## UNIVERSITY OF CALIFOREIA

Lavrence Radiation Laboratory Livermore, California

Contract No. W-7405-eng-48

AN S-MATRIX THEORY OF THE VERTEX $\rho$ - NE BASED ON THE STRIP APPROXIVATTOK

## M. Der Sarkiasian

May 1964


#  

M. Der Sarkiasien ${ }^{+}$

Lavrence Radiation Laboratory, Univeraity of California Livermore, Cellfornia

May 1964

## Abstract

The $w=$ Hirimplitudes are studied in the neighborhood of the e-meson mase and a simple cynamieal calculation based on a consistent uee of the strip approximation is proposed to atudy the vertex $\rho \rightarrow$ Fif. In particuler, the vertex $0 \rightarrow W \bar{I}$ is exprosed in terms or a "potential" (asaumed to get its etrongent contributions from lov mase baryon states exchanged in the wil channels) and the $J=1, I=1$ vi phage shifte. We can therefore generate the vertex $p \rightarrow$ mind compare this prealetion with experimental information about the nueleon electromagnetic ( m ) structure. If there is agreement, this vill provide a poateriori Justirication of the strip approximation in bootatrap caleulationa in the wif and MII aratems. In both cases the vertex $p \rightarrow$ mir plays a non-trivial role.

The p-apeson can couple to the firi ayaten in two waya: firat $p$ can couple to the charge of the mueleon (call this coupling $\gamma_{H}$ ) and second to the magnetic moment (anll this coupling $\gamma_{i}^{\prime}$ ). Ir ve denote the coupling or $p \rightarrow=\mathrm{w}$ as $\mathrm{Y}_{\mathrm{T}}$ the resulte of this analyals can be sumarized as follove:

The firat two numbers depend on the details of the strip approximation uaed for wi seattering. The ratio $\frac{Y_{M}^{\prime}}{\gamma_{M}}$ is relatively indopondent of these detaile. It is
 The resulta are

Again the first two numbers dopend on the details of the atrip approximation used for wi meattering and the third is reletively independent of these detaile.

## I. Introduction

The present study vas motivated by an attempt to understand low energy vir seattering vithin the Iremework of the bootstrap prineiple and the un-Reggeised version of the strip approximation. ${ }^{2}$ This work (which is in progress) attempte to generate low energy wi seattering in the $p(1,1)$ and $p(3,3)$ states ageuming the potential operating in these atates is generated by the exchange of low masa meson states in the crossed t-ohannel $(w * \rightarrow N)$ and lov mase bergon states in the crossed u-channel ( $\mathrm{FH} * \mathrm{FH}$ ). In particular, the p-aeson is kopt in channel is
 parameters. The paraneters of the nucleon and $(3,3)$ poles are taken as the alements to be deternined by selr-consimtency.

In prineiple, one should deternine all the parametera in the analyaie eelr-consiatently meking aystematic use of a particular approximation seheme. Hovever, what happens in practical calculations is that some paramoters in the analysis are introduced as "knovn" and others are celculated self-consistently. In the vil atrip calculation deseribed above $m_{p}$ and $\gamma_{v}$ are asoumed knovn and an
attempt is made to calculate $\mathrm{Y}_{\mathrm{II}}$ and $\mathrm{Y}_{\mathrm{H}}^{\prime}$ from a otrip epproximation to the WV - wi and w $*$ FiI mplitudes. The present vork alscusses in detall the calcu-
 Ing consiatent wse of the atrip approximation and avoiding the introduction of phencmenologicel paremeters.

## II. Motation

The channela for the $2 \pi-2 F$ problem are defined in Figure 1 . The kinematica for the $\pi=-\mathbb{H} T$ channel has been discuseed by Frazer ${ }^{3}$ and Fulco and the equations used here are taken from their vork.
 ant amplitudes ( $A, B$ ).

$$
\begin{equation*}
T=-A+i \gamma \cdot\left(\frac{q_{1}+q_{2}}{2}\right) B \tag{1}
\end{equation*}
$$

The amplitudes ( $A, B$ ) are functions of the Lorenty invariant variables ( $s, t, u$ ) and are asaumed to satiafy a Mandelstem Representation.

Following Jacob and Mick the difforential erome section for w $\rightarrow$ Mis expreseed in terms of helieity amplitudes $F(\lambda, \bar{\lambda})$

$$
\begin{equation*}
\frac{d g}{d n}=\sum(p / q)|P(\lambda, \bar{\lambda})|^{2} \tag{2}
\end{equation*}
$$

where $F(\lambda, \bar{\lambda})$ is the amplitude for production of a nueleon with belielty $\lambda( \pm)$ and an anti-nueleon vith helieity $\bar{\lambda}( \pm)$. The decomponition or $F(\lambda \bar{\lambda})$ into pertial vave heliesty amplituces is given by

$$
\begin{align*}
& P_{++} \equiv F_{-}=\frac{1}{q} \sum_{J}(J+1 / 2) T_{+\infty}^{J}(t) P_{J}(x)  \tag{3}\\
& \left.\left.F_{+-} \equiv+F_{-+}=\frac{1}{2} \sum_{J} \frac{J+1 / 2}{[J(J+1 / 2)]^{1 / 2}} q_{+-}^{T^{J}}(t) P_{J}^{\prime}(z) \right\rvert\,-\frac{d z}{d \theta}\right) \tag{4}
\end{align*}
$$

The scattering angle in channel tis derined in terms of the invariant variablea for this channel ${ }^{5}$ as followis

$$
\left.\begin{array}{l}
t=4\left(q^{2}+1\right)=4\left(p^{2}+N^{2}\right) \\
s=x^{2}-1-2 q^{2}+2 p q z_{t} \quad \quad \quad z_{t}=\cos \theta_{t}  \tag{5}\\
u=2\left(x^{2}+1\right)-s-t=x^{2}-1-2 q^{2}-2 p q z_{t}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& q=\text { magnitude of the } C M \text { momentum for the } 2 \text { pions } \\
& p=\text { same for the } 2 \text { nucleons } \\
& M=\text { nucleon mass } \\
& \theta_{t}=C M \text { seattering angle }
\end{aligned}
$$

