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ABSTRACT

A systematic study as made of the electromagnetic properties of

charged vector mesons. The various formalisms used to describe charged 

particles of spin 1 are compared. and a new first-order formulation of the

Stuckelberg theory is developed- For the most general first-order Proca

Lagrangian, subject to the usual symmetry requirements we eliminate the 

redundant components to obtain a Hamiltonian formulation. The theory is 

interpreted in the nonrelativ istic limit. and the terms corresponding to spin­

orbit coupling and electric quadrupole-moment interaction are identified. The 

analogy to spin 1/2 theory has led us to consider classical spin equations of 

motion which agree with the quantum mechanical equations to order m-~.

This general form for the electromagnetic interaction is applied to a 

recalculation of the p - e ♦ y decay rate through a vector meson intermediary

We conclude, that the ahsence of this process is not necessarily an argument 

against the existence of an intermediary meson in weak interactions.
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1. INTRODUCTION

The charged vector meson that has been proposed as a possible inter-

mecary field (B field) in the weak interactions must. if it exists. have a mass 

greater than that of the K meson and a very short lifetime.^ Against such an 

z 3intermediary field, Feinberg and Gell-Mann have argued that. provided

the two neutrinos in u decay are capable ol annihilating each other, such a

B field would allow the decay pe-y in first order in the H-decay coupling 

conrtant G with a rate considerably larger than that experimentally observed.4

This rate depends very strongly on the nature of the vector meson electro-

magetic coupling which we will investagate in this paper.

The vector meson field theory differs from the Dirac theory by the

apperance of redundant components in the covariant equations of motion.

and by the necessity of defining expectation values with an indefinite metric.

We begin by demonstrating the equivalence of the various formalisms used

for describing charged vector mesons- in particular. we present a new first-
5

order treatment of the Stuckelberg theory Invariance arguments enable u«

to write down the most general Lagrangian for such particles from which a
6, 

gereralized Sakata-Taketani equation can be derived. The nonrelat a vist ac
.2 . 7

form (to order m ) the theory is readily obtained by a Foldy - Wouthuysen 

. reduction of these Sakata-Taketani equations As in the Dirac case the

e ect romagnetic moments are identified with various terms in the nonrelatav- 

else Hamiltonian for the vector meson interacting with an external electro*

magnetic field. In a uniform electromagnetic field the equations of motion
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D
of a vector menon of magnetic moment ge nme agrees to order m

with that obtained on invariance grounds for a classical spinning particle-
By way of application the rate for the unobserved process umetY

is recaiculated for a vector meson of arbitrary (constant) magnetic dipole

and electric quadrupole moments. With a suitable choice of these two param-

eters the rata for this process, and for the «lso unobserved A-e conversion

tn a nuclear field, can be made equal to zero.

*
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n* •
II ELECTROMAGNETIC INTERACTIONS OF A CHARGED VECTOR MESON

A. Gomyriaon of th» Formulation* of th* Theory of Spin 1

1. First-Order Proca Equations
B

A first-order form of *-se Proca theory is given by the Lagrangian

, U* „ (9 U -9 U)+ Hc U* - 9 u*, U
l H• p v • H 2 p • V P H• (2.1)

- 5 U U + m U U2uvuv H

for the case of free fields. In Eq. (2.1) U (x), U (x) are independent field 
H H‘

variables, U (x). U „(x) are the Hermitian conjugate fields. and m is the

mass The above Lagrangian gives the free-fieid equations

U - • U - 9 U .
Hv A v • U

9 u-mu. 
H pv V

In th* presence of an electromagnetic field we perform the usual gauge-
5

invariant replacement 9 — * ■ 9H U P i e A . where A (x) is the 
H H

electromagnetic four-potential, which yields the field eqaations

U = # UH* p U . H (2.2)

U = m2 UH * (2.3)

The second-order wave equation

(w2 - m2) U - m - U = 0
• M • p (2.4)

is obtained by substituting Eq (2 2) into Eq. fl.3). Since a four-vector field

must actually possess only three independent components, a subsidiary con-

dition eliminating the unwanted fourth component is needed This is most

easily obtained from Eq (2.3).
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o
• - (t,",-*.*„)U_.=(ie/2)F,.V,-- ms.V,

or

- U « (ie/2m2) F U 
e v H* uv (2 5)

where

f = a a - a a HV Hv •H

The second-order wave equation (2.4) then becomes

(=2-m) U, - (ie/2m)*,(F,.U,.> + ie F_u Uu = ° (2.6)

2. Duffin- Kemmer Formalism

The first-order Proca equation* (2.2) and (2.3) may be written in the

matrix form (P, *,+ m)e ® 0 by setting

a s

- 1/m U14
- 1/m U24

- 1/m U34

- 1/m U23

* 1/m u3, 
- 1/m U12 

u, 
U2 
U, 
u,

(

■ de" •
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These ^'s satisfy the algebra-defining equation

B3B B B B = B 6 . + B .5PuPvPA PA Pv Pu Pa vk Ph uv

The first order Proca equations are thus a realization of the Duffin -Kemmer

, . * formalism.

