned}
& D+D \longrightarrow 1 / 2 T+1 / 2 \mathrm{He}^{3}+1 / 2 \mathrm{H}+3 / 2 \mathrm{P}+3.62 \mathrm{Kov} . \\
& \text { SECRET } 213
\end{aligned}
$$

For each deuteron consumed, then, one obtains 1.8 Nev directly. By using the neutron produced to induce a risaion in the container walls or in some similar location one has the poseitility of liberating an additional 45 Nev per deuteron consumed.

The producta of the primary reactions are capable of further reaction :
$\mathrm{D}+\mathrm{T} \longrightarrow \mathrm{Be}^{4}+\mathrm{N}+17.6 \mathrm{Mev}$
$\mathrm{D}+\mathrm{He}^{3} \longrightarrow \mathrm{He}^{4}+\mathrm{P}+18.3 \mathrm{Mev}$
$\mathrm{N}+\mathrm{He}^{3} \longrightarrow \mathrm{~T}+\mathrm{P}+0.73 \mathrm{NeV}$.
The extent to which these reactions contribute to the total energy production depends on the temperature of the mystem and the eoncentrations of I and He^{3}. The eross section of the DBe ${ }^{3}$ reaction is auch that it is probably imactive under most operating conditions. On the other hand the DT reaction should contribute signiricantly, as diseussed later In connection with the power production, leading to a liberation of 12,4 Mev per DD reaction.

Renction Cross Sections

The eross sections for the DD and DT reactions as functions of energy are plotted in Figure 1. Pigure 1 was plotted using the Gamow low energy formulas

$$
\sigma_{D D}=\frac{280}{E(\text { kev })} e^{-\frac{44.3}{E}}
$$

up to 10 kev and

$$
\sigma_{D T}=\frac{2.376 \times 104}{E_{D}} e^{\frac{-4 h_{2} 555}{E_{D}}}
$$

up to 6 kev .

At higher energies the follouing values, taken from Li-1190 ${ }^{2}$ vere used:

E, kev	$\sigma_{\text {DD }}$, barns	σ Dr, berne
10		8.6×10^{-4}
20	5.4×20^{-4}	3.4×10^{-2}
40	$6=10^{-3}$	0.4
60	1.6×10^{-2}	1.4
100	3.7×10^{-2}	4.2
200	8×10^{-2}	2.9
400	0.116	0.69
600	0.134	0. 37
1000	0.154	0. 20

One can see that the cross sections rise very rapidiy from almost Insigniricant values around one kilovolt to large waluen at 100 kov. As a result, at relutively lov temperatures the bulk of the reacting wila be accompliahed by the gas particlee on the high energy and of the Maxvellian distribution.

Therral Innwage

Before continuing, it might be advantageoun to introduce some of the thermal language that is commonly used in conneetion with thermonuelear reactions.

Temperature, θ, is usunily spolken of in energ units, epecifienily kev. © is wet equal to $\mathbf{k T}$ and therefore one kilovalt equale $1.16 \times 10^{7} \mathrm{OK}_{\mathrm{K}}$. Consequentiy,

$$
c_{v}=\frac{3}{2} \frac{\mathrm{ker}}{\mathrm{k} \varphi \mathrm{v}}=\frac{3}{2} \times 1.6 \times 10^{-9} \frac{\mathrm{erg}}{\mathrm{kev}}=2.4 \times 10^{-9} \frac{\mathrm{erg}}{\mathrm{kev}}
$$

per particle for a completely fonised gas.
To get C_{v} per unit mass of completely lonimed gas, we note that
one aton ionised into $z+1$ particles of total masa A , and so
 where $\overline{\mathbf{L}}=\frac{\mathbf{A}}{\mathbf{2 + 1}}$.

The radiation energ density as a function of kilovelte is

$$
\mathrm{E}=1.37 \times 10^{14} \mathrm{e}^{6} \frac{\mathrm{erg}}{\mathrm{~cm}^{3} \mathrm{kev}}=1.31 \times 10^{7} \mathrm{e}^{4} \frac{\mathrm{eal}}{\mathrm{~cm}^{3} \mathrm{kev}},
$$

and the heat eapacity of the vacuum becomea

$$
a_{\mathrm{rac}}=5.28 \times 10^{14} \mathrm{e}^{3} \frac{\mathrm{era}}{\mathrm{~cm}^{3} \mathrm{kev}}=1.31 \times 10^{7} \mathrm{e}^{3} \frac{\mathrm{eal}}{\mathrm{em}^{3} \mathrm{kev}}
$$

Sindlarly, the perfect gas lav takes the form

$$
P_{\text {ata }}=1.58 \times 10^{-15} \mathrm{n} \theta
$$

where n is the particle density in particles per oe.

Pover Production

If some deuterons were to move in a bean with a veloelty, V , through an assembly of atationary deuterons, the reaction rate per incident partiele would be given by

$$
A=n \sigma v
$$

where in is the density of the atationary deuterons. In the case of a confined deuteron gas the particles are moving relative to each other with varying velocities, and, because the reaction eross seetion io a function of the relative partiele energies, σv must be avoraged over all $\nabla_{\text {. Like- }}$ wise, to got the reaction rate per unit volume wo must sum over all the deuterons, obtaining, since this procedure counte anch particle twice,

$$
A_{D D}=1 / 2 n_{D}^{2} \quad \frac{\text { reactione }}{\text { ec ence }}
$$

Since two deuterons are consumed per reaction, we can also note
that

$$
-\dot{A}_{D}=n_{D}^{2} \int_{D D}
$$

Sinilarly for the DF aysten the reaction rate is
$\left.R_{D T}=-n_{D}=n_{D} n_{T} \quad\right]_{D T} \frac{\text { resetions }}{\text { ec sec }}$.
The velues of $\overline{\sigma T}$ at varlous temperaturee are given in Table I for both the DD and DT reaetions and are plotted againat temperature in Figure 2. These values vere supplied by J. L. Tack in a letter dated June 7, 1952. They were ecmputed from measuremente made at Loe Alamos and are considered to supersede those appearing in Lt-1190. The DT values were characterized as being "rinal* and the DD values as being "aemirinal*. A so Included at the botton of Table I are an expression for $\bar{\sigma}^{2}{ }_{\text {DHe }}{ }^{3}$ given by Fermi ${ }^{3}$ and an expresesion for $\bar{\sigma}_{\mathrm{DD}}$. The $\bar{\sigma}_{\mathrm{DD}}$ expression is also from Fernite draft, but the leading coefricient has been ohanged to reproduce Tuck 's values at 2 and 3 kev. This expression wes used to extend the $\overline{\sigma v}_{\text {DD }}$ curve of FIgure 2 to below 2 kev. Values of $\overline{\sigma v}_{\text {Dife }} 3$ calculated from Fermi's exproseion are also plotted in Figure 2.

The mean reaction time for a deuteron is
$T=\frac{1}{\mathrm{nTV}}$.
In the $D D$ reaction, with $\theta=30$ kev and $n=6 \times 10^{14}, \gamma$ is approximatefy 240 seoonde.

One atnosphere preseure at about roon temperature corresponds to 2.50×10^{19} molecules/ $\cos ^{3}$. We usunily deez with amall particle densitiea in order to avoid excessive pressures at the temperatures of thermonuelear Interest.

