Analytic Approach for the Pion-Proton Scattering Phase Shirts

$$
\begin{gathered}
\text { Ay } \\
\text { W. Aarita } \\
\text { Gase Inetitute of Technology } \\
\text { Department of Physics } \\
\text { Cleveland, Ohio. }
\end{gathered}
$$

Technieal Report No. 25
Atomic Enercy Comisaion
Contract AT-11-1-acm-16

December 7, 1955

ANALYTIC APPROACH FOR TIE FION-FROTON SCATIEATM PHASE SHIFTS.
 W. Rarity*
 Department of Physics, Case Institute of Technology, cleveland, Ohio.

ABSTRACT

A simple method of solving for the phase white of the plon-protion scattering is presented. The rapid solution afforded can be utilized at the Ashikin diagrams have been so employed to give starting values to an electronic computer or alternativeIf to analyze with more sase the variation of the phase shirts as a function of the input date in terns of the coefficients of the angular distributions. A new plot of a function of the total erows-aection versus the pion energy is introduced. The near straight line resulting should help to evaluate the experimental data.

* On sabbatical leave from Brooklyn College.

$$
355-2
$$

INTRODUCTION

The first analyses of pion-proton scattering were performed by Fermi, ${ }^{1}$ et al .z with an electronic computer. A thorough vtatistical investigation is necessary to extract the greatest accuracy ant maximum consistency from the experimental information, but the essence of the physics is thereby obscured. Extensive calculations have shown that the phase shirts ${ }^{2} \delta_{11}$ and δ_{13} are amyl and erratic. A good assumption is then to take these phase shirts equal to zero. 3,4 We shall see that the remaining four phase shirts an be easily evalum sated analytically. Increased insight into the nature of the solutions results as a consequence. Or course our conclusions do not differ essentially from those reached by others using fast digital calculithong or Ashkin diagrams, ${ }^{3}$ but we offer our method in the hope that its simplicity will help us understand the behavior of the pionproton scattering.

1. Neil, Metropolis, and Ales, Pigs. Mev. 25, 1581 (1954)
2. We woe the notation of Bethe and De Hoffman, Mesons and Fields, Vol. II (Row Peterson 1955). See also reference 5 below.
3. R, Martin, Phys. Rev. 25, 1606 (1954)
4. Marta and Serbert Fourth Annual Rochester Conference on High Energy Physics (1954)

$$
355-3
$$

We fIrst develop our formalae for the case of the $\pi^{+}-\mathrm{P}$ scattering. Here our method is basically the transformation of the graphical or geometrical procedure of Ashicin to an algebraic guise.

Given the experimental data in term of the coerriciente ${ }^{2,5}$
$\mathrm{A}_{+}, \mathrm{B}_{+}, \mathrm{C}_{+}$of the angular distribution ${ }^{6}$
$x^{-2} \frac{d \sigma}{d \Omega}=A_{+}+B_{+} \cos \theta+c_{+} \cos ^{2} \theta$
we get for the s phase shirt δ_{3}

$$
\begin{equation*}
\sin 2 \delta_{3}=-\mu\left(D-\Sigma^{2}\right)^{1 / 2}+(\Sigma-2)\left(\frac{1}{L}-\mu^{2}\right) / 2 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& D=4\left(A_{+}+B_{+}+c_{+}\right): \Sigma=2\left(A_{+}+C_{1}\right) \\
& L=D-4 \Sigma+4 \text { and } \mu=\left(\Sigma-2-2 B_{+}\right) / L
\end{aligned}
$$

Again me nay prefer to use the equivalent formulae

$$
\begin{align*}
& \cos \left(\beta-2 \delta_{3}\right)=\left(\Sigma-2-2 B_{+}\right) / L 1 / 2 \tag{2a}\\
& \cos \beta=(\Sigma-2) / \angle 1 / 2 \tag{ib}
\end{align*}
$$

The multiplicity of the allowable solutions comes from the ambiguity of the signs of the square roots in Eq. (1) or alternatively the choice of the brunches of the cosine functions in Eq. (ia) and (ib).
5. De Horraan, Metropolis, Ales and Bethe, Phys. Rev. 25, 1586 (1954) 6. Rarity, Pays. Rev. 22,630 (A) (1955)