3. Discussion of Second-Order Field Equations

In a first-order formalism, the subsidiary condition eliminating the 

timelike vector mesons either is one of the equations of motion or can be 

i derived from them. When the equations of motion are of second order, how­

ever, the subsidiary condition must be separately assumed The second- 

order equations obtained by the substitution • " " ga are then generally not
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mutually consistent without the addition of suitable Fuv terms. For example.

eqations

on 9

(O 2 - m2) U =0 and jo 
H AH

become 
u

(w2 - m2) U, 0 (2.7)

w U = 0.
H •

(2 8)

Since [m,. w“] # o, Eq- (2.7) is inconsistent with Eq. (2.8). 

ficulty arises with the conventional Stuckelberg formalism' 

A similar dif­

in the case of

electromagnetic interaction. For these reasons we have preferred to use a

Lagrangian giving first-order equations of motion which after 8- "u can 

be iterated so as to yield the consistent second-order equations (2.5) and (2.6).

4. Stuckelberg Formalism

There is one other dynamical form of the vector meson theory intro­

duced by Stuckelberg^ which is well known in the neutral-meson case. There 

has apparently been, however, no consistent treatment of the electromagnetic 

interaction of charged mesons in the Stuckelberg formalism The original

Stuckelberg theorv is a second-order formalism involving a four-vector field

z and a scalar field B 5 In the absence of interaction, these fields are

H -1
related to the Proca field U by the equation U - Z + m 9 B By theH AHH

subsidiary condition

8 Z + m B = 0. 
u p

the scalar field B cancels out the fourth component of the vector meson 

field. In the conventional formulation, when the electromagnetic interaction

is introduced by the minimal substitution 9 -- . this separately imposedHH
subsidiary condition becomes inconsistent with the field equations We will

1
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consider here a new first-order formulation of this theory which is internally

consistent automatically and turns out to be identical with the Proca theory.

For free mesons consider the Lagrangian

= 1/2 z* [3 Z - 3 Z + m* 1 
Mv M • • M (8 3 - 3 3 ) B]M • v u‘

+ 1/2 -a,z +m- (®u 3 3 3 ) B4) z
• M ' uV

-1/2 z* z +m2z+z
H‘ u• MM

+mz* 9 B + m3 B*z 
PM H H

1

+ C +
H

9 B + 0 B+C - C4 C
H H Huu

where Z , B. 
u• .

Z , C are independent field variables On
H u

we obtain the equations

3 z - m2 Z
• VH M

m3 B = 0 , 
H

z = a z - a z Hv HV V H

a z + ma c =o• v u’u

C = B.
M M

(2 9)

variation of

(2 10)

(2.11)

(2.12)

(2.13)

By operating on Eq. (2. 10) with a, we obtain Eq. (2.12) on using Eq. (2.13)

Substitute Eq. (2.11) into Eq. (2.10) to obtain

(□ 2 2- rn ) Z - 3 (aZ + inB) = 0. 
M u —v •

and, using Eqs. (2.12) and (2.13), we find

(r: - m2) (Z 4 m-1 a B) = 0. 
H M (2.14)
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Set U = +m-- 
H u

)

2 U = 8 Z + m 
fx jx H, H

8
H

- 1

B so that Eq. (2.14) alor.g with the condition

| j" B = 0 (which is identical to Eqs. 2.12 and 2.13)

educes to the Proca equations. I nus the internally consistent equations.

9 Z - m2 Z - m 9 B = 0 , 
v V H (2.15)

Z uv 9 Z - 9 Z u v v H
{2.16)

together with (2.14), are equivalent to the Proca equations.

The advantage of the above first-order formulation is the possibility

of introducing the electromagnetic interaction consistently. Put 9 - in
P- lx

Eq. (2 9) to obtain

= 1/2 z* [- Z - it Z - ie/m F B]‘ uvu• •u HV

+ 1 /2 f tr Z+ - it Z+ + i< /m F B ' ] Z 
p, v v u HV HV

- 1/2Z+ z +m2Z+ Z +mZ+ T B+mT B* z 
uVuV H H HH H H

+ c+ m B + n B+ C - C+ C
u H H H * H

(2.17)

F-om Eq (2.17) follow the equations 

it Z - m2 Z -ms B = 0 
v Vu — —

(2. 18)

Z = m Z - Z ie/m F B , p v u• •H H‘
(2. 19)