TABLE I

$\bar{F}_{\text {DD }}$ and $\bar{\sigma}_{\text {DIT }}$ at Various Temperatures

Papiricel Junction:
$0 \leq 0 \leq 5 z \quad \bar{\sigma}_{\mathrm{DF}} \times 10^{19}=7.332327078541502 \times 10^{-5} \theta-2.7600781 \times 10^{-3} e^{2}$ $+3.2510296 \times 10^{-2} \theta^{3}-1.4324404 \times 10^{-1} \theta^{4}$ $+2.1106837 \times 10^{-1} \theta^{5}-2.808987 \times 10^{-2} \theta^{6}$
$5 \leq \theta \leq 100 z \overline{\sigma v}_{\mathrm{Dr}} \times 10^{16}=-7.35664244 \times 10^{-2} \theta+2.0466127 \times 10^{-2} \theta^{2}$ $+7.423756 \times 1 \mathrm{v}^{5} \theta^{3}-3.1783311 \times 10^{-5} \mathrm{o}^{6}$ $+8.0905986 \times 10^{-7} e^{5}-7.9792719 \times 10^{-9} e^{6}$ $+2.8037972=10^{-11} \theta^{7}$
$2 \mathrm{~s} \mathrm{~s} 20 \mathrm{z} \bar{\sigma}_{D D}=0.42770-0.72570^{2}-0.36740^{3}-0.025700^{4}+0.00056510^{5}$ $20-\theta-100: \bar{\sigma}_{\mathrm{DD}}=-5.865 \times 10^{-2}+9.00 \times 10^{-3}-7.746 \times 10^{-49^{2}}$
$-9.964 \times 10^{-6} \theta^{3}+4.38 \times 10^{-8} e^{4}$
$\widetilde{F}_{\mathrm{DHle}^{3}}=\frac{60 \times 10^{-14}}{\theta^{2 / 3}} \times 10^{-\frac{13.74}{1 / 3}}$
$\bar{\sigma}_{\mathrm{DD}}=\frac{218}{\theta^{2 / 3}} \times 10^{-16} \times 10^{-\frac{8}{8}, 1 / 4}$

In the pure deuteriun syatem Figure 2 Indicates that unlese the concentration of He^{3} is allowed to build up to nenr the deuteron concentration the Dife ${ }^{3}$ reaction contributee rather little to the total power release. At higher temperatures the Dhie ${ }^{3}$ reaesion becomes more Important, and perhaps this property ean be used to advantage. Since the erose seetion for the DT reaction is much larger than that for the DD reaction, the I coneontration vill build up to only a amell value, of the order of one half to one atom percent, before its rate of consumption will equal its rate of production. In thie ateady atate condition, then, wvery DD reaction vill be aceompanied by halr or a Dr reaction, and the anergy released per DD reaction vill then be

$$
3.62+1 / 2 \times 17.6 \mathrm{Nev}=12.4 \mathrm{Nev}=1.98 \times 10^{-12} \text { joules. }
$$

On this basis the pover production is
$P_{D D}=0.99 \times 10^{-12} \bar{\sigma}_{\mathrm{DD}} \mathrm{n}_{\mathrm{D}} 2 \frac{\operatorname{vat} 2 \mathrm{te}}{\operatorname{cas}^{3}}$
The power produced by the Dr reaction is

Some values of $P_{\mathrm{DD}} / \mathrm{nD}^{2}, \mathrm{P}_{\mathrm{DD}}, \mathrm{P}_{\mathrm{DI}} / \mathrm{n}_{\mathrm{D}^{\mathrm{P}}}$, and P_{DT} are given for various
temperatures in Table II.

Royer Lepe

Bnergy vill be loat from the hot gasea by radiation and by heat eonduetion.

The dirfasenese of the gasea coupled with the dimengions of the reactors we have considered are such that thernal equilibriun of the radiation with the particles is not attained. In fact practically all of the photons produced flov from the gis without interacting with it at
all. As a consequence, there is virtually no black body radiation, and the radiant enericy is lost as bremsetrahlung. At the temperatures of Intereat the heat capacity of the radiation is very large compared with that of the gaseous particles, and the immediate exodus of the photons is desirable to prevent undue cooling of the reacting mixture.

The power radiated per nnit volume by tremsetrahlung is given
by

$$
R_{\text {brems }}=\frac{-d E}{d t}=n_{g} n_{e} \frac{16}{3} \frac{n^{2} 0^{6}}{m^{3} h^{2}} \nabla_{0} \frac{\operatorname{ergn}}{\sec m^{3}}{ }^{4}
$$

where $\overline{\mathrm{F}}_{e}$ is the mean velocity of the electrons.

$$
\bar{v}_{e}=\frac{\sqrt{8 E F}}{\pi m}=\frac{\sqrt{8 \times 1 \times 6 \times 10^{-9} \theta}}{\pi m}=\frac{1}{14.1} \mathrm{ce}^{1 / 2}
$$

For deuteron and tritome $\mathrm{z}=1$, and $\mathrm{n}_{2}=\mathrm{n}_{0}+\mathrm{n}_{\mathrm{T}}$. For pure deuterium, of courne, $n_{D}+n_{T}=n_{D}$.
$P_{\text {treme }}=0.538 \times 10^{-30}\left(n_{D}+n_{T}\right)^{2} e^{1 / 2}$ vetta/ cm^{3}.
Some value of $\frac{P_{\text {bremg }}}{\left(n_{D}+n_{T}\right)^{2}}$ and of $P_{\text {breme }}$ for $n_{D}+n_{T}=6 \times 10^{14}$ are given in Table II. One will note that between 10 and 20 kilovolta $P_{D D}$ becomes larger than $P_{\text {breme }}$, and that between 2 and 3 kilovolts $P_{\text {DT }}$ becomes larger than Pbrems* The temperature at which $P_{\text {nuclear reaction equals }}$ Pradiation is called the ideal ignition temperature. If appropriately Insulated againet heat lose by conduction and if varmer than their ideal ignition temperatures, reacting gases will mintain or increase their teanperatures and consequently vill mustain their resctione. One might note that although this atatement is rather commonly made without any further qualifications, that ite truth requires a oompletely oloeed ayatem for the particies produced by the reactions and a completely open systen for the brempatrahlung.

During the ensuing discussion on heat cunductivity ve will pleture the gases as being contained in cyiindrical vessels of infinite length. of course real vessels cannot be that long and giving them finite aimonsions remains a fozemost problem, although one for which a number of tentative and perhaps workable solutions have been advanced.
at first blush the heat conductivity appoars to be overuholmingly large, but inasmuch as we are deniling with complotely lonized gases, wo may diminish the thermal diffusion by applying a magnetic field along the axis of the cylinder. The field ecnstrains the particles to move in apirala around the ifnes of force, and if atrong enough, can thereby decrease the heat loss by conduction to aven a negligible value.

The immediately preceding remarks are based on the following riguring:

The quantity of heat flowing per unit area per unit time in a gaa is given by
$n=1 / 3 n \lambda-\frac{d E}{d x}$,
Where $\lambda=\frac{1}{\mathrm{n} \sigma}$ is the mean free path, σ being the transport oross section, $E=3 / 2 \mathrm{kT}$ is the mean energy per partiele, and X is length.

