

EVIDENCE FOR A $T=0$ RISONANCE IN THE IW SYSTEM*
Margaret H. Aleton, Luin W. Alvaren, Phitippe Eberhard, ${ }^{4}$ Myron L. Good, ${ }^{5}$ Williare Grasiano, Harold K. Ticho, and Stanley G. Wojcichi

Lawrence Radiation Laboratory and Department of Phywice
Univerwity of Callfornia, Berkeley. Calffornia
April 28, 1961
In pravioue lettere we hawe reported a $A \mathbf{r}$ reaponance, ${ }^{2}$ called Y_{1}^{*} ind font. 6e: $1.15-$ Bev/c KC ${ }^{+}$meaone in hydrogen in the Liwronce Radiation Laboratory is-in. bubbie chamber. We now with to report the reeutte of the etwdy of the three reactions

$$
\begin{align*}
& \mathrm{x}^{-}+\mathrm{p}-\mathrm{z}^{+}+\mathrm{F}^{-}+\mathrm{w}^{-}+\mathrm{F}^{+} \tag{1}\\
& \mathrm{K}^{-}+\mathrm{p}-\mathrm{z}^{-}+\mathrm{F}^{+}+\mathrm{z}^{+}+\mathrm{F}^{-} \tag{z}
\end{align*}
$$

and

$$
\begin{equation*}
K^{*}+p \rightarrow \Sigma^{0}+\theta^{0}+z^{+}+w^{-} \tag{3}
\end{equation*}
$$

Although reactione (1) and (2) are readily identified and menaured, reaction (3) cannot be identified unambiguously. Aceordingly. we diecuee firat the reeutra pertaining to reactipne (1) and (2). Nineteen evente of type \{1\} and 13 events of type $\{2\}$ were obeerwed, corresponding to crose eections of 0.19 . .06 and 0.12 a. 05 mb , reepectively. In a seareh for posefble I . resonancee, we have plotte : in Fig. I hiatograrme of the inveirient masees of the \mathbf{X} and each of the throe plons fn reactions (1) and (2). Figure Ib . refers to the $\mathrm{\Sigma}$ and plon of lave eharget Fig. la to the I and each of the plond of unlilice charge. Since there are two untike-charged plone In oach event, thelce as many pointe appear in Fig. Ia ae in Fig. Ib. The plotted curvee wre mase dietributions expected on the basis of a uniform phaee-apace population. The hetogram of Fig . Ib agreen whth the phase-epace curve. but tho
\boldsymbol{x} and unlihe-chargod plea dietribution appeare to exhlbtt an anomaly. ewgeoating a concentration of eveate with e ($\mathbf{x}-\boldsymbol{w}$) meen of about 1405 Mev .

Te emplere this anemely in moere cletall, we wee the foltowing repreaentation of the dinte. Stace, aecording to Fig. 18, the doubly charged Zw eysteme do net depart aignifleently from the expected phase-opace diatribution, we olfminate the Whe-charged pion from further conalderation. We then transform the \boldsymbol{I} and the remaining two plona poth of charge oppoeite to that of the \mathbf{I}) inte the center-of mase ($\mathrm{c} . \mathrm{m}$.) aysteen of theee three particles and determine the total energy available - In this particular coordinate eystem. For aach ovent we can then calculate a Dakis plot of the available phase epece. However, to permit the comparieon of evente that involve differemt amounte of $\mathrm{C} . \mathrm{m}$. energy, we can cenventently selabel the axee of the Daltes plot to correspond to the favariant $\mathrm{X} \mathbf{v}$ mase equared, whelh is Hincarly related to the ldnetile onergy of the other plon. The phace-apace ollipees obtained from indivilual evente are then added to obtain a composite phape-apece probebitity conteur map it the mase-aquared epece. The reeult of thle procedure is ohown in rig. 2a. Only haif ot the plot is ohown, olace it is aymmetrice obout the $45-\mathrm{deg}$ line because the twro plome considered are indiotinguioheble.

