UNTVERSITY OF CALIFORNLA

Lawrence Radtation Laboratory Berkelay. Callformia

Contract No. W-7405-ang-48

Avallable from the Office of Technical Services Deportment of Commerce
Woshington 25, D. C.

AN INTEGRAL DESIGN TECHNIOUE FOR WIDEBAND MULTISTAGE TRANSISTOR AMPLIFIERS
 Larry Scott
 Apr11 27, 1962

This paper was aubmitted for publication In the open literaturs at least $\%$ months prior to the isemunce date of this Mificrocard. Since the U.S.A.E.C, haw no evidence that it has been publinhed, the paper is being distributed in Mificrocard form as a preprint.

AN INTEGRAL DESIGN TECHNIOUE FOR WIDEBAND MULTISTAGE TRANSISTOR AMPLIFIERS
 Larry Scott
 Lawrence Radiation Laboratory
 Univeraity of California Berkaley, Callfornia

April 27, 1962

ABSTRACT

Prosented herein is a philoaophy for designing wideband multistage ranaiator amplifiers. The amplifier io visuallaed ma an integral unit, the interetage networke constituting the elomente of the amplifier unlt, By deaigning the amplifier as a untt and adjusting the overall reaponse igain and bandwidth) with the interstage tirne constanto, an increase in gain-bendwidth product is realized over the iterativoly designed anapliflers. The reaulting increaso in gain-bandwidth product resulte from absence of the bandiwidth shrinkage factor for mulelstage amplifiera.

Formulas aro derived for both a two- and three-transistor integrally designed widoband amplifier, in which shunt peaking notworke are need for coupiling. Experimental ampllflera were constructed following these formulas, and the observed performance agreed quite wall with the calculations.

AN INTEGRAL DESIGN TECHNICUE FOR WIDEBAND MULTISTAGE TRANSISTOR AMPLIFIERS
Larry Scote
Lawronce Radlation Laboratory Univoraity of California Berksloy, Calffornia

$$
\text { April 27. } 1962
$$

1. INTRODUCTION

A greater overall gain-bondwidth product for multistage amplifiers is realizable through a design procedure that characterizes the total amplifier rather than characterizing each stage eeparately. The desf gn entatlo picturing the several stages of the amplifier as an integral unit and adfusting the individual time constants to obtain the destred overall responme. The principle of stagter tunime ${ }^{1}$ hav beer applied to transistox amplifiera by Victor Fi. Grinich and others, and can be conaldered as an application of the integral-unit philosophy of circuit design, How ever, the ase of thie design philosophy as ehown in this paper is not yat reported elaewhere in print.

The increase in grin-bandwidth product will be whown to result from the absence of the bandwidth shrinicage factor in the calculation. Here the bandwidth ahrinkage factor ia the ratio of overall amplifier bandwidth to the interatage bandwidth of an iteratively deaignad ampliffer. If the iteratively designed ampliffer has a single-time-constant fone-pole) response, the shrinkage factor la given by $\left(2^{1 / N}-1\right)^{1 / 2}$, where N is the number of cescaded siages. Absence of the shrirkage factor is the result of an integral-wait dasign philosophy. rathev than an iterative (i.e. . identical-stagee-cancaded) design. The convenience of designing one stage and then caacading caetb the designer a fraction of the attainable gain-bandwidth product of tlie multistage amplifier. The integral-unit philosophy is appliod here

[^0]to the deaign of both two- and threa-transiator mphifiera utilizing shunt-peaked inter stage networka. Siunt-psaking interatage networkn are selected because of their relative aimplicity and comeervation of gain-bandwidth product when broadbanded. The gain-baxdwidth product of a shunt-peaked interetage is approximately equal to f_{s} of the transietir, ${ }^{3}$

As shown in Appersdix A, the curxent gain of a typical shunt-peakedinterstage Lis of the form

$$
A_{i}=H \frac{p+z}{p^{2}+a p+b}
$$

where $P=j u$ and H ia a conetant.
It can easily be shown that the shunt-peaked interatage can be designed to yield a eingle-time-conatant (one-pale) form of reeponse. This occurs by factoring the denorainator polynomialinto two real roots, one of which is set equal to the numbrator term (the siero), and the reaulting function in of the form (ase Appendix A)

$$
A_{1}=\frac{H}{p+c}-\frac{P+z}{p+z}=\frac{H}{p+c} .
$$

For two shunt-peaked interstagos comnected in series the current gain is of the form

$$
A_{1}=H_{3} H_{2} \frac{p+3 b_{1}}{p^{2}+a_{2} p+b_{1}} \times \frac{p+3}{p^{2}+a_{2} p+b_{2}}
$$

Let one stage (1) be designed for a single-pole response,

$$
A_{1}=H_{2} H_{2} \frac{p+3_{1}}{\left(p+c_{1}\right)\left(p+3_{1}\right)} \times \frac{p+3_{2}}{p^{2}+a_{2} p+b_{2}}
$$

then for $c_{1}=3_{2}$.

$$
A_{1}=\frac{H_{1} H_{2}}{p^{2}+a_{2} p+b_{2}}
$$

This current-gain expression shows that the bandwidth is determined only by the second interetage, and the gain by both interstage networke. The two roots of tha denominntor polynomial raay be varied to obtain the shape of response desired. maximally flat magnitude, Inear phaee, and other reaulta.