The partial vave helicity amplitudes with simple analytic properties are

$$
\begin{align*}
& T_{+1}^{J}(t) \equiv I_{+}^{J}(t)=\frac{p}{Q}\left[\frac{E}{(p q)^{J}}\right] T_{++}^{J} \equiv+T_{-}^{J}(t)  \tag{6}\\
& T_{+}^{J}(t) \equiv T_{-}^{J}(t)=\frac{R}{Q}\left[\frac{1}{(p q)^{J}}\right] T_{+}^{J} \equiv+T_{-}^{J}(t) \tag{7}
\end{align*}
$$

where $E=$ total nucieon energy in $C N$ and $P_{\alpha \beta}^{J} \rightarrow$ constante at the physical threshold $\left(p^{2} \rightarrow 0\right)$ and the unphysical threshold $\left(Q^{2} \rightarrow 0\right)$. The $r_{\alpha \beta}^{J}$ can be related to partial vave projections of the invariant amplituace. The result is

$$
\begin{align*}
& T_{*}^{J} I(t)=\frac{1}{8 \pi}\left[-\frac{p^{2}}{(p q)^{J}} A_{J}^{I}+\frac{M}{(2 J+1)(p q)^{J-1}}\left((J+1) B_{J+1}^{I}+J B_{J-1}^{I}\right\}\right]  \tag{8}\\
& r_{-}^{J, I}(t)=\frac{1}{8 \pi} \frac{[J(J+1)]^{I / 2}}{(2 J+1)} \frac{1}{(p q)^{J-1}}\left[B_{J-1}^{I}-B_{J+1}^{I}\right] \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
\left[A_{J}^{I}(t): B_{J}^{I}(t)\right]=\int_{-1}^{+1} d z P_{z}(z)\left[A^{I}(t ; z) ; B^{I}(t, z)\right] \tag{10}
\end{equation*}
$$

## III. Expressions For $\gamma_{H}$ and $\gamma_{\text {II }}$

Let $f_{\ddagger}$ be the partial vave belicity amplitude for the state $J=1, I=1$. In the usual way an $F / D$ solution for $f_{ \pm}$can be formulated.

$$
\begin{equation*}
s_{ \pm}(v)=\frac{M_{ \pm}(v)}{D_{ \pm}(v)} \quad ; \quad v=e^{2} \tag{11}
\end{equation*}
$$

Unitarity in channel $t$ - in the approximation vhere only the 2 z intermediate atates are kept - reeds

$$
\begin{equation*}
I_{=} r_{ \pm}=\rho A_{\pi}\left[r_{ \pm}\right]^{\prime \prime} \tag{12}
\end{equation*}
$$

where $A_{\mathrm{m}}=$ the elestic w scattering amplituce for the state $\mathrm{J}=1, \mathrm{I}=1$.

Since o is a real phase apace factor for $t>4$, it follows thet $A$ must carry the phase of $\mathbf{S}_{ \pm}$. In this approximation we can therefore urite

$$
\begin{equation*}
S_{ \pm}(v)=\frac{u_{ \pm}(v)}{D_{\pi}(v)}=v_{ \pm}(v)+R_{ \pm}(v) \tag{13}
\end{equation*}
$$

where $D_{F}(v)$ is the denominator function in the $H / D$ solution for $A_{v}$. In detail we have

$$
\begin{equation*}
A_{\pi}(v)=\frac{N_{\pi}(v)}{D_{\pi}(v)}=\frac{e^{i \delta_{\sin 5}}}{D_{\pi}} \quad ; \quad D_{\pi}=\sqrt{\frac{v}{v+1}} \tag{14}
\end{equation*}
$$

The quantity $V_{ \pm}$is the potential operating in channel $t$. We assurne the strongest contributions to $V_{ \pm}$come from lov mass baryon state exchanged in the erossed e- and u-channels (in particular, the nucleon and (3,3) resonance). The quantity $R_{ \pm}$carries the channel $t$ poles (which correspond to Re $D_{\pi}=0$ ) and the residual integral over the channel $t \operatorname{strip}\left(0<v<v_{2}\right)$.

Define $\mathrm{H}_{ \pm}$to carry the singular.ties of $\mathrm{V}_{ \pm}$and to be real on the channel $t$ strip $\left(0<v<v_{2}\right)$. Normalizing $D_{v}(t \infty)=1$ we have

$$
\begin{equation*}
D_{\pi}(v)=1-\frac{1}{\pi} \int_{0}^{v_{1}} d v^{*} \frac{D_{\pi}\left(v^{\prime}\right) N_{\pi}\left(v^{\prime}\right)}{v^{\prime}-v} \tag{25}
\end{equation*}
$$

where the strip for the $w=T$ maplitude is $\left(0<v<v_{1}\right)$. At Pirgt sight there semen to be no connection betwreen $v_{1}$ and $v_{2}$, but making consistent use of the strip approximation requires $v_{1} \approx v_{2}$. With this in gind we can write

$$
\begin{equation*}
H_{ \pm}(v)=v_{ \pm}(v) D_{\pi}(v)+\frac{1}{\pi} \int_{0}^{v_{1}} d_{v^{\prime}} \frac{p_{v}\left(v^{\prime}\right) v_{+}\left(v^{\prime}\right) \nabla_{\pi}\left(v^{\circ}\right)}{v^{\prime}-v} \tag{26}
\end{equation*}
$$