Z + m 1 it C - ie/2rF z = 0 , 
v uu HV HV

(2.20)

C = it B , 
1X IX

(2.21 )

as in the free-field case (if we use Eq. 2.21) operating on Eq. (2.18) with

gives ^q (2.20) Substitute Eq. (2.19) into Eq. (2.18) to find 
u '
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l - - - m 2) Z -w tz - m it B-ie/m m (F B) = 0 
H V H • La V Vu

When Eqs (2.20) a~id (2.21) are used, this latter equation becomes

2 2 _ 1 _}
(it * m ) (Z + in ‘it B) + ie F (Z + n B) H H VH V V

ie/2m m (F z l = 0 u V (2.22)

on making use of the commutation relations

[", "1 ie

If we set U = Z + m
H H

TT v
-1

F 
uV

tt B, 
u

ie F It u v V

then Z = U , and Eq. fZ.ZZ) becomes Hv HV "

(w2 m2) U - ie/2m2 
H

It (F 
p

U, ) + ie F U = 0. X v Vu v

which is identical with Eq. (Z.b) in the Proca theory. In addition, the sub-

sidiary condition Eq. (2.5) in the Proca theory is readily seen to be identical

to Eq . (2.20) .

B. Most General Ligrangian for a Charged Vector Meson

1 Divergence Transformations

The theories we have just considered possess, as we shall see in

Section D. a "normal" magnetic moment, i.e , their gyromagnetic ratio

g is 1 The Lagrangians we have been using are no* unique, however. In

the Proca theory the divergence

-yd [a u+ u - a u* u ] .• H v H u p v (2.23)

wher e is a dimensionless constant. may be added to the free field

©

Lagrangian (2. 1). The divergence will not change the field equations

derived from the Lagrangian. However, the Lagrangian + will

have, as fiele equations in the presence of electromagnetic interaction,
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a
U 

uv
It U

u •
w U

• u (2.24)

TT u - m2 U+ieF U = 0. 
u HV • H• H

(2.25)

The term proportional to Y in Eq. (2.25) will correspond t 

magnetic moment interaction. 5 We see then that there are

n additional

initely many

free-particle Lagrangians leading to the free-field equation* but differing in

the distribution of charge density. Thus the principle of minimal electro-

magnetic interaction does rot define a "normal" magnetic moment unless the

free-particle Lagrangian is specified. Since, for any choice of the theory
9

is nonrenormalizable, this criterion toounlike the spin 1/2 case) is not

usable to define a preferred electromagnetic interaction.

2. Electric Quadrupole Moment Interaction

Group theoretical considerations allow a particle of spin 1 to possess

an electric quadrupole moment in addition ’o a magnetic dipole moment. We

now proceed to show hew ar electric quadrupole-moment interaction can be

added to the first-order Proca Lagrangian. We require that such an inter-

action be bilinear in the meson field variables U and U . and linear in theu pv
electric charge and the derivatives of the electromagnetic field d. Fuv-

Since these derivatives are constrained by the Maxwell equations

8 F - a FV pX u vx 3 , FX pv

only the form

u* U, 9, F + a* cu F „ 
p• X X pv X uV X HV (2,26)

C
satisfies these requirements along with the requirements of Lorentz and

gauge invariance. The multiplication factor a is now determined by
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O
demanding invariance of this electromagnetic interaction under time reversal.

We define the time-rever sed fields (apart from arbitrary phases.

which are the same for all terms in the total Lagrangian) by

i l -t). 0 (r. t} Ao (r. -ti.

u. = u (7. -t). 
1 1

UOT (7. t) = - Uo (7. -t).

,T = d. . 
i i

a T _ T 04 --d4•a

Applying these definitions to Eq (2.2b}, we have

M T - ••
X d-- eUuvU. •xFuv*aeUuvUx •x Fuv •

and thus, in complete analogy to the P-decay Hamiltonian, all coupling con­

stants must be relatively real, and a pure imaginary. Choosing a =i q/4m”.

where q is an arbitrary dimensionless constant, we obtain the electric

4
quadrupole-moment interaction

= (ie q/4m2) [u* U% - U* U J 0 F
3’ ‘ uv A Auv- Auv (2 27}

We have been unable to introduce a term like (2.27} in a "normal"

way by suitable choice of a free-pa rticle Lagrangian without going to deriv-

atives of third or higher order. The quadrupole moment is nevertheless

subject to the same degree of ambiguity as the magnetic moment, since. as

we shall see in Section D, the "normal" interaction (2.23) already implies a

certain amount of quadrupole moment.

Adding Eqs. (2 1), (2.23) (with ®u- "u). and Eq (2.27). we now have

as the total Lagrangian

a
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a"

X - 1/2 u„(*, v, -=,v.». 1/2 <. u.", v•» Uu.