We illustrate our procedure with the data ${ }^{5}$ at 120 Mev where

$$
A_{+}=-200 ; B_{+}=-.360 \text { and } C_{+}=1.040
$$

We get

$$
\begin{aligned}
& D=3.520 ; \sum=1.093 ; \quad L=3.147 \\
& \left(D-\Sigma^{2}\right)^{1 / 2}=1.525 ; \mu=-.0593 \\
& \left(1 / L-\mu^{2}\right) \not / 2=.5606 ; \Sigma-2=-.9067 \\
& \sin 2 \delta_{3}=-.4178 \text { and } \delta_{3}=-1235^{\circ}
\end{aligned}
$$

If we use Eqs. (2), we have cos $(\beta-2 \delta 3)=-.1052$ and $\cos \beta=-.5111_{3} \beta-2 \delta_{3}=-96.04^{\circ}$ and $\beta=-120.74^{\circ}$ and $\delta_{3}=-12.35^{\circ}$ as before.

To calculate δ_{33} me can use
$\cos \left(2 \delta_{33}-\theta\right)=\frac{|b+3|^{2}+9+4 c+-|b|^{2}}{6|b+3|}$
where $\mathrm{b}+3=\left(-\sum_{3}+4-\cos 2 \delta_{3}\right)+1\left(\left(\mathrm{D}-\Sigma^{2}\right)^{-1 / 2}-\sin 2 \delta_{3}\right)$
$\equiv|b+3|(\cos \theta+1 \sin \theta) \equiv x+1 \quad Y$
For the 120 Wev data, we have

$$
\begin{aligned}
& x=2.9981 ; \quad r=1.9 \mathrm{~L} 25 ; \quad|\mathrm{b}+3|^{2}=7.7657 \\
& |\mathrm{~b}+3|=2.7867 ; \text { cos } \theta=.7170 ; \quad \theta=4 \mathrm{~h} .19^{\circ} \\
& |\mathrm{b}|^{2}=(x-3)^{2}+\mathrm{r}^{2}=4.777 ; \text { 000 }\left(2 \delta_{33}-\theta\right)=.9658
\end{aligned}
$$

$$
2 \delta_{33}-9=125.03^{\circ}, \delta_{33}=29.61^{\circ} \text { (Fermi) and } \delta_{33}=14.50^{\circ} \text { (Tang) }
$$

Thine our method gives both the Fermi and Tang solution e at the same time. It in interesting to note that the Fermi moldion $\left(\delta_{3}, \delta_{33}, \quad \delta_{31}\right)$ and the Tang solution $\left(\alpha_{3}, \alpha_{33}, \propto<31\right)$ are related to each other by the following equations:

$$
\begin{align*}
& \alpha_{3}=\delta_{3} \tag{L,a}\\
& \alpha_{31}-\alpha_{33}=\delta_{33}-\delta_{31} \\
& \tan \left(\alpha_{33}-\delta_{32}\right)=\frac{1}{3} \tan \left(\delta_{33}-\delta_{31}\right) \tag{Le}
\end{align*}
$$

The special case wien δ_{32} - 0 was derived by De Hlorrman ${ }^{5}$ at al. To obtain δ_{31} we wise $\cos 2 \delta_{31}=x-2 \cos 2 \delta_{33}$

Lt 120 Nev. we have for the Ferns solution

$$
\operatorname{sos} 2 \delta_{31}=.9745 ; \quad \delta_{31}=6.47^{\circ}
$$

Our values check those quoted by De Norman ${ }^{5}$ et al.
POSITIVE ADD IEGGATVE PLON-PROTCN SCATTERING
Wee first observe that in general
$\sin ^{2} \delta_{1}+2 \sin ^{2} \delta_{13}+\sin ^{2} \delta_{11}=\frac{\left(3 \sigma--\sigma_{1}\right)}{6 \pi x^{2}}$
Thus $\sin ^{2} \delta_{1} \geqslant \frac{3 \sigma_{-}-\sigma_{4}}{\sigma_{0}}$ where $\sigma_{0} \equiv 8 \pi خ^{2}$

If $=$ now mike the explicit assumption that $\delta_{11}=\delta_{13}=0,-m$ ont

$$
\begin{equation*}
\sin ^{2} \delta_{1}=\frac{3 \sigma_{-}-\sigma_{4}}{\sigma_{0}} \tag{T}
\end{equation*}
$$

In principle, $=$ an empale $\left|\delta_{1}\right|$ froe just the meneurasente of the total arses-aections alone. The error in this method Lv, however, large because them secure the dirsenenoe af two large numbers with sizable errors.