For three stages. the final form of the gain is

$$
A_{2}=\frac{\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{HI}_{3}}{\left(p^{2}+\mathrm{a}_{2} p+b_{2}\right)\left(p+c_{3}\right)}
$$

To generalize on thisecheme, sesume a prodact of n shunt-peaked interstage terans

$$
A_{i}=\prod_{i=1}^{n} \frac{H_{i}\left(p+z_{1}\right)}{p^{2}+a_{i} p+b_{i}}
$$

List of aymbola

```
\(c_{c}\)
    = deplotson-1ayer capacitancs of the collector-base junction
\(x_{3}{ }^{*}=\) extrinalc base rasintance uf transistor
```



```
    emitter currext)
\(R_{1}=\left(P_{0}+1\right)\left(r_{e}+R_{0}\right.\)
\(R_{e}=\) external emitter resietance, unbypsesed
RI = interstage resistance
1. = interatage inductance
Bo \(\quad \frac{{ }^{a_{O}}}{61-a_{0}}\), or low-frequency currens gain of a common ornitter stage
    whea the load ia a short circuit
\(\omega_{\beta}\)
    - frewuency at which the conmon eraikter current giln has dropped 3 db from
    Bo, with a mhort-circuit load
\(\omega_{z} \quad=\omega_{\beta}\left\{\beta_{0}+1\right\}\)
\(\omega_{3} \mathrm{db}=\) frequency at which the amplifier, response is down 3 db from ita low-frequency
    value
12
    \(=1+\omega_{c}\left(C_{c}+C_{c b}\right)\left\langle R_{T}+\Sigma_{g}+R_{e} h^{2}\right.\) a factor that indicates the degradation of
    bandwrdth because of feedback through \(C_{c}\) and \(\mathcal{E}_{c b}\) fwhere \(C_{c b}\) ia the
    extrinaic collector-to-base capacitarice.)
```

By proper canceilation of the mumerator and denominator factize the overals A ACP fumction can tales the form

$$
A_{2}=\left(\begin{array}{ll}
a & \\
n & H n_{i}
\end{array}\right) /\left(p^{n}+a_{2 n^{n}} p^{n-1}+b_{n} p^{n-2}+\cdots+y_{n} p+z_{n} p^{n}\right.
$$

which means that the zespomse fusction for in stages contains an nth-arder polymominil in the demominator.

To determino the relative merit of this ciesign, the resuiting bandwidth, as determined by the uth-order denominator polynumial, is maltiplied by the bowfrequency gain, and this gaim-bandwidth product in then compared with that obtained by cascading the name number of eransietors in an iterative deaign. In the itcrative desigm, ali stages have the same bandwidth and a aingle-time-conatant form of response.

II. ANALYSIS OE INTEGRA1, DESIGN

The band-edge freguancy of an nth-osdes gain function is determined by the shape of the xesponse; fos our examples, a maximally Iat magnitude zesponse is specitied.
A. Two-Stano Arizplifier

For the swo-stage ampliffer, wo have

$$
\begin{equation*}
A_{3}=H_{2} H_{2} /\left(p^{2}+a_{2} p+b_{2}\right) \tag{1}
\end{equation*}
$$

For maximally flat magnitude we requixe

$$
\begin{equation*}
a_{2}^{2}=2 b_{2} \tag{z}
\end{equation*}
$$

and the 3 -db frequency is

$$
\begin{equation*}
\omega_{3} \mathrm{db}=\sqrt{b_{2}} \tag{3}
\end{equation*}
$$

The low-frequancy gain is expreased by

$$
\begin{equation*}
A_{1}(0)=\frac{H_{1} F_{2}}{b_{2}} \tag{4}
\end{equation*}
$$

and the gain-bandwidth product is

$$
\begin{equation*}
A_{1}(0) \omega_{3} \mathrm{cb}=\mathrm{H}_{1} \mathrm{H}_{2}\left(\mathrm{~b}_{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

In terms of tho circuit parameters, wo have

$$
\begin{aligned}
& H_{1}=\omega_{t(2 \gamma} / D_{1}, \\
& H_{2}=\omega_{t(2)} / D_{2} .
\end{aligned}
$$

and

$$
\begin{equation*}
\omega_{3 d b}=\left(b_{2}\right)^{1 / 2}=\left[\frac{\omega_{\beta(2)}}{D_{2}}\left(\frac{R_{1(2)^{+} r_{1}+r_{b}}^{z_{2}}}{2}\right)\right]^{1 / 2} . \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{1}(0)=\left(\frac{\omega_{t(1)}}{D_{1}} \times \frac{1}{\omega_{3 \mathrm{db}}}\right)\left(\frac{\omega_{i(2)}}{D_{2}} \times \frac{1}{\omega_{3} \mathrm{db}}\right) . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i}(0) \omega_{3 d b}=\left(\frac{\omega_{t(1)}}{D_{1}} \times \frac{\omega_{t(2)}}{\omega_{2}}\right) \frac{1}{\omega_{3 d b}} \tag{8}
\end{equation*}
$$

It will be seea that the gain-bandwidth product for the integrally desisaed amplifier. Eq. (3). isf greater than that of the iteratively designed amplifier with the eame bandwidth by the reciprocal of the square of the shrinkage factor, for two stagea, approximately a factor of 2.4.