-1/2 u* u+ m2 u* u +(ie /2) (u* U - u* U ) F p* H• HH p • * A •

+(ieq/4m*u. U, - U* U J 8 F 
k HV K pe (2.28)

Except for the possibility of letting Y and q have form factor space-time 

dependence, this Lagrangian is the most general charged vector meson

Lagrangian consistent with the ordinary invariance requirements. The vector­

meson theory tacitly used in the original p--e+y argument* 3 corresponded 

to the choice Y « q = O. As discussed in Section 11. B 1. we know of no phys­

ical criterion justifying a particular choice of v

in the next two sections we investiga*e more fully the physical content 

of this theory.

C. Generalised Sakata-Taketani Equaton

1. Elimination of Redundant Components

The Lagrangian (2.28) furnishes the field equations

u-mu_+ie,U F +(ie <|/4mS U w F » 0 , 
p p* v I p pv ph * pl

U =u - e U +(ie q/2m2) U, F 
uv p * * u k h p»

(2 29)

(2.30)

A meson field satisfying first-order wave equations is expected to have six 

dynamically independent components , corresponding to the three independent 

field variables and their time derivatives Equations (2 20) and (2.30, must 

therefore contain four redundant components which we wish to eliminate

Since in Eqs. (2. 20) and (2.50) U, ; (i, J « 1.2. 5) and 4 do not contribute to
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a" the time development of the meson field. these are th* four components to be

eliminated. After thia elimination we will possess a Hamiltonian form of the 

theory. For simplicity, we consider th* electromagnetic field* timne-inde- 

pendent, and th* magnetic field spatially constant, in the terms proportional 

to q only. The terms not proportional to q can be considered completely 

general.

From Eq (2 29) we have

U, = (1/m, (=, U,4 +ieyu, F4)-

Let m,= U4• so that we have

u, = i/m # 6 ♦ (• y/m» 3 • £ .
where 2 ia the electric field strength Also from Eq (2 29).

*,Uj-mU, 4U4i • -ievFj U,-ierU4 F4i
. (..q/imS U4,8, F4j -< ieq/4m* U,m a, Ffc

which becomes

i - ■ eQ4, 4 m u +m-l( x(#x)),+ie ym- 1 (0 x HL 0 * 1 1 1 I

+ • ym ' - -eq/),, E . (2.31)
“ J • J

where Qis the scalar potential. and H is the magnetic field strength We 

wish to write thia laat equation in matrix form it is lengthy, but not diffi-

cult. to show that if one introduces the spin- l matrices

0 / 0 O0 0 0 -i O

S> ' 0 0 -i S2 O C O S3 1 0 O

0 l 0 -i O 0 0 0 0

emp



- 14- UCRL-9889

(2.31) can ba written as

i 3 • ed•+ mU - m*1 (S F)2 U - eym-- (S A)u- eym-2 S,S,E,"•

+ eym“”( »)♦- e2y”m:3c5 )”u+e2y”m-32u

♦ e(/2)m-s,s,, E,• - e(/2)m* , • (2.32)

and a (23) . Now Eq (2.30) becomesU

Va"*," ■ (e/2)m,®, F4-
which can alao be written in matrix form:

* SF sedu+m+m 1 (S • #,e-(= “/m) a - em 1 (S #) •

♦ eym“s.s,",(EU) - eym:= (EU) +elq/2)m:s.sg, E,y
- e{q/2)m-2(#. ) U (2 33)

We now define a six-component ware function + ■ (1/2) U+
-U+9 so that

Eqa (2.32) and (2 33) take the Schrodinger form.

i tS ♦ p 3 m ♦ #)"/m-(p,+ ip2(*2+e5 • #»/2m

-(p3-ip2ey(S-#)/2m-(ey/2m*(1+p,[5-Exs #,-5 (x*,--#1

+(ey/2m*)1-p,)[,5 #)5 2) -i?(rx£) -= g]

-(e‘y/2m‘xo,-ip26S j2-E +(eq/4m*1o,,(E,/x,3-2E/x,»1/

(2.34)

whereQj=S.S,+SS, Fory=q=o, Eq. (2.34) reduces to the Sakata - Taketani6

c
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)
equation. The charge matrices P 1• P2• Pj are the usual 2 by 2 Pauli matrices:

0 1 O 3

P l 1 0 ip2 F
1 0

-l 0 P3 ’ 0 .1

2. Opr*tors and Expectation Values

Since the charge is given by 
f 3 .