In order to make a self-eonsistinnt soleculation, ${ }^{4}$ - have to examine the relations that the sourriciente 4_{+}. B c_{+}. A_{0}, B_{0}, C_{0} and A, B, C mast obey under our condition of $\delta_{11}=\delta_{13}=0$. By making ane of the equations of reference 5 . m can show that

$$
\begin{align*}
& 3\left(B_{-}+B_{0}\right)=B_{+} \tag{array}\\
& 3\left(c_{-}+c_{0}\right)=c_{+} \tag{6t}\\
& 9 c_{0}=2 B c_{-}=2 c_{+} \tag{e}
\end{align*}
$$

If our data satisfy $\mathrm{K}_{\mathrm{q}} \mathrm{p}$. (8) within the experimental error $=$ can be assured that δ_{11} and δ_{13} are anal and can therefore be ant equal to zero.

We now explore two adaitional methods of computing δ_{1}.
They are based on Equ. (9)

$$
\begin{align*}
& 2 A_{-}-A_{0}=\frac{2}{\delta}\left(1=\left.\right|^{2}+a a^{*}+\theta^{*} a\right) \tag{9a}\\
& 2 B_{-}-B_{0}=\frac{1}{6}\left(=b^{*}+a^{*} b\right) \tag{9b}\\
& \text { where } s=\exp \left(21 \delta_{1}\right)-i ; a=\exp \left(21 \delta_{3}\right)-1 \\
& \text { and } b=2 \exp \left(21 \delta_{33}\right)+\exp \left(21 \delta_{31}\right)-3
\end{align*}
$$

Inptier equation mideb may le neetul ie

$$
\begin{equation*}
\left.\operatorname{stg}^{2} \delta_{1}=1 / 2(3<4-40)-4-\right) \tag{20}
\end{equation*}
$$

Ile wall explajns oar prooedam math the moent asearnte date abcalind at Ghasag? as 209 Hev .

 as (e). For eurgerisen, wise cive (w) the aricinel confrielente
 rimal glawe maidres.

Table In Pooition Ancalar Dieteribution Coetrisiente

(a) inderson ${ }^{7}$ et alt oricinal data and (b) Iran thelr Iinal phane mhirts (e) frow oar least spaanstit.

We une $\mathrm{K}_{\mathrm{g}}, 2$ and rind coe $\left(\beta-2 \delta_{3}\right)=.6751_{5} \cos \beta=-9030$ $\beta-2 \delta_{3}=47.52^{\circ}$ and $\beta=25.44^{\circ}$

$$
\delta_{3}=-11.05^{\circ}
$$

At 169 Wev , note that the signs of both ancles $\beta-2 \delta_{3}$ and β have changed from thelr assicrant at 120 Wev . of courpe me have to deternine as a function of the meson enercy E_{2} when coe $\left(\mathrm{P}-2 \delta_{3}\right.$) and $\cos \beta$ go throagh 1 in order to get a continuoas or here an analytfeal ohange in δ_{3} wn \mathbb{E}_{L}. Dy tracking or following the coeine function 7. Anderson, Davidson, Glickman and Kruse, Pars. Nev. 200, 279 (1955)3 5 5-8
 1 Is Sor both of them about 16 y Nivv. Nhia behaviar acooanter for the

 nlen rar β and $p-2 \delta_{3}$

 elve $5_{3}=-21.3^{\circ} \pm 3.2^{\circ}$.
ksth our ebvion of δ_{30}. n proeend to $\delta_{33^{\circ}}$ We have $\theta=220.92^{\circ}$ and $2 \delta_{33}-9= \pm 2 h . \pi T^{\circ}$

$$
\delta_{33}=93.00^{\circ} \text { (Femal): } \delta_{33}=217.05^{\circ} \text { (Zane) }
$$

Tie fumetion $\left(3-\Sigma^{2}\right)^{2 / 2}$ have chanced wign an it lesoens sern wien Im $(a+b)=0$ and thin happene at alooat 177 Ier.

