UWIVERSITY OF CALIFORTIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48
by Allan Zalkin
Helens Ruben
Devid 青. Templeton

A ugast 1961

The Crystal Structure of Cobalt Julrate Hexahydrate* By Allan Zalkin, Heleno Ruben, and Devid H. Terpieton Lawrence Radiation Laboratory and Department or Chemistry, University of California, Berkeley, California, U.S.A.

Abstragt

$\mathrm{CoSO}_{4}-6 \mathrm{H}_{2} \mathrm{O}$ crystallizes in the monoclinie system, $\mathrm{C} 2 / \mathrm{e}$. The cell almensions are $\underline{a}=10.032 \mathrm{~A}, \underline{b}=7.233 \mathrm{~A}, \underline{c}=24.261 \mathrm{~A}$, and $\mathrm{B}=98.37^{\circ}$. There sre 6 moleales in the unit cell; the X-ray density is $2.006 \mathrm{e} / \mathrm{ec}$. The etructure consists of sulfate tetrahedra and cobslt-centered water octahedra linked by a three dimensionsl network of hydrogen bonds. Eleven of the twelve hydrogen bonds are between vater and sulfate oxygens; there is one water to vater hydrogen bond. The average $S-0$ sulrate distance is 1.46 A ; the average Co-0 distance in the water oetahedra is 2.11 A ; and the average hydrogen bond ($0-H^{+\cdots}$) is 2.8 A. There are two erystallographiesily alrferent Co ${ }^{++}$ions In the stricture. The hydrogen atoms are sesigned on ordered configuration which would not contribute to residunl entropy at low temperatures.

Work done under the ausplees of the U. S. Atomic Energy Commission.

Introduction

Calorimetrie measurements by Reo and Glauque (1960) whoved some unacenuntable residual entropy in eryatals or $\mathrm{CoSO}_{4}-6 \mathrm{H}_{2} \mathrm{O}$ at low temperatures. We have investigated the erystal structure in search of an explanation or the disorder. The resulting structure orfers no possibility of disortered rings or hydrogen bonds such as vere found in $\mathrm{Na}_{2} \mathrm{SO}_{4}-1 \mathrm{OH}_{2} \mathrm{O}$ (Ruben, Tespleton, Rosenste1n and Oloveson, 1960), nor do ve find any other explanation of the entropy diserepancy.

The cryatal morphology ves deseribed by Merignac (1055), and Groth (1908).

Exper1penta1

Crystals of $\mathrm{CoSO}_{4}, 6 \mathrm{H}_{2} \mathrm{O}$ were Erown from a saturated solution at 50 55°. The intensity data were ohteized by multiple rilm Weissenberg techniques. The film photogrophy was done using Fe Ka ($\lambda=1.9373$ A) X rays, on fliford Industrisl $G\{11 \mathrm{~s}$. Intensities vere entimated vieunily by comparison with a calibrated set of apots. The scaling factor used betveen multiple films of the same layer was $\exp (2.0$ sec $\mu)$, where μ is the equi-inclination angle and 2.0 is an empirically deternined constant from the data; this sealing factor varied from 7.4 at the zero layer $\left(\mu \omega^{\circ}\right)$, to 12.9 at the sixteenth layer ($\mu=36.7^{\circ}$).

The first single erystal of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was enclowed in a . 1 mm . Elase capiliary. At the time we felt the crystals would be unstable in the open etmosphere, however, later ve found the erystals to be surfielently stable to handle in air. This firat crystal vas aligned about the fion direction. Seventeen layers were photographed and 737 reflections were observed or which

125 were below the detection $11 m 1 t$ and celled zero. Later a second crystal was aligned about its \underline{b} sxis and photographed in air. An additional 99 zero loyer reflections were measured of which 10 were below the detection $1 i m i t$. The sum total of intensities used was 836 , of which 135 were recorded as zero.

For grester sceuracy, the cell dimensions of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were measured on a General Electric XRD-5 equipped with a goniostat using Mo $\mathrm{Ka}(\lambda=-7107 \mathrm{~A})$ X rays.

In order to solve the structure we found it necessary to take some reflection date from $\mathrm{MeSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ both of which are isomorphic with $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

A erystal of $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was erom from its saturated solution at $50-55^{\circ}$. It was aligned about its \underline{b} axis and photographed with $F e$ Ka X rays with the Weissenberg technique. Intensities were recorded of 102 hot reflections of which 6 were below the detection limit. Cell dimensions were measured on the goniostat as with the cobalt isomorph.
$\mathrm{NeSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ erystals were prepared at room temperature by allowing a filtered solution of dilute selenic acid and excess Mgo to evaporate in an open dish. A crystal was aligned along its b axis and photographed with the Weissenberg technique with Fe Ka X rays. Intensities were recorded of 102 hot reflections of which 15 were below the detection limit. The cell dinensions were obteined from the Weissenberg films.