In writing down（15）and（26）elastic unitarity has been used over the strip． 1．月．

$$
\begin{equation*}
I_{m} D_{\pi}(v)=-p_{\pi} N_{\pi}(v) \quad\left(0<v<v_{1}\right) \tag{17}
\end{equation*}
$$

It then follows that

$$
\begin{equation*}
H_{t}\left(v_{p}\right)=\frac{P}{v} \int_{0}^{v_{1}} d v^{0} \frac{D_{\pi}\left(v^{0}\right) v_{t}\left(v^{0}\right) N_{\pi}\left(v^{0}\right)}{v^{v}-v_{p}} \tag{18}
\end{equation*}
$$

were $P$ impliea a principal value integral．

$$
\text { Hext consider (13) for } v \approx v_{p} \text {. In the narrow zeeowance approximation ve }
$$

Pind

$$
\begin{equation*}
P_{t}(v) \approx \frac{K_{t}\left(v_{0}\right) / D_{n}^{0}\left(v_{\rho}\right)}{v-v_{p}} \tag{19}
\end{equation*}
$$

where $D_{\pi}^{0}\left(v_{0}\right)=\left(\frac{d}{d v} \operatorname{Re} D_{\pi}\right) v=v_{\rho}$

From（8）and（9）$f_{ \pm}$can be written

$$
\begin{align*}
& P_{+}(v)=\frac{1}{8 \pi}\left[-\frac{D}{Q} A_{1}^{\rho}+\frac{M}{3}\left\{2 B_{2}^{\rho}+B_{0}^{\rho}\right\}\right]  \tag{20}\\
& R_{-}(v)=\frac{1}{8 \pi}\left[\frac{\sqrt{2}}{3}\left(B_{0}^{\rho}-B_{2}^{\rho}\right)\right] \tag{21}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& A^{p}(t, z)=+\left[\frac{8 \pi \gamma_{\pi} \gamma_{I}^{i}}{t-m_{p}^{2}}\right]\left[\frac{m_{0}^{2} / z+a-\left(M^{2}+1\right)}{M}\right]  \tag{22}\\
& B^{f}(t, z)=-\frac{16 \pi \gamma_{\pi}\left(\gamma_{M}+\gamma_{R}^{\prime}\right)}{t-m_{p}^{2}} \tag{23}
\end{align*}
$$
\]

where a is given by (5). We first make the appropriate partial wave projections of (22) and (23) and substiture these into (20) and (22). Comparing with (29) ve rind

$$
\begin{align*}
& \frac{r_{N}}{r_{\pi}}+\left(1+\frac{p_{\rho}^{2}}{M^{2}}\right) \frac{r_{H}^{\prime}}{r_{\pi}}=\frac{-3}{r_{\pi}^{2} D_{\pi}^{\prime}\left(v_{\rho}\right)}\left(\frac{n_{+}\left(v_{\rho}\right)}{M}\right)  \tag{24}\\
& \frac{r_{N}}{r_{\pi}}+\frac{r_{N}^{\prime}}{r_{\pi}}=\frac{-3}{r_{\pi}^{2} D_{\pi}^{\prime}\left(v_{\rho}\right)}\left(\frac{N_{-}\left(v_{\rho}\right)}{\sqrt{2}}\right) \tag{25}
\end{align*}
$$

where $p_{p}{ }^{2}=\left(v_{p}+1\right)-m^{2}$
Solving (24) and (25) for $\gamma_{N}^{*} / \gamma_{\pi}$ and $\gamma_{H} / \gamma_{\pi}$ we pind

$$
\begin{align*}
-\left(\frac{p_{\rho}{ }^{2}}{M^{2}}\right) \frac{r_{H}^{\prime}}{r_{\pi}} & =+\frac{-3}{r_{\pi}^{2} D_{\pi}^{\prime}\left(v_{\phi}\right)}\left(\frac{M_{-}\left(v_{\rho}\right)}{\sqrt{2}}-\frac{v_{+}\left(v_{\rho}\right)}{M}\right)  \tag{26}\\
\frac{r_{H}}{r_{\pi}} & =+\frac{-3}{r_{\pi}^{2} D_{\pi}^{\prime}\left(v_{0}\right)}\left(\frac{H_{-}\left(v_{\rho}\right)}{\sqrt{2}}\right)-\frac{r_{R}^{\prime}}{r_{\pi}} \tag{27}
\end{align*}
$$

For future reference we introduce the following notation

$$
\begin{equation*}
\frac{N_{-}\left(v_{0}\right)}{\sqrt{2}}-\frac{N_{+}\left(v_{\rho}\right)}{M}=\frac{P}{\pi} \int_{0}^{v_{2}} d v^{\prime} \frac{\rho_{\#}\left(v^{\prime}\right) N_{\pi}\left(v^{\prime}\right)}{v^{\prime}-v_{0}}\left[v\left(v^{\prime}\right)\right] \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\frac{M_{-}\left(v_{\rho}\right)}{\sqrt{2}}=\frac{p}{z} \int_{0}^{v_{1}} d v^{\prime} \frac{\rho_{\eta}\left(v^{*}\right) n_{\nabla}\left(v^{0}\right)}{v^{*}-v_{p}}\left[v\left(v^{*}\right)\right] \tag{29}
\end{equation*}
$$

where $v(v)=\frac{v_{-}(v)}{\sqrt{2}}-\frac{v_{+}(v)}{K}$
and $\alpha(v)=\frac{v_{-}(v)}{\sqrt{2}}$
IV. Caloulation or the Potential ( $v_{t}$ )

