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Optimization of relief networks in humanitarian logistics often exemplifies the need
for solutions that are feasible given a hard constraint on time. For instance, the
distribution of medical countermeasures immediately following a biological disaster event
must be completed within a short time-frame. When these supplies are not distributed
within the maximum time allowed, the severity of the disaster is quickly exacerbated.
Therefore emergency response plans that fail to facilitate the transportation of these
supplies in the time allowed are simply not acceptable. As a result, all optimization
solutions that fail to satisfy this criterion would be deemed infeasible. This creates a
conflict with the priority optimization objective in most variants of the generic vehicle
routing problem (VRP). Instead of efficiently maximizing usage of vehicle resources
available to construct a feasible solution, these variants ordinarily prioritize the
construction of a minimum cost set of vehicle routes.

Research presented in this dissertation focuses on the design and analysis of
efficient computational methods for optimizing high-consequence variants of the VRP for
relief networks. The conflict between prioritizing the minimization of the number of
vehicles required or the minimization of total travel time is demonstrated. The
optimization of the time and capacity constraints in the context of minimizing the required
vehicles are independently examined. An efficient meta-heuristic algorithm based on a
continuous spatial partitioning scheme is presented for constructing a minimized set of
vehicle routes in practical instances of the VRP that include critically high-cost penalties.
Multiple optimization priority strategies that extend this algorithm are examined and
compared in a large-scale bio-emergency case study. The algorithms designed from this

research are implemented and integrated into an existing computational framework that



is currently used by public health officials. These computational tools enhance an
emergency response planner's ability to derive a set of vehicle routes specifically optimized

for the delivery of resources to dispensing facilities in the event of a bio-emergency.
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CHAPTER 1

INTRODUCTION

A wide span of applications in logistics and distribution management are modeled by
variations of the general vehicle routing problem (VRP). The VRP is simply described as
defining the optimal delivery routes denoted by an ordered list of customers or locations the
fleet of vehicles must visit. This extent of practical applications has resulted in significant
progress of the exploration and optimization in countless aspects of this problem. Accord-
ingly, theses variants of the VRP define the optimization objectives for a specific application.
The Open VRP (OVRP) is a notable variant that has gained interest in recent years. Con-
trary to the VRP where vehicle tours are required to begin and end at a specified location

(depot), the OVRP allows tours to end after the last stop (customer) in its tour is served.

A core focus in this research is the logistical optimization of practical applications that
involve critically high-cost penalties. Instances associated with these type penalties are often
constrained by a strict time allowed for vehicles to complete a tour within. For this reason,
variants of the OVRP are used to model these type of instances. Instead of reducing the sum
total cost of completing all tours for a known vehicle fleet size, the primary objective is to
find the minimum number of vehicles required to serve all customers without a single route
surpassing its allowed time constraint. Accordingly, we denote this variation as the Open
Vehicle Routing Problem with Uniform Time constraints (OVRP-UT) for the purpose of
distinguishing it from existing related variants (e.g., the OVRP with Time-Windows (OVRP-
TW)). Unlike the OVRP-TW, the time constraint defined in the OVRP-UT is unvarying
across the entire scenario such that for any solution to be feasible, all tours must be completed

within the time permitted.

Optimization of relief networks in humanitarian logistics often exemplify the need for
solutions that are feasible given a hard constraint on time. The distribution of medical coun-
termeasures immediately following a disaster represents one instance for which adherence to

this constraint is critically important. Additionally this classification of logistics are often



further constrained by a limited number of resources available, which are often distributed
over large regions. These constraints are clearly emphasized in an epidemic disaster. For
instance, if the response following the release of a biological agent such as Antrax, antimi-
crobials (i.e., ciprofloxacin, doxycycline, amoxicillin, penicillin, etc...) must be dispensed to
the affected population within 48 hours to treat and prevent illness effectively [1]. Opti-
mizing these logistical relief networks are only of use when the resulting solution is deemed
feasible. Of course, the properties required for a solution to demonstrate feasibility must
be explicitly defined by the scenario as they are otherwise ambiguous. Accordingly, these
properties must be expressed through constraints modeled by the optimization objectives

when applying VRP algorithms within this domain.

Practical instances of the VRP corresponding to these high-consequence constraints
create challenging issues that uniquely define the main optimization objective. To the best
of our knowledge however, even the most powerful existing heuristics for both exact and
approximation algorithms are not specifically designed with these objectives in mind. As a
result, they will often fall short in optimizing variants of OVRP-UT. Furthermore perfor-
mance evaluations for heuristics are traditionally evaluated based on solving standardized
sets of problems (i.e., benchmarks). Consequently when heuristics are adjusted to fit the
individual instance or the unique difficulties defined by a specific problem set, it can decrease
the robustness of the algorithm. This conflict is exemplified in Section 1.1, substantiating the

design of heuristics prioritizing the objective of minimizing the number of vehicles requires.

With this in mind, we analyze the attributes that define the OVRP-UT and the
variants representing practical instances such as in a bio-emergency. Computational methods
driven from these insights are then presented for the optimization of these high-consequence

variants of the VRP in relief networks for humanitarian logistics.

Section 1.2 states the overall organization of this dissertation. In particular the ob-
jective for each chapter is identified, including its associated to the chapters that follow. The
specific contributions resulting from this dissertation are described in Section 1.3. Section

1.2.



1.1. Motivation

This section presents an independent and simplistic example demonstrating the con-
flicting core objectives between most variants of the OVRP and the OVRP-UT. In Chapter
3 we introduce a mathematical formulation based on the objective of minimizing the fleet
size. Using a generalization of the OVRP-UT we further present observations of the search
space in deriving an optimal solution and motivate a partitioning approach to reduce the

computational complexity.

When heuristics are developed for the VRP they are often described when solving a
generalized variant or usually the classical VRP itself. This practice is common as it allows
a single algorithm to be utilized for many variants of the problem for a specific application.
Furthermore it reduces the complexity of implementation and reproduction of the method
originally introduced. Even when more constraints or specific bounds and properties are
introduced, the overall objective is the same: to minimize the total travel cost to wvisit all
customers with a known number of vehicles. However, we argue that the change to minimize
the required vehicles for the OVRP-UT, instead of minimizing the total travel time, are not

as related as they might appear.

To demonstrate the conflict in solutions between the two objects: (i) Minimize total
cost, and (ii) Minimize fleet size; Figure 1.1 represents a simple 5 node graph (1 depot, 4
customers) constructed that highlights this conflict. In this construction for all VRP variants,
we assume that a feasible solution must have a set of vehicle routes that start at the depot,
{no}, and visit (in any order) each of the the customers, {ny, ny, n3, ny}, once at some point
within the resulting set of routes. Additionally we assume that all vehicle tours (VT) in
each solution must be completed within some known maximum time constraint, where the
edge cost in the graph represent the symmetric cost of travel by time between the connected

nodes.



F1GURE 1.1. Simple network with conflicting solutions based on the optimization goal. The
node {ng} represents the starting location (depot) for all tours, and the nodes {n, ny, n3, ns}
are the customers required to be visited for any feasible solution.

In Table 1.1 the optimal solutions related to the graph shown in Figure 1.1 are listed
for both objectives. This demonstrates a clear conflict between what their formulation has
determined to be optimal. For both objectives included in this table, the solutions allow
the tour to end without returning to the depot (i.e., OVRP, OVRP-UT). Additionally every
tour within each solution is one that is feasible. Namely, the cost of each individual tour
within each of the solutions listed are under the max time constraint, 7. The formulation
of the OVRP usually requires the number of vehicles to be known. Therefore the optimal
solutions listed for this variant under the Minimize total cost objective can be viewed as if an
exact algorithm was iteratively executed with an arbitrarily large fleet size initially but was
reduced at each iteration. Then the solutions listed represent the parameters and resulting
tour(s) to the iteration produced the minimum sum total cost of tours that were all under

the provided time constraint.

Objective: Minimizing sum total cost Minimizing number of vehicles

VRP Variant™: OVRP OVRP-UT

VT.01: [ng,n1] VT_02: [ng, nol
VT.03: [ng,n3] VT_04: [ng, n4)

Fleet Size: 4 1
Total Cost Of Tour(s): 6 7

*All tours are restricted to a maximum cost of 7

Vehicle Tours (VT): VT.01: [ng, n3,nq, ng, no|

Table 1.1: The resulting optimal tours of conflicting optimization objectives: (i) minimizing
sum total cost, and (ii) minimizing number of vehicles



The difference between the two objectives is clearly visible by comparing their respec-
tive optimal solutions from this example. The OVRP formulation produces a solution that
is optimal for the objective of minimizing the total cost. In particular it is observed that
the sum total costs of the tours for the OVRP variant is lower than the total costs for the
OVRP-UT. Conversely, the OVRP-UT variant produces an optimal solution for the objec-
tive of minimizing the fleet size. From this example, it is evident that heuristics designed
for the objective of minimizing total cost can produce solutions that are not optimal for the

objective of minimizing the vehicle fleet size.

1.2. Overview of the Dissertation

The focus of this dissertation is the design of efficient computational methods for op-
timizing high-consequence variants of the VRP for relief networks in humanitarian logistics.
As illustrated by this introductory chapter, problem instances classified by logistics of this
type often introduce optimization objectives who differ from those of existing variants of the
OVRP. Chapter 2 provides the necessary background information to the logistics in emer-
gency response planning. Specifically this is centered around the context of the distribution
of medical countermeasures immediately following a biological disaster event. The chapter
further reviews the existing literature for the VRP problem and its current exact and ap-
proximation algorithms. Additionally, the existing VRP research in emergency response is
reviewed.

With the intention to integrate the resulting computation methods from this research
into an accessible software framework for emergency response planners, the design of highly
efficient algorithms are of interest. To that end, the design of a meta-heuristic algorithm
based on a continuous spatial partitioning scheme is presented in Chapter 6. This algorithm
constructs a minimized set of vehicle routes for variants of the VRP that are defined by
the high-consequence constraints in a bio-emergency scenario. Notably, the hard constraints
for the maximum tour duration and the identical vehicle capacity are prioritized in this

optimization.



Due to the conflict between the objectives of the minimization of total vehicles and
minimizing the total travel time, the optimization of the time and capacity constraints in
the context of minimizing vehicles are independently examined. The design of this algorithm
is thus preceded by the independent study of these constraints. Furthermore, the context of
these studies are structured around continuous partitioning heuristics to allow a consistent
association in the design of the resulting algorithm. Accordingly, the structure of this disser-
tation is as follows: Chapter 3 introduces an abstract strategy for determining the minimum
number of vehicles that feasibly solve the OVRP-UT (i.e., only the time constraint is con-
sidered while vehicle capacity is disregarded). As consequence of the complexities quantified
by this chapter, methods to estimate the lower bound of vehicles required without an explic-
itly defined solution is introduced in Chapter 4. Chapter 5 similarly introduces a bounding
procedure for the minimum fleet size, but instead is based around the OVRP-UC (i.e., only
the vehicle capacity is considered while the time constraints are disregarded). Chapter 6
then formally defines an optimization problem for the high-consequence VRP variant that
models a bio-emergency response. Additionally included in this chapter is the design and
theoretical verification of the aforementioned approximation algorithm constructed to solve
this newly defined problem. Chapter 7 illustrate the direct application of this two-phase
algorithm in the context of bio-emergency response. Namely, a case study is constructed
from a large region in the state of Texas to exemplify the performance and outcomes of
the algorithm. Multiple priority optimization strategies are also introduced in this chapter
and their associated performance is compared and examined accordingly using the regional
case-study. Chapter 8 concludes this dissertation by identifying the limitations of the work
presented. Future work for improvements and expansions of this research are additionally

identified.



1.3. Research Contributions

The investigation and results from this research make the following key scientific

contributions:

(i) Formulation of mathematical models that represent the VRP variants associated
with high-consequence constraints in optimizing relief networks for humanitarian
logistics

(ii) Identify and analyze the conflicting objectives between minimizing the required
vehicles and minimizing the total travel time

(iii) Investigate a strategy based on an continuous partitioning scheme to determine the
minimum number of required vehicles for the OVRP-UT

(iv) Formally identify the complexities in finding the minimum number of required ve-
hicles for any instance of the OVRP-UT; design techniques for estimating the lower
bound without explicitly defining the solution

(v) Design and implement an efficient and flexible meta-heuristic algorithm to solve vari-
ants of the OVRP-UT that are defined by multiple high-consequence constraints; in
particular for distributing medical countermeasures to mitigate an epidemic disaster

(vi) Design a upper bounding procedure for the OVRP-UC based on maximizing an

identical capacity usage; prove its maximum error a worst-case scenario

Furthermore, the algorithms resulting from this research have been implemented and inte-
grated into an existing computational framework designed for public health officials [51].
These computational tools enhance an emergency response planner’s ability to devise a set
of vehicle routes specifically optimized for the delivery of resources to dispensing facilities in

the event of a bio-emergency.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

2.1. Background

History has repeatedly demonstrated that throughout the entire world, disasters will
not only occur but can enforce some of the most deadly consequences humanity has and will
ever face. The frequency of occurrence has brought awareness to the significant impact that
arise from many types disasters and crisis situations, but most prominently it has shown that
there is little uncertainty in predicting if another will occur but instead is only a question of
when.

The complexity of responding to and mitigating a disaster varies drastically depending
upon the type of disaster and the populations it affects. Often some of the most consequential
factors that increase this complexity are when the affected population is large and sparsely
distributed geographically. Different types of disasters can include this symptom of large
populations being affected such as natural disasters. As shown in Table 2.1, natural disasters

represent a grouping of disasters that span areas of geophysical, meteorological, hydrological,

climatological, biological, and extraterrestrial disasters.

