

709 PROGRMA FOR PODUCTYOII OF ECPOMTOFTVI, PIIS DATA
D. D. Nateumoto

Theoreticel Physice
 AID DEVELOMOET OFIRATIOS

May 20, 1959

A malti-purpose progren for proceseing exponential data has been prepured for the 709 compater.

Usins

The min purpose of the prograr is to compute the material bucleling from rav data (given counte, time, and counter information) or from previousiy coleuiated Athernal's". It is also posesble to compute only $\mathrm{C}_{e} \mathrm{C}_{\mathrm{h}}$ (end and harmonie corrections) for a given B_{11} or seriee of $B_{11}{ }^{*}{ }^{3}$, no counting dite being entered. In every case, plle measurec vate mant be oubmitted as input for corrections.

OPRYONS AVATHARTS TO FHE USER

When ray date are aubatited, Ach ${ }^{\text {a }}$ a my be caleuleted by standard method (EQ. 3) or by the cedmium shutter method (Eq. 4). Ien cedmium mhutter method 10 used, bare counto tnken with shutter are entered as codmiun counts.

Tr the ueer has available a set of corrections whtch may be astivfactory, thae may be entered as data, elis obing the computation of a trial bet of corrections. If no corrections are available, but a B1 is eatimated, the trial set of corrections will be ccaruted using this B_{21}. Tr no B_{11} is entered, the progran estimates one from piln data. Since this machine eatimate is quite reliable for moderately good data, no B11 eatimate should be made by the user vithout adequate sertelnty.

The program vill compute one- or two-regton hamonic correctione and oneor two-region end corrections. Tant source theory corrections can also be corpaced. Detectors may be displaced or on the center line. Up to four source
positions may be ueed. It is also at the option of the user to compute vith end corrections only $\left(C_{e}\right)$ rather than the usual end and haraonie product ($\mathrm{C}_{e} \mathrm{C}_{\mathrm{h}}$). For unumual dimensions, arrangements of sources or detectors, tranalation mast be made to fit the standand ingut reguiremente.

Beving computed $\mathrm{A}_{\mathrm{th}}{ }^{\prime}$ s and a triel set of correctionw, a least squaren fit 10 made with tie corrected Ath $^{\prime}{ }^{\circ}$, obtaining a buckling and an output B,12* The difference letveen input and output $B_{11}{ }^{\text {s }}$ s 18 examined, se vell as the back fit to the lenst-squares annlysis. If the B_{11} difference is unsatiarmetory, a nev B_{11} is used to compute new corrections. If the beck fit is unsatiefactory, combinetions of the worst pointe are dropped. These two teete are repeated mecording to a met procedure (eet Fig- 3) until a rit ie found in which the B_{11} Airference te leas than the apeciried lialt and there are five pointe haviag a difference from the line leas than the specified linit, data peraittingA1L Internediate fits will ve printed out, and the most satiaractory of thase may be ciaosen. If there are three or more poor points, fite will ve made omitting all eombinations of the worst three. Should none of thepe be edequate, It should then be saple matter to choope a good B_{21} and make a eatisefectory IIt with those pointe which the user choosee. Only in extrene cases ahotald this be mecessary, te one of the internediate fite has nearly alvayo proven aetiefactory. MCETIE TDO

The uner can expect to be charged with ae much as five minutee of machine time only in the case of exceptionally poor date or an unvise chotee of B_{11}. A more realistic estimate is one minute per case, plut three minaten londing time. POPPURLATIOM
(2) $A_{1}=\frac{\mathrm{E}(\text { ets }+C L-B G) \mathrm{CF}}{\mathrm{Itime}}$
where A_{1} is corrected counts/min., and 1% bare, cendinim, or background. 30 refers to counter background, CF ide counter factor, and CL ia coincidence lows.
(a) eta $+\mathrm{CL}=\frac{\text { Count }}{1-N I_{\text {counted }}}$ and $\#_{\text {counted }}=\frac{\text { Counts }}{\text { TIme }}$ where $\mu=$ dead time $=7.6 \times 10^{-6} \mu$ see. $=1.27 \times 10^{-7} \mathrm{~min}$.
(3) $\mathrm{ta}_{\mathrm{th}}=\left(A_{\text {bare }}-A_{\mathrm{BO}}\right)\left(\frac{\overline{C R}-1.0}{\overline{C R}}\right)$
where $\overline{C R}$ ia the average cadinium ratio, that is, the average $\frac{A_{\text {bare }}}{A_{\text {cad }}}$.
(4) Acth $=$ (Ampere, no abutter - Apure, with abutter) if the condintum abutter method 10 used.
(5) $c_{e} \cdot\left[1-e^{-2(2-x) / B_{11}}\right]^{-1}$
(6) $c_{h}-A_{11} B_{11} F_{11} e^{-\pi / B_{21}} / \sum_{n 9} A_{n=1} B_{n m} F_{n=} e^{-z / B_{n m}}$
where $\frac{\text { I and }}{\text { in }}$ are odd integers from 1 to 9 . The contribution of all harmonica of order >9 are negligible and are 1 gnored.
(7) $x_{\operatorname{man}}=2\left[1+\operatorname{Coth}\left(z^{2} / z_{\operatorname{man}}\right)\right]$
(B) $\mathrm{B}_{\operatorname{man}}=\left[\mathrm{a}^{2}\left(\frac{\mathrm{a}^{2}}{\mathrm{a}^{2}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~b}^{2}}\right)-\mathrm{b}\right]-1 / 2$
(9) $T_{\operatorname{man}}-\cos \frac{n \pi x^{\prime}}{a} \cos \frac{m r y^{\prime}}{b} \sum_{i} \cos \frac{n \pi x_{1}}{n} \cos \frac{m r y_{1}}{b}$.