B. Threa-Stage Armplifler

In the case of the three-etage amplifiex we have

$$
\begin{equation*}
A_{1}=\mathrm{H}_{2} \mathrm{H}_{2} \mathrm{H}_{3} /\left(p^{2}+a_{2} \mathrm{P}^{+b_{2}}\right)\left(p+c_{3}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
p+z_{2}=p+c_{1} \text { or } z_{2}=c_{1} \tag{10}
\end{equation*}
$$

and we have

$$
\left(p+z_{1}\right)\left(p+c_{1}\right)=p^{2}+a_{1} p+b_{2}
$$

and

$$
\left(p+z_{3}\right)\left(p+c_{3}\right)=p^{2}+a_{3} p+b_{3}
$$

or

$$
\begin{align*}
& z_{1}+c_{1}=a_{1} . \tag{1:1}\\
& z_{1} c_{1}=b_{1} . \tag{12}
\end{align*}
$$

end

$$
\begin{align*}
& z_{3}+c_{3}=a_{3} \tag{13}\\
& z_{3} c_{3}=b_{3} \tag{14}
\end{align*}
$$

For a masimally flat magnitude, we require

$$
\begin{align*}
& a_{2}=\sqrt{b_{2}} \tag{15}\\
& c_{3}=a_{2} \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{3} d b=\left(b_{2} c_{3}\right)^{1 / 3} . \tag{17}
\end{equation*}
$$

The low-frequency gain for three otages ie then expressed

$$
\begin{equation*}
A_{1}(0)=\frac{H_{1} H_{2} H_{3}}{b_{2} C_{3}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i}(0) \omega_{3 d b}=\frac{H_{1} H_{2} H_{3}}{\left(b_{2} C_{3}\right)^{2 / 3}} \tag{19}
\end{equation*}
$$

In terma of transiator parameters, we have

$$
\begin{aligned}
H_{1}= & \frac{\omega_{t(2)}}{D_{1}} \\
H_{2}= & \frac{\omega_{t(2)}}{D_{2}} \\
& 4 \\
H_{3}= & \frac{\omega_{t(3)}}{D_{3}}
\end{aligned}
$$

Also.

$$
\begin{aligned}
& b_{2}=\frac{\omega_{\rho(2)}}{D_{2}}\left(\frac{R_{1(2)}+R_{1}+r_{b}^{\prime}}{L_{2}}\right) . \\
& c_{3}=\frac{\omega_{\rho(3)}}{D_{3}}\left(\frac{R_{I(3)} R_{1}+r_{b}{ }^{\prime}}{R_{1(3)}}\right)
\end{aligned}
$$

and

$$
w_{3 d b}=\left(b_{2}^{\prime c_{3}}\right)^{1 / 3}
$$

or

$$
\begin{equation*}
A_{1}(0)=\left(\frac{\omega_{t}(1)}{D_{1}} \times \frac{1}{\omega_{3} d b}\right)\left(\frac{\omega_{t(2)}}{\omega_{3} d b} \times \frac{1}{\omega_{3} d b}\right)\left(\frac{\omega_{t(3)}}{D_{3}} \times \frac{1}{\omega_{3} d b}\right) . \tag{20}
\end{equation*}
$$

sad

$$
\begin{equation*}
A_{1}(0) \omega_{3} d b=\left(\frac{\omega_{c f(1)}}{D_{1}}\right)\left(\frac{\omega_{t(2)}}{D_{2}}\right)\left(\frac{\omega_{t(3)}}{D_{3}}\right)\left(\frac{1}{\omega_{3}^{2} d b}\right) . \tag{21}
\end{equation*}
$$

Cenerallaing, for n stagea we apply the formula

$$
\begin{equation*}
A_{1}(0)=\left(\frac{\omega_{2(1)}}{D_{i}} \frac{1}{\omega_{3} d b}\right)^{n} . \tag{22}
\end{equation*}
$$

III. ANALYSIS OF ITERATIVE DESIGN

The gain and bandwidth of an iteratively designed amplinler may be derived
as follows.
Where the typlical interstago gain is

$$
\begin{equation*}
a_{1}=K /\left(p+P_{0}\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
& \omega_{3} d b=P_{0} . \\
& a_{1}(0) \omega_{3} d b=K, \text { and } K=\frac{\omega_{t}}{D} . \tag{24}
\end{align*}
$$

For a stages cascaded we have

$$
\begin{equation*}
a_{I}=\left[K /\left(p+p_{0}\right)\right]^{n} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{3} \mathrm{db}=P_{0}-5 \tag{26}
\end{equation*}
$$

we have

$$
\begin{equation*}
m_{1}(0)={\frac{K}{P_{0}}}^{n}=\left(\frac{c_{c}}{L} \frac{1}{\omega_{3} d b}\right)^{n} s^{n} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1}(0) \omega_{3 d b}\left(\omega_{k} / D \omega_{3} d b\right)^{n} \quad \omega_{3} d b 5^{n} . \tag{29}
\end{equation*}
$$