Disaster Group

Disaster Subgroup

Definition

Disaster Main Type

Natural

A hazard originating from solid earth. This term is used interchangeably with the term

Earthquake

Geophysical losical I d Mass Movement
cological hazard. ; —
geolog Volcanic Activity
. . . Extreme Temperature
. A hazard caused by short-lived, micro- to meso-scale extreme weather and atmospheric
Meteorological L . Fog
conditions that last from minutes to days.
: Storm
. Flood
. A hazard caused by the occurrence, movement, and distribution of surface and subsurface -
Hydrological Landslide
freshwater and saltwater. - -
ave Act
Wave Action
. . . Drought
. . A hazard caused by long-lived, meso- to macro-scale atmospheric processes ranging from S 8
Climatological . . . L Glacial Lake Outburst
7 intra-seasonal to multi-decadal climate variability. —
. Wildfire
A hazard caused by the exposure to living organisms and their toxic substances (e.g. Epidemic
Biological venom, mold) or vector-borne diseases that they may carry. Examples are venomous Insect Infestation
wildlife and insects, poisonous plants, and mosquitoes carrying disease-causing agents. Animal Accident
b b ) q ymg g ag
. A hazard caused by asteroids, meteoroids, and comets as they pass near-earth, Tmpact
Extraterrestrial *

enter the Earths atmosphere, and/or strike the Earth, and by changes in interplanetary
conditions that effect the Earths magnetosphere, ionosphere, and thermosphere.

Space Weather

Table 2.1: Natural disasters categorized by the Emergency Events Database (EM-DAT) [29]




Each of the main types of disasters (e.g., storm, earthquake, epidemic, landslide)
defined in Table 2.1 will introduce unique complexities into responding to the disaster, in-
cluding the challenges imposed by funding the appropriate resources needed. For example,
in 2004 New Orleans participated in a simulated exercise where a hypothetical category 3
hurricane named Pam would cause significant damage, allowing knowledge to be gained from
what it would take to adequately respond this type of disaster. However just a short time
later in 2005, the category 5 hurricane Katrina arrived on the Gulf coast and quickly became
one of the most deadly storms in the history of the United States. Although the earlier
hurricane simulation of Pam had accurately predicted the impact that such an event might
have, poor allocation of funds hindered the mitigation process. Further, even with the knowl-
edge that Katrina was approaching, difficulties added by the flooding and mass evacuations
left emergency responders without many critical resources needed [49]. Still, even with the
unique attributes of each main type of natural disaster, there exists similarities between the
complexities that are introduced into the emergency response, such as the large populations

and geographic areas that need to be treated or delivered resources.

Year | Disaster type Total deaths | Total affected | Total damage
2005 | Storm 1,852 830,000 157,530,000
2011 | Storm 290 18,593 27,000,000
2002 | Epidemic 214 3,624 N/A

2006 | Extreme temperature | 188 N/A N/A

2007 | Storm 167 1,377 4,600,000

2008 | Storm 156 2,300,400 39,540,000

Table 2.2: Top 5 natural disasters by deaths from 2000-2015 in the USA. Units for the Total
Damage are given in US §$ (in thousands) in the value of the year of occurrence. [29]

Natural disasters have continued to draw attention to their severity in consequences
they bring. According to the results from a query of the Emergency Events Database (EM-
DAT), from 2000 to 2015 in the United States, natural disasters alone caused 6,287 deaths
and over $567 billion dollars in estimated damage. The most deadly of these natural disasters

were caused by either storms, an epidemic, or extreme temperatures, as shown in Table 2.2.



The statistics and frequency from these previous events clearly show that emergency response
planning can be an integral part to mitigation efforts. This notion was further highlighted
in the White House report following the devastation caused by hurricane Katrina in 2005,
requesting that the capabilities of the Department of Health and Human Services (HHS) be
significantly strengthened for supporting and coordinating services during a crisis situation.
Following this report, in December of 2006 the Pandemic and All-Hazards Preparedness Act
(PAHPA) (Public Law No. 109-417) was passed by the U.S Congress to improve the nations
abilities to prepare and respond to these disaster scenarios [7].

Disaster preparedness specifically highlights volatile environments that can easily am-
plify detrimental consequences that result from reducing the ability to respond to an emer-
gency situation when the data and assumption initially incorporated changed or did not
accuracy reflect the situation. Emergency response plans designed by public officials to mit-
igate negative outcomes to a situation such as a bio-emergency, will immediately be put into
action with little to no flexibility for further adjustment. Therefore the stability and relia-
bility of any emergency response plan under these types of environments must incorporate
and model these characteristics into their configuration of an optimal plan. The following
section provides a brief overview of the process and attributes of preparing and responding

to emergencies.

2.1.1. Emergency Response Planning

Effectively mitigating a disaster is often the result of exhaustive emergency response
planning by public officials. The importance of this planning process and the activities
involved are authorized from the national level by the PAHPA in 2006 and then improved
upon in the reauthorization of this law as the Pandemic and All-Hazards Preparedness

Reauthorization Act of 2013 [44]. The key items in this act are as follows:

(i) Strengthening national preparedness and response for public health emergencies

)
(ii) Optimizing state and local all-hazards preparedness and response
(iii) Enhancing medical countermeasure review

)

(iv) Accelerating medical countermeasure advanced research and development

10



While the items listed are only defining a broad set of goals to achieve, the act further
describes detailed activities (e.g., simulating drills and exercises to ensure medical surge
capacity for events without notice) that enhance the abilities to respond to a crisis situation
[44]. Therefore in the event of a natural disaster occurring both naturally or deliberately
(e.g., hurricanes, disease outbreaks, the release of a biological agent), a feasible response plan
becomes crucial to minimizing the severity of the impact it has on the public.

Emergency preparedness plans essentially provide a road-map to treat or serve the
affected population within the time and resource constraints given. Usually preparedness
plans involve a strategic placement of multiple points of dispensing (PODs) facilities that
act as the central hub for their respective service area to distribute or dispense mitigation
resources, such as life sustaining supplies or vaccinations [1]. The success of mitigation efforts
that results from these plans are often dependent on utilizing sparse resources in the least
cost manner. Therefore much attention is placed on each stage of distribution of resources,

in particular distributing supplies to the PODs, followed by dispensing these supplies to the

population.

1 I 1
1 I NI
i i i
H ResourcelTre!nsp_ortatlon H Mass Prophylaxis H
I & Distribution : I
1 1 |
1 | 1 1 1 1
I i
=[ Federal Government [ State Officials ][ County & Local Responders :
1 1
1 il
e — | —= —————-— | ———— — = !
1 1 1
; ; )i

Transport MCMs Deliver MCMs to

: P = Dispense MCMs to targeted population :
i1 | towarehouses local responders H H
1 I )i
1 1 1
i 1 i
Plan Activation Points of Dispensing (POD) Facilities Open Plan Completion

FIGURE 2.1. Phases of a bio-emergency response plan

In the event of a epidemic disaster, such as the release of the biological agent Antrax,
public officials will rely on an emergency response plan that must result in the dispensing of

antimicrobials (i.e., ciprofloxacin, doxycycline, amoxicillin, penicillin, etc...) to the popula-

11



tion affected or at risk within 48 hours to treat/prevent illness from the threat. As shown in
Figure 2.1, the commencement of this bio-emergency response plan will follow through two
main sequential phases: (i) Resource Dispensing and Distribution, and (ii) Mass prophy-
laxis. The first phase the Federal government will transport the Medical Countermeasures
(MCMs) from the Strategic National Stockpile (SNS) to the local state government’s Re-
ceiving, Storing and Staging (RSS) warehouses. From the RSS warchouses, the MCMs must
then be distributed to the affected region’s strategically placed POD facilities within the
affected region. This final stage is achieved through dispensing the MCMs to treat the pop-
ulation [1]. The MCMs described in these plans are not restricted to just pharmaceutical
interventions (e.g., vaccines, antimicrobials). According to the Receiving, Distributing, and
Dispensing Strategic National Stockpile Assets: A Guide to Preparedness, the Public Health
Emergency Medical Countermeasures Enterprise (PHEMCE) defines MCMs as the resources
that may be used to “prevent, mitigate, or treat adverse health effects from an intentional,
accidental, or naturally occurring public health emergency” [1]. With MCMs also including
non-pharmaceutical interventions (e.g., ventilators, personal protective equipment), these

emergency response plans can cover a large variety crisis situations.

2.2. Literature Review
2.2.1. Overview of the Vehicle Routing Problem (VRP)

A wide span of applications in logistics and distribution management are modeled
by variations of the general vehicle routing problem (VRP). The classical Vehicle Routing
Problem (VRP) can generally be described as the development of optimal vehicle routes that
start a single depot, visit a provided set of geographically located customers, and return to
the depot in the least cost manner. These VRP variants then define the objective functions
and constraints that represent this cost accordingly.

The VRP is a well known problem with an extensive body of research and litterature
dating back to 1959 where it was first introduced by [23] who described it as the Truck
Dispatching Problem. Initially the VRP was considered a generalization of the Traveling

Salesman Problem (TSP) were additional conditions and constraints are imposed, such as
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multiple vehicles and capacity constraints. Both the TSP or the VRP are computationally
difficult problems when they represent an instance that is non-trivial, which in actuality
represents most applications of a realistic size. Through the generalization of the TSP it has
been shown that the VPR cannot be solved in polynomial time because of its computational
complexity and therefore is an NP-hard problem for these non-trivial cases [45]. Moreover,
certain multi-objective optimization goals and constraints can restrict the a VRP solution
from improving unless at the detriment of another objective. Therefore the solution to
any specific instance and variant of the VRP that is determined to be the best solution
will coincide with the Pareto optimality of the problem. This state of optimality then
describes the solution to the VRP in which the objectives can no longer be improved from any

reallocation of resources without introducing deterioration to at least one of the objectives

32).

One of the reasons the VRP is so well studied is due to its broad spanning applica-
tion to logistics and distribution management. Modeling these real world logistical problems
(e.g., United States Postal Service mailing routes) have further lead to many natural exten-
sions of the VRP resulting in countless variations that define optimization goals adhering
to the unique constraints representing the characteristics defining the application. This het-
erogeneous nature of VRP variants has led to the inability to globally define this problem
in a singular accepted formulation. The most common of these varations include conditions
restricting capacity and total time of any route, bounding the number of stops a route may
include, and routing restrictions designating certain stops that must be either selected first
as a priority or delivered within a given time window [42]. The surveys and literature reviews
in [40][17][20][41][62] include further comprehensive lists of the variations of the VRP and

their application in practice.

Several algorithmic approaches have been developed for solving both the connical
VRP and its variants, yet they each introduce trade-offs such as performance, quality, and
accuracy of the solution itself or its derivation. Moreover the usability of these approaches

and their respective solutions can be influenced by factors such as the number of variables
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and constraints described by the multi-objective optimization formulation, computing infras-
tructure capabilities or limitations, and even the solution resilience to uncertain or stochastic
variables. As a result the flexibility of a algorithm to adapt to different environments that
define variations of the VRP has become increasingly important. In fact, the benefit of
designing algorithms that model the canonical form of the VRP with the ability to adapt to
more complex and practical conditions has been identified [43]. This instead would be an

alternative to the extension of the existing variants of VRP.

Existing literature for solving the VRP are commonly classified into one of the two
classifications: (i) exact optimization algorithms that solve for the best possible (i.e., op-
timal) solution [18][50] and (ii) approximation algorithms [40][54] that rely upon heuristics
to reach an acceptable solution [27][17]. The acceptability or quality of a solution can be
influenced by a number of factors such as the number of variables and constraints described
by the multi-objective optimization formulation, computing infrastructure capabilities and
limitations, and even the solution resilience to uncertain or stochastic variables. Within
these two broad classifications, algorithm approaches can be further divided into different
levels of additional sub-classifications that describe their basic strategy. Figure 2.2 provides a
road map of algorithms by their classification of approach and strategies that often be easily
identified in previous works. Each of these classifications are capable in solving all manners
of the VRP and its variants with trade-offs such as performance, quality, and accuracy of
the solution. Furthermore, algorithms are not restricted to only one of the classifications
listed but instead can utilize different strategies of the overall approach. In fact, certain
stages within a given strategy are often represented as smaller sub-problems that adhere to
less computationally complex problems to solve, such as the TSP which can employ differ-
ent sophisticated algorithms for solving it. For example, it is common for many algorithms
classified within the approximation algorithms to incorporate post-optimization strategies
for re-ordering customers to visit within individual routes [16]. The following sub-sections
will provide an insight to the strategies and formulations that are core to these algorithm

classifications.
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Exact Optimization Algorithms

Previous research for solving the VRP with exact optimization algorithms have demon-
strated numerous approaches such as Integer Linear Programming (ILP) and Dynamic Pro-
gramming (DP), which are commonly utilized in solving a wide span of combinatorial op-
timization problems. Solving the VRP through DP involves recursively searching subsets
of the customers to be delivered by a fixed number of vehicles to find the minimum cost of
vehicle routes. This approach is formulated in [42] and is also noted by the authors that the
excessive amount of computations performed by this DP algorithm require significant reduc-
tions in the search space through relaxation procedures of the constraints. These conditions
have restricted the DP algorithms to only be viable in small instances of the problem, and

as a result are not commonly used in practice.

The most successful strategies of exact optimization algorithms are based on solving
ILP formulations through the use of two classes of algorithms: Branch & Bound (BnB), and

Branch & Cut (BnC); both of which rely on combinatorial relaxations. Exact algorithms
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for solving the VRP through BnB have been based on various relaxations from elementary
relaxations to recently more sophisticated bounds. [20] describes these relaxations of BnB
algorithms based on the classic Assignment Problem, state-space relaxations, and degree-
constrained shortest spanning tree, along with the more recently defined bounds relying on
Lagrangian relaxations and additive bounding procedures. However, the applicability of
BnB methods are similarly constrained by the DP algorithms. Conversely, solving the VRP
using BnC algorithms are capable of solving much larger instances of the problem, although
these instance are still very limited compared to approximation algorithm approaches. BnC
algorithms are used to solve the VPR modeled by one of the following ILP formulations:
Set Partitioning (SP), Vehicle Flow (VF), and Commodity Flow (CF) formulations. [47]
describes the interrelationships between these ILP formulations. SP formulations were first
introduced by [55] representing the VRP through a cluster-first, route second approach,
but due to a large number of variables required these formulations are not practical in
obtaining an optimal solutions for most cases. VF formulations are the most commonly
used formulation as it is an extension of the TSP assignment based formulation. The VF
formulation can further be categorized into two formulations (Three-Index and Two-Index
VF formulations) as described in [50]. Similarly to the VF formulation, the CF formulation
is also an extension to the TSP to a lesser degree. CF formulations combine constraints
modeling the movement of goods (i.e., load or capacity) with the movement of vehicles (i.e.,

route) together. These formulations are described in detail in [47][50].