Cell dimensions and space troup

The cell dimensions of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are :

$$
\begin{array}{ll}
\underline{a}=10.032 \pm .004 \mathrm{~A} & B=98.37 \pm .03^{\circ}\left(98.7^{\circ}\right. \text { by Marignac (1855)) } \\
\underline{b}=7.233 \pm .003 \mathrm{~A} & \mathrm{~b}=17^{4} 2 \pm 2 \mathrm{~A}^{3} \\
\underline{c}=24.261 \pm .010 \mathrm{~A} & \mathrm{c} \\
\text { space group }=\mathrm{c} 2 / \mathrm{c}\left(\mathrm{c}_{2 \mathrm{~h}}^{6}\right) \\
\underline{a}: \underline{b}: \underline{c}=1.387: 1: 3.354 \quad(1.396: 1: 3.381 \text { by Marignac }(1855)) \\
\underline{x}-=a y \text { density }=2.006 \mathrm{~g} / \mathrm{cc}: \text { measured density }=2.000 \text { (Gosner, } 1907), \\
& 2.019 \text { (Thorpe ard Watt, } 1880), 2.017 \text { (Handbook of Chemistry } \\
\text { and Fhysics, } 1957) .
\end{array}
$$

The characteristic extinctions of the intensities indicated space group Ce or c2/c. As there are 8 molecules in the unit cell and c2/c has an 8 fold general position as opposed to 4 for $C c, C 2 / c$ appeared intuitively to be the most likely space group. A "zero moment test" on the 3 dimensional data was computed (Howells, Phillips and Rogers, 1950) and the results indicated a center of symmetry, space group C2/c. The best evidence we have for the space group $C 2 / \mathrm{c}$ is the successful solution of a chemically reasonable structure. The cell dimensions of $\mathrm{MeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are:

$$
\begin{array}{ll}
\underline{a}=10.110 \pm .005 \mathrm{~A} & \underline{c}=24.41 \pm .01 \mathrm{~A} \\
\underline{b}=7.212 \pm .004 \mathrm{~A} & B=98.30 \pm .04 \mathrm{~A}
\end{array}
$$

The cell aimensious of $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are:
$\underline{a}=10.36 \pm .03 \mathrm{~A}$
$\underline{\varepsilon}=25.1 \pm .1 \mathrm{~A}$
$\underline{b}=7.38 \pm .04 \mathrm{~A}$
$B=98.1 \pm .3^{\circ}$

Determination of Structure

The three-dimensional Patterson function of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was computed. Attempts were made to associate the larger peaks with $\mathrm{Co}-\mathrm{Co}, \mathrm{S}-\mathrm{S}$, and $\mathrm{Co}-\mathrm{S}$ vectors; however, two trial structures with Co atoms in general positions failed to give a reasonable Fourier projection in the b direction. Later it was learned that $C c$ atoms are in two sets of special positions.

Crystals of the isomorphic compounds $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ were prepared and photographed. From the Patterson projections calculated from the three sets of hol data we found the locations of the Co and S atoms.

A set of trial oxygen positions was obtained from an hol Fourier projection of the $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The signs of 54 of the 96 non-zero structure factors were estimated from the location of the Mg ond S positions. All of the ten oxygen atoms were found. A new calculation of signs. led to a sign change in only two of the original 54 data used. A second Fourier projection using 86 non-zero terms clearly shoved the basic arrangement of $\mathrm{SO}_{4}=$ tetrahedra and $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}$octahedra.

The hol data for the $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is shown in tables 1 and 2.

In $\operatorname{CoSO}_{4} \cdot 6 \mathrm{H}_{2}$ o eight cobalt atoms occupy positions $4(a)$ and $4(e)$:
4(a) $0,0,0 ; 0,0,1 / 2+C$ centering.
4(e) $0, y, 1 / 4 ; 0,-y, 3 / 4+C$ centering.
The sulfur atoms and ten sets of oxygen atoms occupy the general $8(f)$ positions: 8(f) $x, y, z ;-x,-y,-z ;-x, y, 1 / 2-z ; \quad x,-y, 1 / 2+z+C$ centering.

A fourier projection of the hol data of $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was calculated and the x and z parameters of the cobalt, sulfur and oxygen positions were evaluaved. The y parameters were estimated from expected $S-0$ bond distances in the sulfate ion and 0-0 distances about the hyarated cobalt ion.