The potential is Just the $J=1$ projection of the Born approximation to the scattering amplitude. We derine

$$
\begin{equation*}
v_{ \pm}=v_{ \pm}^{N}+v_{ \pm}^{\mathrm{IN}^{*}} \quad \mathbf{r}_{ \pm}^{\mathrm{IN}^{\prime}} * \mathrm{f}_{ \pm}^{\mathrm{R}^{(N)}} \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
& P^{N}=\text { contribution to the partial wave heliaity amplitudes } P \pm \\
& \text { arising from nueleon eachange in the crossed wN channels. } \\
& P_{ \pm}^{N /}=\text { same arising from exchange of the ( } 3,3 \text { ) resonance ( } \Delta \text { - particle). } \\
& \text { For nueleon exchange the invariant amplituces take the form }
\end{aligned}
$$

$$
\left.\begin{array}{c}
\Lambda_{I=1}^{N}=0  \tag{33}\\
B_{I=1}^{N}(t, z)=-\left(\frac{16=\gamma_{11}}{s-x^{2}}\right) \quad B_{1,1 / 2}^{t s}
\end{array}\right\}
$$

for a nucleon in channel and

$$
\left.\begin{array}{rl}
A_{I=1}^{K} & =0 \\
B_{I=1}^{n}(t, x) & =+\left(\frac{16 \pi \gamma_{2 I}}{u-N^{2}}\right)\left(-s_{1,1 / 2}^{t s}\right) \tag{34}
\end{array}\right\}
$$

for a nucleon in channel u ( $B_{2,1 / 2}^{t a}=+2 / 3$ ). For $\Delta$ - particle exchenge the invariant amplitudes take the form

$$
\begin{align*}
& A_{I=1}^{E^{\prime \prime}}(t, z)=\left(\frac{d+b u}{s-M_{33}^{2}}\right) B_{1,3 / 2}^{t e}  \tag{35}\\
& B_{I=1}^{H E}(t, z)=\left(\frac{\operatorname{c+f} u^{2}}{\sin _{33}^{2}}\right) B_{1,3 / 2}^{t s}
\end{align*}
$$


for a $\Delta$-particle in channel $s$ and

$$
\begin{align*}
& A_{I=1}^{z N}(t, z)=\left(\frac{a+b_{B}}{u-M_{33}^{2}}\right)\left(-b_{1}^{2}, 3 / 2\right)  \tag{36}\\
& B_{I=1}^{N}(t, z)=-\left(\frac{e+r a}{u-M_{33}^{2}}\right)\left(-B_{1,3 / 2}^{t s}\right)
\end{align*}
$$

for a $\Delta$ - particie in channel $u\left(s_{2,3 / 2}^{t s}=-2 / 3\right)$. We further notice that $s \rightarrow \rightarrow$ interchanges the 2 pions and thin requires ${ }^{\top}$

$$
\left.\begin{array}{l}
A^{I=1}(s, u)=-A^{I=1}(u, s)  \tag{37}\\
B^{I=1}(s, u)=+B^{I=1}(u, s)
\end{array}\right\}
$$

The invariant amplitudes in this epproximation must then have the form

$$
\begin{align*}
& A^{I=1}(t, z)=B_{1,3 / 2}^{t s}\left[\frac{a+b u}{s-v_{33}^{2}}-\frac{d * b_{k}^{2}}{u-N N_{33}^{2}}\right]=-A^{I=1}(t,-z) \\
& B^{I=1}(t, z)=B_{1,1 / 2}^{t s}\left[-16 \pi Y_{21}\left(\frac{1}{m-M^{2}}+\frac{1}{u-N^{2}}\right)\right] \tag{38}
\end{align*}
$$

The explicit caleulation of $\mathrm{V}_{ \pm}$now involves the tedious chore of calculating the appropriate partial waves of (38) and substituting these projections into (8) and (9). The rinal result is

$$
\begin{align*}
& v(v)=\frac{v_{-}(v)}{\sqrt{2}}-\frac{v_{+}(v)}{M}=\left(\frac{v^{N}}{\sqrt{2}}-\frac{v_{+}^{I N}}{N^{N}}\right) *\left(\frac{v_{-}^{N^{*}}}{\sqrt{2}}-\frac{v_{+}^{N^{*}}}{N^{N}}\right) \\
& v(v)=\frac{v_{-}(v)}{\sqrt{2}}=\left(\frac{v_{-}^{N}}{\sqrt{2}}+\frac{v_{-}^{I^{*}}}{\sqrt{2}}\right) \tag{39}
\end{align*}
$$

where $v(v)$ and $\omega(v)$ are defined in terge or $H_{ \pm}\left(v_{p}\right)$ through (28) and (29) and

$$
\begin{align*}
& \frac{v^{2}}{\sqrt{2}}-\frac{v_{4}^{n}}{w^{n}}=-\frac{8}{3} r_{11} \frac{Q_{2}\left(x_{t}\right)}{p Q}  \tag{40}\\
& \frac{v_{t}^{\prime \prime}}{N^{\prime \prime}}=+\frac{4}{3} r_{11}\left(1+2 q^{2}\right) \frac{q_{1}\left(x_{t}\right)}{p^{2} Q^{2}} \tag{42}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{81 \pi} \frac{p}{q} A_{1}^{1 r^{*}}=-\frac{2 b}{3 \pi i} \frac{Q_{2}\left(x_{t}^{*}\right)}{q^{2}}\left\{q^{2}+\frac{1}{2}\left(1+\frac{m^{2}}{2}-n^{2}\right)-\frac{a}{4 b}\right) \tag{42}
\end{align*}
$$

$$
\begin{align*}
& \frac{B_{2}^{\pi^{*}}}{8 \pi}=-\frac{2 r}{3 \pi} \frac{q_{2}\left(x_{t}^{0}\right)}{p Q}\left(q^{2}+\frac{1}{2}\left(1+\frac{x_{33}^{2}}{2}-x^{2}\right)-\frac{0}{4 r}\right) \tag{44}
\end{align*}
$$