Existing litterature supports a signficant amount of algorithms that have been de-
veloped to solve these ILP formulations through BnC for modeling different variations of
the VRP. [43] includes a survey of exact algorithms that specifically solve the Two-Index
VF, Two-Index Two-Commodity Flow, and SP formulations of the VRP by using a BnC ap-
proach. Other BnC algorithms for these formulations are additionally surveyed in [50][42][20].
Beyond the BnC approach, [18] reviews exact algorithm approaches for solving the VRP that
are based on spanning tree and shortest path relaxations, along with presenting computa-

tional bounds and results in comparison between algorithms. However, due to the complexity
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of the VRP, even the most sophisticated of these exact optimization algorithms will only have
varying success where the instances of the VPR are limited. For example, [46] demonstrates
a general BnC algorithm for the Capacitated Vehicle Routing Problem (CVRP) and [9]
presents a comparable BnC algorithm based on the SP formulation with additional cuts
using a Langruarian relaxation for the CVRP, yet in both cases the algorithms appear to
be limited at instances with around 100 customers. These two algorithms vary in their per-
formance with respect to solution quality, accuracy, and execution time of their individual
problem instances and benchmarks. These limitations hold for even the more recent formu-
lations and extended variations of the VRP, such as the Dial-A-Ride Problem as shown in

21].

Unlike using BnC algorithms for deriving optimal solutions of the TSP for signifi-
cantly larger instances than that of the VRP [61], it can be clearly observed that practical
instances of the VRP quickly surpass the limitations of these exact optimization algorithm
approaches. Additionally, the complexity of implementation and the computational resource
limitations and requirements further reduce the practicality of these approaches and moti-

vate the use of approximation optimization algorithms instead.

Approzimation Optimization Algorithms

Approximation optimization algorithms for the VRP are similar those used for most
combinatorial optimization problems as they relay upon heruistics to reach an acceptable
solution within a reasonable time. As motivated by the upper bounds of the exact algorithms
mentioned previously due to the VRP being an NP-Hard problem, heuristic approaches to
the VRP account for the majority of the research focus because of the solutions produced and
flexibility to more easily adapt to variants of the VRP than exact algorithms are. Coinciding
to that of exact optimization algorithms for the VRP, existing literature of approximation
algorithms can be grouped into two comprehensive categories of strategies that define their
approach or procedures: (i) Classical Heuristics and (ii) Metaheuristics. These algorithms

are not mutually exclusive to these categories as many approaches fall into a number of these
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in the groups, even as pre- or post-processing steps. Additionally, approximation algorithms
can be used to determine the upper bounds of the VRP for advancement or comparison of

exact algorithms [20].

The continuation of new VRP variant introductions into this area of logistics research
has resulted in a substantial amount of new algorithms whose procedures are usually an
improvement upon an originally introduced algorithm as the foundation. For example, the
Clarke and Write Savings Algorithm [19] developed in the early 1960s is a constructive
heuristic approach to the VRP that has maintained its popularity due to its simplicity and
quick execution. This algorithm consists of constructing an initial set of feasible routes,
followed by an iterative process of merging routes when there is a benefit computed by a
savings function. Using this strategy as the foundation, it has continued to be improved upon
[3][53][35]. The Sweep Algorithm by Gillett et al. [28] is also an important algorithm for
the VRP by solving the ILP Set Partitioning formulation through a rotation of a half line in
intervals around the depot to gradually add customers onto the route. The 2-phase algorithm
by Fisher et al. [25] is another novel approach by first solving the generalized assignment
problem (GAP) to cluster the customers, followed by solving the TSP individually within

each cluster.

Classical heuristic deficiencies such as returning solutions that represent local opti-
mums from limiting the search space by ignoring solutions that don’t immediately make an
improvement, have resulted in a majority focus on metaheuristics. Applying metaheuristics
to the VRP has expanded this search of the solution space and demonstrated significant
improvements to VRP solutions for over 20 years [27]. [16] provides some history of this
advancement and provides an overview of metaheursitic algorithms. General purpose meta-
heursitic algorithms have demonstrated some of the best results and can be associated with
the schemes: (i) local search (e.g., simulated or deterministic annealing, tabu search), (ii)
population search (e.g., genetic algorithms, adaptive memory procedures), and (iii) learning
mechanisms (e.g., neural networks, ant colony optimization). Furthermore, many of the ap-

proaches will incorporate a number of these schemes and are even used as a hybrid approach
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with the classical heuristics and exact optimization algorithms. A review of metaheuristic
algorithms and a survey of these respective existing approaches are discussed in [43][20][42].

Tabu search heuristics have typically demonstrated to be some of the most promising
approaches. This heuristic has even posted some of the best known solutions to popular
benchmarks. However Tabu search has a tendency to be slower in determining a solution.
It also can require a significant amount of variables to be included, all of which usually
must be tuned. Nevertheless, it could still potentially offer only slight improvements over
more simplistic and efficient algorithms. Hence advantages can be gained from alternative
heuristic algorithms. For example, [8] developed an extension to the generalized assignment
heuristic [25] as an efficient and computationally fast way to obtain results within just a few
percentage points of optimal VRP benchmarks without some of the complexities of Tabu

search.

2.2.2. The VRP in Emergency Response

The unpredictable nature of a disaster situation requiring immediate emergency re-
sponse, in addition to the disparity between scenarios, can quickly add complexity to the
mitigation efforts. These are described by the varied spatial and temporal aspects of infras-
tructural components (e.g., road network, treatment facility capabilities) or limiting condi-
tions of the scenario (e.g., resource availability, disaster longevity). As a result, logistical
operations in such scenarios necessitate the incorporation of the high-consequence constraints
when formulating the VRP. Furthermore, the evaluation of circumstantial information avail-
ability and ambiguity presents unique challenges from the classical VRP formulation when
modeling this for emergency response. [60] presents a model for the facilitation of dynamic
resource demand allocation and distribution under large-scale disasters. This approach in-
cludes the fusion of multiple data sources to forecast demand and then will prioritize affected
areas using multi-criteria fuzzy clustering. Although this methodology is beneficial for opti-
mizing the relief network, the original problem of optimally delivering the supplies defined
by the VRP still exists.

Unlike the classical VRP, logistics in emergency response plans require the evalua-
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tion of when information is received and the ambiguity of the information. Following the
evaluation of the information quality and evolution, emergency response planners must con-
sider the strategies to respond and the capabilities required. Allahviranloo et al. [2] classify
this type of response into two general frameworks for handling this information uncertainty
developing VRP solutions either with or without recourse. Essentially, if the situation al-
lows for solutions to adjust after the start of the response plan execution then formulating
the problem as a the Dynamic VRP (DVRP) is an appropriate strategy for incorporating
variable uncertainty. Variants of the Dynamic VRP (DVRP) provide adequate formulations
in modeling logistical operations in emergency response under the assumption that iterative
optimization can be made after the initiation of a response plan. Moreover, the incorporation
of variable uncertainty from the emergency situation is a benefit of this formulation. [54] de-
scribes the DVRP formulation with the relation to the information quality and its evolution
while further surveying applications and the corresponding applicable approaches. Specifi-
cally, the DVRP for relief logistics in natural disasters is presented in [17]. A holistic model
formulating a nonlinear dynamic logistics model for disaster response under uncertainty is
additionally presented in [38]. However in contrast with the aforementioned scenarios, many
emergency disaster situations depend on optimal emergency response plans and do not rely
on the re-optimization after the plan is initiated. In these situations, small perturbations
to the plan can result in large consequences. For example, the effectiveness of mitigating a
bio-emergency can be completely compromised unless the allowed time window for treating
the affected population is met. Therefore the initial optimization must at least meet these
constraints and cannot rely on further optimization for this after the fact. Further logistical
and policy issues such as the security requirements for accompanying vehicles transferring
resources often prevent the dynamic optimization solutions from being used in these type
of situations and instead will rely on a solution without changes after the initiation. [2]
presents three Selective VRP (SVRP) formulations for optimizing the selection of facilities
to be used and delivered when information is uncertain and recourse is not allowed. A robust

optimization algorithm for emergency vehicle scheduling is presented in [56] and includes the
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comparison against a particle swarm optimization algorithm from a purposed case study. Al-
though this research is beneficial for modeling the uncertainty in these scenarios that can be
reflected in the optimal network of facilities to be delivered to, these formulations are still
reliant on existing heuristic algorithms such as the genetic algorithmic approaches presented
by the authors. Additionally these formulations must be flexible to reflect the optimization

priorities and high-consequence constraints of the situation it is modeling.
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CHAPTER 3
MINIMIZING THE VEHICLES REQUIRED FOR THE OVRP-UT

3.1. OVRP-UT Mathematical Formulation

We generally describe the geometric OVRP-UT as the combinatorial optimization
problem of determining the minimum number of vehicles required to visit a given set of
customers located within a region. In an effort to maintain some consistency with existing
research of related problems, a simple mathematical programming formulation of the OVRP-

UT is provided based on the two-indez vehicle flow formulation in [43].

We define this problem on the undirected graph G = (V, E), where the vertex set
V ={0,1,...,n}, and the edge set F = {[i,j] : 4,7 € V,Vi < j}. We denote the depot (i.e.,
the location where all vehicle routes must start) by the index 0 € V', and each i € V' \ {0}
is a customer required to be visited by exactly 1 route. This implies that G is constructed
as a complete graph. Therefore any customer can directly reach the depot and all other
customers for a cost defined by the edge of the adjacent vertex. Accordingly, no permutation
of customers are restricted. The cost matrix, ¢;;, is defined on the edge set £, and corresponds
to the cost of travel between the customers 7 and j. If i = 0, ¢;; represents the cost between
the depot and customer j. We assume that the cost of travel is symmetric and these costs
satisfy triangle inequality, where ¢;; = ¢j; and ¢;; < ¢, + cxj, Vi, 7, k € V respectively.

Initially, we abstractly use the term cost in the formulation, because in practice cost
is relative to the geometric region that defines the problem (travel time, length, etc...). For
the remainder of this chapter unless specifically stated, these terms are used interchangeably
to represent cost. It is additionally assumed that any units of measure used for the cost are

all identical.

Next, the binary variables, x;; and y;;, are introduced to represent, respectively, the
existence of the edge [7, j] in the optimal solution and the assignment of vertex j to route .

Customers and depots are both denoted as a vertex accordingly. Then
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0 if the edge [i, j] does not appear in the optimal solution

xij =

1 if the edge [i, j] does appear in the optimal solution
and

0 if vertex j is not assigned to route ¢
Yij =

1 if vertex j is assigned to route 7

The number of vehicles available, denoted as m, usually represents a fixed known value.
Conversely in the OVRP-UT the value of m is unknown, instead representing the vehicles
used to serve all n customers in V'\ {0}. Moreover each route i for i = 1, ..., m, must have an
associated total cost no greater than Z, where Z denotes a constant integer corresponding
to the maximum allowed total travel time per route. Accordingly the value of Z is fixed,
thus it is an unvarying constraint for all routes. We assume that the value of Z is known in

the problem definition.

The OVRP-UT formulation follows:

Minimize m = Zxoj (1)

j=1
subject to:

Z Z YijTjkCik + Zyz‘jiﬁog'cog' <Z, i=1,..,m (2)

J=1 k=j+1 J=1

zoico; < Z, j=1,..n (3)

Zyijzla j:17 , (4)

=1
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The primary objective function in this formulation is to minimize the total number
of vehicles to serve all customers within the required time Z. Objective (1) represents this
minimization using the total number edges [0, j| between the depot and any customer in
the optimal solution, due to the fact that all routes must start from the depot. Constraint
(2) define the core constraint of this variant, restricting the total cost of any route from
exceeding the maximum total cost allowed per route Z. The first and second summation in
this constraint represent the cost of route ¢ starting from the first customer visited through
the last customer in the route. The third summation in the constraint represents the cost
from the depot to the first customer of the route. Constraints (3) define the assumption that
the cost from the depot to any customer is no more than Z. Constraint (4) ensures that all

customers are visited by exactly 1 route.

For clarity, we define the conditions required for a solution to be considered optimal
and/or feasible based on this formulation. For a feasible classification, the set of routes must
satisfy all of the criteria defined in Constraints (2),(3) and (4). For a solution to be optimal,
it must at least be feasible. At the point of feasibility, the number of required vehicles m,
is similarly considered a feasible solution. Additionally when Objective (1) is satisfied, the
solution is then considered optimal. For this purpose we denote m* as the absolute lower

bound of the number of vehicles required, representing the optimal solution to the problem.

Once m* is determined, slight adjustments of the formulation can be made to gen-
eralized this problem as a classical OVRP, where m* denotes the fixed number of vehicles
available. Without loss of generality, Constraint (2) would therefore become the secondary
optimization objective by instead representing it as a minimization objective. However, this
would require defining a state of Pareto optimality to denote an optimal solution. In this
case, the priority objective is associated with maintaining the value of m* such that all routes
have a total cost no more than Z. The secondary objective of minimizing the sum total cost
of all routes can be improved accordingly, as long as the primary objective is not negatively
impacted, i.e., the value of m* does not increase. In other words, the original primary ob-

jective to the classical OVRP essentially can be applied to represent a post-processing step
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for the OVRP-UT once m* is determined. Nonetheless our study focuses solely on solving

the OVRP-UT as defined.