The transport oross section, σ, is derived by applying a $1-\cos$ a factor to the coulamb angular cross section and then integrating over all possible angles. The $1-\cos \propto$ factor takes into account the fact that the amall angle scatterings are not as effective in stopping the advance of a particle as are the large angle scatterings.

thats II

Fower Production and Power Radiation at Various Temperatures

$=P_{D E} /\left(n_{D}+n_{T}\right)^{2}$

- (vatte cm^{3})
$30 \quad 8.5 \times 10^{-30}$
(tte/on) (ntite $\cos ^{3}$)
$3.07 \quad 5=100^{28}$
(vatia/ cos^{3}) (matta cos^{3}
(vatte/e3)
$4.65=10^{-30}$
$1.30 \times 10^{-30} \quad 0$
$2.06=10^{-31}$
3.81×10^{-32}
0740
$3.03 \times 10^{-}$
$7.75 \times 10^{-29} \quad 27.9$
$9.85=10-30 \quad 3.54$
1.38×10^{-30}
2.04×10^{-31}
$7.80 \times 1 \sigma^{-33} \quad$ 2. $\mathrm{cl} \times 10^{-3}$
2.04×10^{-31}
4.93×10^{-33}
0.50
0.074
$12.51 \times 10^{-34} 9.03 \times 10^{-5}, 4.93 \times 10^{-33} \quad 0.0018 \quad 0.54 \times 10^{-30} \quad 0.19$
2.94×10^{-30}
1.06
$2.41 \times 10^{-30} \quad 0.87$
1.71×10^{-30}
0.62
$1.21 \times 10^{-30} \quad 0.44$
0.93×10^{-30}
0.33
$\stackrel{\omega}{\omega}$

$$
d \sigma=\left(\frac{2 \pi v^{2}}{2 \pi_{12}^{2}}\right)^{2} \frac{1}{\sin ^{2} \frac{1}{2}} 2 \pi \text { sina } d \alpha(1-\infty \quad \cos)
$$

Whking the substitutions $\sin ^{4} \frac{\sigma}{2}=\frac{(1-000 \text { ar })^{2}}{4}$ and sin a a $a=$ -d cos a, and integrating, wo get,

$$
\begin{aligned}
\sigma & =\left(\frac{\pi r t^{2}}{2 \mu \nabla_{12}}\right)^{2} 8 \pi \int_{\alpha}^{\alpha_{2}} \frac{-4 \cos \alpha}{1-600 a} \\
& =\left(\frac{2 \pi \pi_{0}^{2}}{2 \mu v_{12}^{2}}\right)^{2} 8 \pi \ln \left(\frac{1-\cos \alpha_{2}}{1-\cos \alpha_{1}}\right) .
\end{aligned}
$$

The upper limit, G_{2}, mast be T, corresponding to head-on col11sions. The lover limit, a_{1}, vill be amall correaponding to a large collision parameter, and so

$$
\sigma=\left(\frac{2 \operatorname{sen}^{2}}{2 \mu \nabla_{12}^{2}}\right)^{2} 8 \pi \ln \left(\frac{4}{a_{1}}\right)
$$

Inamauch as wo have an ionic gas, though, the colliaion parameter, b, cannot be infinite, because for large enough b the plasan hosting the colliding particles vill adjust continuousiy to thoir motion in auch a vay thet they vill have no effect on each other. The maximum value for b vill then be that for which b/v corresponds to the relaxation time of the plaman. Rectron plagma oseillations are muoh more rapid than positive Ion oselliations and so the former should determine the effeetive relacation time here. The electron plama angular oscillation frequency is given approximately by 5

$$
\omega_{0}^{2}=\frac{4 \pi n_{e} \theta^{2}}{n}
$$

SInoe

$$
\frac{b_{\max }}{v}=\frac{1}{\omega_{0}}
$$

$$
\sigma_{1}=\frac{2 \pi 8 g_{0}^{2}}{g_{\max }^{\min } v^{2}}=\frac{20^{3}\left(4 \pi n_{0}\right)^{1 / 2}}{m^{3 / 2} \nabla^{3}}=2.98 \times 10^{-15} \sqrt{\frac{n_{0}}{\theta^{3}}},
$$

and wo get for the orfective collision cross section, putting $4 \mathrm{v}_{12}{ }^{2}=$ $3 \times 1.6 \times 10^{-9} \theta$,

$$
\begin{aligned}
\sigma & =\left(\frac{\theta^{2}}{2 \times 4.8 \times 10^{-9} \theta}\right)^{2} 8 \pi \ln \left(\frac{4 \theta^{3}}{8.85 \times 1 \sigma^{-30} n_{0}}\right) \\
& =\frac{1.453 \times 10^{-20}}{\theta^{2}}\left[68.4+\ln \left(\frac{\theta^{3}}{n_{\theta}}\right)\right. \\
& =\frac{2.94 \times 10^{-19}}{\theta^{2}}+\frac{0.334 \times 10^{-19}}{\theta^{2}} \log \left(\frac{\theta^{3}}{n_{0}}\right) .
\end{aligned}
$$

The term in the square brackets is rather insensitive to ohanges in θ or n_{0}. Traking 0 as 10 kev and n_{0} as $6 \times 10^{14} \mathrm{am}^{-3}$ wo obtain an approximate expression,

$$
\sigma=\frac{6.00 \times 10^{-19}}{\theta^{2}} \mathrm{~cm}^{2}
$$

How, substituting back into our heat flow equation, for deuterium gas wo find

$$
\begin{aligned}
h & =-\frac{1}{3} n \lambda \nabla \frac{d E}{d x} \\
& =-\frac{1}{3}\left(n_{D}+n_{0}\right) \times \frac{1}{\left(n_{D}+n_{0}\right.} \times \frac{1}{2}\left(\bar{v}_{D}+\bar{v}_{0}\right) \times \frac{3}{2}\left(1.6 \times 10^{-9}\right) \frac{d \theta}{d x} \\
& =-\frac{1}{3} \times \frac{\theta^{2}}{6 \times 10^{-19}} \times \frac{1}{2}\left(\frac{1}{14.1} 0 \theta^{\frac{1}{2}}\right) \times \frac{3}{2}\left(1.6 \times 10^{-9}\right) \frac{d \theta}{d x} \\
& =-1.42 \times 10^{18} \theta^{5 / 2} \frac{d \theta}{d x} \frac{\theta \text { orge }}{\mathrm{cm}^{2} \sec }=-3.39 \times 10^{10} \theta^{5 / 2} \frac{d \theta}{d x} \frac{\mathrm{cel}}{\mathrm{~cm}^{2} \mathrm{sac}} \\
& =-1.42 \times 10^{11} \theta^{5 / 2} \frac{d \theta}{d x} \frac{\text { vatte }}{c m^{2}} .
\end{aligned}
$$

To take into acoount that wo are conaidering a cylindrical container we note that there are $2 T i r \mathrm{~cm}^{2}$ area normal to the temperature gradient per an length of the cylinder. The radial heat flow per unit length is then
$h=-8.91 \times 10^{11}=e^{5 / 2} \frac{\text { de }}{d r} \frac{\operatorname{yat} t e}{c m}$.
If one had a 1 cm radius cylinder of deuteriun gas at 30 kev in the center of a 30 cm radius cylinder whose walls were at room temperature, one would estimate that the heat lose by thermal dirfusion was roughly 10^{15} timee the heat produced by the thermonuclear reaction.