When two-regtion harmonise are used, c_{e} ia formulated as above, but we introduce the notation
(20) $\left(\gamma_{1}\right)_{\operatorname{man}}^{2}=\left(\frac{a \pi}{a}\right)^{2}+\left(\frac{a r}{b}\right)^{2}-$ A region 1
where region 1 io the base region, region 2 ia the measurement region, and region 3 in the top region. Note that ir region 1 is graphite, B_{1} nov becomes $-1 / \mathrm{I}_{\mathrm{g}}{ }^{2}$, Then

where
(12). $P_{n=}=\frac{e^{0}\left(\gamma_{2}-\gamma_{1}\right)_{\operatorname{mn}}}{\left(\gamma_{1}+\gamma_{2}\right)_{m=}\left\{\left(1-D_{\operatorname{mm}}\right)+\left(1+D_{\operatorname{mm}}\right) \operatorname{coth}\left[x^{\prime}\left(\gamma_{1}\right)_{n m}\right]\right\}}$
$(13)^{4} D_{\operatorname{man}}=\frac{R_{n m}-1}{R_{n m}+1} e^{-20\left(\gamma_{1}\right)_{m m}}$
(14),$\quad R_{\text {man }}=\left(\gamma_{2}\right)_{\operatorname{ma}} /\left(\gamma_{2}\right)_{n=} \cdot$

When, two-rogion end correcticas are used, C_{h} may be computed for ape- or tro-region
(15) $c_{e}=\left\{1+e^{-2\left(\gamma_{2}\right)_{11}(c-z)}\left[\frac{\left(\frac{1-a}{1+a}\right) e^{2\left(\gamma_{3}\right)_{11}(z-c)_{-1}}}{e^{2\left(\gamma_{3}\right)_{11}(z-c)}-\left(\frac{1-Q}{1+a}\right)}\right]\right\}^{-1}$
(16) $Q=\left(\gamma_{3}\right)_{21} /\left(\gamma_{2}\right)_{21}$.

Fast source theory harmonic corrections, applicable to $\mathrm{sig}_{\mathrm{g}}$ a pile, are given by

where $A_{\text {min }}$ and $F_{\text {mn }}$ are formulated by Equations 7 and 9 respectively, but
(18) $A_{\operatorname{man}}=\left\{\frac{1}{L_{g}^{2}}+x^{2}\left[\left(\frac{\omega_{0} x}{a}\right)^{2}+\left(\frac{q^{m}}{b}\right)^{2}\right]\right\}^{-1 / 2}$ and
(19) $J_{n m}=\sum_{ \pm=1}^{3} r_{1} e^{r_{1}{ }^{2} / 4 I_{s}}{ }^{2}\left\{\left[1+\operatorname{erf} \left\lvert\, \frac{r_{1}}{r_{1}}-\frac{r_{1}}{r_{n m}}\right.\right]+e^{\left.\left.2 z / B_{n m}\left[1-e r f \left\lvert\, \frac{z}{I_{1}}+\frac{r_{1}}{2 B_{n m}}\right.\right]\right]\right\} .}\right.$

In equations $5-19$ above: z a diatance from aource plane ta effective top of plle, z = distance of measured point from source plane, z°. diatance from the efrective bottom of pile to source plane, a e effective adth, $b=$ erfective depth, and $B=1$ nput vuckling (see Fig- 1). In the case of a multi-region pile, 8 - diatance from the source plane to the boundary plane betveen reglons one and two, and C = the distance from the source plane to the boundary plane between regtons two and three (see Fig, 2).

INSIRUCTIONS FOR USE OF DATA SimEESS (See sample sheets, FP-13-14.)