$\frac{\left[8 B_{2}^{N^{*}}+B_{0}^{n^{*}+}\right]}{3(8 \pi)^{0}}=\frac{r}{9 \pi}-\frac{2 r}{3 \pi}\left[Q^{2}+\frac{1}{2}\left(1+n_{33}^{2}-M^{2}\right)\right] \frac{Q_{2}\left(x_{t}^{*}\right)}{D^{2} Q^{2}}\left\{Q^{2}+\frac{1}{2}\left(1+\frac{n_{33}^{2}}{2}-n^{2}\right)-\frac{0}{4 F}\right\}(46)$

Other quantities needed to evaluate (39) are

$$
\begin{aligned}
& b=+8 \gamma_{33}\left[\frac{3\left(r_{33}+\mu\right)\left(\Sigma^{\circ}-\mu\right)}{2 x_{33} q^{q^{2}}}\right] \\
& a=a+c \\
& a=-8=\gamma_{33}\left[\frac{3\left(N_{33}+N\right)\left(E^{*}-N\right)}{M_{33}}\left\{1+\frac{2\left(N^{2}+1\right)-n_{33}^{2}}{2 q^{v^{2}}}\right\}\right] \\
& c=-8 r_{33}\left[\frac{\left(M_{33}-M\right)\left(E^{\circ}+M\right)}{H_{33}}\right] \\
& r=+\frac{8 \pi r_{33}}{r_{33}}\left[\frac{3\left(E^{*}-\mu\right)}{2 q q^{2}}\right] \\
& -=-\frac{\theta_{\pi \gamma_{33}}}{x_{33}}\left[3\left(E^{0}-M\right)\left\{z+\frac{2\left(n^{2}+1\right)-n_{33}^{2}}{2 q^{0^{2}}}\right\}-\left(z^{0}+M\right)\right] \\
& E M=\frac{\left(M_{33} \pm M\right)^{2}-1}{2 N_{33}}
\end{aligned}
$$

$$
\begin{aligned}
Q^{0^{2}} & =\left(E^{0}+N\right)\left(E^{0}-M\right)=\frac{\left[\left(M_{33}-M\right)^{2}-1\right]\left[\left(M_{33}+n\right)^{2}-1\right]}{4 x_{33}^{2}} \\
x_{t} & =\frac{1+2 q^{2}}{2 p Q} \\
x_{t} & =\frac{x_{33}^{2}+2 q^{2}+1-n^{2}}{2 p Q} \\
Q_{1}(x) & =\frac{x}{2} \ln \left(\frac{x+1}{x-1}\right)-1 \\
Q_{2}(x) & =\frac{1}{4}\left(3 x^{2}-1\right) \ln \left(\frac{x+1}{x-1}\right)-\frac{3}{2} x
\end{aligned}
$$

The quantities $v(v)$ and $\varphi(v)$ are plotted in Figures 2 and $3\left(v \equiv q^{2}\right)$ with $M=6.7, M_{33}=8.9, r_{21}=15$ and $r_{33}=7.5$.

## y. Funericel Results

To facilitate the discussion in this section we reanil that $\gamma_{i r}^{\prime} / \gamma_{\pi}$ and $\mathrm{Y}_{\mathrm{in}} / \mathrm{Y}_{\mathrm{m}}$ are given by (26) and (2T), namely,

We must calculate (using (18))

$$
\begin{equation*}
\left.J_{2}\left(v_{p}\right)=\frac{1}{D_{n}\left(v_{p}\right)} \left\lvert\, \frac{n_{-}\left(v_{\rho}\right)}{\sqrt{2}}-\frac{n_{+}\left(v_{\rho}\right)}{n}\right.\right) \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
J_{2}\left(v_{p}\right)=\frac{1}{D_{n}^{\prime}}\left(\frac{N_{-}\left(v_{\rho}\right)}{\sqrt{2}}\right) \tag{51}
\end{equation*}
$$

To carry out the analysis a atrip model for wisattering in the state $J=1$, $I=1$ is needed. Such a model has recently been proposed by Balkzs. it is admittedly a crude model and the main source of error in the present analysis. 8 However, there is no other strip model available vhich calculates $m_{p}$, $r_{p}$ $=-\frac{N_{n}\left(v_{\rho}\right)}{D_{N}^{D}\left(v_{p}\right)}$, and $v_{1}$ self-consistently. In the Beldzs model oze can see hov these 3 numbers are interrelated; it does not appear possible at this time to construct a l-channel strip model for wi dynamies which produces the experimental P-meson mass and width with a reasonable strip width.

```
The basic structure or the Baldzs model is as follows:
```

$$
\begin{align*}
& A_{\pi}(v)=\frac{N_{\pi}(v)}{D_{\pi}(v)}=\frac{\rho^{1 \delta_{s i n} \delta}}{D_{\pi}} ; D_{\pi}=\sqrt{\frac{v}{v+1}}  \tag{52}\\
& H_{\pi}(v)=B v
\end{align*}
$$

$$
D_{\pi}(v)=1-\frac{1}{\pi} \int_{0}^{v_{1}} a_{v} \cdot \frac{\rho_{\pi}\left(v^{v}\right) N_{\pi}\left(v^{v}\right)}{v^{\prime}-v}
$$

Re $D_{v}(v)=1-B_{h}(v)$. In the innear approximation

$$
h(v)=\frac{1}{\pi}\left[\left(v_{2}-\frac{1}{2} \ln 4 v_{1}\right)+v \ln 4 v_{1}\right]
$$

Balaze found the self-consistent values $v_{p}=3, r_{p}=2$ and $v_{1}=26$. These are to be compared with the experimental values $v_{p}=6, r_{p}=1$ and $v_{1} \approx 26$. of course, to make consistent use of the strip approximation ve must use the selfconsistent values found by Balkss. Using (53) it follows that

$$
\begin{equation*}
D_{\pi}^{\prime}\left(v_{p}\right)=-\frac{\sin 4 v_{1}}{\pi} \tag{54}
\end{equation*}
$$