Table 1: The hOL observed structure factors for $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

```
h= lllllllllllllllll
\ell=0
    2
    4
    6
    8
```



```
    12 0 33 46 16 46 98 64 40 18
    14}6\begin{array}{lllllll}{6}&{43}&{27}&{33}&{32}&{25}&{26}\end{array}1
    16 38 15 11 11 65 24 13 40
    18 20 21 10}3037\quad33\quad71 33 34
    20}00513946324
    22 14 13 17 9 39
24 12 3841
```

Table 2: The hOl observed structure factors for $\mathrm{MgSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

```
\(h=\begin{array}{lllllllllll} & -10 & -8 & -6 & -4 & -2 & 0 & 2 & 4 & 6 & 8\end{array} 10\)
\(\begin{array}{lllllll} & =0 & 0 & 47 & 17 & 51 & 25\end{array}\)
```



```
    \(\begin{array}{lllllllllll}8 & 0 & 38 & 34 & 0 & 71 & 42 & 10 & 26 & 17 & 24\end{array}\)
\(\begin{array}{lllllllllll}10 & 11 & 10 & 13 & 20 & 39 & 17 & 15 & 38 & 0 & 13\end{array}\)
\(12 \quad 1616.59 \quad 050554811 \quad 7\)
\(\begin{array}{lllllllll}14 & 0 & 41 & 7 & 45 & 9 & 39 & 17 & 20\end{array}\)
\(\begin{array}{llllllll}16 & 23 & 0 & 10 & 0 & 58 & 15 & 12\end{array} 21\)
\(18 \quad 1017 \quad 10 \quad 33 \quad 20 \quad 5916 \quad 26\)
\(20 \quad 0 \quad 32 \quad 15 \quad 33 \quad 15 \quad 34\)
\(22 \quad 15 \quad 0 \quad 18 \quad 0 \quad 23\)
\(24 \quad 1323\)
```

Least squares refinement utilizing the full matrix (Busing and Levy, 1959) was performed for a total of 13 cycles on the IBM 704 computer. Atomic form facturs of CO^{++}(Watson and Freeman, 1961), neutral S (Tomiie and Stam, 1958), and neutral (Hartree and Hartree, 1939) were used in these calculations. 83f intensity data were used, 737 of which wexe obtained from a crystal rotated about the [101], and 99 of which were obtainea Irom a zero layer about a $[10]$ rotation. 18 scale factors, 34 positional parameters and 13 isotropic temperature factors for a total of 65 parameters were varied. The overall R factor, where $R=\frac{\Sigma\left|\|_{\text {Fobs }}\right|-\mid \text { Fcalc }| | \times 200}{\Sigma \mid \text { Fobs } \mid}$, was 54% before refinement commenced, dropped to 42% after the first refinement and then dropped steadily to the final value of 13%. The necessity to run so many cycles was in part due to certain blunders in the original estimate of the y parameters for the oxyeen atoms. The final R factors are as follows:
$R($ including zeros) $=13.0 \%$.
R (omitting zeros) $=10.9 \%$.
The data are shown in table 3 .
The atomic parameters are shown in table 4. By an oversight the dispersion correction Δf^{\prime}, of about -1.8 electrons (for $F e K \alpha$) was omitted from the cobalt form factor. As a result, the temperature factors for cobalt in Table 4 are larger than the true values by an unknown amount.

Tabie 3: Observed and calculated structure fuctors for $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The observed values are listed above the calculated ones.

Table 4: Atomic parameters for $\mathrm{CaSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

Discussion of the Structure and Hydrogen Bonding

The structure consists of diwcrete 30_{4} " tetrahedra and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{4+}$ octshedra, Pig. 1. There are Just enough water moleculew to antiafy this octahedral hydration of each cobalt $10 n$.

Hydrogen bonds are assigned to the twelve shortest oxygen-oxygen distances (Table 5) arter disregarding these between-oxygen atoms of the same sulfate $10 n$ or of the same coordination octahedron. This assignment is checked by conalderation or the hydrogen atom conriguration nad bond angles. Except for one wnter molecule $\left(\mathrm{O}_{9}\right)$ each water haw two hydrogen bonds to aulrate oxygen atoms. Witer molecule O_{9} has one auch bond and slso a bond to stom

Fig. 1. Packing or $\mathrm{SO}_{4}=$ tetrahedra and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{++}$octahedra. The encircled numbers are the parameters of the $C O$ and S atoms in the $\frac{3}{}$ direction.

Tible $5:$ Interatomic Distances in $\mathrm{CeSO}_{4} \cdot 6 \mathrm{H}_{2}{ }^{\circ}$. Standard deviations are about $\pm .03 \mathrm{~A}$.

[^0]O_{8}. In this bond geometry, there is only one configuration of hydrogen atome with two hydrogen atoms on each water molecule. The angles between hydrogen bonds et these water moiecules (Table 6) range from 97° to 126° and are withIn the range found for other hydrated sulfate crystals. The hydrogon bonds make angles of 111° to 124° with the water-cobalt vectors. The third hydrogen bond to 0_{8} makes angles of 80° and 117° with the two hydrogen bonds for which O_{8} provides the hydrogen atoms.