General

A. Each case requitres one card of each of these types itsind type ia found at right on data sheet): 01, 03. 04, 05, 06, and 07. Each case mast have four 02-cards. The aumber or absence of types 03-15 is iletated uy data to be enterel upan thers.
B. Fil1 in al1 pertinent information. Extraneous information vili be ignored unless it conflicte wita the problem e needs as stated in question 5 . If question 5.22 1s mnsveres "no", dath vill not we secepted unless the R_{1}, F_{1}, ω_{s}^{2}, and ω_{b}^{2} fields are blank. Also, if question 9 says there are 5 alots, only the first 5 slots will ve used even though "Lere", data are entered on page two for 7 qlots. If, in the same snse, "Lackground" Inta ere entered for only 4 siots, wil deta for tie case will be rejected. "Cndmium" dnta need not ve entered for every slot, of courne. The entry of Loth "Lare" data and "Atherma:" data vill alao cause the cnae to be rejected. In short, Anta checiking tries to sseure that a sensible csse has leen entered.
C. Oape mamber is three digite: 021
D. Derfinition of Ferme

1. Guestion 9 - Number of alote is the number of positions in which mengurements ere taicen. "Bere" date mast be entered for oseh of these.
2. Question 11 - Humber of eatmiun elote is the number of poaitione in which "codmitu" measurwenta are teken. Ordinarily thie vili equal mumber of elote.
3. Guestion 16 - λ is the amount by which the effective and effective 2 wil1 be varied if queetion 5.15 is answered "yes". It should be blank if 5.15 is angwered "no". The effect of angwering 5.15 "yea" is that the entire procedure of choowing a good Ift (with the right correctione) is executed three times: with the originel a and $z_{;}$with both ingerenented by λ and with both decremented by λ. The effective b vill mot be varied.
4. Guestion $21-\Delta B_{11}$ limit is the value with which ΔB_{21} is compered in order to deteraine whether another set of harnonic corrections mast be computed. ΔB_{11} is the dirference between input and output $B_{11}{ }^{\text {a }}$ a of the least aquares ift. See akeleton Row chart, p. 12.
5. Quention $26-\Delta$ L linit is used to deternine which pointe, if any, are to be Alwcanded in order to meke sobter rit. It represente the maximan allowmble airference between $I_{n}\left(A_{t h}\right)$ and the eomputed value of I.
6. quentions $37-44$ pertain only to faet esurce theory corrections.

Byacyic CNKD TYPR

A. Card 01

1. Quentions $1-4$ - Hollerith information (that is, liphabetic or mumeric as deelred) Limitend to the eise of the rield. When in doubt about rield aize refer to "etarting eolump" at left on deta wheet.
2. question 5 - A11 15 digits anet be filled in. If a set of data gives peculiar anovere or refuses to run, check here first.
3. Questions 6-11 - Integer information. Question 6 is a one-digit field. Quastions 7-11 are two-digit fields and should be answered with 07, 09, 11, etc.
B. Cards 05-07 - Pixed-point information onily. Hever onit the decimal point.
C. Card types 08-10 - Ifxed-point information except for slot (at right on date aheet) and mors, woth of which are two-digit integer fields. mars, the first field on the sheet, chould we the number of meawurements this slot. For exnmple, if three lines of "bare" inta are entered for alot 07, each of theae vill have 03 in mocrs. F111 in "counter Factor" and "counter background" on every line vhere "counts" are entered, even though they are " $1.0^{\text {" and }}$ " 0 " respectively.
D. Cand type 11 - fixed point intormation except for siot. If type 11 earda are used, one and only one muet be suimitted for each slot. Leave blank flelas which do not pertain to the cuse sutaitted.
E. Card types 22 and 13 are used only for fant source data.
F. Card type 92 - there must be four oz-cards for every case, numbered from ozo00203. Since no form is apecirically provided for theee, they may ve written In the $08-10$-card form or on an attacked standard $80-80$ deta form. These four carde coatain identifying material for report bealings. Although information may ve entered haphazardly in columa $1-65$ of these cards, the following information will be helprul in outaining a nent, readable report heading.

Card	Cols	Placed in Fieading Line
0200	$1-48$	Line 1 (Cols. 49-65 of 0200 are dropped)
0201	$1-65$	Line 2
0202	$1-48$	Line 2 (immediately following cole. 1-65 of 0201)
0202	$49-65$	Line 3
0203	$1-65$	Line 3 (immediately following cole. 49-65 of 0202).
Column 1-65 of any or all type 02-carda may be blank.		

DD marsuacio: bg

FICURS 1

HICLABSIET:

\qquad

mo. wrrs.	cotzis	T708	CC. STER FACTOS	Cotsmer magrad	CARD	(3L0\%
A mamoul.	$A_{\text {macoraid }}$	$\mathrm{Ce}_{\mathrm{e}} \mathrm{C}_{\mathrm{h}}$			capp	$\begin{array}{\|c} \hline 8207 \\ \hline 241 \\ \hline \end{array}$
					11	
					11	
					11	
					12	
					11	
					11	
					11	
					11	
					11	
					11	