IV. COMPARATIVE THEORETICAL PERFORMANCE

By comparing integral equation \{22) ind Iterative equation (28), we eee that the gain of an n-transistor mmplifier denigned by the integral unit method is S^{-n} times tho gain of the iteratively designed one, where both amplifiers have the aame overall bandwidth, and where S is the shrinicage factor calculated for m cascaded stagas. Table 1 ahowa the galm-increase factor S^{-2} for two-, three-, and fourstage integral doaigned amplifiors, in which

$$
G_{\text {Gin }} \text { bandwidth iterative }=\text { Gain bandwidth integral }{ }{ }^{n}
$$

for equal bandwidths.
The retulting imaprovement in gain-bandwidth product indicates that for equal bandwidtha the integrally fowigned armplifler will have a gain that is 2.4 thmes that of an iteratively designod amplifler using two interstagee. Fir thrae transfator interatages the gain advantage ie a factor of 9.43 , and for a four-etage armplifier en imprewsive factor of 30.5 .

If the compared amplifier designa are eimpllfled to a typteal or equivalent interatago of each overall design, the differience botween them is the eavelusion of the shrimicage factor from the integrally designed amplifier interatage. This indicates
an improvement in interatage broadbending efficiency by the eame amount as the gain-bandwidth product of that etage is increased; mamely, the shrinkage factor.

V. EXPERTMENTAL VERIFICATION

Tho procedures for integral deaigna, developed in detail in Appendices A and B, ware used to design the two- and three-stago amplifiers phown in Figs. 1 and 2. Theoretfical and experimentai performance of the amplifiers are compared in Table II. The agreement between predicted gain and bandwidth, as ehown, is as clowe an experimental aceuracy' allowed, about $=10 \%$.

Although the dealgn equailoas yield an exact crancellation between the numerator and demaninator terms, the realization of euch eachetrues is not ponsible because of nomideal elements. The oberved bebavior of the two amplifiera, Figs. 1 and 2 , indicates that considerable error in thercancellation may be tolerated before degradation of tho performance reaults. Inasmuch an the final value of the numerator and donominator termo ia determined by adjuating the value of the interatage inductance with a tuning slug while observing either the pulse or frequency reaponae on an oacilloscope, the desired accuracy of cancellation is limited by the method of observation.

The amplifier of Fig. 1 was constructed with a silicon mesa-type transiator, 2NB34. To reduce loasea in tho baaing circultry a relatively largo value of collector supply voltago was selected. Howevor, in denigning the second maplifier the selection of voltagos waz restricted to conform with LRL standards. The use of a lorver auply potentlal neceas' ated plackng the ehunt-peaking circult in the collector aupply path rathor than in the base. This in turn required the use of appropriato (5.0-1kilohm) blaaing resiatora in the base circuit of the tranoistore.

The addition of a 39 -ohm unbypasped resiotance in the cmittor lead 4^{5} of the shunt-peak stage desensitizes the circuit performance to transiator parameter changes (serlet feedback). The use of an unbypaesed emitter resistance in no way degrades
the attainable performance of the shunt-peaked interstage, and it makes it possible to use arbitrarily selected transistors of the eame type withouf redesign of the amplifier.

The flosign is moet sensitive to changea in $\mathrm{r}_{\mathrm{b}}{ }^{\prime}$ of the eranaistors, as the value of the canceling term is approximately $r_{b} / / L$, and the range of adjustment in L must bs aufficient to account for variation in r_{b} ' from one transiator to another. The use of an unbypased emitter reaistance also reduces this sensitivity because the canceling term becomes $\left(r_{b}{ }^{2}+R_{e}\right) / L$. The available range of output voltage developed into a 50 -ohm load for the examples is approarimately $\$ 0.75 \mathrm{v}$ with abous 1\% IInearity.

vi. CONCLUSION

The philosophy of integral design is a useful tachnique for circurnventing the ifmitation of gain-bandwitith product for multistage amplifiers. A greater gainbendwidth product reaults for the integral deaign of multiatage amplifiers because the bandwidth shrinkage factor is eliminated. This factor is defined as the loss in attainable gain-bandwidth product that reaults from cascading identically (iteratively) designed atages. By oliminating this loss, an appreciabla increase in gain can be realized (see Table I), which could result in the use of fower transistora to reallze the eame gain-bancwidth product as an iteratively designed amplifier.

Somo practical difficulty is encountered with the design becauee the parametera of tho transistors are not accurately known nor uniform from unit to unit. Thio difficulty can be somowhat reduced by euch devices as the external omitter realstance used in amplifier design. The improvement in gain-bandwidth product realized by this design technique more than offsets these difficultiea.

ACENOWLEDGMENTS

I would like to thank D. O. Pederson of the Univeraity of California at Berkeley for his help and encouragement in developing thie design technique, and the Lawrence Radiation Laboratory Nuclear Instrumentation Development Group, especially Horace G. Jacknon, for frequent discuselons.