The experimental pointe arrange themeelivee in a vertical and a horisontal band, both centerad along $1.97 \times 10^{6} \mathrm{Mev}^{2}=(1405 \mathrm{Mev})^{2}$, at if the I resonated with elther one or the other of the two plone. In order to ouhlibtt the reeonance with better atarietice, beth the dietribution of experimental polate and the phaseepnce contour map are projected onto the azee: the poution to the right of the dotted tine onte the ordinats, the porten to the left oesto the abeciesa. The reeulting hietograme and the dietributione expected from phase opece are then added. The resulte are shown in Fig. $\mathbf{2 b}$. Atthough the poottion of the dividing time 35 chosen In wuch a way ae to ewhiblt the resocance mont elearily, it appeare rather untikety
that the diecrepancy betwoen the expected and obeorved diatributione is a etartotical cectident. eopecially in view of the twe-bent etwecture of the ovente in Fif. 2a. If oes talerpirete the sbeerved dietribution at a reeonance, the peolt corrouponde to a mase of $1405 \mathrm{Mov}_{\text {, and }}$ tip full width at half mazimpum is about 20 Mov after unTolllisg experimentel errosk. ।

To favestignte further the posalbiltiy of a reeconace in the X toyetem, we atwalied the 39 two-prong evente aseociated with a A shat did not fit a
 ${ }^{5}$ eoave bo
3 ± 5

$$
\begin{align*}
& \mathrm{K}^{-}+\mathrm{p}-\mathrm{x}^{0}+\mathrm{w}^{+}+\mathrm{z}^{-}+\mathrm{z}^{0} . \tag{b}\\
& -\Delta+\nabla^{+}+\nabla^{-}+\nabla^{\circ} \text {. } \\
& -z^{0}+z^{+}+z^{-}+z^{0}+z^{0} \text {. } \tag{5}\\
& \rightarrow \Delta+z^{+}+z^{-}+z^{0}+z^{0} \text {. }
\end{align*}
$$

or
सिथात
Identification io very difflcult becauee onty reaction (i) is eufficiently over conatrained to permit a lifeematical fit. Turthermore. moot of the ovente that are actually oxamplee of ronction (3) will fit hypotheaie (t), but probably with a larger X^{2} value.
Orix Of the 39 evente. 16 had $x^{2} \geqslant 2$ when ikinematically fitted to the oneconstraint hypothenile (5). Moet of these evente are probably dwe to reaction (3). -isce A prigit only 17% of the evente dee te reaction (h) eliould have $x^{2} \geqslant 2$. Aleo, only one example of the reaction $\mathrm{K}^{-}+\mathrm{p}-\mathrm{A}+\mathrm{F}^{+}+\mathrm{F}^{+}+\mathbf{\#}^{+}+\boldsymbol{T}^{-}$and no
 and (f) are probably rare. Even though a kinematical fit to hypethoute (3) (e imposaible, one can obtain the invariant mase af the $x^{0}{ }^{0}{ }^{0}$ eyetern from the

Incident K^{*} momentum and the measured momenta of the two charged plons. However, ofnce mo kinematic constralnte can be imposed on ouch events. the exen perimental errors will. In general, be larger then for fitted evente and fluctunte more widely. Therefore, the data are better repreaented by ideograme.

Figure 3a shows the Ideogram of the maes Aletribution of the 16 evente with $x^{2} \geqslant 2$. The three evente with $M<1320$ Mev can be interpreted as the tall of the x^{2} dietribution of reaction (6): the four evente with $M>1450$ Mev aro probably due to reaction (S) and (S). The remalaing mine ovente fall into a marrow band centered at about 1306 Mev and are moot probably due to roaction (3). The plotted curve is the mase dietribution of $\Sigma^{0}{ }^{0}{ }^{0}$ aysteme beeed on phese opace and normalised to nine evonte.

Figure 3b obowe the correoponding diatribution fer the evente with $x^{2}<2$. In order to permit a direct comparison with the prerious figure, agaln only the meseured momenta of the charged plons were used to obtain the mase tdeogram. The mposured Alstribution appeara to agree with that orpected from phase space for $\Lambda \nabla^{0} \nabla^{+} \nabla^{-}$evente. No anomaly at $M-1390 \mathrm{Mev}$ is observed. Thus there dees mot mppear to be any evidence of the $T=1 \quad Y^{\circ 0}$ reaonance in the $\Lambda \nabla^{0} \mathbf{F}^{+} \mathbf{F}^{-}$ data. Furt hormore, it one tite all 39 evonte to the $\Lambda \nabla^{0}{ }^{0}{ }^{4}{ }^{-}$hypothease and then cateulatee the $\left(\Lambda w^{0}\right)$. $\left(\Lambda w^{+}\right)$, and $\left(\Lambda w^{-}\right)$masees from the fitted valuee. there is atill mo evidence for the $T=1 T^{*}$ resonencee. In particular, the poak of Fig. 3a vamiohes. Thus we cannot attribute the obeerved peales in the mase diatribution ahown in Tige. 2b or 3n to the Y_{i}° pesonance, especially in view of the lov Σ / Λ branching ratio of this resonance proviousty reported. ${ }^{2}$ Because of this and the eolection criterion used in leolating the ovents of rig. 3a it ceome probable that the nine evente repreeent a $\Sigma^{0}{ }^{0} 0$ resonance Inleed by eharge: Independence to the $\Psi^{+} \mathrm{F}^{-}$and $\mathrm{Z}^{-}{ }^{+}$resonence already diecuened.

