Baxt Log loonc-7104

 BNL -1529

 HENORA思DUMCLASSIFICATION CANCELLED DATE $\angle 2-\angle 3=55$
For The Aromic Energy Commisstion
$-7,7$

Cansee
Chiet, Declassilfication Branch

Datet Apur11 23, 1953

$20:$ I. Eapine
Noote E. Toute
Suay ECF: Aoouracg of Relmantion

We consider hers the nocurecy of releantiton lengthe meoeured durring the vater-urantun lattiee experimente. Sineo auch an andyate for all meapurenents wowld thine erreat denz of Aneg wo have appited it to juat one lattice. This one ($2: 1$ whter-to-metal ratio) was choeen oompletely at randot.

We define three eeparate menmures of the error in an Individunt meLaxation Length. These ares
(1) The probable error aseoefated with the leest equares Ift of en exponential to the mengured Rumees. Me onll thle SL.
(2) The probable error as derived from statistieal considerations of the aceuracy to which fosis were counteld. Thate we env ΔI.
(3) The atanderd deviattons of the meabured relexptiton Iengthe from the velues prodieted hy Leest-aquares fits to B^{2} and $\mathrm{\lambda}$. These wo tern at.

If the mafor contribution to the at an of $\overline{\mathrm{IL}}$ oanee from the atatiatteo
 In other woide, the quantstr

$$
\begin{equation*}
5 \mathrm{~L}-\Delta \mathrm{L} \tag{1}
\end{equation*}
$$

 ahleh would upeot this bolanee io ohanging counter oenatitivitios during fosi courting. Another eause might be fipproper talding into ovoount of end orrree-

 loading ahape uspd by an Eoquivalent agitnder" having the aene totel arve. If this asoungition io poor, wo mag expect that the quantity

$$
\begin{equation*}
s t-|a L| \tag{2}
\end{equation*}
$$

Ie more often mogotive then poatietve. Another eause of auch deviation of the alge of (2) from randcmese afelht be a ehanging refleotor eovinge vith loedIng. Other aemees could bo verying enrichanete or alses of fael rode, oonteminetion of the weter ly neutiron abeorborag plating out of oadinf on rodep ate.

In Foble I ve give the valuee of $\delta L_{\text {, }} \Delta L_{\text {, and }}$ at for the relexation 2engthe meemured with the 201 letilios. Inopeotion abowe thet quantitiy (1) is positive in eleven eepes, and is negretive in thirteen eeses. I thindr it onan be concluded from this good egrement that our valuee of L are se good we wo heve boen tirying to make then.

On the other hand, the quentitir (2) Is negotive In EIPteen Ingtanees, and positive in just soven. One vould hope for a more equitable diatribution.

We heve avdieniee thet some at least of this affeet derives fros our semump thon that any looding ean be ropieoed ly ite equivelent eqjinder. The firut

steed zounding out all Londinge as mach to seometry pernits.
These geometriceal effects are of couras underatandable. The aftr cor ner rods in a hexagonel or nearly hexagonal loeding are farther from the oenter of the loadting than are other perineter rode. Too, they have leas urenium neer then then do other zode. Thus they oontribute leas to the aer aetivity.

It does not follow that the equivalent cylinder assumption neoesesarily couses all the ecoeselve negntive values of (2). We find oooselonelly (hy remeagurement of aupplefous values of L) oases in vhich opperently too many or too fourfael rods wore looded during o given rung and this aunt be added as apertsel cause. It is lonove that fael rod difmetere do not vary appre oiably, and analyaie makes variation of the onrichment faotor unlifbely. Me heve looked for pleting out of endelum in the paet but heve not seen ang. Evidenoe indieates thet the vater doee not beoone notioeably poisoned with use.

In en atteapt to discover how ameh of the deperture from randomnees is due to gecmetrieal effects, wo have redone the B^{2}, λ celoulation, leaving out the rod loedinge at hexagons and within afx rods of hexagons. The inprovement in accuracy of the least squarea fite vere marked, the nev values bedng

$$
\begin{aligned}
& B^{2}=61.58 \pm .37 \times 10^{-4} \mathrm{~cm}^{-2} \\
& \lambda=6.97 * .07=
\end{aligned}
$$

The residuale from this leant squares fit are ahovn in Table IT. These values lead to four osees with (2) negative, seven with (2) positive, and three cases in which $\Delta \mathrm{I}$ and |at| are equal within the eocuracy of the analy ais. Such a distribution is not too unlikelys in fact, it hes a P of . 27 .

Uee of the ΔL in Table II leeds to expected aecuraetes in B^{2} and λ of t. $30 \times 10^{-4} \mathrm{ea}^{-2}$ and .06 cm , reapeotively. Thus the securacy of the buellitgs

tite is quite elonely whot io expected, vien allovinoe is made for exor motirieal efrectiv.

The ennlyste dowe not seen to lead to dtroovery of emy feetory othry then geometriciol ones ontuling deperturee from randomeen in the Ient *queres fite.