To look at the inaulating offect of a magnotic fiold upplied along the axis of the reaction cylinder, wo must modify somevhat the no-rield equation,

$$
h=-\frac{1}{3} n \lambda \frac{d z}{d x}
$$

In the following, and throughout this report, we asaume that we have a quiescent plamm. Plagna oscillations lead to heat conductivities of the order of the geometric mean between the field free case and the magnetic rield ease with a quisacent plasme.

The mean diatance of the mowement of the particlea up and down the temperature gradient between collisions is no longer the mean free path, λ. At asch collision the axis of rotation of a spiraling particle Is moved a dietance on the average about equal to R, the radius of the opiral, and so we replace λ by R in the equation for h. The rate at which oollinions take place is $\overline{\bar{\gamma}}$, and to wo replace $\overline{\mathrm{V}}$ by $\frac{\overline{\mathrm{F}}}{\boldsymbol{\lambda}}$, the effective velocity with which the particle move normal to the magnetic rield. The equation for h is consequently

$$
h=-\frac{1}{3} n R \bar{x} R \frac{d z}{\lambda x}=-\frac{1}{3} n \lambda \bar{v} \frac{d E}{d x}\left(\frac{R}{\lambda}\right)^{2}
$$

and the heat conducted by the deuterium gas normul to a magnetic rield 18

$$
h=h_{D}+h_{0}=\frac{1}{3} n_{D} R_{D}\left(\frac{\bar{v}_{p}}{\lambda} R_{D}\right) \frac{d E}{d x} \frac{1}{3} n_{0} R_{0}\left(\frac{\bar{v}_{e}}{\lambda} R_{e}\right) \frac{d z}{d x}
$$

$$
=\frac{1}{3} m_{D} \frac{2}{A} \frac{d \pi}{d x}\left(\bar{v}_{D} R_{D}^{2}+\bar{v}_{0} R_{0}^{2}\right) \cdot\left(n_{0}=n_{D}\right)
$$

To express h in terme of the particle density, temperature, and magnetie field atrength, H, we muet evaluate the elemente of the above equation.

$$
\begin{aligned}
& \mathrm{a}=\mathrm{mv} \frac{\mathrm{c}}{\text { eit }} \\
& \mathrm{m}^{2}=\frac{1}{2} \mathrm{mv}^{2} \cdot \frac{2 \mathrm{~m}^{2}}{0^{2} \mathbb{R}^{2}}=\frac{3}{2}\left(1.6 \times 1 \sigma^{-9}\right) 0 \cdot \frac{2 \mathrm{o}^{2}}{0^{2} \mathbb{1}^{2}} \\
& =3.10 \times 10^{7} \frac{\mathrm{~kg}}{\mathrm{H}^{2}}
\end{aligned}
$$

where m is the mase of the partiele and K is ite atomie woight.

$$
\begin{aligned}
& R_{D}^{2}=6.24 \times 10^{7} \frac{\theta^{2}}{\mathrm{H}^{2}} ; \mathrm{B}_{0}^{2}=1.70 \times 10^{4} \frac{\theta^{2}}{} \\
& \bar{v}=1.66 \times 10^{-3} \cdot \frac{\theta}{\mathrm{H}} ; \bar{\nabla}_{\mathrm{D}}=1.17 \times 10^{-3} \mathrm{e} \theta^{1 / 2} ; \bar{v}_{0}=\frac{1}{14.1} \rho^{1 / 2} \\
& \frac{d I}{d X}=\frac{3}{2}\left(1.6 \times 10^{-9}\right) \frac{d \theta}{d x} \\
& \frac{1}{\lambda}=i_{\sigma}=\left(n_{D}+n_{0}\right) \frac{6.00 \times 10^{-19}}{\sigma^{2}}=1.2 \times 10^{-18} \frac{\mathrm{mp}}{\theta^{2}} \\
& \text { One will note that } \bar{v}_{D^{R}} D^{2} \text { is } \sqrt{\frac{B_{0}}{3_{0}}}=60.6 \text { times the sise of } \bar{v}_{0} R_{0}{ }^{2} \text {. }
\end{aligned}
$$ In aptite of the alower velocity of the deuterons, their greater radil of egration make then the prime carriers of the heat in the magnotie rield In contradiatinction to the rield free ease.

Wo oan now write for the heat flow

$$
\begin{aligned}
& h=-2.10 \times 10^{-12} \frac{\mathrm{mp}}{\theta^{2} \mathrm{H}^{2}} \frac{d \theta}{d x} \frac{\operatorname{cose}}{\mathrm{~cm}^{2} \mathrm{sec}}=-5.02 \times 10^{-20} \frac{\mathrm{mp}^{2}}{\theta^{2 / 2} \mathrm{H}^{2}} \frac{d \theta}{d x} \frac{\cos 1 \mathrm{e}}{\mathrm{~cm}^{2}} \\
& =-2.10 \times 1 \sigma^{-19} \frac{\mathrm{nd}^{2}}{\theta^{1 / 2} \mathrm{H}^{2}} \frac{d \theta}{d \mathrm{mathe}} \frac{\mathrm{ca}^{2}}{\mathrm{~cm}^{2}} \text {. }
\end{aligned}
$$

and the heat flow per unit length of the eglinder is now

$$
h=-1.32 \times 1 \sigma^{-18} \frac{\pi m_{D}^{2}}{\theta^{1 / 2} H^{2}} \frac{d \theta}{d r} \frac{\text { yatte }}{c m}
$$

To see hou much the application of a magnetie riold insulates the syotem egainat theranal dirruaion ve can divide brield free by hagnotie" obtaining

$$
=6.76 \times 10^{29} \frac{\mathrm{o}^{3} \mathrm{H}^{2}}{\mathrm{n}_{\mathrm{D}}^{2}}
$$

For the case we considered earlier vhere $e=30 \mathrm{kev}$, $\frac{d \theta}{d X} \sim 1$, and If $n_{D}=6 \times 10^{14}$ and $\#=20,000$ gause,
$\frac{h_{\text {gleld }} \text { free }}{h_{\text {magnetie }}}=2.03 \times 10^{13}$,
which is just about an adequate inaulation factor. Hy changing the teaporature, particle density, or magnetie rield, one oan increase the inaulation factor to the point where the heat loes by theran dirrusion is less than that produced by the DD reaction.

The magnetic field does not eope out of the elear blue aky and the power to generate it must be supplied by the thernonuclear reaetion. To entimate the pover required we may consider the rield produced by a current in the resetion vessel vells eirculating perpendicular to the axis of the eylinder. The field strongth in the vessel is

$$
H=\frac{4 \pi}{10} \rho\left(r_{2}-r_{1}\right)
$$

where x_{1} and x_{2} are respectively the inner and outer radil of the vessel wall and j is the ourrent density. The pover per unit length to create the fiold is then

$$
\begin{aligned}
P_{R} & =j^{2} \cdot\left(r_{2}-r_{1}\right)^{2} \cdot R \\
& =\frac{100 H^{2}}{16 \pi^{2}\left(r_{2}-r_{1}\right)^{2}} \cdot\left(r_{2}-r_{1}\right)^{2} \cdot \frac{2 \pi \frac{\left(r_{2}-r_{1}\right)}{2}}{\left(r_{2}-r_{1}\right)} \\
& =\frac{25}{4 \pi}\left(\frac{r_{2}+r_{1}}{r_{2}-r_{1}}\right) \frac{\mu^{2}}{\sigma} \frac{\text { vatis }}{a}
\end{aligned}
$$

where R is the resiatance per unit length of the current earrying cylinder and σ is its oonduetivity.