3.2. Structuring a Heuristic from an Optimal TSP

In this section we extend upon the OVRP-UT formulation by establishing the geomet-
ric context of the problem. With this in mind, the current notation is broadened to include
new variables and terms to be used for the remainder of this chapter. Additionally the terms
locations, cities, and points are used interchangeably. The term cities is particularly used to

reference a set containing a depot and customers.

For the geometric context of the OVRP-UT, we assume that the vertex set V' repre-
senting the depot and customers are re-defined as the complete set of cities, .S, within the
region X, where S = {sq, s1, ..., S, }. We similarly let sy represent the depot location within
the set of cities S. The total number of cities in a given set or region is denoted as N(),
such as N(X) for the region X. Hence N(X) = n + 1 since X is the containing region of
all the cities in S (i.e., 1 depot, plus n customers). The cities in S exist on a Euclidean
2-dimensional plane such that each is associated with an (z,y)-coordinate in R?%. Thus the
edge set E and its corresponding cost matrix ¢;;, represent the Euclidean distance between
the points 7,7 € S. For example in ¢;;, where the points i = (x;,¥;) and j = (x;,y;,), the

cost is simply calculated as

Cij = \/(CUJ — ;)% + (Y5 — vi)* (5)

The partitioning algorithm described in Section 3.4, and the corresponding analysis
presented in the following sections all rely on the quantification of the least cost individual

TSP tours, which we denote generally as

T's = {54(0)s S6(1)» -+ S(n)» So(0) }- (6)

In other words, Ts denotes the optimal TSP solution of the cities in S whose tour is repre-

sented by the least cost permutation of the cities, where each sy is the city s € S whose

25



subscript, ¢(i), maps the ith position in the tour and maps to a specific city within the set.
Unless explicitly stated we assume that each tour begins and ends at the depot (i.e., a closed
tour) and is optimal for the provided set of cities. In the case of an open tour such as in the
previously defined OVRP-UT, the superscript 'O’ is included to signify that the tour only
starts the depot and excludes the return trip back to the depot. Thus T would represent
the optimal open tour through the cities in S which only begins at the depot.

The cost of the associated tour constructed from the cities in S is denoted as |Ts]|.
If we let 7 and j reference the customers mapped at the i- and j-index in the permutation
of customers for the tour Ts, then the total cost associated with traversing N(Ts) =n + 1

total customers is calculated as

i=n—1,7=n

|Ts| = cno + Z Cij (7)

i=0,j=1
Furthermore, an open tour can simply be constructed from an closed tour by just removing
the depot from either end of the open tour. Accordingly, the resulting open tour would
maintain the same permutation of the closed tour it was constructed from, excluding the
return to the depot. Or conversely if the depot is removed from the start of the tour, the
open tour would represent the reversed permutation of the closed tour. Thus, the cost of

the open tour TS constructed from Ty is calculated as
TS| = |Ts| — maz{cno, cor } (8)

In that case, constructing 7§ from T will always result in |T9| < |Ts|.

As previously mentioned, the heuristic presented in this chapter assumes that the
optimal TSP solution for any given set of cities is either known or can be derived. This
is admittedly not always achievable for instances where the number of cities is significantly
high. Under those circumstances, sub-optimal TSP solutions can be used in place of the
optimal TSP solution when this cannot be assumed. Therefore if the optimal cannot be as-
sumed than the underlying error relative to the selected approximation TSP algorithm will

just decrease the overall performance bounds presented this study accordingly. This concept
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of propagating the error to results based around optimal TSP tours is similarly presented in
the conclusion of [37] for extending the work. To that end, [30] presents a theorem that states
the length of a tour created using any insertion heuristic (i.e., inserting all points in a set one
by one in some defined order) gives a length at most [log,(n)]+1 times the the optimal TSP.
Although the optimal TSP continues to be assumed for the heuristic algorithm presented in
Section 3.4, extending these results to exclude this assumption is relatively straightforward.
For example, [13] describes many fast algorithms for approximating the geometric TSP and
includes a comparison of their performance relative to various distributions of the cities. The
euclidean distance as shown Equation 5 is particularly useful for geometric TSP approxima-
tions. Approximation algorithms for the geometric TSP are often highly efficient even for
a large number of cities. Accordingly, [6] presents multiple polynomial time approximation

schemes for the euclidean TSP.

3.3. Fundamentals of the Heuristic Scheme

Determining the optimal value, m*, often requires specific knowledge of the prob-
lem instance’s defining properties (number of cities and their distribution, cost constraints,
etc...). Nonetheless, a loose lower bound, denoted at w(m), is easily obtained without this
information for w(m) > m*. The lower bound w(m) of vehicles required in the OVRP-UT
can intuitively be constructed from a generalization of determining the number of vehicles
required in the Capacitated-VRP (CVRP) literature. For example, [43] determines this value
for the CVRP by dividing the total sum of all the customers’ demand, divided by the capac-
ity of a vehicle. Since the solution to the OVRP-UT is determined by the set of individual

open traveling salesman tours (OTSP), a similar bound can be constructed as

maz(c;;) *n

w(m) =

_omazle)En e 0
7 —mar(co) i#j, Vi,jES, (9)

where max(c;;) and max(cy;) denote, respectively, the max distance between any two cus-
tomers and the max distance between the depot and any customer. However equation (9)
is clearly a very loose lower bound of m*, as it is assuming individual OTSP routes at a

very high cost. Tt is well-known that the individual optimal TSP tour grows at a cost of /n
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when n is large enough, where n = N(S'\ {so})[14]. Thus we conjecture that a tighter lower
bound, denoted as 2(m), of required vehicles is possible when partitioning an optimal- or

near optimal-TSP for the OVRP-UT.

AXIoM 3.1. For all positive integer values of m denoting the number of vehicles tours in any

independent solution, m* < m when a solution of m tours satisfies the OVRP-UT criteria.

From Axiom 3.1, it is evident that demonstrating the existence of a set of m vehicle
routes satisfying all constraints of the OVRP-UT formulation only proves that the value of
m* is at most equal to m. Even more so, no measure of closeness relative to (m* — m)
is discernible and subsequently prevents an evaluation of m in comparison to the absolute
minimum value. Conversely if the same instance of m total vehicle routes can additionally

show that that no feasible solution exists with (m — 1) vehicles tours then m* must equal to

m.

Nonetheless the challenges are quite apparent in proving the feasibility of specific
values of m. This is particularly the case for the smaller values of m relative to the specific
problem instance. Even more, any specific set of m constraint-satisfying vehicle routes can
potentially have no resemblance or correlation to the set of (m — 1) feasible routes when the
inequality m* < m is valid (or assumed). On the other hand, explicitly constructing a set of
m feasible routes proves without any uncertainty that m* is at most equal to m. For these

reasons an alternative approach is defined.

Instead of selecting an arbitrary value of m that is feasible and then iteratively proving
this feasibility for values less than m, the feasibility of m is first verified through a single tour
through all cities such that (m = 1). The value of m is then incrementally increased until it
is deemed feasible and thus represents the value of {2(m) relative to the optimal value m*.
Determining Q(m) through a partitioning approach is motivated by the aim of structuring

a heuristic whose underlying notion extends from the concept of Axiom 3.1.
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3.4. A Recursive Partitioning Heuristic

In this section we present a recursive partitioning heuristic to construct the Q(m)
bound that satisfies the constraints defined by the OVRP-UT previously defined in Sec-
tion 3.1. Algorithm 1 formally describes this heuristic and consists of two fundamental
procedures: (i) splitting a single tour into two open TSP tours at a similar cost, and (ii)
constructing a third tour from a set of cities removed from two infeasible tours. The objec-
tive of the first procedure is to try and construct two feasible tours satisfying all constraints.
Similarly, the second procedure’s objective attempts to modify these two tours by introduc-
ing a third tour in a manner such that they are all feasible. These procedures are defined in
the following sections accordingly by the SPLIT and the EXTRACTCITIES procedures, which
reflect the aforementioned strategy for deriving 2(m) by incrementally increasing the value
of m, initially set as 1, until a feasible value is reached. Specifically, Algorithm 1 extends this
strategy by recursively partitioning a set and independently verifying its feasibility in three
distinct phases at each recursive step. Table 3.1 illustrates the objective of these phases for
the initial execution of the algorithm. If (m) > 3 is verified in the third phase, the algo-
rithm is recursively called independently for subsets of the original set S. For this reason,
Algorithm 1 denotes the parameter T4 in a general manner. Accordingly, A denotes either

the initial set S in the first pass, but otherwise denotes A C S, as a subset of S.

Given a set of cities, A, Algorithm 1 constructs a lower bound on the total number of
vehicles required for the OVRP-UT constraints to be satisfied. As illustrated in the initial
call of Algorithm 1, the optimal TSP tour, T4, will represent the complete set of cities defined
by the problem instance. For the first phase, the feasibility of a single tour (i.e., m = 1) is
examined. If (m = 1) is shown to not be feasible, the second phase attempts to construct
a solution to examine the feasibility of two tours (i.e., m = 2). However, if (m = 2) is
similarly demonstrated to not be a feasible solution for the set of cities in A, three tours are
constructed in the third phase. For most problem instances it is to be expected that m* > 3.

Assuming m* > 3 for A, the value of the lower bound Q(m) is at least verified following the
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BouND VERIFIED FLEET SIZE ALGORITHM PHASE DESCRIPTION

Q(m) >1 m=1 [Phase 1] Determine the optimal tour, T, through all cities in S, starting and
ending at the depot. If |T9| < Z, then Q(m) = 1. Otherwise we have illustrated that
Q(m) must be greater than 1 and continue to PHASE 2.

Q(m) > 2 m=2 [Phase 2] Partitioning the cities from the set {5\ {so}} into two independent sets
,A and B, such that an optimal open tour of these sets, T and T, are
approximately equal, |[T9| = |T§|, after adding the depot back in for each. If
maz{|T],|TS|} < Z, then Q(m) = 2. Otherwise we have illustrated that Q(m) must be
greater than 2 and continue to PHASE 3.

Q(m) >3 m=3 [Phase 3] Extract an optimal set of cities Y C A|J B from the two routes, T
and T, currently exceeding the cost of Z such that Ay < A\ Y, and By + B\Y.
Determine the optimal tours independently for each of the resulting sets as
TAOy, T gy and T)¢. If none of the three routes have a cost that exceeds Z,
then Q(m) = 3. Otherwise we have illustrated that Q(m) must be greater
than 3 and we will repeat PHASE 1 for each set, A and B, independently.

Table 3.1: Description of the three phases defining the procedures applied in each recursive
step of the partitioning heuristic. This table provides a general outline of objectives in
Algorithm lor the initial execution. The first column represents the lower bound that is
verified at the beginning of the phase. The second column denotes the fleet size to illustrate
the feasibility of in this phase.

third phase. With this in mind, disjoint subsets of A are then independently passed into this
algorithm recursively. Hence, each recursive step of this algorithm will consist of verifying

the feasibility of a 1, 2 or 3 tour solution for the specific set passed in.

Table 3.1 generally describes the objective of the objective of the SPLIT and EX-
TRACTCITIES procedures in Algorithm 1 for the second and third phases, respectively. This
abstractly illustrates the structure of the the heuristic for verifying the feasibility associated
with incremental values of m. The individual optimization statements, however, must each
be addressed. The aforementioned fundamental procedures of the algorithm are presented to
derive an optimal partition of an existing tour, as well as extracting an optimal subset cities
to remove from a tour. As previously stated, it is assumed that an optimal tour adhering to

the classical TSP can be achieved for any given set of cities.

3.4.1. Verifying the Correctness of the Partitioning Heuristic

Before explicitly defining the two additional procedures called in Algorithm 1, the
correctness of this algorithm is verified in this section. Namely, the veracity of Algorithm
1 in representing the bounding procedure for €(m) is formally proven. In other words, we

illustrate that the number of required vehicles derived from this lower bounding procedure
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Algorithm 1 Recursive Partitioning Heuristic

1: procedure PARTITION(T Y, Z)

2 if ||T4] < Z then > Phase 1
3 return 1

4: end if

5: {Ts,Tc} < SpLIT(Tx) > Phase 2
6 if |Tp| < Z and |T¢| < Z then

7 return 2

8 end if

9: if |TB| > Z and ‘Tc| > Z then

10: {Ty,,Ty., Ty} < EXTRACTCITIES (T, T¢) > Phase 3
11: if |7y, | < Z and |Ty.| < Z and |Ty| < Z then

12: return 3

13: else

14: return (PARTITION(T 5, Z)+PARTITION(T¢, 7))

15: end if

16: end if

17: if |T5| > Z then

18: return (PARTITION(T5, Z) + 1)

19: else

20: return (PARTITION(T¢, Z) + 1)

21: end if

22: end procedure

is in fact achievable (i.e., satisfies the OVRP-UT criteria) for the problem instance provided.
This, however, does not explicitly illustrate the worst-case performance ratio of the resulting
Q(m) bound that is associated with the optimal lower bound m*. Nonetheless, it does
confirm that the structure of this heuristic is aligned with deriving the minimum number of
vehicles required for any problem instance of the OVRP-UT.

For the sake of clarity in this section, the optimal solution, m*, referencing the mini-
mum required vehicles for a specific set of cities is denoted with a subscript of the set. For
example, m’  and m}, denote respectively, the optimal solution for the set A; and A, inde-
pendently. Moreover, unless explicitly stated, any set referenced in this manner is assumed
to contain exactly one depot and at least 1 customer. From these assumptions, the following

lemmas are presented for the verifying the correctness of Algorithm 1’s partitioning scheme.

LEMMA 3.2. m}, < mjg for the subset Ay C S.