It is eacy to ohow that the branching ratio $\left.\mathrm{B}=\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{O} / \mathrm{N}_{2}+{ }_{2}{ }^{-}+\mathrm{N}_{2}{ }^{-}{ }^{+}+\right)$ unlquely determinee the iectople opin of the resonance. For $T=2,1$ or 0 , we heve $B=2,0$, or $1 / 2$, reepectively. Neglecting poselble backgrounde, and
correcting for nov'ral decays and enceape of the A hyperone in the $\mathbf{x}^{0} \mathbf{F}^{0}$ case. we have $\beta=0.5 \neq 0.2$. Hence, the iootopie apin of the indicated respmance is mero, and we will call it Y_{0}^{*}.

One difficulty of our interprotation of the data is the difference in meae of 19 Meve6 Mev between the two pealke of Fige. 2 b and 3a. However, efivect there are two identical plome in the charged z eases and not in the z^{0} cases. it io posaible that the offoct of Bese statistice could leauee a shift of the peake. Aleo, from the fact that the charged \mathbf{z} can resonate with elther of the two untike charged pione, ono would expect interforence effecte betwoen the two reesmanet amplititedes. Anothor poenibluty te interferonce botweon the resonance and noaresonant backgrounds. Both these interforemees might atter the observed positione of the poeke.
 mone syotema could affect the observed maes epectra in the three casee. Aevurning that the probability of decay finto any mode is proportiomal to the momontum available In that medo (ace expected for an S-wave reeonance). wo find that the ohtfing of the pering due to mases atifesmace is megligiblo.

The X_{0}^{0} could ateo be produced in the ovente in which the fimel atate constete of a \boldsymbol{x} and two plone. If it io produced, it ohould appoar in the ($2 \mathbb{Z})^{0}$ mase plot given in Fig. 2e of our provious letter. ${ }^{2}$ No aignificant peak ie obeerved; however. the number of avente in this rogion of the maes plot is uncertain becauee of the difiticulty of correcting for $z^{*}+\nabla^{7}+\pi^{0}+\nabla^{0}$ production. The abeonce of the \mathbf{Y}_{0}^{*} in thie final state $\left(\mathbf{Y}_{0}^{*}+\boldsymbol{*}\right)$ could be eacily underateod if the interaction took place mainly through the $T=0$ inttial channel. This hypotheafe can be tested by analyeio of the intoraction $\mathbf{F}^{0}+p$ (e pure $T=1$ stato) currontly boing atwdied by Adels. ${ }^{3}$

We botiove that our dete for $\mathbf{\Sigma}$ eried three pione are moot neturally Interpreted by involing a $T=0 \mathrm{I} \mathbf{\nabla}$ reeconance. Howover, both becauee of the
small number of evonte involved and the complowity of the fimal etate, we cannot
 hae been oftelined by Eleenberg et al. , who have studied EK^{-}- moson intosactione in ompulolon and find a peolding in the (Ev) ${ }^{6}$ mase opoctrum at 1405 Mev . The peelding could be attributed to a X_{0}^{*}. In addtiton, Schute and Cappe heve recently involind a $T=0$ reconance at a mase of about 1410 Mov to explain the hyperon branching ratie in low-enorgy $\mathrm{K}^{\text {- }}$-d interactione. ${ }^{5}$

Dalles and Tuan have shown that the $\left(\mathrm{b}^{-}\right)$aotution for the seattering lengehe in RN iow-anergy interactione will reoult in a $\mathrm{I}=$ resonance in the $\mathrm{I}=0$ state. ${ }^{6}$ Recent valueb for the suro-enorgy Fiv scattering longthe obtained by Dalits ${ }^{7}$ mofing the date prosented by Alvares at tho ISiev Conforenco. ${ }^{8}$ indicmete that thite reconance will bo at 1485 \# 3 Mov, with a half-wideh $(T / 2)$ of about 20 Mov. If thie orplanation of tho $T=E$ zosonancen io correct, it should have $J=1 / 2$: the obsorved $\mathrm{T}=1$ mecomance could be the resonance predicted by globet eymanotry with $\mathrm{J}=3 / 2.9$ Delits has pointed ous that the valvee of the $\left(a^{-}\right)$eolution given int reforence ${ }^{7}$ are conalstont with both a $T=1$ and a $T=0(Y-E)$ resconance; ${ }^{10}$ both of thoee zesonamean should have $J=1 / 2$.