One can see that inersesing the outer radius of the wall beyond a certain point does ilttle tounard reducing the power requirement of the magnetie rield and also that for a civen r_{1} to r_{2} ratio the pover requirement for a given field strength is independent of the radiue of the vessel. Consequently, to suatain the magnotic rield by means of pover from the thermonuelear reaction one need only take a vessel of surficiently large dianeter.

If one preaumea that half the volume of the cylinder vall is copper, the remaining portion being ocoupied by cooling ilquid, insulation, etcetera, then, at $100^{\circ} \mathrm{C}$, using one half the condueitivity of copper, i.ene $\frac{1}{2} \sigma=$ 2.2×10^{5} ohar ${ }^{-1} \mathrm{~cm}^{-1}$, and taking r_{2} / r_{1} equal to two and a rield of 20,000 causs, one colculates

$$
\mathrm{P}_{\mathrm{R}}=11,000 \frac{\mathrm{ymtte}}{\mathrm{~cm}}
$$

The temperature at which the oopper wall can be kopt is eertainly a atill open question but at least in prineiple the copper could be cooled to iiquid nitrogen temperature with a conconitant factor of ton increspe in its condnetivity. However, to run at Iiquid mitrogen temperature ose vould have to expend about as much pover in iiquirying the nitrogen as in supporting the magnetic rield, and so in this case one vould have
$P_{\text {R }} \sim 2,200$ vatta/ca.
Earlier we noted the mean reaction time for a deuteron. One oan eompare with it the times required for the pertieles to dirfuse out of the reaction vessel. The time for an electroa to make a colliaion is

$$
T=\frac{1}{n_{\sigma} \nabla}=\frac{1}{2 n_{0} \sigma^{*}}=3.92 \times 10^{8} \frac{\rho^{3 / 2}}{n_{0}}
$$

and for a deuteron,

$$
T=2.37 \times 10^{10} \frac{e^{3 / 2}}{n_{0}}
$$

Ignoring the variation of temperature between the central region and the walls, one gets for the time for an electron to diffuse out in the case of no magnetic field,

$$
\begin{aligned}
t & =\left(\frac{r}{\lambda}\right)^{2} r=r^{2} n^{2} \sigma^{2} \tau=\frac{r^{2} \pi}{v} \\
& =5.64 \times 10^{-28} \frac{r^{2} n_{0}}{\theta^{5 / 2}}
\end{aligned}
$$

and for a deuteron to diffuse out,

$$
t=3.42 \times 10^{-26} \frac{r^{2} n_{9}}{e^{3 / 2}}
$$

When a magnetic field is applied the times to diffuse out becomes

$$
\begin{aligned}
t & =\left(\frac{T}{R}\right)^{2} \gamma \\
& =2.30 \times 10^{4} \frac{r^{2} H^{2} \theta^{1 / 2}}{n_{\theta}} \text { for electrons, } \\
\text { and } \quad t & =380 \frac{r^{2} H^{2} \theta^{1 / 2}}{n_{0}} \text { for deuterons. }
\end{aligned}
$$

One then obtains for an insulation factor,

$$
\begin{aligned}
\frac{t_{p \text { field }}}{t_{e} \text { no riel }} & =\frac{380 r^{2} H^{2 \theta} \theta / 2}{n_{e}} \times \frac{\theta^{5 / 2}}{5.64 \times 10^{-28} r^{2} n_{e}} \\
& =6.75 \times 10^{29} \frac{\theta^{3} H^{2}}{n_{0}^{2}}
\end{aligned}
$$

For the conditions wo have been considering, $\theta=30 \mathrm{kev}, \mathrm{n}_{0}=6 \times 10^{14}$, $H=20,000$ games, $r=30 \mathrm{~cm}$, we obtain for an insulation factor,

$$
\frac{t_{\text {p field }}}{t_{0 ~ n o ~ r i e l d ~}}=2.02=10^{13}
$$

with t_{D} field $=1.25$ seconds and t_{0} no r eld $=6.17 \times 10^{-14}$ aeoonde.

The foregoing has been the subatance of the first lecture which presented the ideas and computations thet seemed besic to the thermonvelear power problem. Adnittedly some thinge vere not considered or were not treated very accurately. For Inetence, no discussion was made of the ranges of the products of the nuclear reactions. These ranges are large compared to the dimensions of the reaction vessels that we have so far considered and would lead to additional large energy losses from the reactors. Similarly, the field free heat conduction equation does not apply to the vessel alzes and particle densities that we have talked about, inagmuch as the mean free path is several orders of magnitude greater than the vessel diameters. Even in the magnetic field case no account has been taken of the fact that the particles get cold out near the vessel valls and reoombine to form neutral atoms, vastly incrensing the heat conducitivity in that region.

Second Leeturo
 THE STEALARATCR

As mentioned earlier, this lecture was essentially an abstract of a report by L gman $S_{\text {pitser }}{ }^{1}$, and consequently it was intended to be more a deseription than a eritique.

An axial magnetie field in a eylinder is capabie of decreasing the heat conductivity of an lonic gas only mormal to the rield. Along the IInes of force the heat conductivity remaina huge, and therefore any practical thermonuclear power producing device must in some way dininish the otherulse excessive heat losess at its onds. Suggestions auch as holdIng the plasma back from the ende with merowaves or with auttably ahppad magnetic rielde aided by mierovewes pi raape will prove worknble.

Cne suggestion for eliminating ond effects is to eliminate the ends, auch as by bending the cylinder around into a torus. The torus, however, turns out to be an unworkable ahape. The magnetic rield ie etronger st the Inner wall than at the outer wall, and ap Figure 3 111ustrates for velocities normal to the rield, this Inhomogenelty causes the eherged particles of one sign to drift tovmrd the top and those of the other sign te drift toward the botton of the torus. Charged partieles moving alowg the Ines of force in a torus drift up and down in a 11 k manner. These drifter are quickly atopped by the apace charge they produce, but thie space eharge In turn causen the particles of both signs to drirt to the outer wall of the torus. In a tube the sise of the one used in the standard steliarator, deseribed below, the particles reach the wall in the order of 10^{-3} seconds, which, since the mean reaction time for the etendard etellerator is about 30 seconds, turns out to be nt leest twenty times too ritpid.

Abstract

The atellarater is a deviee proposed by Dr. Spitaer to eliminate both the ende and their coneonitant heat losees and likevise to mindmise the excensive drifte serose the field that oeeur in the terus. It eonsiste of a eylindrieal tube that is elosed upon iteelt but is in the form of a Pigure 8, as illuatrated in Figure 4. The besie Penture of the etellarater is ite reverse eurvatures thich osuse partieles moving eround the atellerator to drift one way in one loop of the 8 and the other uny in the other loop, thereby decreasing the not drift to the vall to an acoeptable value. Dr. Spitser has inventigeted many facete of the problem of the ability of the stellarator 's magnetie rield to constrain the ionie gas. The problen is a compliented one and although he has looked into it in considerable deteil, his imquiry is still not eomplete. However, st the present tise, he has coneluded thet (1) if the ratio of material pressure, $1.6 \times 10^{-9} \mathrm{n} \theta$, to magnetie preasure, $\mathrm{H}^{2} / 8 \pi$, is amall eompared uith $5 \mathrm{r}_{1} / \mathrm{L}$, where r_{1}, and L are the Inside radius and length of the etellarater tube, (2) If the stellarater is eymetric with reapect to rotations about the z axis (see Figure 4), (3) If it is designed with end loope of slowly varyIng radius of ourvature and likewise surfieiently resoved from the erossover loope by the atraight tubes, and Einally, (4) if there is a radial electric field of 1000 to 10,000 wolte per eentimeter to eanse the pertieles to efreulate around the tube normal to the magnetie rield, that the fonie gne vill be eatiafaetorily conatrained.