APPENDICES

A. The Integral Design of a Two-Transistor Shunt-Peaked Amplifier The gain of a typical shunt-peaked interstage may be derived as follows (see Fig.3):

$$
\begin{equation*}
A_{i}=\frac{i_{L}}{\frac{1}{g}}=-\frac{\omega_{\varepsilon}}{D} \times \frac{p+R_{I} / L}{p^{2}+\left(\frac{R_{1}+\Sigma_{b}}{L}+\frac{\omega_{\beta}}{D}\right) p+\frac{\omega_{B}}{D}\left(\frac{R_{1}+R_{1}+\Sigma_{b}}{L}\right)} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{K}_{1}=\left(\beta_{0}+1\right) x_{e} \\
& C_{i}=\frac{1}{\omega_{t} \Sigma_{e}} \\
& D=1+\omega_{t}\left(C_{e}+C_{c b}\right)\left(R_{2}+r_{e}\right)
\end{aligned}
$$

and

$$
\omega_{t}=\omega_{\beta}\left(\beta_{0}+1\right)_{e} \text { as stated in Table } I_{0}
$$

The condition for cancellation may be determined by dividing the denominator by the numerator to find

$$
p=\frac{p+\frac{F_{b}^{\prime}}{L}+\frac{\omega_{B}}{D}}{L_{D}+\left(\frac{R_{I}+F_{b}}{L}+\frac{\omega_{B}}{D}\right) p+\frac{\omega_{B}}{D}\left(\frac{R_{I}+R_{1}+I_{b}}{L}\right)}
$$

$$
\begin{aligned}
&\left.\frac{p^{2}}{\left(\frac{r_{b}}{L}+\left(R_{I} / L\right) p\right.}+\frac{\omega_{B}}{D}\right) p+\frac{\omega_{B}}{D}\left(\frac{R_{1}+R_{1}+r_{b}}{L}\right) \\
& \frac{\frac{\omega_{\beta}}{D}\left(\frac{\Sigma_{1}}{L}\right)+\frac{R_{1} r_{b}{ }^{\circ}}{L^{2}}}{\frac{\omega_{B}}{D}\left(\frac{R_{1}+r_{b}}{L}\right)-\frac{R_{1} r_{b}^{\prime}}{L^{2}}=0 .}
\end{aligned}
$$

However, the denominatoz factora into

$$
\begin{equation*}
\left(p+\frac{R_{I}}{L}\right)\left(p+\frac{r_{b}{ }^{\prime}}{L}+\frac{\omega_{B}}{D}\right)= \tag{A-2}
\end{equation*}
$$

provided that

$$
\frac{\omega_{\beta}}{D}\left[\frac{R_{I}+\tau_{b}^{\prime}}{L}\right]-\frac{R_{I} r_{b}^{\prime}}{L^{2}}=0
$$

or 16

$$
\begin{equation*}
\frac{R_{I}}{I}=\frac{\omega_{\beta}}{D}\left[\frac{X_{1}+r_{b}^{\prime}}{r_{b}}\right] \tag{A-3}
\end{equation*}
$$

Now consider the case of two integral siagee, for which we can derive the gatn as follows:

$$
\begin{align*}
& A_{I}=\frac{\omega_{t(1)}}{D_{1}} \times \frac{\omega_{t(2)}}{D_{2}} \times \frac{p+R_{I(1)} / L_{1}}{p^{2}+\left(\frac{R_{I(1)}+F_{B}}{L_{1}}+\frac{\omega_{\beta(1)}}{D_{1}}\right) p+\frac{\omega_{1}(1)}{D_{1}}\left(\frac{R_{I(1)}+R_{1}+F_{b}}{L_{1}}\right)} \\
& \times \frac{p+R_{I(2) / L_{2}}^{L_{2}}}{p^{2}+\left(\frac{R_{1(2)}^{+x_{b}}}{L_{2}}+\frac{\omega_{e}(2)}{D_{2}}\right) p+\frac{\omega_{\beta}(2)}{D_{2}}\left[\frac{R_{I(2)}^{+R_{1}+r_{b}}}{L_{2}}\right]} . \tag{A-4}
\end{align*}
$$

For cancellation we have

$$
\begin{equation*}
\frac{R_{I(1)}}{L_{1}}=\frac{\omega_{3(1)}}{L_{1}}\left[\frac{R_{1}+x_{b}^{\prime}}{\Sigma_{b}^{\prime}}\right] \text {. } \tag{A-5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{R_{I(2)}}{L_{2}}=\frac{r_{b}^{\prime}}{L_{1}}+\frac{\omega_{\beta(1)}}{D_{1}} . \tag{A-6}
\end{equation*}
$$

The condition for maxdmally flat magnitude is

$$
\begin{equation*}
\frac{R_{I(2)}+r_{b}^{\prime}}{L_{2}}+\frac{\omega_{\beta(2)}}{D_{2}}=\left[\frac{2 \omega_{\rho(2)}}{D_{2}}\left(\frac{R_{I(2)}+R_{1}+r_{b}^{\prime}}{L_{2}}\right)\right]^{1 / 2} . \tag{A-7}
\end{equation*}
$$

But we have

$$
\begin{equation*}
\omega_{3 \mathrm{db}}=\left[\frac{\omega_{\beta(2)}}{D_{2}}\left(\frac{R_{I(2)}+R_{1}+r_{3}}{L_{2}}\right)\right]^{1 / 2} \tag{A-8}
\end{equation*}
$$