PROOF. Let N(S) = n and N(A;) = [. Since A; C S, | < n accordingly. If [ = n, then
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clearly m’ = mjg. Otherwise m’ < mjg for when [ <n. ]

LEMMA 3.3. mg < m}, +m}, for the subsets Ay and Ay where Ay C S, Ay C S,

S = A1 Ag, and Ay intersects with Ay by the depot only.

PROOF. Given that N(A;)+ N(A2) —1 = N(S) as a consequence of the subsets’ properties,
then for mj in the worst case, the customers in A; will require m7, tours, while the customers
in Ay will require mJ, tours. In other words mJ, + mJ, are required for the set S in the

worst case. Thus, mg < mj +mj,. UJ
LEMMA 3.4. mg < mg +ml,, where Ay C S, and S=8\A
PROOF. Lemma 3.3 0

Lemma 3.4 is an extension of the property demonstrated in Lemma 3.3. Accordingly, Lemma
3.4 illustrates that regardless of the customers included in the subset, A; C S, the minimum
number of tours required for S is never more than m}, + m%, where S always denotes the

customers not included in A;.

LEMMA 3.5. mg < mjy, +mj, + ... +m} , where Ay, Ag, ..., A, are all disjoint (excluding

the depot) such that A; C A, i=1{1,2,....,n}
PrOOF. Lemma 3.4 0

To illustrate the correctness of Algorithm 1, we first assume that set of cities, A, are
partitioned into n subsets, denoted as Aj, As, ..., A, such that A; () A2 ) ... [) A =
{depot}, and A; |J A2 U ... U A, = 5. Next assume a feasible solution for each subset
is derived. Applying Lemma 3.5 accordingly, the minimum number of vehicle tours required
for X is guaranteed to be at most equal to the sum of tours used in each of the n subsets.
Hence, any partitioning scheme adhering to this structure, including Algorithm 1, will result
in a total number of vehicles that satisfying the OVRP-UT constraints. For this reason,
both the SPLIT and EXTRACTCITIES procedures included in this algorithm are designed

such that their resulting sets only intersect with the depot and their union will equal the
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union of the input sets. Furthermore, since each recursive call of this algorithm will always
just result in further partitioning of the original set, these constraints will continue to be
satisfied. For example, if the original set X is partitioned into the disjoint subsets B and C,
a recursive call of the algorithm on B will never construct a subset that intersects with C'
beyond the depot. And similarly for C' instead of B, accordingly. Therefore the Q(m) bound
derived by Algorithm 1 for a given problem instance will be achievable, and thus verifying

that m* < w(m).

3.4.2. SpLIT: Verifying Q(m) > 2 for the Set A

In the initial execution of Algorithm 1, parameters of the PARTITION procedure in-
clude the optimal tour Ts, where S defines the set of all cities contained in the original
region of interest. Additionally it takes the value of m initially set as 1 (corresponding to
the initial route Ts), and the constant value Z defined by the problem. Proving m* > 1 is
easily demonstrated by validating [T | > Z, i.e., if the cost of the tour exceeds the allowed
time for the entire region. This is expected to be true for large instances in practice for
this initial pass. At some depth in the recursion however, the set of cities passed into this
algorithm, denoted as A, phase will be small enough such that the construction of either 1,
2, or 3 independent routes through all cities in A will not exceed Z.

At the beginning of the second phase during the algorithm’s initial execution, m* > 1
will have been verified from PHASE: 1. Thus the feasibility of (m = 2) needs to be determined.
Without loss of generality, it can be assumed that A..either denotes the complete set of all
cities, S, or a subset of S associated with a recursive call of the algorithm. Regardless, the
feasibility of (m = 2) would still need to be determined for the set. For this reason, we
reference A, as the set of cities to verify the feasibility of m = 1,2, or 3 without explicitly
mentioning the level of recursion it is associated with.

As previously stated, it is assumed that the optimal tour for any set of customers
can be determined. Nonetheless, determining a single partition for A that assigns each of
its customers to one of the two newly constructed tours must still be addressed. Moreover,

this assignment must be performed such that the two resulting routes allow us to prove that
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m = 2 is not feasible for A if we cannot derive an assignment to show otherwise. Under
these circumstances two tours are constructed from a procedure based on logic introduced

in Conjecture 3.6.

CONJECTURE 3.6. Let TS and TS be any two open tours such that B C A, C C A, BlJC =
A, and B(\C = ng; where ng denotes the depot in the set of cities A. Additionally, let
Ty denote the optimal TSP for the entire set A. Assume | and k are positive integers
denoting the value of N(B) and N(C'), respectively, where | > 2 and k > 2. Furthermore,
I+ k—1=n where n = N(A) since every set contains the depot. Accordingly, let Pg
and Pc denote the permutations {bg(o), by(1), ---, Doy} and {cs0), Co1ys - Cotry } for the tours
TS and TS, respectively. Assuming ﬁ(; represents the reverse order of the permutation Pg,
let Tyg = {PB,ﬁc} represent the resulting tour from appending the reverse order of the
tour TS to the end of TS. Thus Ty = {bs(0): bo(1)s -+ Co(1)s Cok) Co(k—1)s -+ Co0) }, where
beo) = Co0) = no. Then, m* > 2 for the set A if either TS > Z or TS > Z when the
LCS(Ty&, Ta) =~ n, where LCS represents the value of the Longest Common Subsequence
between the permuation of the tours.!

Although we cannot prove or disprove this conjecture, the following supporting ar-
guments are presented on why it is natural to assume to assume its validity. Consider a
problem where a set of n total customers and single depot are given. From these cities a
single optimal open tour, denoted as T}, must be constructed by selecting a subset of these
cities. The maximum number of cities that can be chosen to include in 7} must be at least
one and less than n. Following the construction of this route, the remaining cities that were
not included in 7T} are then automatically assigned to a second open tour T5. It is also as-
sumed that T will be a least cost tour corresponding to an optimal permutation of the cities
it includes. Both of these tours will begin at the same depot. The objective of this problem
is to minimize the total penalty. The penalty is determined by a function that grows linearly
to the value of |T1| + |T2|. However, there is an additional penalty that is calculated by a
function that grows exponentially with the absolute value of |T1| — |T3].

Hnformation for the LCS is presented in [52]
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From these constraints a decision heuristic can then be designed for selecting the
cities to assign to T;. Because the total penalty must be minimized, each decision will have
a distinct penalty and an ambiguous penalty related to the choice. The known penalty for
selecting a city is proportional to the tour cost of inserting the city into 7. By selecting this
city however, it is no longer available to include in 75 at the end. This motivates a heuristic
that iteratively selects the city that would (i) minimally increases T}’s total cost, that would
otherwise (ii) maximally increase T5’s total cost if not assigned to 77. Furthermore to reduce
the difference in cost between the final tours, the heuristic would alternate the assignment
of a cities to the tour with the lowest current tour cost. Assuming this decision heuristic
will only make optimal decisions towards minimizing the total penalty previously described,
we conjecture that the combined permutation of both resulting tours will closely reflect the
optimal permutation of a single closed tour through all of the cities. Additionally the final
cost of 77 and 75 should be minimized such that removing any city from one route to include

in another would result in a cost increase, along with further unbalancing the routes’ cost.

From the concepts of Conjecture 3.6, the SPLIT procedure defined in Procedure 2
is designed to construct two feasible tours from the optimal tour whose current cost is
exceeding Z. As shown in Algorithm 1 (line 5), T4 is the parameter of the SPLIT procedure.
This procedure starts at the beginning of T4 and traverses the tour while maintaining the
cumulative cost at each additional step. During the traversal the index order of the current
customer being visited is kept. When the traversal reaches a point in the tour at some index
J, such that traveling to the next customer at index j 4+ 1 would result in a cumulative cost
exceeding |T4|/2, the traversal terminates.? This value of j that marked the index of the last
customer traversed in T, becomes the splitting point to construct two new routes 7§ and
TS. T§ is assigned the customers from T4 starting at the depot and through customer j,
maintaining the same permutation. The assignment of T is similarly constructed with the
remaining customers from index j + 1 through n — 1 in 74. However, because T’y starts and

ends at the depot, the permutation of TS instead will begin at the depot, but then travels

>The indexes reference the customers corresponding to their position in the T4 tour.
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to the customer at the n — 1 in T4. Accordingly, the tour for 7§ will start at the depot,
followed by the n — 1** customer, then n — 2, and so on until ending at the customer at the

J+ 1index in T'y.

Procedure 2 Splitting A Single Route
1: procedure SPLIT(T,)

n=N(A)

1=0,j=0

repeat

&

L= 1 Caygyaggin
J=J+1
o T
until (i + Ca,pa,6.0)) > R
T <= {ag(0), (1), Qo(2); -+ Go(5) }
Te + {ag), ag(n), agn-1); - A1)}
10: return {75, 7¢}
11: end procedure

The final step of this phase is to verify Q(m) > 2 for the set A. This is again easily
demonstrated by verifying if either |T§| > Z or TS| > Z. If even one of the two tours exceed
the allowed time than we know that the addition of at minimum one more tour is required
for the set of tours to be feasible. For most instances if |Ts| > 27, then both TS and TS will
also be expected to exceed Z. This expectation is a consequence of the partitioning from
the SPLIT procedure that produces two tours both at a cost approximately equal to |T4|/2.
Specifically Lemma 3.7 proves both |T| < |T4|/2 and |TZ| < |T4|/2, demonstrating that

both tours will always have a cost less than half of the original.

LEMMA 3.7. For an optimal closed tour Tx = {ag(0), Gp(1), - Gp(n), Qp(0) }» there exists an
index, i, such that the sub-tours, {as), @e(1); - Gp@i-1)} and {Gp@), Ap(it1)s - As(0) }, €ach
have a total cost that is at most |Ta|/2. Additionally if one sub-tour equals |Ta|/2, the other

must be less than |T4|/2.

PROOF. Let T4 be an optimal closed tour visiting n + 1 the customers® of A. Since the
tour 7' is closed, the depot will be visited twice (at the start & end of the tour) and the

remaining n customers will be visited only once. Now let 0 index any customer in the tour

3Triangle inequality is still assumed for the associated cost between the customers
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such that 1 will index the customer next in the tour according to the permutation of T}y, then
similarly for 2 and so forth. Following the ordering of the permutation of the tour, beginning
at customer 0 and sequentially moving through the remaining customers will represent the
tours total cost |T4| = h, where h is a positive constant value representing the total tour
cost. Observe the sub-tour of Ty that starts at customer 0 and ends at customer ¢, denoted
as Tp;. Moreover assume that the customer at index ¢ represents the first customer in Ty
such that the sub-tour |Tp;| exceeds h/2. Therefore because |Ty;| > h/2 then |T| < h/2
must also be true. Additionally for j = i—1, |Ty;| < h/2 must be true since as a consequence
of |To;| > h/2. From these cases it is clear that |Ty;| < h and |Tj| < h must both be true;

hence proving Lemma 3.7 U

Additionally by extending Lemma 3.7 we also know that the cost of the two resulting
tours are approximately equal, |TS| &= |TE|. Lemma 3.8 verifies this approximation by

bounding the proximity to equality between these two tours’ associated cost.

LEMMA 38. |(|T8] — [TE|)| < ¢ij , where ¢;; denotes the cost of the edge removed to split
an optimal tour Ty between its i*" and j*" customers such both tours’ associated cost do not

exceed |Ta|/2 (as shown in Lemma 3.7).

PROOF. To bound this approximation we first assume 75 < Tg (i.e., the cost of the tour
listed first is at most equal to the second tour’s cost), otherwise the terms are simply switched
and the following equations still hold. In a manner similar to the proof of Lemma 3.7,
we continue to let h represent the cost of the original route to be partitioned, |T4| = h.
Accordingly it is then known that |75 + |TE| + ¢;j = h, and with a simple substitution the

difference can be alternatively observed as
791~ 1781 = 1781 ~ (h — 78] - ¢;)
= 78]~ h+ 7] + (10)
=2|Tg| — h + ¢

To demonstrate the bound of the equality approximation we recall that Lemma 3.7 proves
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that the addition of ¢;; to either of these tours would result in a cost that exceeds h/2.
Therefore both of these tours’ cost must be within ¢;; of h/2, and hence |TS| > h/2—¢;; and

IT8| > h/2 — ¢;j. Furthermore, Lemma 3.7 proves that |T5| < h/2 and |TE| < h/2. Thus,
1781 = TE|| = 2IT5| = h + ¢
< 2(h/2) — h+c; (11)
< Cjj
U

Once the cost of the tours TS and TS are shown to exceed Z, we attempt to prove
the feasibility of (m = 3) in the following section. However, if 2(m) > 3 is verified to be
true (as shown in Section 3.4.3), the routes derived from this section, 7§ and TS resulting
from the SPLIT procedure will be used as the parameters for the next depth of the recursive

algorithm.

3.4.3. EXTRACTCITIES: Verifying Q(m) > 3 for the Set A

Following the initial pass through the first two phases, the third phase (PHASE:3)
begins with verification that that (m) > 2 for a set of optimal tours visiting the cities
in A. To demonstrate that (m = 3) is feasible, three tours must be constructed such that
their associated cost does not exceed Z. Otherwise more vehicles are required for a feasible
solution and thus 2(m) > 3.

The tours constructed from PHASE:2 provide significant value as a starting point for
this phase. Recall that the objective in the OVRP-UT is to minimize the vehicles required.
The previously constructed tours, T§ and TS, similarly reflect this minimization objective
in their assignment of cities between the tours. Accordingly, the Q(m) > 2 lower bound is
validated specifically from these routes. Assuming Q(m) > 2, the cost of TS and TS can be
used to quantify the distance between these two routes and a feasible solution with m = 3

routes.

Procedure 3 abstractly outlines the objective of defining three tours by: (i) removing
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cities from the two existing infeasible tours, and (ii) constructing a new tour from the cities
removed. This resembles a generalized version of a local optimization TSP heuristic known
as the inter-tour improvement [13], which improves an existing tour by moving a customer’s
current placement within the tour into different spots that result in a lower cost. However,
in the EXTRACTCITIES procedure, cities are swapped from one of the two tours and into
the newly constructed tour. Moreover, the objective is to improve the overall solution by

reducing the two existing tours while minimizing the resulting cost of the tour constructed.