The operating conditions and dimensions of the stellarator were arrived et in a streightforvard menner. Dr. Spitser besed most of his considerations on the DF reaction beceuse it produces much more power at the temperatures of Interest then does the DD renction. One will note in

Table II that the ideal ignition temperature for the Dr resetion ilee between one and twn kilowolte. It aeens ressonable then to adopt ten kilowelte se the operating temperature of a "atandard* atellarator.

For obvieus respons sonneeted with ondinery construetion problems the operating prowsure of the stellerator muat not be too high. If one asaumes an operating prossure of ten atanospheras he gete a partiele debatty of $6 \times 10^{14} \mathrm{em}^{-3}$ at a temperature of ten kilovolte, wheh eorrespends to a prwasurs of whout 5×10^{-3} at roon temperature when aeoount is taken of the reeombination of the charged perticles*

The material energ density at the abowe temperature end pressure 10

$$
P=2.6 \times 10^{-9} \times 6 \times 10^{14} \times 10=10^{7} \frac{\operatorname{sig}}{\operatorname{cn}^{3}}
$$

Originaliy it was believed that a menetie presaure of approximately twice the matwrial prespure would be mdequate for the conflnement of the lonimed gaw. On that besie if one nolves

$$
P_{\text {angenetie }}=\frac{\pi^{2}}{8 \pi} \approx 2 \times 10^{7} \operatorname{erg}
$$

he geta

$$
\mathrm{m}=22,400 \text { gause. }
$$

A magnetie rield etrength of 20,000 games has weunily been taken for the standard stellerator although that field wtrength is much too lou oompered with the other ordinerily edopted etellemator ifmenieions ir the ratio of material preseure to megnetic preseure must be lese then $5 \mathrm{r}_{1} / \mathrm{L}$ as mentioned earlier. The problee is rasolvable, though, even if one must adopt the mont pessinistic velue for the rield strength. Inewessh se the pouer required for a partieular field strength ean be independent of the tube

Abstract

diameter, a larger tube vith a lower particle density could get around any ilfrieulty arising here.

One would like the mean reaction time of a particie to be not too auch longer then the time for it to drift to the wall of the tube lest there should be more energy delivered to the wall than is produced by the thermonuelear resction. With a megnetic field etrength of 20,000 gaves the time for the triton to difruse out of a 50 om radius vemsel is about 33 seconds as compared with the 30 second mean Dr reaction time. Dr. Spitaer adopted 50 cm wa the radius of the stellarator tube. Adopting the foregoing selements of the design of the standard stellarator and preanaing the reaction fills the entire volume of the etellerator one enleulates that about 55 kilowntis per centimetor length of the tube are produced. About 1.2 kilowatts per centimeter are Lost In bremestrahlung, of the order of 10 kilountte per centimeter are lost by heat conduction, and for $r_{2}=2 r_{1}$ two to eleven kilowatts per centimeter go Into produoing the magnetic rield. One also might note at thim point that this stellarator denign vill require about 0.3 ton of copper per inch of tube length or about 1200 tons of copper altogether.

Without a detniled nnelyais of the temperature diatribution, which does not as yet exist, one cannot make a complete quantitative deseription of the particle and material preseures as functions of the distance from the eenter of the tube. However, in view of Lens's law one can be sure that any eurrenta eireulating normal to the magnetic field in the stellarator tube vili be in wuoh t direction as to tend to cancel the magnetic fieli, and consequently one ean see thet the mugnetie pressure will be less in the oenter then at the edge. As shovn in the derivation below the sum

of the particle and magnetie presaures is constant, and so one can be sure that the particle preseure will be greater in the central region than at the outeide.

To show that the sum of the particle and magnetic preseures is conetant we note thet the force per unit volume acting outward is the gradient of the particle pressure and that it is balanced by the invard Force of the angnetic field's interaction with the Lens's lay current, 1.ent

$$
\frac{d P}{d r}+1 \times H=0,
$$

where 1 is the current denaity. We would like to eliminate 1 and ve may note that the magnetic field strength, H in a solenoid is given by

$$
\mathrm{H}=4 \pi \mathrm{I} \text {, }
$$

where I is the total current per unit length of the solenoid eirculating about the poaition at which H is measured.

Inamach as

$$
1=\frac{d I}{d r}
$$

If we differentiate H, we get

$$
\frac{d H}{d r}=4 \pi \frac{d I}{d r}=4 \pi 1
$$

Now, substituting

$$
1=\frac{1}{4 \pi} \frac{d H}{d r}
$$

Into the force balance equation, we have

$$
\frac{d P}{d r}+\frac{1}{4 \pi} \text { H } \frac{d H}{d r}=0
$$

and Integrating, we get

$$
P+\frac{\Pi^{2}}{8 \pi}=\text { constant. }
$$

How, even though we have seen that the presence of the magnetic field tends to increase the particle presaure in the center of the tube, the heat conductivity of the gas will cause it to be cool in the vicinity of the wall, with a concomitant large particle density near the mall. As we baw in the preceding lecture the heat conductivity varies an $\frac{n^{2}}{0^{2} / 2}$ from which we can infer that the low temperature-high particle density region extends well into the stellarator tabe from its wall. Such a temperatureparticle density distribution is not desirable both from the fact that It means that only a amall fraction of the ges is warm exough to sustain the thermenuclear reaction and also because the heat that is produced will be fonducted too rapidly to the wall of the tube.

Dr. Spitaer has suggested placing ports, which he illugtrates as In Figure 5, to draw off the cold gas and thus perinit the hot region of the thermonuclear reaction to f1ll virtually the whole tube. The deaign of the ports is to be such that the aagnetic field strength decreases from the main stellarator tube into the ports and continues to decrease along the ports. Since the spiraling lons behave dianngnetically, they wili be driven down the port tubes by the magnetic field until the particles are cooled and pumped out of the system. The gas pumped out may be purified of reaction products and enriched with reactanta and then blown through jots back into the atellarator.

A suggestion made here is that such ports may not be necessary due to the fact that if che ions are allowed te diffuse to the wall thoy vill cool and recombine to form neutral atoms and molecules. The rate of diffusion of the neutral particles back into the het region will be much greater than the outward diffusion rate of the charged particles inasunch as the neutrals can move in straight innes across the magnetic field.

As a consequence the reglon near the wall should be evacanted to some extent and the hot reaction region ahowld again fill a large fraetion of the stellarator tube. Wo calculations have been made yet with regard to substantinting this auggestion*

Nany of the Ingrediente of the atellarator have not yot been mentioned. For inetance, to get the thermonuelear reaction atarted one would have to warm the gas in acme minner: Breiting a clov discherge by induction appears to be a reasonnbly molution to the heating problem. By pleitig IIthium between the vall of the tube and the eolls of the magnet one could regenerate by neutron eapture the tritium conoumed in the DT reaction. Hesvy wheer could be used for slowing down the neutrons, oooling the ilthium, and for subsequent generation of electrical power with the heat received.