Then

$$
\left.A_{1}=\frac{\omega_{t(1)}}{D_{2}} \times \frac{\omega_{t(2)}}{D_{2}} \times \frac{1}{p^{2}+\left(\frac{R I(2)^{+F_{b}}}{L_{2}}+\frac{\omega_{\beta(2)}}{D_{2}}\right) p+\frac{\omega_{\beta(2)}}{D_{2}}\left[\frac{R_{I(2)^{+r_{b}+R_{1}}}^{L_{2}}}{D^{\prime}}\right.}\right]^{\prime}
$$

and

$$
\begin{equation*}
A_{2}(0)=\frac{\omega_{t(1)}}{D_{1}} \times \frac{\omega_{t(2)}}{D_{2}} \times \frac{1}{\omega_{3} d^{2}} \tag{A-9}
\end{equation*}
$$

A systematic design technique now appears in which we successively
(a) pick a bandwidth $\left(\omega_{3} \mathrm{db}\right)$ for the amplifier, or pick a gain, and then from Eq. (A-9) find the bandwidth;
(b) use the shape-constraint equation (A-7).

$$
\frac{R_{I(2)}+x_{b}^{\prime}}{L_{2}}+\frac{\omega_{P(2)}}{D_{2}}=\sqrt{2} \omega_{3 \mathrm{db}} .
$$

and Eq. (A-8), the bandwidth equation, to determine $R_{I(2)}$ and L_{2};
(c) use these data in turn to solve Eqs. (A-5) and (A-6) for ${ }^{R_{I}}(1)$ and L_{1}.

There is an additional degree of freedorn in the design that allows some fleadility in selecting components. This freedom results from varying $\beta_{0} r_{0}$ e since $r_{e}=\mathrm{kT} / \mathrm{qI} \mathrm{I}_{\mathrm{e}}$, by changing I_{e}. These equations assume that the transistors, ψ_{t}, ω_{β}, r_{b}. C_{c}, and the optimum biasing conditions, $I_{e}, V_{c e}$, have been epecified.

If we include an unbypassed emitter resistance $r e$, to stabilize the design (see Appendix B), the design equations then become
(a) from (A-9).

$$
A_{1}(0)=\frac{\omega_{t}}{D_{2}} \times \frac{\omega_{t} z}{D_{2}} \times \frac{1}{\omega_{3 d b}{ }^{2}}
$$

(b) from $(A-7)$ and ($A-8$).

$$
\begin{aligned}
& \frac{R_{I_{2}}+r_{b_{2}}^{\prime}+R_{e}{ }^{\prime}}{L_{2}}+\frac{\omega_{\beta_{2}}}{D_{2}}=\sqrt{2} \omega_{3} d b \\
& \frac{\omega_{\beta_{2}}}{D_{2}}\left[\frac{R_{I_{2}}+F_{b_{2}^{\prime}}^{\prime}+\left(\beta_{0_{2}}+1\right) R^{\prime}}{L_{2}}\right]=\omega_{3 d b}^{2}
\end{aligned}
$$

and (C) from (A-5) and (A-3),

$$
\frac{R_{I_{1}}}{L_{1}}=\frac{\omega_{\beta_{1}}}{D_{1}}\left[\frac{{ }_{r_{b_{1}}}+\left(\beta_{o_{1}}+1\right) R_{E}}{{ }_{r_{b}}+R_{E}}\right]
$$

and

$$
\frac{R_{I_{2}}}{L_{2}}=\frac{r_{b_{1}}+R_{E}^{\prime}}{L_{1}}+\frac{w_{\beta_{1}}}{D_{1}} .
$$

Let un assume an amplifier to be constructed from two 2N334 transistors to have a bandwidth of 75 Mc . The translator parameters are as follows.

To obtain a D factor assume R_{L} of C_{2} is r_{b} of O_{3}, R_{L} of O_{3} is $50 \Omega_{\text {, }}$
Then

$$
\begin{aligned}
D_{3} & =1+\omega_{z}\left(C_{c}+C_{c b}\right)\left(R_{L}+R_{E}+r_{e}\right) \\
& \left.=1+2 \pi(500 \times 16) \quad 0^{-12}\right)(50+40) \\
& =1+1.1=2.1, \\
D_{2} & =1+2 \pi\left(460 \times 10^{6}\right)\left(4.0 \times 10^{-12}\right)(90+40) \\
& =1+1.5=2.5 .
\end{aligned}
$$

then substitute into the design equations
(a)

$$
A_{1}(0) *\left(\frac{460}{(2.5)(75)}\right)\left(\frac{500}{(2,1)(75)}\right)=7.0
$$

for $\quad \omega_{3} d b=2=\times 75 \times 10^{6}=4.7 \times 10^{8}$
(b)

$$
\begin{aligned}
\frac{R_{1}+F_{b_{2}}^{\prime}+R_{E}}{L_{2}} & =\sqrt{2} \omega_{3 \mathrm{db}}-\frac{\omega_{B_{2}}}{D_{2}} \\
& =(1.414)\left(4.7 \times 10^{3}\right)-0.25 \times 10^{8}=6.41 \times 10^{8}
\end{aligned}
$$

and

$$
\frac{\left.R_{2}+r_{b_{2}}+\beta_{0_{2}}+1\right) R_{2}}{L_{2}}=\frac{\omega_{3}^{2} d b^{2}}{\frac{\omega_{2}}{D_{2}}}=88 \cdot \times 10^{8}
$$