Q • • Jd *+ P3•=e(+,P3*) .
expectation values°A of operators A must be defined relative to the indef-

U-inite charge metric P3*
fd3 x 3*A

In order that these expectation values be real, the operators must aatisfy the 

condition of pseudo Hermiticity,

P3 • (2.35)
♦ Twhere A = (A ) is the ordinarily defined Hermitian adjoint. Note that H 

is pseudo-Hermitian (H = p 3 H* p 3). so that its interpretation as the energy 

is consistent For the canonical transformations ( « Si’) between the same

physical state in different representations, we require Q to be invariant.

i. e . that

g-1 - g+5 “P35 P 3- (2.36)
Such transformations S are called pseudo-unitary transformations. We 

find, as in the nonrelativistic case (p 3 = 1).

dA - i [H. A] .

In the following discussion we shall omit the prefix "pseudo," always

understanding Hermiticity and unitarity to be defined relative to the metric

c P 3 by Eqs. (2 35) and (2.36)

»
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G
D. Nonrelativistic Limit of the Vector Meson Theory

To find the nonrelativistic limit of Eq- (2.34) we use the Foldy-

Wouthuysen method7* 12 of successive unitary transformations. The free-

particle Hamiltonian (e = 0 in Eq. 2.34) ia diagonalized by the unitary trans­

formation

exp ( ( 1/2) i P, 

where

tan (42) = (2i/E2+m2) (P2j - (S • P)2).

■o that we have

E + m 
2(mE)1/2

-(P2^ - (S P2» 
(E+ m) (mE)1^

U =
-(pzA - <s p*)) 
(E + m)

Thus, in the non-interacting case. H = U

E •» m^

- HU =pE. so that each sign of

the charge (energy) can be represented by a three-component wave function.

In the interacting Hamiltonian of Eq. (2.34) we define "even" operators

as those containing P3 or 1. and "ode" operators as those containing P2 

or A . For the nonrelativistic limit we require that H be free of odd 

operators up to some order in the inverse mass. Successive canonical

transformations U, where U = eiS, S = m, and the O are odd op-

eratora of the Hamiltonian. will eliminate O from the Hamiltonian. An 

example of such an O ia ip, (S • * “Am. The resulting wave equation is
2

and

' l

t

id+/t = (Ho + Hj) * ; (2.37)

H. = e€+ m + # 2 Am - (# 2)2 /8m3 0



i
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U
H. =--e_ S {g+ g-1 (Ex# -x)) 

1 2mc 2mc -
-eO/ Q,; 8 E,/ x, + ie (0/2) + O(m ‘),

J 2where =P- eA and Q = -(g-1+q)(h/mc)". The three terms in Hj are

identified as a magnetic-moment spin-orbit coupling term, an electric-quad­

rupole coupling term. and 3 (non-Hermitian) Darwin term- Except for this

last term, the same Hamiltonian H^+Hj is also obtained for spin-O(S:=Qij = 0)

and for spin-1/2 particles (that is. Si = 0,2, Qi; = 0) of arbitrary gyromagnetic 

ratio. The Darwin term is -zero for spi.i 0 and [e n/2 (2mc)-} V* E for spin 

1/2 • Except for these Darwin terms, which vanish in the classical (h = 0) 

limit, particles o£ different spin arc thus found to obey the same nonrelativistic 

wave equation (2.37), once allowance is made for the possibility of arbitrary 

magnetic dipole and electric quadrupole moments in the higher-spin cases.

This result suggests that, except for the obscure and specifically quantum­

mechanical Darvin term, the nonrelativistic wave equation is actually spin­

independent and that its form depends on classical invariance arguments 

only.

It is worth noting that a vector particle could have, except for g = 1, 

a quadrupole-moment interaction proportional to the 'Anomalous moment" 

g-1, even if the specific form (2-27) had not been introduced. Unless there 

are reasons (unknown) for preferring g - 1 theory, a term (2.27) is not to be 

» excluded. As we shall see later, such a q term apparently does not lead to 

any more divergent a form of electromagnetic interaction than does the y 

term itself.

0
The factor 1/4 has been introduced before Q in H in order to make 

our normalization of the quadrupole moment strength conform to that con­

ventionalized by Ramsey. 1 Consider the meson to have its spin along the
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positive z axis, and also take as a very weak electric field $

E1=- (k/2), Ea=- (k/2)y, E3=kz, 
where k is a small constant. For a meson with spin up + = —1 

21/4
so that we write

/1 
। i
1o

9

Q Q.. 
ij

3 E. 
1

-eQ

9 X. 
J

/ 4

Ramsey defines the energy E of an electric-quadrupole moment q as

E = - (q/4) (8 E3/a z), =0

for particles with spin along the positive z axis.

usually divided by the charge and given in units cm.