The atellarator we have demeribed, though containing only a fev hundredths of a gram of tritium at any given time would consume some ten to a hundred kilograms of tritium per year and would produce 10^{5} to 10^{6} kilowatts of power in steady operation.

A DD stellarator could produce as much power or more than the DT stellarator but would have to be elther a ten times larger device or one with a magnetic field strength of the order of 10^{5} gaues. The DD machine would also have the advantage that it could be used to manufacture tritium*

Before leaving the stellerator ve should make some mention of Dr. Spitzer ${ }^{\text {s }}$ ESyatem $\mathrm{B}^{\prime \prime}$, which is based on the 1doa thet one might be able to sake the current oreating the-magnetic field eirculate in the Ionised gas itself rather than in external coils. If that could be done, then the operation of the atellarator would go as follows. Wth cold, unionized gas in the stellarator the current wowld be turned on in the
external coils, ereating a atrong magnetie riedd. Then the gas would be heated to operating temperatnre, wt whieh point it is of oourse fall Ionised, and the eurrent in the outalde colls would be tarned ofr. At ten kilovolts teaperature, due to the hten contuetiwity of the gas, the magnetie rield ahould require about two minutee to drop to $1 / \mathrm{e}$ of ite Initial value, for a tube radius of 50 em . At forty kilpwoite, due to the get higher eonductivity of the gas, the dency time for the magretio Field bwoomep eloner to rirteen minutes. A dirrioulty with Syotee B, houevar, is that the magnetie presmure is greatent at the ennter of the tube where one wants the particle density to be as migh so pousible. At the present time no exmpatations regarding the performance of a Syotem B stelIerntor exist.

Mind Leeture
THE PIWCH EPFBCT

This Iecture ves besed Iergely on diseusalone with J. L. Tuok at Lee Alwmoe

If a ourrent pasese in the same direetion through two freely auspended parallel viree the viree wre dravn tounrd each other. One might figure then that a eurrent ilscharging through a gas vould eause the varlous elemente of eurrent enrrying wolume te exert attractive forces on ench other. In raet one might rigure that ir the eurrent density ves great enough the attractive forces would be surficient to cause a eoppression of the gas along the axtil of the diseharge. Such a diseharge eould be uned to ingulate theranily a hot gas from the valls of ite container. The newe "pinch* has been given to tils eompreasion. $W_{\text {. Bennett, }}{ }^{6}$ for Instanee, hes made more Involved ealeulations then we will prewent here to arrive et radini partiele density diatributions much as

$$
n_{r}=\frac{n_{0}}{\left(2+\left(k r^{2}\right)^{2}\right.}
$$

where n_{0} ie the partiele denaity along the axie of the disoharge and n_{r} 10 the particle density at a dietance r. Thie expreselen toes oher a bunching of the particlen along the dincharge akis with a masil bet alvays finite partiele density at large radial diatancen.

Wh will new make a atmple derivation that only erudely approximates the above result but should neverthelese serve te sohmese the plausibility of the srgmont for a pinch effect and from which wo miny form some idea of the anatong of the pinch. We prosume the temperature in oondtant throiggout the pinch and thet the gradient of the pertiels proseure is opponed by the attractive forees produeed by the eurrenta

$$
\mathrm{kr} \frac{\frac{\delta}{d r}}{d r}+1 \mathrm{n}=0 .
$$

sthere i is the current density. We would like to have h expresesed in termes of 1 , and so we will digrese a moment to inveatigete 1 , the eurrent denetty.

$$
1=n e F_{2}=\sigma_{e} E
$$

uhere F_{e} is the drirt velpelty of the lons in the direction of the electride fiold and σ_{e} in the electricel condue tivity of the ges.

Hy making auecessive subetitutions (and ineluding oonversion faetors to evaluate σ_{0} in ohim ${ }^{-1} \operatorname{em}^{-1}$ for later use) wo next get an expraselion for the electriend eonduetivityd

$$
\begin{aligned}
& =\frac{n e\left(\frac{10}{c}\right)}{E(300)} \frac{1}{2} \frac{E_{e}}{m}=\frac{n e\left(\frac{20}{c}\right)}{E(300)} \frac{1}{2} \frac{n_{n}}{n} \\
& =\frac{n e\left(\frac{10}{2}\right)}{\varepsilon(300)} \frac{1}{2} \frac{V_{e}}{n \sigma} \frac{1}{n}=\frac{e^{2}}{2 \sin }\left(\frac{10}{300 e}\right)
\end{aligned}
$$

where σ is the sollision arose seotion and \bar{F} is the mean theranal velocity. Subetituting the expreselions for σ and $\bar{\nabla}$ that we got in the firat leeture, we get

$$
\sigma_{c}=1.10 \times 10^{5} \mathrm{e}^{3 / 2} \mathrm{ota}^{-1} \mathrm{em}^{-1}
$$

We see that of io independent of the partiele denalty and eonsequently both σ_{e} and 1 will be constant over most of the pinch for a given driving potential, although of course they wall have te drop to zero where the partiele density to sero. It can now note that

$$
H=\frac{2 \pi}{r}=\frac{2 \pi r^{2}}{r}=2 r r 1,
$$

there I is the total eurrent, and by aubstitution into our force balance equation get

$$
\begin{aligned}
& \mathrm{kT} \frac{\frac{d n}{d r}+2 \pi 1^{2} r=0 .}{\text { Integration or this equation leeds us to }} \\
& \mathrm{n}=\mathrm{n}_{0}-\frac{\pi 1^{2}}{\mathrm{kT}} \mathrm{r}^{2} \text {. }
\end{aligned}
$$

This result is only qualitatively similer to the more rerined calewlation by Bennett in that it gives a parabolie drop off of particle deraity, reaching sere at a cortaln velue of r which we will eall the pinch radius, R.

$$
R=\frac{1}{1} \sqrt{\frac{n d \pi}{\pi}}=\frac{1}{\sqrt{n_{0} k T}}
$$

Integrating our equation for n , we ean get an expression for M , the total number of partielee por unit length.

$$
\begin{aligned}
N & =\int_{0}^{R} 2 \pi n r d r=2 \pi \int_{0}^{R}\left(n_{0}-\frac{\pi 1^{2}}{k T} r^{2}\right) r d r \\
& =n_{0} \pi R^{2}-\frac{\pi^{2}}{k T} a^{2} \frac{R^{4}}{2} \\
& =n_{0} \pi R^{2}-\frac{n^{2}}{k T} \frac{n_{2} k t}{n^{2} \pi} \frac{R^{4}}{2} \\
& =\frac{n_{0} \pi R^{2}}{2} .
\end{aligned}
$$

How we enh also write

$$
\mathrm{n}^{2}=\frac{\sqrt{\text { MIF }}}{\pi 1}
$$

It is interesting to note that on thie model the pinch ourrent is independent of the pinch ratius if the temperature and the number of particles per unit length are known.