67
or

$$
\begin{aligned}
& \frac{P_{\mathrm{O}_{2}}^{R} \frac{1}{}}{L_{2}}=88 \times 10^{3}-\frac{R_{I_{2}}+r_{b_{2}}+R_{i}}{L_{2}}=81.4 \\
& L_{2}=0.23 \mu \mathrm{~h} \\
& { }_{R_{I_{2}}}=(6.62)(23 .)-(55+40)=36 . \mathrm{R}_{2}
\end{aligned}
$$

(c) for cancellation,

$$
\begin{aligned}
& \frac{R_{I_{2}}}{L_{2}}=\frac{r_{b_{3}}+R_{E}}{L_{3}}+\frac{\omega_{\beta_{3}}}{D_{3}} . \\
& L_{3}=\frac{r_{b_{3}}+R_{E}}{\Sigma_{I_{2}}-\frac{\omega_{\beta_{3}}}{I_{2}}} \\
& =\frac{90+40}{\frac{56}{0.23}-27.7} \times 10^{-6}=0,60, \mathrm{hh} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{R_{I_{3}}}{\mathrm{I}_{3}}=27.7 \times 10^{6}\left[\frac{90+(56+1)(10)}{90+40}\right] \\
& \mathrm{R}_{\mathrm{I}_{3}}=300 \Omega
\end{aligned}
$$

The meayured romponse showed a gain of 6.3 and a bandwidth of 85 Me . A achematic of thim amplifier, Including a common base stage (O_{1}) at the input for matching the source impedance, is shown in Fig. 1. Tho lowa in low-freguency gain due to the blasing realatancea can be calculated as $\left(\frac{2.0 \times 10^{3}}{2.3 \times 10^{3}} \times \frac{2.0 \times 10^{3}}{2.06 \times 10^{3}}=\right) 0.845$, or a calculatod gain of $[(.345)(7.8)=16.6$.
B. The Integral Deafen of a Three-Transietor Munt-Penked Amplifler

In order to operate the transletor: at optlmum emitter blas curront while still maintaining the freedora to vary $\beta_{0}{ }_{\theta}$. the input resistance of the transistor. a amall unbypasaed reaiatance $\left(\mathbb{R}_{E}\right)$ is included in the emitter lead. The equivalent circuit is represented echernatically ia Fig. 4.

The gain can be derived an followa:

$$
A_{1}=\frac{\omega_{t}}{D} \frac{p+R_{I} / L}{P^{2}+\left[\frac{R_{I}+R E+r_{b}}{L}+\frac{\omega_{B}}{D}\right] P+\frac{\omega_{B}}{D}\left[\frac{R_{I}+r_{b}+\frac{(1)}{1-a} R^{R}}{R}\right]}
$$

in which

$$
D=1+m_{t}\left(C_{c}+C_{c b}\right)\left(R_{L}+R R_{2}\right)
$$

We now consider the case of three stagee, for which we dexive the gain aa fallowa:

$$
\begin{aligned}
& A_{I}=\frac{\omega_{q(1)}}{D_{1}} \times \frac{\omega_{z(z)}}{D_{2}} \times \frac{\omega_{2(3)}}{D_{3}} \\
& \times \frac{p+R_{I(1)} L_{1}}{p^{2}\left(\frac{R_{1(1)}+R_{E}+r_{i}}{L_{1}}+\frac{\omega_{\beta(1)}}{D_{1}}\right) p+\frac{\omega_{\beta(1)}}{D_{1}}\left(\frac{\left.R_{1(1)}+r_{b}+\frac{1}{1-\sigma_{0}}\right) R_{E}}{L_{1}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{p+R_{I(3)} L_{3}}{P^{2}+\left(\frac{R_{I(3)}+R \frac{1}{E}+x_{b}^{\prime}}{L_{3}}+\frac{\omega_{\beta(3)}}{D_{3}}\right) p+\frac{\omega_{\beta(3)}}{D_{3}}\left(\frac{R_{I(3)+r_{b}+\left(\frac{1}{1-a_{0}}\right) R^{2}}^{E}}{L_{3}}\right)}
\end{aligned}
$$

For cancellation we have

$$
\begin{align*}
& \frac{R_{I(1)}}{L_{1}}=\frac{\omega_{B(1)}}{D_{1}}\left[\frac{\beta_{0} R_{1}+r_{b}^{\prime}}{R_{E}+x_{b}^{\prime}}\right]= \tag{B-3}\\
& \frac{R_{I(2)}}{L_{2}}=\frac{\omega_{\beta(2)}}{D_{2}}\left[\frac{\beta_{0} R_{E}+r_{b}^{\prime}}{R_{E}+\Sigma_{b}^{\prime}}\right] . \tag{B-4}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{R_{I(3)}}{L_{3}}=\frac{x_{b}+R \frac{1}{E}}{L_{2}}+\frac{w_{\beta(2)}}{D_{2}} \tag{B-5}
\end{equation*}
$$