## Then (51) becomes

$$
\begin{align*}
& J_{1}\left(v_{p}\right)=-\left(\frac{1}{\operatorname{In} 4 v_{1}}\right)\left[\underline{P} \int_{0}^{v_{1}} d v^{\prime} \cdot \frac{p_{n}\left(v^{\prime}\right) v^{\prime} v\left(v^{\prime}\right)}{v^{\prime}-v_{0}}\right] \\
& J_{2}\left(v_{0}\right)=-\left(\frac{1}{\operatorname{In} 4 v_{1}}\right)\left[\underline{P} \int_{0}^{v_{1}} d v^{\prime} \cdot \frac{\rho_{\pi}\left(v^{\prime}\right) v^{\prime} \operatorname{cov}\left(v^{\prime}\right)}{v^{\prime}-v_{0}}\right] \tag{55}
\end{align*}
$$

Referring to (50) with $p_{p}^{2} / x^{2} \approx-1$ we find

$$
\begin{equation*}
\frac{r_{M}}{r_{\pi}} \approx \frac{-3}{r_{\pi}^{2}}\left[J_{2}\left(v_{0}\right)-J_{i}\left(v_{0}\right)\right] \tag{56}
\end{equation*}
$$

We now notice that for $1 / 2 \leqslant v^{\prime} \leq v_{1}$

$$
\begin{equation*}
\omega\left(v_{i}^{\prime}\right)=v\left(v^{\prime}\right)+0.26 \tag{57}
\end{equation*}
$$

The failure of (57) for $v^{\prime} \leqslant 1 / 2$ is of no consequence since both $J_{2}$ and $J_{1}$ get their strongest contributions for $v^{\prime}$ large. Using (55) - (57) one finds

$$
\begin{equation*}
\frac{\gamma_{\mathrm{N}}}{\gamma_{\pi}}=+\frac{6}{\gamma_{\pi}^{2}}(0.85) \tag{58}
\end{equation*}
$$ linear approximation can be made for $v\left(v^{\prime}\right)$. i.e.

$$
v\left(v^{\prime}\right)=m_{2} v^{\prime}+a_{1} \text { where }\left\{\begin{array}{l}
m_{2}=-0.043  \tag{59}\\
a_{1}=+1.26
\end{array}\right\}
$$

Again the failure of (59) for $v^{\prime}<1 / 2$ is of no consequence. Carrying out the appropriate integrations we find

$$
\begin{equation*}
\frac{r_{i}^{*}}{\gamma_{\pi}}=+\frac{6}{\gamma_{\pi}^{2}}(2.3) \tag{60}
\end{equation*}
$$

From (58) and (60) it follows that

$$
\begin{equation*}
\frac{\gamma_{\text {I }}^{\prime}}{\gamma_{\mathrm{N}}}=+2.7 \tag{61}
\end{equation*}
$$

Equation (61) is to be compared with the corresponding ratio ueed in recent $\pi-\mathbb{N}$ and $\mathrm{N}-\mathrm{N}$ phase shift anslyses. In particular, Hamilton ${ }^{9}$ and comorkers have shown that $\gamma_{N} \gamma_{U}$ and $\gamma_{N} \gamma_{N}^{\prime}$ must be positive in order to be consistent with the nucleon $E M$ structure and S-wave wI scattering at low energies. Bryan-Arndt ${ }^{10}$ and ScottiWong ${ }^{21}$ have fit the p-p phase shifts from the Livermore Group with

$$
\frac{r_{\mathrm{N}}^{\prime}}{\gamma_{\mathrm{N}}}=+3
$$

We conclude this section with a aiscussion of the sensitivity of $\gamma_{N}^{\prime} / \gamma_{v}$, $\gamma_{I I} / \gamma_{m}$, and $\gamma_{N}^{\prime} / \gamma_{B}$ on the details of the atrip model for $w \pi$ scattering. Suppose we force $v_{p}=6, v_{1}=26$ in the Baldzs strip model. This requires $r_{p}=4$ (as compared to the experimental value $r_{p}=1$ ). It is clear that $\gamma_{N}^{\prime} / \gamma_{\pi}$ and $\gamma_{N} / \gamma_{\pi}$ will be sensitive to this change $\left(r_{y}^{2}=4 r_{p}\right)$. To find out if these numbers are sensitive to a large change in the p-mass we calculated $\gamma_{N}^{\prime} / \gamma_{V} \cdot \gamma_{M} / \gamma_{\pi}$ and $\gamma_{N}^{\prime} / \gamma_{N}$ using $v_{p}=6$ (instead of 3 ). The results are

$$
\gamma_{N}^{0} / \gamma_{\pi}=\beta \frac{6}{\gamma_{\pi}^{2}}(2.1) ; \frac{\gamma_{\#}}{\gamma_{\pi}}=+\frac{6}{\gamma_{\pi}^{2}}(0.9) ; \frac{\gamma_{N}^{2}}{\gamma_{N}}=+2.3
$$

The sensitivity is therefore buried in $\gamma_{\pi}{ }^{2}$, for a given strip width $v_{1}$.