Procedure 3 Determining An Optimal Subset Of Two Tours For Removal
1: procedure EXTRACTCITIES(T 3, T¢)
2: Determine optimal Y, where Y C B JC
3 By <+ {B\Y}
4 Cy + {C\Y}
5 return {Tp,,Tc,, Ty }
6: end procedure

Called recursively in Algorithm 1 (line 10), this procedure (EXTRACTCITIES) takes as input
the two tours constructed from PHASE:2 whose cost exceeded Z for a set of cities. Returning
from this procedure are three new tours used to determine the feasibility of (m = 3). The
aim is to derive an optimal set Y, where Y C {B|JC}, such that by removing the cities in
Y from B and C, the resulting three sets will each have an optimal tour at a cost lower than
Z.

Formally we denote the cities removed from B and C' as Yp = {BJY} and Yo =
{CUY} respectively, and thus Y = {YzJYc}. Additionally, the optimal tour through the
resulting sets {B \ Yp} and {C'\ Y} (i.e., the cities remaining in B and C') are referenced,
respectively, as T and T, , where By = {B\ Y}, and Cy = {BC'\ Y¢}. Similarly the
tour T¢ will denote the tour defined by the cities {Yz|JYc} removed from the tours T§
and TS. Due to the restriction that all tours must begin at the depot, it is assumed that
the depot is excluded from both subsets of cities removed and is initially placed within Y.

When selecting the cities Yz and Y¢ to extract from 7% and TS respectively, the
resulting tour through the remaining cities must have a reduced cost such that |Tgy| <Z

and |TE | < Z. Accordingly, let AT;, for i € {B,C'} represent this reduction in cost from
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the tour T\ following the removal of the cities Y; where
AT =|TP| = |TZ|, Vie{B,C}. (12)

Calculating this change in cost from Y; when removing a city is relatively straightforward.
This is calculated by: (i) subtracting the cost of the two edges between the city to remove
and its adjacent cities in the tour, and (ii) add the edge cost to connect those same two
adjacent cities.

We recall that TS and TS are the tours constructed from partitioning the optimal
TSP tour T4 (i.e., a parameter of Algorithm 1). Hence from Lemma 3.7 and Lemma 3.8,
|T4| can be used to illustrate the minimum value of AT; required for T < Z, Vi € {B,C}.
Accordingly, the cost of T that exceeds Z is quantified as |Ts| = aZ. Hence, the coefficient
« is equal to |Ts|/Z, representing the number of times |Ts| exceeds Z. Since it has been

verified from the second phase that m > 2 for the set A, a division by 0 is not possible.

LEMMA 3.9. When a > 1, (m = 3) will not feasible if

SO AT < Zla - 1)~ [|Ta] - (T9] + [T2))] (13)
i=A,B

PROOF. The cost of at least one tour will always exceed Z when this inequality (i.e., Equation

13) is true; hence proving this lemma. O]

If the inequality in Equation 13 is not true, however, it does not necessarily mean
that (m = 3) is feasible for the set A. Instead it is only one of the conditions required to
verify this feasibility accordingly.

With the intention to verify the feasibility of (m = 3) at this phase, the increased
cost in |TQ| that results from the insertion of the cities removed from B and C' must also be
considered. We denote this change of increased cost in |T¢| from inserting the cities removed

for B and C as

ATy = Y ATy, (14)

i=B,C
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where
ATy, = |10+ Y| - [TQ], Vi€ {B,C}. (15)

Calculating ATy, the increased cost of the tour T, is not as straightforward as computing
AT;, i.e., the cost reduced from the tour 7; when removing cities. The dependence of each
procedure (inserting cities, removing cities) on the other demonstrates this. Specifically for
the reduction of cost from removing any cities, the change AT; is both known and unchanging

at the same point that the cities in Y; are defined, where i represents either B or C.

The insertion procedures, however, diverge from the independence maintained be-
tween removing the cities Y from T and TS. In other words, for any set Y, the cost
reduced from T is independent of the cost reduced from T;S. Conversely, the construction
of Y depends on the cities removed from both B and C. Accordingly, any city from from
either B or C' will have a relative insertion cost associated with the completed tour T}
constructed. Moreover, if each city is inserted into 7% in the order it is removed from either
B or C, the increase in cost will only be relative to the previously inserted cities. Hence,
unless order of insertion corresponds directly with the exact order the cities are visited in

for the optimal tour through Y, the cost will differ.

Selecting the cities to remove will have an associated cost that can be measured
immediately, and a cost that is known only with the complete definition of both Yz and Y.
From observing that the inclusion of any prospective city in Y will have an analogous effect
on the resulting tours, it is indisputable that the selection of ¥ must be made towards the

following optimization objectives:

Maximize Z AT
i=B,C (16)
Minimize ATy
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subject to:

T <z, Vie{B,C}
(17)
Y| < Z.
The two objectives in Equation 16 establish, respectively, that Y should be selected such

that (i) the total independent reduction from the tours, TS and T, is maximized, and (ii)

the increased cost of the tour, Ty, is minimized.

To quantify the reduction in cost, AT}, and the cost increased, ATy,, resulting from
the selection of cities, Y;, their proportionality relationship is observed. In particular, con-

sider the scenario where these rates of change are directly proportional such that
AT, = (M)ATy,, Vie{B,C} (18)
where the coefficient \; € R*, describes the proportionality constant.

Axiom 3.10. If \y < 1, then |Ty| < Z if

Y AT, < 7 (19)

i=A,B
It is apparent from Axiom 3.10 that when the total reduction in cost to remove the
cities, Y, from the tours, T§ and T, is at most equal to the cost of inserting these cities into
Ty, the difficulty in constructing the optimal selection of Y is drastically reduced. Similarly
for the case when A\; > 1, or at least is assumed for some upper bound, deriving Y will
correspond directly to the cost of TS and TS exceeding Z. As the value of \; is increased,
the optimal value, m*, would similarly be expected to increase. Nonetheless, quantifying
the change of cost increased ATy;, is only possible when both Yz and Y are defined. As
a result A\; cannot solely define the proportionality constant between AT; and ATy,, where
1 represents either B or C'. Instead this relationship must be formalized such that the
construction of each set, Y and Y, independently maximizes the reduction of the tour that

cities are extracted from. Furthermore, the resulting set, Y, must satisfy the constraints
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throughout the construction of the two sets (i.e., Yz and Y ). Theorem 3.11 is subsequently

defined from these observations and lemmas.

THEOREM 3.11. (m = 3) is feasible when Y; is selected such that |T9| < Z and ATy, =
(M) ATy where Ao = (AT; (m —1))", Vie{B,C}.

PROOF. If removing Y; from T results in a tour cost that is at most equal to Z, then an
additional tour through all the cities in Y that has a cost no more than Z will prove that
(m = 3) is feasible. Therefore the average increase in cost to Ty resulting from adding Y;
should be equal to Z(m — 1)~t. The value of Ay can be determined by setting ATj(\y) =
(m—1)~!, accordingly, and thus Ay = (AT; (m —1))~!. Under these circumstances, the cost

of Ty will be no more than Z, proving this theorem. (]

This theorem defines the maximum value of Ay for (m = 3) to be feasible. Recall
that A\; was previously used to represent the proportionality constant between the increase
to T resulting from adding the cities Y; and the cost reduced from T with the removal
of these cities. A\, similarly defines this relation but instead the coefficient is defining the

increased cost to a new tour as a result of the reduced cost for the cities defined by Y; for

all i € {B,C}.

COROLLARY 3.12. For any three tours that verify the feasibility of (m = 3) when o > 2, the
cost to insert the cities in Y; to construct TV, is at most (o — (m — 1))~ times the reduction

of cost from removing Y; from T, Vi € {B,C}.

PROOF. From Lemma 3.7 and Lemma 3.8 we know that || & (m — 1)7!|T4|, where T
represents each tour 75 and TS independently that were derived by splitting T,4. These
lemmas demonstrate the maximum cost of the tour as [T?| < a(m — 1)7*Z, given that
IT4| = aZ. At minimum, Y; must be selected such that its removal from T results in a
cost that no longer exceeds Z. Otherwise when |T£| > 7, the selection of cities, Y;, will not
verify that (m = 3) is feasible. Consequently the minimum value of AT; can be calculated

from these constraints. Hence the minimum required reduction required by any selection of
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cities to define Y; is defined as

AE:Z( a >—Z
m—1
_ (a—m+1>
m— 1

Furthermore ATy, < (m —1)~'Z for the tour T to be feasible. Otherwise |7)7| > Z when

the average cost from inserting Y; is more than (m—1)"! times the total allowed cost. Similar
to Theorem 3.11, we define the proportionality constant between the variables denoting the
change in cost. Substituting for the constraints defined in Theorem 3.11’s proof results in

the following:

A a—m+1
ATy, = (M) AT; =N)|— | Z 21
= AT = T <2>< m_1> (21)
Following Equation 21, )\, is simplified as
N — (m—1)"1Z
T lla-m+1)(m-1)"12Z2
__ 1 (22)
a—m+1
=(a—(m-1)~"

Therefore if (m = 3) is assumed to be feasible, the maximum insertion cost ATy, of Y; such
that |T9| < Z is at most (o — (m — 1))~! times AT; (the cost to remove the set Y;) when

a > 2. O

Following Corollary 3.12, Axiom 3.13 states a significant property resulting from the

proportionality constraints associated with selecting a set of cities Y from 7§ and TS.

AX10M 3.13. For (m = 3) to be feasible when o > 3, the increase in cost resulting from the
insertion of the cities, Y;, ¥i € {B,C}, into the new tour TS must always be less than the

cost reduced by its removal from the existing tour T .

This axiom identifies one of the more complex properties in solving this problem.
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This is particularly the case when the cost of the initial optimal tour through X exceeds the
allowed time by more than a factor of 3.

Verifying the feasibility of (m = 3) with certainty in this scenario presents an addi-
tional combinatorial problem. Namely, even by assuming a procedure can optimally con-
struct the set Y, a resulting tour, T, that exceeds the allowed time (i.e., Z) would not prove
with certainty that m = 3 tours are not feasible. This would require a more thorough inves-
tigation of alternative approaches to deriving a set of three disjoint TSP tours. Approaches
independent of the single optimal tour constructed through the entire encapsulating region
would be particularly of interest. Nonetheless, the properties illustrated in this section can
still provide the characterizations of a heuristic structure for determining a tight bound on
the minimum required vehicles for the OVRP-UT.

In the following section we present a probabilistic approach for estimating the value

of m* without explicitly defining the third tour, 7.
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CHAPTER 4
PROBABILISTIC ESTIMATION OF FLEET SIZE FEASIBILITY

Algorithm 1 defines a partitioning heuristic presented in Chapter 3 for calculating
the lower bound, £2(m), of the OVRP-UT where m denotes the minimum number of vehicle
tours required to satisfy the OVRP-UT criteria. Moreover, m* < 2(m), where m*, is used to
denote the optimal solution to the OVRP-UT. The partitioning heuristic attempts to verify
if either (m = 1), (m = 2), or (m = 3) independent tours will satisfy the OVRP-UT criteria.
If Q(m) > 3 for the set A, Algorithm 1 is recursively called on two disjoint subsets of A.!

The feasibility of the (m = 1) and (m = 2) solutions are each verified through the
explicit definition of 1 and then 2 optimal tours, respectively. In other words, each of the
two solutions, (m = 1) and (m = 2), are verified by constructing their respective tour(s) in a
specific manner, such that if a tour exceeds Z (i.e., the maximum time allowed) it verifies that
the solution is not feasible. Algorithm 1 additionally defines an abstract heuristic strategy
(i.e., the EXTRACTCITIES procedure) to verify the feasibility of (m = 3) total tours through
A for when Q(m) > 2 is assumed. This strategy defines a set of cities, Y, to extract from
the two disjoint subsets, B C A and C' C A, where the cities in each of the three resulting
subsets all define a feasible tour. Furthermore, constraints are defined in Chapter 3 that
restrict how the set Y of extracted cities must be selected. If Y satisfies these constraints
accordingly, the resulting subsets will verify the feasibility of (m = 3) tours. In other words,
Q(m) > 3 is assumed when the resulting three tours do not satisfy the OVRP-UT criteria.

Due to the complexity of the aforementioned constraints, no viable procedure was
presented in the previous chapter for explicitly defining three tours in these circumstances.
With this in mind, a strategy is presented in this chapter to verify the feasibility of (m = 3)
tours by estimating each tour’s associated cost as the number of cities in A tends towards
infinity. Accordingly, the feasibility of the solution can be determined without explicitly

defining: (i) the extracted cities that define the set Y or (ii) the three resulting tours that

IThe subsets are disjoint with respect to the customers in A and are assumed to both include the depot.
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verify the solution’s feasibility. The cost associated with a tour is instead quantified based
on the expected cost of an optimal TSP tour through all cities within a region. The term
region is used to defined a set of cities according to their geographic context.

In the following sections, the procedures that verify the feasibility of (m = 3) tours for
the corresponding region are formally defined. Section 4.1 initially introduces the required
fundamental concepts for the remainder of this chapter. Namely, the probabilistic analysis
of partitioning algorithms presented by Karp [37] is the focus of the section. Section 4.2
demonstrates how we have extended the research presented by Karp [37] to quantify regions
of unequal sizes according to the expected cost of the optimal TSP tour resulting from the
partitioning heuristic presented in Chapter 3. Section 4.3 employs these cost estimation
strategies to determine the feasibility of (m = 3) for a region without explicitly defining the
vehicle routes. The chapter is concluded by discussing the advantages and drawbacks of this

approach in Section 4.4.