Then we can derive
(B-6)
For a maximally lat magnitude we have

$$
\begin{align*}
\frac{R_{I(3)^{+}} x_{b}+R \frac{1}{E}}{L_{3}} & +\frac{\omega_{\beta(3)}}{D_{3}}=\left[\frac{\omega_{\beta(3)}}{D_{3}}\left(\frac{R_{1(3)}+x_{b}^{\prime}+R_{E}^{\prime}}{L_{3}}\right)\right]^{1 / 2} \tag{B-7}\\
& =\frac{r_{b}^{\prime}+R_{E}}{L_{1}}+\frac{\omega_{3}(1)}{D_{1}} . \tag{8-8}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{3 d b}=\left[\left\{\frac{\omega_{\rho(3)}}{D_{3}}\left(\frac{R_{I(3)}+r_{b}^{\prime}+R_{E}^{\prime}}{L_{3}}\right\}\right\}\left\{\frac{r_{b}^{\prime}+R_{E}^{\prime}}{L_{1}}+\frac{\omega_{\rho}(1)}{D_{1}}\right\}\right]^{1 / 3} \tag{5-9}
\end{equation*}
$$

There are $6 i x$ unknowns $\left(R_{2}\right.$ and L for each stage) and six equations $(B-3$. $B-4, B-5, B-7, B-8$, and $B-9$); therefore a solution is only a question of algebra. As in the two-tramsictor example, the initial step in the design is to specify the bandwidth, or to calculate the bandwidth from the specified gain and the gainbandwidth product, which is

$$
\begin{equation*}
A_{I}(0)=\left(\frac{\frac{\omega_{t}(1)}{D_{1}}}{\omega_{3 d b}}\right)\left(\frac{\omega_{t(2)}}{D_{2}}\right)\left(\frac{\frac{\omega_{t}(3)}{D_{3}}}{\omega_{3 d b}}\right) \tag{B-10}
\end{equation*}
$$

or

$$
A_{I}(0) \omega_{3 \mathrm{db}}=\left(\frac{\omega_{t}}{D}\right)^{3}\left(\frac{1}{\omega_{3} d b}\right)^{2}
$$

An amplifier waw comstructed following the above design equations \{see Fig. 2\}, wirh a specified bandwidth of 50 Mc . The gain calculated from Eq. (B-10) is 76 and the meaaimred gain wae 66; the difference reaulting from losaes in the biaa circuitry (i.e. sthe $5 \underline{k}$ baee resietor). When the resulting 0.35 loss factor is izucluded, the gaine compare quite well.

The bandwidith was determined from a pulse-riae-time method to be

$$
\mathbf{I}_{3 \mathrm{db}}=0.35 / t_{x}=0.35 /\left(7.2 \times 10^{-9}\right)=48 \mathrm{Mc}
$$

The amplifier comprieed three 2NIB34transistors, and the syetem was apecified to have sandwidth of 50 Mc . The properties of the transistors were as shown in the table.

	8	${ }_{i}^{\mathrm{f}_{\mathrm{t}}}$	Σ	c_{8}	D	Gain correct biaging reais
O_{2}	50	420	60	$\triangle \mathrm{pf}$	2.13	0.96
O_{3}	60	480	60	4 pr	2. 13	0.90
O_{4}	50	650	60	4 pf	z,13	0.935

These properifes yield a calculated gain

$$
A_{2}=\left(\frac{450}{2.13 \times 50}\right)\left(\frac{450}{2.13 \times 50}\right)\left(\frac{420}{2.13 \times 50}\right)=76 .
$$

which, when the loss from the biasiag resistors is included, gives us, for amplifier gain,

$$
76 \times(0.96)(0.90)(0.985)=66
$$

BIBLIOGRAPHY

Compare

1. $\Lambda^{J . J M}$. Pettit and M. M. McWhurter, Electronic Amplifier Circuits, McGraw-Hill Eaok Company, Inc., New York, 1961.
2. Victor H. Grinith, "Stagger-tunedtransistor video amplifiers," in Proceedinge of Western Electronic Show and Conference (WESCON), Los Angeles, California, 1956. Session of August 21, sponsored by the Group on Broadcast and TV Receivers.
3. . D. O. Pederson and R. S. Pepper, "Evaluations of transistor low-pass broadbanding techniques." in Proceedings of the 1959 Western Electronic Show and Conference (WESCON), vol. 3, Part 2.
4. M. S. Ghausi, "Aralysis and design of the ehunt-seriea feedback pair." Series No. 60, Iseua No. 307. Electronics Reaearch Laboratory. University of Callfornia, Berlkeley. August 16, 1960. Georg Brunn, "Common emitter-transistor video amplifiers," IRE Trans. on Instrumentation, vol. 44, No. 11, November 1956, pp. 1561-1572.

Table 1. Gain increase factora for two-, three-, and four-stage amplifiers
Stages $(a) \quad S \quad S^{-n}$

2	0.64	2.4
3	0.49	8.48
4	0.425	30.5

Table II. Comparison of calculated and measured performances of the amplifiexa (Figs. 1 and 2).

n	Gain		Bandwicith (Me)
	Calculsted	Meacured	Calculated 'Mensured
2	6.6	6.3	75 35
3	66	66	$50 \quad 48$

FIGURE LEGENDS

Fig. 1. Schematic diagram of a two-atage integrally deaigned ampaifer.
Fig. 2. Schematic diagram of a throe-stage integrally deet gned amplifler.
EKg. 3. Typical shunt-peaked interstage network.
Fig. 4. Equivalent circuit with unbypaased reaistance R_{E}.

[^0]: Work Cone ander the aueplces of the U. S. Atomic Finergy Commiasion.