The belawior af Eg. (2) ase A flanetion of enery ie anopth and ne sre brimehine of solutions oveurs. af eoarse thene concluelions can be obtained equaliy well and more mo arrived at with the one of Antakin dinerrame. ${ }^{3}$

The use of Ke. (5) elwo $\delta_{32}=-13.02^{\circ}$.
To eonglete our phase shirt analysie we have te deternine δ_{1}. Eq. (7) civen $\left|\delta_{1}\right|=10.8^{\circ} \pm 9.5^{\circ}$. Es. (10) ban a rosaluinc value of $\left|\delta_{2}\right|=13.0^{\circ} \pm 12.1^{\circ}$.

He mewrite Eq. (9a) in the form

$$
\begin{equation*}
24-4_{0}=1 / 3\left(\cos 2\left(\delta_{1}-\delta_{3}\right)-2 \cos 2 \delta_{1}-\cos 2 \delta_{3}+2\right) \tag{11}
\end{equation*}
$$

Glesental ${ }^{6}$ et al. have doveloped a sinslar point of wiew.
8. Clemental, Poiani and Villi, Nuovo Cinento 2, 352 (1955); 2, 389 (1955)

Our moet reliable determination of δ_{1} comes froe Eq. $(9 \mathrm{~m})$
which me rewrite as

$$
\begin{align*}
& 2 \mathrm{~B}-\mathrm{B}_{0}=2 / 3\left(2 \cos 2\left(\delta_{33}-\delta_{1}\right)+\tan 2\left(\delta_{31}-\delta_{2}\right)\right. \\
& \left.-3 \text { pos } 2 \delta_{1}-2 \cos 2 \delta_{33}-\operatorname{sos} 2 \delta_{31}+3\right) \tag{12}
\end{align*}
$$

Time $\delta_{2}=17.2^{\circ}$ Iron $2 \mathrm{~B}-\mathrm{B}_{0}=-113$. In Table II me numarive our masalte and compere then to thee of Anderson ${ }^{7}$ et al. and anear. ${ }^{9}$

Table II 159 Hew Phase Sistine

A new plat of a function of the total erose-section versus the energy will be introduced. The resulting near straight line should aid in evaluating the experimental data. Il now derive the relation for σ_{+}vs. W the center of sans energy of the pion. We avail ourselves
9. Orear, Phys. Rev. 100, 288 (1955)
of the equation given by Chew and Low ${ }^{10}$ that $\frac{k^{3}}{\omega^{1}} \cot \delta_{33}$ vs ω^{*} is almost a straight line. k is the momentum of the meson and ω^{*} is ω plus the kinetic energy of the proton. Serber and Lee ${ }^{21}$ and Dyson, Castillejo and Dalitz ${ }^{12}$ have shown that in general

$$
\frac{k^{3}}{\omega^{*}} \cot \delta_{33}-\frac{1}{\omega^{*}} \text { is an analytic function of } \omega \text {. }
$$

As $\quad \sigma_{+}=\sigma_{0}\left(\sin ^{2} \delta_{33}+1 / 2\left(\sin ^{2} \delta_{3}+\sin ^{2} \delta_{31}\right)\right)$ and $\sin ^{2} \delta_{3}$ $+\sin ^{2} \delta_{31}$ is small and believed to vary slowly with energy, we can surmise that

$$
\frac{\sigma_{+}-\left(\sigma_{+}-\sigma_{0}\right)_{r}}{\sigma_{0}}=\sin ^{2} \delta_{33 t}+\varepsilon(\omega) \text { where }
$$