Table 6: Hydrogen bond angles. O_{1} through O_{4} are sulfate oxygens. O_{5} through 0_{10} are water molecules.

atoms	angles
$o_{1}-o_{5}-o_{3}$	117°
$o_{3}-o_{6}-o_{4}$	105°
$o_{3}-o_{7}-o_{4}$	126°
$o_{1}-o_{8}-o_{2}$	97°
$o_{2}-o_{9}-o_{8}$	116°
$o_{1}-o_{10}-o_{4}$	124°

The hydrogea bond lengths are 2.65 to 2.93 A for the bonds sulfate and 3.00 A for the water-water bond. The shortest non-bonded oxygen-oxygen distances other than edges of the octahedra, are 3.13 A between 0_{7} pairs (through a center of symmetry) and 3.22 A between O_{9} and O_{4}.

We find no reasonable alternative to this hydrogen configuration, and the entropy discrepancy is not explained by our work.

The hydrogen bonds tie the sulfate ions and water octahedra together in a three-dimensional network as indicated in Fig. 2. In this Pigure, the
hydrogen configuration is indicated by small circles on the hydrogen bonds. Because of the bond angles the hydrogen atoms are expected to fall slightly off these lines joining oxygen atoms. We do not have a direct determination of the hydrogen positions from the diffraction data.

The two cobalt ions, Co_{1} and Co_{2}, have point symmetries $\overline{\mathrm{I}}$ and 2 respectively. The water octahedron about Co_{1} is hydrogen bonded exclusively to sulfate ions. The Co_{2} water octahedron has ten hydrogen bonds to sulfate ions and four involving water molecules of neighioring Co_{2}-type octahedra.

The average interatomic distances are as follows:

$$
\begin{aligned}
& \mathrm{s}-0\left(\mathrm{SO}_{4}{ }^{=}\right) \quad 1.46 \mathrm{~A} \\
& 0-0\left(\mathrm{SO}_{4}=\right) \quad 2.39 \mathrm{~A} \\
& \mathrm{Co}-0\left(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{++}\right) 2.11 \mathrm{~A} \\
& 0-\mathrm{H}-0(\text { hydrogen bond }) 2.79 \mathrm{A.} .
\end{aligned}
$$

Several othe: substances have the same structure as $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} 0$. In addition to the two magnesium compounds, $\mathrm{CoSeO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and one form of $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are isomorphous (Groth, 1908). This structure has been recognized in nature as the minerals hexahydrite, $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and bianchite, $\mathrm{ZnSO}_{4}-6 \mathrm{H}_{2} \mathrm{O}$ (Palache, Berman and Frondel, 1952).

A more thorough study of the structure of $\mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is in progress, and the location and refinement of the hydrogen parameters in that crystal will be the topic of another article shortly.

Fig. 2. Hydrogen bond network in $\mathrm{CoSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{C}$. The numbers are the parameters along the a axis of the CO, S, and O atoms. The complete environment about each of the two difierent $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{++}$ and $\mathrm{SO}_{4}=$ is shown.

Akrowledgement

We thank Dr . Rao and Professor Giauque for their unpublished thermodynamic data and for valuable discussions.

References

Busing, W. R. and Levy, H. A., (1959). Oak Ridge National Laboratory Report 59-4=37.

Goszner, (1907). Ber. deut. chem. Ges. 40, 2374.
Groth, P., (1908). "Chemische Krystallographie", v. 2, 426, Lepzig: Wilhelm Engelmann.

Handbook of chemiotry and Physics, (1957). 39th Ed., 521, Chemical Rubber Publishing Co., Cleveland, Ohio.
Hartree, D. R. and Hartree, W., (1939). Proc. Roy. Soc. A238, 229.
Howells, E. R., Phillips, D. C., and Rogers, D., (1950). Acta Cryst. 3, 210.
Marignac, Ch. De, (1855). Arch. sc. phys. et nat. Geneve (1) 14, 234. Ouevres

1. 381.

Palache, C., Berman, H. and Frondel, C. (1952). Dana's System of Mineralogy.
Volume II pp. 492-496. New York: Wiley.
Rao, R. V. G. and Giauque, W. F., (1960). Private communication.
Ruben, H. W., Templeton, D. H., Rosenṣtein, R. D., and Olovsson, I. (1961).
J. Am. Chem. Soc. 83, 820.

Thorpe and Watt, (1880). J. Chem. Soc. London 37, 102.
Tomif̣e, Y. and Stam, C. H., (1958). Acta Cryst. 11, 126.
Watson, R. E. and Freeman, A. J., (1961). Acta Cryst. 14, 27.

[^0]: hydrogen bond distances.
 $\mathrm{S}-0$ bond in $\mathrm{SO}_{4}=$.