The quadrupole moment is 

and so the vector meson
2 2has quadrupole moment Q = - (g- 1 +q)(h/me) cm . If we consider the spin

/O)projection along the 2 axis to be 0, then we have=4 0) and

(s,=0
eQ & E
-4- x, Qij

J
S3=o)

eQ
-2— k .

to give Q (S3 ” 0) = - 20, in agreement with the group theoretical result

Q(m) = Q [3 m2 - s(s + 1 )1 /s(2s - 1)

where S is the particle spin and m the projection of the spin along the z 

axis. The charge distribution can be considered as having the shape of an 

ellipsoid of revolution centered at the origin, and thus Q=4/5 n R“, where 

n=(c - a2)/(C2 + a2), R = $(a+c2) is the mean square radius, C is the 

axis of the ellipsoid in the z direction, and a is the axis perpendicular to 

the z direction. A positive quadrupole moment corresponds to a cigar—shaped 

charge distribution, and a negative quadrupole moment corresponds to a -an 

cake-shaped charge distribution.
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$ For g = 1, q = 0, our result (2.37) reduces to that obtained by Case. 12

r
E Classical Spin Equations of Motion

In the preceding section we noted that spinning particles of the same 

gyromagnetic ratio have (except for the Darwin term) the same Hamiltonian, 

at least to order 1/m. This suggests the possibility of a classical spin­

independent description of the magnetic-moment precession. Bargmann, 

Michel, and Telegdi^ have recently given such a description, using a four- 

vector s for the spin or magnetic moment. In quantum mechanics the spin 

has, however, more often been described as part of the angular momentum 

antisymmetric tensor S , . We will here derive covariant elas 3ical equations 

of motion in terms of the more familiar Suv- While the equations (2.40) we 

obtain are apparently quite different from the equations (2.42) obtained by

Bargmann, Michel, and Telegdi, the two sets of equations are actually the

same when s and S are related as they have to be. This will show then 
H HV

that covariant spin-precession equations equivalent to those of Bargmann,

Michel, and Teiegdi can be derived from classical invariance arguments by 

using the more familiar S v formulation for the spin angular momentum.

We wish to generalize to an arbitrary Lorentz frame the equation of

spin precession

ds/dt = (eg/2m) s xH , (2.38)

which holds in a rest frame, by using an antisymmetric tensor Sv- The

tensor S 
H‘

frame are

must have only three independent components, which in a rest 

gj, s 2, s3- This condition is expressed covariantly by the con-

straint

S u = 0 , HV v
where u, is the four-velocity (u“ - -1).

(2.39)

It is readily confirmed that the

unique expression for the time variation of Suv consistent with the particle



/
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equation of motion du /dT = e/m F_vu, and reducing to the form (2.38) in a

, .16rest frame is

dS,v/dT = ' (eg/2m) ISua Fav ’ Sva Fap

- (e(g - 2)/2m)u, Ssv - “vSsu Fa “a (2.40)

Here is the eigen-time.

Define a four-vector s. by the relation

s a i/ 2 “apv p Suv “s‘ (2.41)

which then also satisfies a supplementary condition

su = 0.H H
The time variation of s can be obtained from Eqs. (2.40) and (2.21): CL

dsa/dt = - i/2 “ajgvp lusSuv + “sSuv

= ie/4m “apvs Isus(Sun Fnv -Sva Fxu)

+ (g - 2) u F u [ u S - u X p h B H P • S 1]PH

' ie/2m € a S F.. u, >' QuvP 1V P X

where A = dA/dt Now use the two relations

Suv 1 "uvas “a Ss‘

e « = [6 6, 6 .uav pkpo a Bp G‘ ax 6 So Spv 6ap 65vx °os

6.,68n6,,+5ac58x 5vp °ac°Bp°nv1

to obtain

ds./dt=e/m (g/z Fa. s,-(g/2-1) s, Fvu"u“al- (2.42)
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This is the result obtained by Bargmann, Michel, and Telegdi. 13

We now mow, in particular, that Eqs (2 40) and (2 42) both lead to 

the same coupling (spin-orbit coupling) between spin and momentum in an 

electric field and thus to order l/m“ Eor this purpose we express both 

< equations in three vector form and keep terms linear in the velocity

From Eq (2 40) we have

ds /dt =-eg/m[-s xH + (s xv)xE] - e (g - 2 )/2m [s(v E)-E(s v)]

= eg/ 2m s xH+e’g - 2)/2ms x(Exv) + e/m Ex(s xv)

but

E x (s x v ) = - s x (E x v ) + m/2e dv */dt,

where v = s v- - v (s v ), and we have used e/mE. so that we write

ds /dt = eg/2m s x H + e (g - l )/2m s x(Exv) + m/ 2e d v dt to terms linear in

v Now consider the case in which the spin charges slowly < ompared with the 

velocity, and the velocity periodically takes on the same values, so that we 

can drop the last term The spin precession result to order m then be­

c omes

ds/dt = eg/2m s xH+e(g-1)/2m s x(Exp) <2 4 3)

for particles with a positive charge Equation (2 42) expressed in the same

way becomes

ds/dt - e/m [g/2s xH + g/2 E (s v ) - fg, 2 - 1 ) v ( s E)]

eg/2 m s x H + e( g - l )/ 2m s x(xv) + m/2e dv dt.