## VI. Calculation of $\gamma_{\bar{N}}^{\prime} / Y_{n}, \gamma_{18} / \gamma_{\pi}$ and $\gamma_{N}^{\prime} / \gamma_{1 H}$ from the

## Nucleon FM structure

The nucleon 139 structure is described by 4 form factors usually denoted ${ }^{12}$

$$
\begin{array}{ll}
G_{i}^{s}(t)=\frac{1}{\pi} \int_{9}^{\infty} d t^{\circ} \frac{\mathrm{E}_{1}^{s}\left(t^{0}\right)}{t^{0}-t} & 1=2,2 \\
C_{i}^{V}(t)=\frac{1}{\pi} \int_{4}^{\infty} d t^{\circ} \frac{\mathrm{E}_{i}^{y}\left(t^{0}\right)}{t^{0}-t} & ; \tag{63}
\end{array}
$$

The $G_{1}{ }^{V}$ s $(t)$ are normalized sc that

$$
\left.\begin{array}{ll}
G_{1}^{B}(0)+G_{1}^{V}(0)=e & G_{2}^{B}(0)+G_{2}^{V}(0)=u_{p} \\
G_{1}^{s}(0)-G_{2}^{V}(0)=0 & G_{2}^{s}(0)-G_{2}^{3}(0)=u_{n}
\end{array}\right\}
$$

This means that

$$
\begin{align*}
& G_{2}^{V}(0)=+\frac{e}{2}=\frac{1}{\pi} \int_{4}^{\infty} d t^{\prime} \cdot \frac{E_{1}^{V}\left(t^{\prime}\right)}{t^{\prime}}  \tag{65}\\
& G_{2}^{V}(0)=\left(\frac{\mu_{0}-\mu_{n}}{2}\right)\left(\frac{e}{2 M}\right)=\frac{1}{\pi} \int_{4}^{\infty} d t^{\prime} \cdot \frac{E_{2}^{V}\left(t^{\prime}\right)}{t^{\prime}} \tag{66}
\end{align*}
$$

where $=$ electric charge

$$
\begin{aligned}
& \mu_{p}=+1.79=\text { anomalous magnetic moment of the proton } \\
& \mu_{n}=-1.91=\text { same for the neutron } \\
& \frac{e}{2 H}=1 \text { nuclear magneton in natural units }
\end{aligned}
$$

Equations (65) and (66) can be used to predict $\gamma_{N}^{\prime} / \gamma_{\pi}, \gamma_{H} / \gamma_{N}$, and $\gamma_{V}^{0} / \gamma_{N}$ once a model for $\pi \pi$ scattering is specified. fo be consistent with our previous work the Baldzs model shall be used again.

The spectral functions $\dot{v}_{i}(t)$ have been written down by Frazer-Fuleo. ${ }^{2}$ The result is (with $t=4(v+1)$ )

$$
\begin{equation*}
g_{i}^{V}(v)=-\frac{F_{\pi}^{m}(v) v^{3 / 2}}{2 E} r_{1}(v) \tag{67}
\end{equation*}
$$

where $F_{\pi}(v)=\frac{D_{\pi}(-1)}{D_{\pi}(v)}=$ pion form factor

$$
\begin{align*}
& r_{1}(v)=\frac{M}{p_{-}} 2\left[\frac{E^{2}}{M \sqrt{2}} r_{-}-r_{+}\right]  \tag{69}\\
& r_{2}(v)=\frac{1}{2 p_{-}^{2}}\left[r_{+}-\frac{M}{\sqrt{2}} r_{-}\right] \tag{70}
\end{align*}
$$

and $t=4 E^{2}=4(v+1)$

$$
p_{-}^{2}=m^{2}-\frac{t}{4}=n^{2}-(v+1)
$$

For $4<t<16 r_{i}$ has the same phase as $F_{\pi}$. In order to preserve the reality of $E_{i}^{V}$ we shall assume this is true at least for $t \approx_{p}{ }^{2}$. Now insert (67) Into (65) and (65) and carry out the integrals over the spectral functions in the approximation where

$$
\begin{equation*}
g_{i}^{V}(t) \approx \text { const. } \delta\left(t-m_{p}^{2}\right) \tag{73}
\end{equation*}
$$

The integrations ${ }^{13}$ are then simple and the results are

$$
\begin{align*}
& G_{1}^{v}(0)=\frac{e}{2}=\left(\frac{e}{2}\right)\left[\frac{2 \rho_{\pi}^{2} D_{\pi}(-1)}{3 D_{\pi}^{v}\left(v_{D}\right)}\right]\left(\frac{\gamma_{V}}{\gamma_{\pi}}\right)[-2]  \tag{72}\\
& G_{2}^{v}(0)=\left(\frac{u_{D}-u_{n}}{2}\right)\left(\frac{e}{2 M}\right)=\left(\frac{e}{2 M}\right)\left[\frac{\rho_{\pi}^{2} D_{\pi}(-1)}{3 D_{\pi}^{\prime}\left(v_{D}\right)}\right]\left(\frac{r_{V}^{\prime}}{\gamma_{\pi}}\right)[-2] \tag{73}
\end{align*}
$$

Rquations (72) and (73) require

$$
\begin{equation*}
\frac{r_{M}^{\prime}}{\gamma_{M}}=u_{p}-u_{n}=+3.7 ; \frac{r_{M}^{0}}{r_{\pi}}=+\frac{6}{r_{\pi}{ }^{2}}(2.6) ; \frac{r_{N}}{r_{\pi}}=+\frac{6}{r_{\pi}{ }^{2}}(0.7) \tag{74}
\end{equation*}
$$

Equation (74) is to be compared with our previous analysis

$$
\begin{equation*}
\frac{r_{N}^{\prime}}{r_{N}}=+2.7 ; \frac{r_{H}^{\prime}}{r_{\pi}}=+\frac{6}{r_{\pi}{ }^{2}}(2.3): \frac{r_{N}}{r_{\pi}}=+\frac{6}{r_{\pi}{ }^{2}}(0.85) \tag{75}
\end{equation*}
$$

Therefore, the anelysis is internally consistent and the next improvement will


## VII. Conclusions

The vertex $p \rightarrow \mathbb{N} \bar{I}$ has been studied making consistent use of the strip approximation. This approximation is consistent with information known about the nueleon EM structure. Quantitative estimates of $\gamma_{N}^{d} / \gamma_{\pi}$ and $\gamma_{N} / \gamma_{\pi}$ must await a better strip approximation to $\pi \mathbb{N}$ scattering. However, $\gamma_{\mathrm{N}}^{\gamma} / \gamma_{\mathrm{N}}$ seems to be

```
relatively insensitive to the details of the strip model used for wr scattering
and can therefore be used as a measure or the rolative importance or megnetic/
charge coupling of }\rho->N⿱亠䒑
most important role i4 in bootstrap calculations where the p-meson helpa to
generate the force to produce the scattering.
```