4.1. Approximating Tour Cost for Random Points in the Plane

The techniques presented in this chapter is an extension to the research presented
in Probabilistic Analysis of Partitioning Algorithms for the TSP in the Plane, by Karp [37].
In particular, some of the characteristics presented by Karp are decoupled to be utilized
in a different logistical context. For this reason, the work presented by Karp [37] is briefly
outlined in this section. However, the probabilistic analysis of Karp’s algorithm is based on

the the Beardwood-Halton-Hammersley Theorem (BHH)[10].

THE BHH THEOREM. The BHH theorem generally states that the cost of an optimal
TSP tour through n points tends to grow at the rate y/n when n is large enough. Moreover,
with a probability of one, the length of the shortest tour through n points, as n — oo,
will be asympototic to 8y/n, where 3 is a positive constant which does not depend on the
distribution of n.

The BHH theorem is commonly used in determining the shortest path through any

independent identically distributed (iid) random variables [30]. This constant, 3, in the BHH
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theorem has been extensively studied in the domain of probability theory and combinatorial
optimization. Arlotto and Steele [5] state that “sophisticated numerical computations”, such
as is presented in [4], has demonstrated § =~ 0.714, although only 0.62499 < 5 < 0.91996 is
known with certainty [26]. This constant is used to calculate the expected performance of
the partitioning algorithm presented by Karp [37] for the TSP through n random points in

the plane.

Until this point, all references to a TSP tour were defined by the optimal permutation
of all cities within some given set. The set was consequently a description of the cities
contained within it, but otherwise provided no further information about the cities. Namely,
the distribution of the cities. With this in mind, let 7°(X') denote the optimal TSP tour for
all cities located in region X. Thus, instead of defining a set solely by the cities it contains,
we define a region of cities according to some distribution. The notation N(X) will continue

to denote the number of cities within the region X as previously defined.

Following the notation used in [37], the region X is explicitly defined as a rectangular
region a X b. It is assumed that a and b are fixed and denote the dimensions as the width and
length respectively. Additionally the length, b, is assumed to always be positioned along the
longer edge of the rectangle. The basic measurements of perimeter and area are denoted,
respectively, as per(X) and v(X). It is further assumed that the cities model a random
distribution of points in a defined region on the plane. Accordingly, let II,(X) denote n
cities that are placed in the region X, according to a two-dimensional Poisson distribution.
Moreover, let v denote the rate parameter (i.e., the average number of cities per area) of this
two-dimensional Poisson process in the plane. By definition, v = E[N(X)] = Var(N (X)),
where E[N(X)] and Var(N (X)), denote respectively, the expected number (i.e., the mean)
of cities in X and the associated variance value. Hence, for some region A C X where

X € R?, the probably of N(A) being exactly equal to 7 total cities is

Pr[N(A) =1] = ¢ L where v=nv(A), fori=0,1,2, ... (23)

il

where Equation 23 is the probability mass function of the Poisson distribution. Furthermore,
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given that N(X) = n, the expected number of cities in region A will be

EIN(A)] =n (;’é;i) . (24)

From this distribution of cities, [37] introduces a partitioning algorithm that divides the
region X into 2% equally sized sub-regions such that the expected number of cities in each
is equal to t. The variable k = [logy(n —1)/(t — 1)], where ¢ denotes the maximum number
of cities that can be optimally solved for a TSP tour. Moreover it is assumed that k is even.
These sub-tours are then stitched together to form a walk, denoted as W,,, resulting in a

tour through all n cities in X. It is shown that the expected cost of this walk is as follows

B(W.) = va(Bx(®) +0(r7°)) 137, (25)

where the term [x(t) is similar to the positive constant shown in the BHH Theorem but
that instead is dependent on X. This length is comprised of two components: (i) the sum
of the shortest tour’s length within each sub-region; and (ii) the back and forth cost of the
arcs connecting each tour to form the walk. For the purposes of this research, we will only
be interested in the first contributing factor of this expected cost. To demonstrate this first
part we denote the expected cost of these equally sized sub-regions as E[|Y;|] where Y; €
{Y1,Ys, ..., Yor }. Karp shows that the expected cost of each sub-region is E[|Y;|] = Bx (t)V/t.
Further the study shows that the expected cost of all of the sub-regions combined is equal

to

> BVl = 2 (Bx()vE) 22 (37, (26)

k/2.

since each of the 2% regions are like X but scaled down by a factor of 2~ Simplifying

this equation algebraically as shown in Equation 27 demonstrates the performance of Karp’s
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partitioning method.

2 (Bx(O)VE )22 = 242 (B (1) ) Vi
= 22(Bx(t)vn )V (27)
= Bx(t)vr [37)

In particular Karp proves that for any value of ¢ that Sx () — 5 < 6(‘\1}21’), but also conjectures

that Bx(t) — /3 is likely proportional to ¢t~/? such that

Bx(t) — B =0(""?) [37]. (28)

This cost relationship between these individual TSP tours within each partition of X and
the optimal TSP through X is a crucial component in estimating the minimum required

vehicles for the OVRP-TU.

The following subsections presents a strategy based on the partitioning heuristic pre-
sented in Chapter 3 to estimate the feasibility of (m = 3) for a region without requiring
the solution to be explicitly defined. Instead the total expected cost of these tours will be

quantified from their respectively defined regions by leveraging this relationship.

4.2. Expected Tour Cost for Partitioned Regions

Unlike the partitions derived by the approach present by Karp, regions resulting from
the partitioning heuristic presented in Chapter 3 are not guaranteed to be equally sized. This
introduces a few complications that violate constraints required to quantify the expected cost

of an optimal TSP tour traversing the cities within each independent region.

4.2.1. Extracting the Scale Factor

Deriving the total expected cost from an odd number number of regions (e.g., m = 3)

is directly associated with the requirements defined by our partitioning approach. With this
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in mind, we rearrange Equation 25 to eliminate the variable k.

i ElY] = 2 <5X(t)\/g> o—k/2

|
- (VT () () ) .

Although both equations (25 and 29) are equivalent the latter defines the scale factor by the
coefficient of proportionality between the perimeters of the partitioned regions Y;, and X.
Still, all of the resulting regions for either representation must still adhere to the following

criteria:

(i) all regions must be the same size,
(ii) no two regions can have any intersecting space,

(iii) the union of all of the regions must equal X exactly.

Because the scale factor is defined by the specific scenario in contrast to the 27%/2 term,
the rearrangement will apply to both even and odd number of partitions. For example,
consider partitioning the rectangular region, X : {a x b}, into 4 equally sized sub-regions.
For Equation 25, k = 2 and thus 27%/2 = 21, In comparison to Equation 29, each region Y;

in this scenario will represent Y; : {% X %} Thus,

per(Yy) _ 2[(a/2)+ (b/2)] _
per(X) 2(a + D) =25 (30)
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demonstrating the equality between the two equation’s scale factor when the regions are all
of equal size and k is even. However, if X is instead partitioned into 3 equally sized regions?
the resulting regions are defined as Y; : {a X %} In this scenario only Equation 29 accurately

defines the factor for each region to be like X but scaled down.

4.2.2. Directional Cutting Strategies

The dissociation between the scale factor and the number of partitions lets us quantify
an odd number of regions. However being able to define the number of partitions must still
be addressed. Recall that ¢t denotes the maximum number of cities that can be optimally
solved for a TSP tour. In that case, the number of resulting partitions is defined by the value
assigned to t. Alternatively for the OVRP-UT, the partitions define the m total independent
tours in the solution. In other words, the total number of partitions (i.e., tours) is directly
associated with the optimal solution, m*. With this in mind, to define the required total
number of regions resulting from the partition, denoted as M, we alternatively let t = n/M.
Each region will then identically define their number of expected cities, ¢, from the value
assigned to M accordingly.

Defining the number of partitions is an important component in our goal of estimating
the feasibility of (m = 3) for a region without explicitly defining the tours in the solution. As
a consequence of defining the number of equally sized regions, the strategy for selecting the
direction of cuts for the partition differs from that presented by Karp [37]. The partitioning
procedure presented in [37] is based on a recursive cutting strategy that align the direction
of each cut to be parallel with the longest edge of the region in that phase. By continually
cutting the longer edge at each step the total perimeter for the resulting regions will be
minimized. Consequently this “cutting game” strategy demonstrates an optimal approach
in minimizing the total combined cost of the TSP in each region. Conversely if a cut is
made in the opposite direction of the optimal direction (i.e., parallel with the shorter side)

the region will obviously result in a higher cost. At the same time, partitioning X with cuts

2Two vertical cuts through the longer edge, b, of X is the only possible option resulting in equally sized
regions with a minimum total sum of perimeters.
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parallel to the shorter side are an unavoidable consequence when an odd number of regions
are required. With this in mind we examine a strategy that partitions X using only vertical

cuts.

Similar to the previous constraints it is assumed that the regions resulting from only
vertical cuts will all be of equal size, while being like X but scaled down. Thus if X is
partitioned into M total regions resulting from M — 1 vertical cuts then each region Y; is
defined as the rectangular region, Y; : {a X %} Hence we can represent the total expected

cost of the combined regions as the following:

sz . ZM S per(Yi)

M(a +b)

Vn/M
- v (o) ().

where the expected number of cities in the regions is simply ¢ = 7. Equation 31 is denoted in
the same format of Equation 29, to present the cost illustrated by Karp [37] by the coefficient
of proportionality between the partitioned regions and X. By comparison, the total expected
cost of the regions in X that are subsequently partitioned by M — 1 cuts only through b will
exceed those of the optimal cutting strategy when a > % To relate these strategies further,

Equation 31 is simplified algebraically (as shown in Equation 32) to appear in a manner
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similar to that of the optimal cutting strategy.

1 () ()~ g ((ast)

Ma b
= Bx(OvnvM M(a+b)+M(a+b)>

a+b  Matb)

= Bxlva (—M“” )

= Bx(t)VnvM - b )

M*Y2?(a+b)
(32)

This rearrangement also clearly demonstrates the factor by which these strategies differ. By

substituting M (the total number of regions) with its original notation 2F,

Ma+b N (2M)a + b
MY2(a + ) V2 (a +b)
_ ((W)(a) - <2—’f/2><b>)
a-+b

scenarios that produce this difference in cost can be related directly to the dimensions of X.
Specifically the expected cost of the 2¥ regions partitioned by only vertical cuts will exceed

the optimal cutting strategy when b < a % 2¥/2,

4.2.3. Quantifying the Expected Tour Cost of Unequally Size Partitions

Quantifying the expected cost for regions resulting from our partitioning heuristic
still require an additional issue to be addressed. Namely, the regions to quantify will almost
always result in varying sizes. Two generalized scenarios are presented to illustrate these
issues and their resolutions. Accordingly, X : a x b will continue to define the rectangular
regions with n randomly distributed cities within. Both scenarios will assume that the

region X has been partitioned into two regions B and C', such that B € X and C' C X.
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Additionally since N(X) = n for the cities randomly distributed in X, then

E[N(B)] =n (ZE)B;;) , where v(B) denotes the area of region B. (34)

In the first scenario let regions B and C' be disjoint, X = {B|JC?}, and per(B) = per(C).
Therefore both regions are equally represented by the dimensions {a x %} Moreover we can

easily derive a constant value of ¢ as

o) () - ()

representing a single vertical cut made directly down the center of X. Thus E[|T(B)|] =
E[|T(C)|], given the restriction that both regions be equally sized. As a result, the total

combined expected cost is calculated by the following:

) 2a + b
i:ZB:CEHT(Z)I] = V2 Bx(t)vn 2+ b)
| 2a + b (36)
= Bx(t)vn (m)

Alternatively for the second scenario we assume that the regions are no longer re-
quired to be of equal size. The remaining constrains are otherwise upheld for this scenario.
Accordingly let region B and C’s dimensions be defined as {a X (%b)} and {a X (g) },
respectively, so that B defines two-thirds of X horizontally and C' defines the remaining
third. Conversely to the first scenario, E[N(B)] # E[N(C)], as a result of the area of their
respective regions not being equal. However, a single constant value of ¢ is still required
quantify the expected tour cost of the regions. Since the area of B is not equal to C, the
expected number of cities in each will also not be the same. Yet since E[N(B)] = % and
E[N(C)] = %, splitting X into three equal slices each representing 3 of X allows a value for

t to easily be calculated. By representing the total combined expected cost as
3a+0b
t — 37
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such that C will represent one of these slices at a third of the cost while B represents twice

that of C. As a result quantifying the expected costs can be represented by the following:

E[T(X)|] = E[T(B)|] + E[T(C)]]
3a+b 2 3a+b 1
= Bx(B)vn (3(a+b)) (ﬁ) + Axvn (3(a+b)> (ﬁ) (38)

3a+b
= Bx(t)V/n (m)

The next subsection describes how these strategies can be applied in the recursive
partitioning algorithm presented in Section 3.4. Namely, the feasibility of (m = 3) tours in

a region is determined without explicit tour definitions.

4.3. Employing Cost Estimations to Determine Feasibility of Fleet Size

In this section we assume a set of cities are distributed in A : {a x b} according to
the two-dimensional Poisson distribution II,(A). In other words, the cities are distributed
in the plane, defined by the rectangular region, A. Furthermore we assume that n — 1 cities
are those to be visited for the OVRP-UT. The remaining city therefore denotes the depot.

Recall from Section 3.4 that T4 is partitioned into two tours (T5, TF) and we conjec-
ture that m > 2 if either have an associated cost greater than the allowed time, Z. Then a
subset of cities, Y, must be removed from T§ and TZ. For (m = 3) to be feasible the selec-
tion of Y must satisfy the constrains defined in Theorem 3.11. Despite the constraints being
known, Axiom 3.13 identifies the complexities in proving this feasibility through explicitly
defined solutions. The objective in this section is to determine the feasibility of (m = 3) for
the region A without requiring the solution to be explicitly defined. Instead we will quantify
the tours based on their expected optimal cost.