where v"= +v (s v ) Thus, by dropping the last term’in exac tiv the same 

way as we arrived at Eq (2 43). we obtain the same result it is easily

shown that (2 43) is identical with th' result obtained from the Hamiltonia:

Eq (2.37) through the relation ds dt i [H. s j
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v
III. Application to Decay: u*--et + y

A■ (p- Matrix Element

The Feynman diagrams for the process p — e + y are given in Fig. 1;

the matrix element for the process u-e with emission of a real or virtual
14photon is given by the expression

hh = ie u,(1- (3.1)u A , • H •
where “e- Uu are the electron and muon spinors respectively, and

r =-i(2m)-3 
p

if, (v k k ) k 2 + f, a > k
0 ’p v p 1H‘"J V

Thus

i F A =(2n) 3
14 H

f,, J ext •/k2 + (f,/2u)0- F
0 ‘u ‘u ' l ‘ pv Av (3.2)

Here k is the photon momentum, u the muon mass, and

M‘
ext

= i (k A - k A ), v H p v
= i k F v Hv

The form factors f„ and f., which are functions of k , are responsible for • I
monopole radiation (in the Coulomb field of a nucleus) and dipole radiation

respectively The rate for p -- e + y with emission of a real photon is pro-

portiona! to f, (0) - , and the rate for the coherent process u + r -- e + n is

proportional to _ f o (u“) + f j (p") 1 -

B Branching Ratio c /u _
____________ ____________ Hme+YH —' e -I v 4 v

If the u -- e conversion proceeds through u -- v + B and v + 3 - e.

then the branching ratio betweet the unobserved decay u Y and the

normal decay can be written as
C•_ _ u-te±YP - —c------- 1---
G-

u-et v+v

= (3a/8r)N-, (3 3)

where a is the fine-structure constant, and N is a number independent of
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O
the weak-coupling constant The amplitude N generally diverges logarithms ally 

with A/m, the ratio of cutoff to the B-meson mass. Feinberg and Gell-Mann^

found (tacitly assuming unit magnetic moment for the vector meson). for

A= nucleon mass, and m * K-meson mass, N « I This value for N gives
P * 10 3 , which is 103 times the experimentally measured upper limit for p 4

Azide from the mild cutoff dependence th* re are two reasons in a

one-neutrino theory aS to why the above-calc ulated p need not be taken as 

evidence against the B meson We have already pointed out that there is an 

infinity of f r ee - pa rtic le B-meson Lagrangians which differ in their definition 

of "normal”' magnetic moment Also. if the B --eson exists it must have

a large mass (greater than the K-meson mas} and yet the gauge - inva r«ance 

1 5type of argument for its presence indicates that it should have a vanishing

mass This implies that the B meson must have a rather complicated

structure, so that one should keep an open mind with regard to its elec tro-

magnetic properties

We have recalculated the uey vertex as a fune tion of magnetic mo- 

men’ <I + y) en/2me and electric quadrupole moment Q -(y +q) (• me;-.

with the interaction Lagrangian given by Eq • 2 28) After a le zthy caicu-
1 6 lation, the value of N obtained 1-

N = ( 1 -y-qu- /8m - ) I 0 +(i 2y+qu“/4m) 1 ।

+ ( 3 -yu/2m- + 1 luf/6m:», ♦ (iZ/ 1 + 4y) /mf»‘ , • l ou- mZf ,

(34)
where , ,

»' . 2n _Z I = + im /I n ( '
.4 2 2,n+2 d Q/(q -m )

This result is correct to order u“/m: . terms of order tu/m)* have been 

dropped and the electron mass has been set enuai to zero The expression 

(3 4) for N is consistent with that obtained by Meyer and Salzman* ' and by
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18 2,2Ebel and Ernst, who, however, did not calculate terms in pa /m or q.

Because q was originally defined divided by the square of the boson mass 

m“. and th* muon mass is the only other quantity of dimensions of mass in 

2 2 our calculation. q always appears in N multiplied by u /m .

C. Discussion cf N

tn our calculation of n, Y and q appear only tn the combination

y = y + qu2/Bm2 = (g- 1 )« 1 -p“/8m“)-Qp2/s (3.5)

This means that th* rat* for pa--e+y depends only on thin combination of

moments.

factor Ko

l. Finite

Thia result is apparently fortuitous. sine* in th* monopole form 
ip 

this particular combination does not occur

N

The integral ‘o is logarithmically divergent so that. except for 

v‘ = 1. N is formally divergent Since we have

‘n
for y‘ ■ l.