## Acknouledxements

It is a pleanure to acknowledge helpful conversations with Professor Geoffrey Chev，Dr．Ian Drummond，Dr．Louis Balazs and Dr．L．David Roper． The author thaxks Dr．Sidney Fernbach for hospitality extended to him at the Lavrence Radiation Laboratory．

## Footnotas and References

Thia work performed under the auspices of the U. S. Atomic Energy Commission. Recipient of a Lawrence Radiation Laboratory Poat-Doctoral Pellowahip (Supported by the U. S. Atomic Energy Commission).
L. BalAzs Simple wr Bootatrap Celculation Using the Strip Approximation (1964 preprint - to be published). The Reggeized version of the strip epproximation has been studied by Chew and Jones (UCRL-10992).
W. R. Prazer and J. R. Fulco. Phys. Rev. 117 1609-14 (1960); J. S. Bell
and D. Y. Wong, Phys. Rev. 130 2112-16 (1963).
W. R. Frazer and J. R. Pulco, Phys. Rev. 117 1603-08 (1960). M. Jecob and G. C. Wick, Ann. or Phys. I 404-28 (1959).

For future reference the invariant variables for the $s$ - and u-channels are recorded here. For channel $s: \quad=w_{s}^{2} ; t=-2 q_{s}^{2}\left(1-z_{s}\right) ; u=2\left(m^{2}+1\right)-s-t$. For channel $u$. Just replace $s \rightarrow u$. Natural units are used throughout this work: $c=1, t=1, m_{\pi}=1$. Then $\lambda=\frac{\hbar}{m_{m^{c}}}\left(\approx 3 / 2 \times 10^{-13} \mathrm{~cm}\right)=1$. D. Roper (MIT Thesis -- unpublished). It should be pointed out that (22) and (23) are obtained by using Feyman's rules for the graph $\pi \pi \rightarrow 0 \rightarrow N \bar{N}$. One could carry on the same discussion without this reference by defining $f_{ \pm}(t) \approx \frac{\gamma_{m} \gamma_{ \pm}}{t-m_{\rho}^{2}}$. The $\gamma_{ \pm}$are then linear combinations of $\gamma_{N}$ and $\gamma_{N}^{\prime}$. Roper's equations are used in order to have a basis for comparison with phenomenological work done in the $\bar{W}$ and $N N$ systems.
G. F. Chev S-Matrix Theory of Strong Interactions (Benjamin, 1962). The numerical values of $\gamma_{N}$ and $\gamma_{N}^{\prime}$ are quite sensitive to the details of the model but $\gamma_{N} / \gamma_{N}$ seems to be relatively insensitive. These matters will be discussed in more detail later.

10 R. Bryan and R. Arndt P-P Phase Bhift Anelveis Uning the K-Matrix Porranilem (unpubilshed). I am indebted to Mr. Richerd Arzat for a discussion of this vork.
See for example A. Donnechie, J. Hearilton and A. T. Leal Prodiction of P-. D- and F-Wave H Sactering (1964 preprint) and references given there. The connection between $\left(C_{1}, C_{2}\right)$ and $\left(\gamma_{11}, \gamma_{11}^{*}\right)$ is $-\frac{12 C_{2}}{v}=+\frac{4 \pi}{1 \pi} \gamma_{v} \gamma_{11}^{\prime}$ and $+\frac{12 C_{1}}{\pi}=-8 \pi \gamma_{V} \gamma_{N}$ vhere $\frac{C_{2}}{C_{1}}=+0.27$ and $C_{1}=-0.95$. It is not hard to show that for $\gamma_{N} \gamma_{H}>0$ the exchange of the p-meson leads to an attractive force in the $p(1,1)$ and $p(3,3)$ states and $a$ repulsive force in the $p(3,1)$ and $p(1,3)$ atates. The attraction is veak in the $p(3,3)$ state, moderate In the $p(1,1)$ state and the repulsion $i s$ moderate in the $p(3,1)$ and $p(1,3)$ states. This agrees with observations made by Bovcoek, Cottinghen and Lurie (Huovo Cimento 16918 (2960)) and Frautschi (Phys. Rev. Lett. 5159 (1960)). I an indebted to Professor Geoffrey Chev for a helpful diseussion on thie matter.
A. Scotti and D. Y. Wong Phyw. Rev. Lott. 10 142-46 (1963). I am indebtod to Dr. Devia Wong for a helpful conversetion ebout hie vork.
G, F. Chev, R. Karplus, S. Gasioroviez, and F. Zachariaeen, Phys. Rev. 210 265.76 (2958). We have written the form factors without aubstractions. This Lipplies $G_{1}{ }^{0}(t) \xrightarrow{t \rightarrow 0}\left(\frac{1}{t^{n}}\right) n>0$. The inost recent data on the nucleon BM structure seeme to justify this.
To calculate $D_{n}(-1)$ we have just made a innear extrapolation using (53). This fact was not realized by Abers and Zemach, Phys. Rev. 232 2305-17 (1963). In their work, $\gamma_{i}^{\prime} \equiv 0$.


CHANNEL s：$\pi+\mathrm{N} \rightarrow \pi+\mathrm{N}$
CHANNEL $t: \quad \pi+\pi \rightarrow N+\bar{N}$
CHANNEL $u: \pi+N \rightarrow \pi+N$
$q_{i}$ and $p_{i}$ are the 4 －momenta for the pions and nucleons，respectively．

Figure 1




[^0]:    where the gartial wave projections of the invariant amplitudes are made with reference to channel $t$ ：The contributions ${ }^{6}$ of the p－meson to $(A, B)$ in the pole approximation are