Tho authore wish to thank the many membere of the Bovatron and bubblo chamber ezews and tho ocanners who made thie oxpporimont posetblo. We aleo thank Prefoseore R. H. Daltis, A. Paie, and B. Sakita for eaverel holpful diecuseione. One of us (PIF; wiehos to thank the Phstippe's Foundation Inc. and the Commiaariat a t° Energlo Atorniquo of France for a follownhipo

HOOTNOTES

*Work doee under the auspices of thio v.S. Atomic Enorgy Commieetoh. TPreeontiy at Laboratolre do Phyoique Atomique, Colloge de France. Pario, Framee.
$\int_{\text {Presently }}$ at Univerelty of Wiaconsin, Madieon, Wieconsin.

1. M. H. Aleton, L. W. Alvares, P. Eberhard, M. L. Geod, V. Grasiano. H. K. Ticho, and S. G. Wojeicld, Phye. Rev. Lettera. 5, 520 (1960). M. H. Aleton, L. W. Alvares, P. Eberhard, M. L. Good, W. Grasiano, H. X. Ticho, and S. G. Wojeicld, (oubmitted to Phyw. Rev. Lattora).
2. H. J. Mertin, L. B. Leipuner. W. Chinowaky, P. T. Shively, and R.K. Adair. Phys. Rev. Lotters, 6, 238, (t961).
3. Y. Eisenberg, G. Yolkutiell, P. Abrahanson, and D. Koholor, Weimmann Institute of Scionce, Reitoweth Israel. private communication.
ars. R. L. Schule and R.H. Cappo private communieation, submittod to Phys.Rov.
4. R. H. Dalite and S. F. Tuan, Phys. Rov. Lotters 2. 425 (1959) and Amm. Phyts. (N. Y.) 10, 307 (1960).
5. R.H. Dalits, On tho Strong Interactions of tho Strange Particies, Lawrence Radiation Laboratory Report UCRL-9580, Jamuery 27, 1961 (unpubliohed).
6. L. W. Alvares, paper prenonted at the 1959 International Conferonce on Physica of High Energy Particlee, IKiov, July 1959 (unpubliohed): The Intorectiono of Strange Particlee, Lawrence Radiation Laboratory Report UCRL-9354. Auguet 11. : it 1960 (mppubliohod).
7. A. Pais hae pointed out to ue that if the Y_{1}^{*} ohould turn out to be the reconmence predicted by giobat symmetry, the equestion arisee whethor the exiotonce of $\mathrm{Y}_{\mathrm{D}}^{*}$
could have anyching to do with global symmetry as well. This is certeinly not the case because, if the \mathbf{Y}_{0}^{*} is zelated to the global ymmotry hypotheaie. then there shoutd be a correoponding $T=1 / 2$ =-nucteon zesonance with $a \sim 160 \mathrm{Mov}$. Thus the enistence of a X_{0}^{*} may indicate that the assumption of eflobal eymmesry is wrong. However, ancther possibitity is that thio aymmotry could be valid it the P-wave w-baryon interaction but not in the S -wave.
8. R. H. Dalitw. Enrico Ferani Inctitute for Nuclear Studios. Univeraity of Chicago, privete eommunication.

FIGURE LEGENDS

Fig. 1. Mass plote of the neutral and donbly charged $\Sigma \overline{\text { m }}$ systems.
Fig. 2. Dalits plot of tho $\mathbf{z}^{+}+\bar{z}^{7}+\mathbb{F}^{+}+\mathbf{F}^{-}$evente for the syatem consiating of a Σ and two oppositely charged pions. For diacuasion see text.
Fig. 3. Leogrems of the miseing mase for the 39 evonts in which a A and two charged picine wowe obsorved and neutral pione were elee produced. (a) Evente with $x^{2} \geqslant 2$ for the $A \nabla^{0} \nabla^{+} \mathrm{F}^{-}$hypothente: the ouperimposed curve te the phace-cpace dietribution for tho $\mathrm{x}^{0} 0^{0} \mathrm{~F}^{+} 0^{-}$yenction normalized to nime ovente. (b) Evente with $x^{2}<2$ for the $A v^{0} z^{+}=^{-}$hypothesis, and the expected $\Lambda \nabla^{0}{ }^{+}{ }^{+}{ }^{-}$phece-apace curve.