• (-)"/n(n+1).

we obtain

-

*

*

(3.6)

N = I ♦ Zp“/9m2 (3 7)
.3which for any value of the boson mass leads to a branching ratio p>10

The cutoff independent calculation of N is thus in definite disagreement

with experimnent.

2 ^ogsfU^rmc-ally.divergent N

N can be made vanishingly small by retaining th* integral l’o- making 

it finite by the formal device of a covariant cut off A Consistency then «

requires that all integrals In be « alculated with the same kind of cutoff
22 2With the Feynman cutoff factor - Am /<q -Am) we obtain th* integrals 

t

, ,, 2n iI_=(-irn n a“q/(q2-mynt2) (A”m/(q2-A“m2») . (3.8)
or

1o • A“/(1-A“l[I-A"+A- iog A“J

t
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C. • nd

*

I ■ (-iT*1 A“/n(n+1)(-A2) - (-A f . . for n> n s> " a
By defining y o as that value of y which makes N vanish we find

vo = A + Be . (3.9)

< where
A -(10+1,+ 31,7/u0-21,).

B • (1- 21,17- (» 1/6 t,+ 22/3 1, * 10t,)

(1/2 1, -41 3» to +1, + 31„»4. ' 21,)". and • ’ (p/mce 1; in

fact, we expect the upper limit for « to be 1/25, ince m must be greater

than the K-meson mass. For two representative values of A. say A ■ l.

A • 2, we have

‘o n 12 3 "4 A B

A« I 0.5000 -0 167 0 064 -0 040 0.033 0.700 -0 91

A •2 I I 3 -0.296 0.125 -0 070 -0 044 0.702 -0 67

This table shows that Yo‘ is insensitive to both the cutoff A and the square

of the ratio of the masses « (as long •• « !• mall) With • • 1/25. then

for A * 1. vo * 0 698 and for A 2, vy, 0 703 in the expression (3.4) for N,

tt is evident that we can write

N • R (1 - v‘/v0) .
where

R • I, + 1. * 31, + • (1 1/6 1, + lify I. ♦ IO !.) U• • 3"
The term proportiona" to • in ft will always be small in comparison with

4

«

the other terms, so that in it we can neglect « to obtain

R s tA*/2n1-A*,* ' 2A2* -A2-31oga2-0- A*c2A* •A2-3

The branching ratio p then becomes

o -(3a/a«)R2c - y‘/v‘v2

t



-th. UCRL-9889

The quantity 3a/8= R has been plotted by Ebel and Ernst. and varies from

-4 -2
IO to 10 as A varies from 1 to 10.

[)

The branching ratio p. when it does not vanish (i.e. . for v‘ 2

is sensitive to the value of A. The combination of y and necessary to forbid

the pa-- e+v decay is thus certainly ad hoc. On the other hand. we know of

no criterion for fixing on a choice of y and q a priori.

Now only one combination of th* two parameters y and q is involved 

in choosing y’ to forbid th* process pa -- e ♦ y Another different combination

of y and q will determine the rate of the coherent process u ♦ nucleus-** *

nucleus in other words, we aspect to be able to choose y and q so that 
3 2 3.2f,(0) and [f,(p)+fo(u)) are both small enough not to exclude the vector 

meson hypothesis.

D. Two-Neutrino Hypothesis

Another explanation for the absence of pa - • conversion consists in
19 the assumption that two different neutrinos • and are involved in u

decay, v being coupled to th* electron, and v’ to th* muon Since these

neutrinos are different, they are not capable of annihilating each other, and

thus anv p -- e processes are strictly forbidden The implications of this

alternative are not pursued here

*

09
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)
IV CONCLUSION

We have shown that the various charged vector meson formalisms are 
2

{ dipole and electric quadrupole moment. The quadrupole moment interaction 

is no more divergent than an anomalous magnetic moment interaction. indeed, 

when, to the normal interaction, an anomalous moment yeh/me is added.

this itself introduces a quadrupole moment y(h/mc)*

A first-order Stuckelberg formalism has been developed in order to 

ensure internal consistency between the subsidiary condition and the other 

equations of motion in the presence of electromagnetic interaction- The non-

relativistic equations of motion of a spin-one particle of arbitrary magnetic

moment. like those of a spin 1/2 particle, agree with the classical equation* of 

of motion derived on invariance grouads.

Because of the absence of criteria fixing its magnetic dipole and 

electric quadrupole moments, the electromagnetic interactions of charged 

vector mesons is ambiguous enough that the absence of H " e conversion

processes cannot. by themselves, be a proof of the nonexistence of inter-

mediary mesons in the weak interactions.

t
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