$\varepsilon(\omega)$ is small and slowly varying. Further as $k=x^{-1} \sim \sigma_{0}^{-1 / 2}$, we can transform the Chew-Low equation into

$$
y \equiv \frac{1}{\omega \sigma_{0}}\left(\frac{\sigma_{0}-\sigma_{c}}{\sigma_{e} \sigma_{0}}\right)^{1 / 2} \text { vs } \omega \text { should be nearly a straight }
$$

line. Here $\sigma_{c}=\sigma_{+}-\left(\sigma_{+}-\sigma_{0}\right)$ and the subscript r refers to the resonance energy $\omega_{r^{*}}$ The advantage of this representation $1 s$ that we can test our data for smoothness without the intermediary or knowledge of the angular distribution. Incidentally as y varies chiefly as $\left(\sigma_{0}-\sigma_{c}\right)^{1 / 2}$ we can use this equation as a convenient interpolation formula. Also we can see from this expression that y is more sensitive to errors in ω and σ_{+}near than away from resonance.
10. Chew and Low: Firth Annual Alochester Conference (Interscience Publishers, Inc., 1955).
11. Server and Lees Quoted in Reference 12.
12. Dyson, Castillejo and Dalitz (preprint).

The recent Brookhaven ${ }^{13}$ data has been analyzed according to the above prescription. A least squaresfit rirst to a linear and then a cubic function of ω mas mado. Moreover the 181 and 189 Kev . data were considered (a) as above resonance as preferred by Lindenbaum and Yuan ${ }^{13}$ and (b) as below resonance as adrocated by Bethe ${ }^{5}$ et al. We enter our results in Table III.

Table IIIz Comparison of the (a) Brookhaven (b) Bethe Assumptions.

		R.M.s.		$\frac{\Delta}{2}$				
		St. Lism	Cubic	St. Line		Cubie		
		181 Mev		189 Lev	181 Lev	189 Llim		
(a)	Brookhaven		.738	. 699	7.3	4.1	6.4	3.2
(b)	Bethe	. 478	. 462	-2.2	-3.2	-1.7	2.8	
(c)	Russian σ_{+}	. 353	. 336					
(d)	Russian σ_{-}	. 661						

In Table III, Δy Ieviation of y from the least squans rit. $\varepsilon \equiv$ experimental error in y due to $\Delta \sigma_{+}$. We ignored the error due to $\Delta \omega$. A slightly greater weight is thus efiven to the data around mesonance. The R.M.S. $\equiv \frac{1}{n} \sqrt{\sum^{n}\left|\frac{\Delta G}{\varepsilon}\right|^{2}}$ is taken as a measure of the least squares fit.

A similar anslysis was performed on the Russian datalh for from Lho to 229 Mev. We sumarize our results in Table IV. E F_{r} Flaboratory mesonance energy. The $\pi^{-1} P_{\text {Raselan data }}{ }^{\text {lh }}$ from 340 to 335 Wev (we excluded the data at 363 and 393 Wev) was studied only for the straight line case. $\sigma_{c}-3 \sigma_{-}-\left(3 \sigma_{-}-\sigma_{0}\right)_{n}$ or mo hav $\sigma_{+} \rightarrow 3 \sigma_{-}$in our formulae. For comparimon me recall that Bethe ${ }^{5}$ et al. give for $\mathrm{E}_{\mathrm{a}} 195 \mathrm{Hev}$.
13. Lindenbaum and Yuan, Phys. Rev. 200, 306 (1955).
14. Ignatenko, Kuchin, Omerov and Pontecorvo, Doklady, Akad. Nauk, 355 SSSR 103, 145 (1955)
-10

Table IV: Resonance Parametera

Using the interpolation formala $y=\left(\sigma_{0}-\sigma_{c}\right)^{1 / a}$ asmar in ω me obtained Table V from Eq. (7). Here His is the pion momontum in unita $_{\text {is }}$. of $m_{s} C$. If we assume that $\delta_{i} \sim \eta$ then $\delta_{i} / m_{i}=6.7^{\circ}$. Orear ${ }^{9}$ given 9.2° for this quantity. In Table $v_{,} \delta_{2}^{2}$ is the lower liadt and δ_{2}^{2} the upper $11 m i t$ of δ_{1}.

Table $\mathrm{V}_{\mathrm{i}} \delta_{1}$ Raveian Data ${ }^{\text {Ih }}$.

E_{L} (Nev)	η	δ_{1}	δ_{1}^{ℓ}	δ_{1}^{w}
140	1.354	0°	0	11.9°
184	1.376	4.3°	0	13.4°
197	1.650	17.9°	11.7°	22.7°
216	1.742	13.0°	0°	19.5°
226	1.789	21.3°	12.6°	26.0°

acrancmapazents

We thank Professors Foldy and Serber for many helpfal dincussicns.