$$
I=\sqrt{2 \pi K T}
$$

If wo conalder a ample aituation of a gas at ton kilowolte tems perature and at a perticle denaity of 10^{14} per ee, then to fuet pineh the gan off the valla of a 20 cm radius tube would require a ourrent of
$I($ anpares $)=10$ 2mar $=10 \sqrt{211\left(2.6 \times 10^{-9}\right) \theta}$

$$
=10 \sqrt{2 \times 10^{-4} \times \pi \times 400\left(1.6 \times 10^{-9}\right)} 10=6.3 \times 10^{5} .
$$

To get the power required to austain a unit length of this pinoh ve firat note that

$$
\begin{aligned}
I=\pi R^{2} \sigma_{0} E & =1.10 \times 10^{5} \pi R^{2} \mathrm{E} e^{3 / 2} \\
& =6.3 \times 10^{5} \text { amperes }
\end{aligned}
$$

and

$$
E=\frac{6.3 \times 10^{5}}{1.10 \times 10^{5} \times \pi \times 400 \times 31.6}=1.44 \times 10^{-4} \frac{\text { volen }}{c}
$$

Then the power per unit length is

$$
\frac{P}{2}=E x=92 \text { watte/cm. }
$$

One might note that for a given temperature and totel number of particlen that the applied voltage and oonsequently the power reguirenent for a pinch varies inveraely as the equare of the pinch radime.

Innamach as the preceding deseription of the pinoh ahow the presenee of no particles outeide the pinch rudius, wo might feel a little better about the stability of our orude formulation if we could ahov that partielee leaving the surface of the pinch will return to it rather than establishing a net outward and sonsequentiy pincb-disrupting partiole Mux.

Wo noted ourlier that the magnetie field inaide the pinch variea as

$$
\mathrm{H}=2 \mathrm{~T} / \mathrm{tr}
$$

The rield consequently resches a maximum wilup at the pinch radiue and then drops off aecording to

$$
H=\frac{2 \pi}{r}
$$

Consequently, we might aek the apecirice queation, "Io a partiele that Initially moves normally outward from the surface of a plinch returned by the $\frac{1}{r}$ dopendent riela to the aurface? ${ }^{\circ}$ The anaver wo get bolow ia yes. We alao arrive at a rormala indioating how far the particles get froe the pinch surface.

In the following derivation v_{z} is the welooity in the direction of the pinel eurrent, ∇_{F} is the veloelty normal to the plinch eurrent, p 1s the momentum of the particle, and is ite radius of eurvature, P_{r} beling its radsus of eurvature at the edge of the pinch.

We can arrive at an expression for v_{z} maximan by the following series of evident mineuvers:

$$
\begin{aligned}
& v_{z} \mathrm{max}=\frac{2 T o}{10 \mathrm{men}} \text { in } \frac{\mathrm{manx}}{\mathrm{R}}
\end{aligned}
$$

Now sifnee p is constent along the trajectory of the pertiele, frem

$$
\frac{x^{2}}{\rho}=\frac{\text { Hox }}{\theta}=\frac{z_{z}}{\rho}
$$

ve oan urite

$$
\begin{aligned}
& \frac{1}{n} \frac{p e}{\theta}=\frac{1}{h} \mathrm{H} \rho=\frac{1}{2} \frac{2 \pi}{10 \pi} \rho=\frac{2}{2} \frac{2 \pi}{10 \pi} \rho_{\mathrm{R}}
\end{aligned}
$$

and therefore

$$
r_{\text {max }}=R_{0} \frac{\rho_{R}^{R}}{\text { R }} \text {. }
$$

St $x_{\text {max }}$ the roturning acceleration io
which indicates that the particies do roturn to the pinch.
SInee

$$
\rho=\text { 登 }
$$

and

$$
p_{\mathrm{t}}=\frac{20 \mathrm{~mol}}{210},
$$

How,

$$
\begin{aligned}
& x_{\max }=\mathrm{te}_{0}\left(\frac{5 \mathrm{pe}}{10}\right) \\
& \mathrm{p}=\sqrt{2^{-2}}=\sqrt{2 \mathrm{ma} \times 3 / 2\left(1.6 \times 10^{-9}\right)},
\end{aligned}
$$

and triking a equal to the maee of the deuteron we have

$$
p=1.27 \times 10^{-16} \sqrt{\theta}
$$

Coneequintily,

$$
x_{\max }=80^{3.97} \times 10^{6} \frac{\sqrt{8}}{1}
$$

For the conditions of the plineh wo diecuseed earlier, that is, a temperature of ten kiliovolte and a plneh eurront of 6.3×10^{5} amperes wo ealeulate $x_{\text {max }}$ to be equal to 1.22 R .

A oouple of deviees for producing a plnch have been tried or auggrated. Twek at Low samos plans to uee a gas rilied torus as the seeondary of a tranaformer made froe a betatron magnet. He figures to produce for ten minlieeconde a eurrsat of 2×105 amperes in the torus, with wich,
for a partiele denpity of 10^{15} per eubie eantimeter, he hopes to reach a gas temperature of one kilowolt, aufflelently uarm to produce a large Flux of noutrons. Beker at Borkeloy tried diseharging approadiately three allorofarads of eapselty through a clase tube four foot long and three Ineher in dianoter that wa eapped at each and by piene aluninum electrodes and vas filled with hydrogen gas at 100 mierons preseare. The condensera were charged to potentials of 2 to 115 kilovolts and wore diwcharged in approximately two mieroseconde reaulting in verious eurrente up to 100,000 amperes. He toolk plotographs of the discharges which shound in each case a Iuninous atroak dovn the axis of the tube. Hlowever, the photographe Indicate only that the current went down the tube axie - one eannot tell whether the particles oonewntrated along the axis or not. On the bapis of our erude formalation, wo vould ealeulate a pinch eurrent of about
 discharges undoubtedny procluded the ocmplete eatabliahment of a plnch. To perhape should note that if all the enerer in Baker'so condpneers had gone into heating the gaw. the temperature would have reached about 75 electiron wolte whieh is just about the point where a deteetabie number of neutrons would be produced.

Ae fer any theirmonuelear power machine, to operate on a paying beale the pinch device mast be able to genernte more power from the thermonuclear roaction than is required to sustain the reaction. In our formaletion of the pineh there will be no heat lose by eonduetion excopt in devices with ende. the thernonuelear energy muet still excese the heas loat by radiation and the energ conammed in maintainiag the pineh current.

-37
 EECRET

DCRI-1919

We have tabulated below some sample situations. One will note that a pinch machine would operate on a paying bapis with the DF rosetion under a couple of the eonditions given below but that with the DD reaction the machine would have to be alightiy larger in dieneter or would have to operate at a aomevhat higher temperature.

SECRET

[^1]
Herrazares

1 Igman Spltaer, A. Proposed Seellernter, MYo-953, July 23, 1951
2 I. I. Tuek, L4-1190
3 E. Formi, Draft: Resetione in Cimprensed Denteritus, Awgust 13, 1951
4 See for Inatance, E. Fermi (D. A. Inglis), Super Lecture Itmber If
5 L. Spitwer, अro-994; mh-s-2, page 4
6 U. Bennett, Higeieel Heviaw, (S5, *90 (1934)
-39-

-41-

 on oorn cobive ame weanve wamicles to The oursupe mall.
sechet
Fin.

$$
-42-
$$

Fian 4
Duganay of stellanaton Tube
mu area

[^0]:

 divitued in Ais nen

[^1]: Information Diviaion
 $9 / 3 / 52$ bve