In order to quantify the tours based their defined region, we convert the tours 7S, T¢
into regions B, C, respectively. However quantifying E[|T(A;)|] for some region A; C A, is
derived directly from the proportional expected cost E[|T(A)|]. Although it was previously

proven that |Tg| = |Te| < |Ta|/2, the bounds of these regions in the plane might not

26



be disjoint. Additionally, the bounding box for each is not guaranteed to represent the
dimensions {a x (b/2)}. Thus simply defining the region from a tight bounding box around
the cities included in a tour would not be sufficient. Instead we construct the bounding
box for the rectangular regions, B and C, for the tours TS and TS, respectively, with the

following steps and conditions:

(i) Let A : {a x b} be positioned such that b defines the longest boundary edge and is
positioned as the horizontal size

(ii) Let I[(A) denote the vertical edge defining the left boundary of A and r(A) similarly
for the right boundary of A

(i) Assume that no two cities have an identical horizontal positional value in A (i.e.,
no two cities will be the same distance from either the left or right boundary in A)

(iv) Let the tour that includes the city with the closest distance to any point on [(A)
denote TS; TS will then denote the remaining tour

(v) Select the city included in T that is closest to any point on r(A); similarly for T
but instead select the city in its tour that is closest to any point on ((A)

(vi) Then let the boundary of B be defined by assigning the left boundary, I(B), to equal
[(A); define r(B) as a vertical line parallel with [(B) that passes directly through
its city closest to r(A); similarly define C' as r(C') = r(A), and [(C) as a vertical
line parallel with r(C') that passes directly through its city closest to [(A)

(vii) Let the height of I[(B), r(B) and [(C), r(C) all be equal to a, the height of A

(viii) Let both regions’ top and bottom boundaries stretch from their individual left and
right boundaries such that they are horizontally aligned exactly with A’s top and

bottom edges

This construction of B and C, representing the partitioned tours in A, guarantees
that A = {B U C} since both tours will include the depot location. Therefore the union
between these regions will cover the entirety of A. In contrast, if the depot is removed from
both tours, T§ and TS, before the regions B and C' are constructed, it is possible that once

constructed the boundary of B does not overlap the boundary of C. To illustrate, assume
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that both regions, B and C, exist on an (x,y)-coordinate grid. Then let x; and x5 denote
the horizontal positions of r(B), and [(C'), respectively. If these regions are disjoint, sharing
only the depot in common, then z; == x,. Alternatively for all other scenarios, regions B
and C' will position their inside boundary edge (i.e, their only vertical edge not aligned with
any edge of A) such that x; > x5. Hence, it is possible for the boundaries of each region to

overlap with the other.

Computing the expected optimal cost of a TSP tour for regions that overlap in this
manner is not effective or feasible. This is due to the fact that the resulting tour for any region
is assumed to visit all of the cities within. Hence, regions that overlap would presumably
result in tours that all visit the same cities in the intersecting space of the regions. As a
result, the cities located within the intersecting space between B and C', would be included
in the cost of both tours through the two regions. Furthermore, we cannot derive the value of
t from the conditional distribution, when N(A) = n is a result of the assumed multinomial
distribution. Nonetheless, the remainder of this section will illustrate how scenarios with
overlapping regions actually present favorable conditions when estimating a lower bound of
required tours for the OVRP-UT. For this purpose, we continue to denote Y as the set of

cities to be removed from B and C such that the feasibility of (m = 3) can be determined.

Initially we set Y = {B U ('}, such that the boundary of Y is defined by the
intersection space of the partitioned regions. By removing Y from both B and C', three
disjoint regions (Y, {B \ Y},{C \ Y}) will remain. Furthermore a union of these resulting
regions will equal X exactly. Hence E[N(Y)], E[N({B\Y})], and E[N({C\Y})] (i.e., the

expected number of cities within each region) is now known.

Deriving the value of ¢ (i.e., the expected number of cities in a region), is the only
step remaining to quantify the regions by their associated expected optimal TSP cost. From

the examples previously illustrated, it was assumed that
———= €N. (39)
However we cannot realistically make this assumption, thus additional computation is likely
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required to derive the value of £. This will indeed be the case unless the two regions with the
largest expected number of cities can both be divided by the expected number of cities in the
remaining region such that the solution is N. For this reason, each region will be represented
by a combination of some number of contiguous disjoint subregions of equal size.

For clarity’s sake, each of these aforementioned subregions are individually referenced
as a single “slice”. Every slice is assumed to be the same size. Moreover, the height is
assumed to be equal to the height of the rectangular region A. As a consequence of equally
sized sices, a constant value denotes the expected number of cities, ¢, in a single slice. Hence,
the value of ¢ will dictate the resulting number of slices included in calculating the total
combined expected cost. To guarantee that each region can be represented by a contiguous
combination of disjoint slices, each region’s expected number of cities must be divisible by
t, such that the solution is a positive natural number. The result of each of these divisions
will denote, accordingly, the exact number of slices required to represent the region.

To select the value to assign to the variable ¢, we first observe from Equation 28 (as
presented by Karp [37]), that the error is reduced as the value of ¢ is increased. For this
reason, we derive ¢ by the Greatest Common Factor (GCF) of each E[N(Y)], E[N({B\Y})],
and E[N({C \ Y})] region. Accordingly, ¢ is assigned the maximum possible value for the
expected number of cities in each slice.

Each region, Y, { B\Y'}, and {C'\Y'}), can now independently quantify their expected
cost of an optimal TSP by the (total expected cost of a tour through A) x (n=') x (number
expected cities in a sub-region). We formally define this described cost in Equation 40 for

each region as:
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E[IT(P)]] = (Bx(t)vn) (j%) . *fb)) (n) (EIN(PY).

VP e{Y, {B\Y}, {C\Y}},

(40)

where ¢ = GCF{ E[N(Y)], EIN{B\ Y}, EIN{C\Y}) }

To illustrate this cost let us assume that n = 76 and for Y = {B U C'}, that E[N(Y)] = 16.
Further let E[N({B\Y})] =36 and E[N({C \ Y})] = 24, and thus ¢ = 4. Therefore each

region can be quantified by their individual expected optimal tour cost as:

EIT0)) = (Bxva) %) 1
BITHBA\YD = (Bx(t)vn ) %) > (41)
BIT{C\YD = (Bx(vir) %) “
given that n/t = 19. The combined total cost of these three regions is then equal to:
> E(T(P)] = Bx(t)Vn <%) , (42)
Pe{y, {B\Y}, {C\Y}}

with the error t~1/2 = 197Y2 = (.2294157339 times the optimal expected cost of a tour

through the entire region, E[|T(A)|].

The expected cost for a optimal tour through each region Y, {B\ Y}, and {C \ Y}
can now be estimated, and accordingly the feasibility of (m = 3) for X can be determined.
Furthermore if either E[|T({B\Y})|] > Z or E[|[T({B\Y})|] > Z but E[|T(Y)|] < Z,
it is possible for Y to iteratively remove additional space from these regions until either:
(i) E[|T(Y)|] will exceed Z, or (ii) all three regions have an expected cost at or below Z.
Each iteration would accordingly then remove the space equivalent to one slice as previously

derived to quantify the regions. Modifications to the cost of the regions (for adding to or
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removing from) are restricted to be only in increments of the expected cost of a single slice:

(x(t)vn) (j%) ; *fb)) (%) (43)

If it is determined that (m > 3) for region X from the three resulting regions’ es-

timated cost, we repeat the recursive partitioning heuristic (presented in Section 3.4) until
a feasible bound is derived for m*. Accordingly the bounding regions constructed for esti-
mating the partitions cost would be disregarded. Instead the tours TS and TS, originally
partitioned from T4 will each define the new region to determine the feasibility in the next

recursive phase.

4.3.1. Depot Inclusion without a Known Location

Determining the expected cost of an optimal tour through the cities in a region
requires the cities to be placed based on a random distribution. The first two phases of the
algorithm that partition the optimal tour are not dependent upon the distribution of the
cities. Hence, any distribution can be assumed for these first two phases. Determining the
feasibility of three tours, however, was only achieved without explicitly defining a solution.
As a result, the reference to the depot’s exact positioning is lost as a result of this process.
Location specific information in particular for all of the n cities, not just the depot, is not
applicable once the expected cost is computed for the regions as it is measured asymptotically.
Since the depot is only known to be located somewhere within region Y, the exact cost
to connect the depot with tours in the other regions is unknown. Nevertheless, the two
contributions representing this cost: (i) inserting the depot into the tour; and (ii) removing
an edge from the city adjacent to the depot that is incident to another city, can be estimated
accordingly. Further this estimations is calculated for each region { P\ Y}, where P = A, B,

independently.

The first contribution can be estimated as follows. The cost of inserting the depot
consists of connecting any city in { P\ Y} to the depot in Y. Since the region P is guaranteed

to include both the tour within {P \ Y} and the depot, the distance between any city in
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{P\ Y} and the depot will never exceed the distance of the longest strait line possible in P.
Therefore if w and h denote the dimensions for the rectangular region, P : {w x h}, then
L = vw? + h?, and is the upper bound for the cost of the first contribution. Alternatively,
a better approximation would be L/3, the expected value of distance between two random
points on a line that is of the length L [33].

For the second contribution, recall that the the OVRP-UT only requires the tour to
begin at the depot. Because the expected cost of the tour in { P\ Y} is representing a optimal
TSP (i.e., a closed tour), an edge breaking this cycle can be removed; thereby reducing
the overall tours cost. First we let ¢ denote the position of the city within permutation
defining the tour through { P\ Y'} that is adjacent to the depot resulting from the previous
contribution. The second contribution is then defined by the removing the edge incident to
the cities at position ¢+ 1 and 7 — 1 with the maximum cost. Therefore the additional cost of
connecting the depot will be reduced by the max{c;_1;,¢;ii+1}. However the cities adjacent
to ¢ could have an incident edge with a distance anywhere between the smallest and largest
distance between any two cities in the region {P \ Y'}. As a result, the contribution can be
estimated as reducing the cost by /n, the rate described in [10] as the cost of an optimal

tour through n points tends to grow at when n — oo.

4.4. Advantages and Drawbacks of the Partitioning Heuristic

Quantifying tours based on the expected optimal cost of the partitioned regions allows
us to derive a lower bound to the number of required vehicles for the OVRP-UT. Proving
the tightness of the bound, however, is constrained by a few drawbacks in this approach.
Describing these drawbacks and the overall advantages of our approach is the objective of
this section.

In Section 3.4 we define constraints (theorem 3.11) for a partitioning outcome to
satisfy in order to prove that a solution for the OVRP-UT of a given region is feasible with
only three total vehicle tours. Yet determining that an explicitly derived solution is the
optimal solution for all problem instance is not feasible. In contrast this axiom does assert

a critical heuristic regarding the absolute cost in removing a city from a tour to insert it
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into another. In other words, when structuring an optimal partition, the cost of removing
cities from a tour should be at a rate greater than the cost to insert the cities into another
tour. Accordingly, this heuristic is reflected in our partitioning approach by defining the
intersecting space of regions B and C' as the initial set of cities to be remove from. As a
result the expected cost of a tour through this overlapping space, E[|T(Y)|], will tend to
equal half the sum total difference in the expected cost being reduced from B and C by
removing Y. This consequence is observed from the theorem presented by Karp [37], stating
that “For allt, x(t) — < 6(a+0b)/t 7, where [ is the constant in the Beardwood-Halton-
Hammersley Theorem [10]. Hence the length of 7;(X), the tour through ¢ cities in X, will
tend to equal T,,(X) where t < n. To that end it can be determined that the expected cost
of the cities in {Y \ C} (or conversely for {Y \ B}) will tend to be the same as all of the
cities in Y.

Furthermore this heuristic assumes that the single optimal tour through all cities in
a region is associated with three optimal open tours that cover all of the cities in the region
without overlap (i.e., each city is visited only once). The proof to this is not included with
this study, although we do conjectured in Section 3.4 that it is likely the case.

Another potential drawback of this approach is the effect that an initial region’s
defining dimensions can have on the error of the expected cost for an optimal tour through
the region. This is due to the vertical-only cutting strategy employed to be able to apply the
research presented in [37] to our problem. Although as shown in Section 4.2.2; increasing
the error is not exclusively the only outcome. For instance, if applied on a region where one
dimension significantly exceeds the other, the error can actually be improved. Namely, for
a rectangular region, A : {a x b}, the error is improved when constructing 2% regions using

the vertical-only cutting strategy, when b > a  25/2.
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CHAPTER 5
PARTITIONING HEURISTICS FOR THE CAPACITY CONSTRAINT

As first introduced in Chapter 1, the open vehicle routing problem with uniform time
constraints (OVRP-UT) presented an anomalous priority on the core objective of minimizing
the number of vehicles required. Instead of minimizing the total cost of tours, as most
variants of the VRP most commonly represent as the core objective, the OVRP-UT only
requires the tours to be completed within the allowed time. This variant provides an adequate
model of practical instances of the VRP that correspond to high-consequence constraints.
As previously mentioned, optimization of relief networks in relation to the mitigation of an
epidemic disaster is one such motivating instance. In this scenario, mitigation efforts include
supplying the effected population with the associated medical countermeasures (MCMs)
from a set of point of dispensing centers (PODs) within an limited time frame. Defining the
set of vehicle tours that optimally transport the MCMs from the receiving-storing-staging
(RSS) warehouse to the PODs within the time allowed has been the focus of this study.
However the heuristics presented previously in chapters 3 and 4 are primarily focused on
the time constraint. Hence the complexities associated with constraints of the available
vehicle capacity for each tour are not considered in the preceding analysis. This chapter
conversely analyzes the performance of general partitioning heuristics as it relates to these
capacity constraints accordingly. Nevertheless, the minimization of vehicles will remain the
core optimization objective for the problem. In a similar manner to the previous chapters, we
analyze the performance of a partitioning heuristic constrained by a uniform vehicle capacity,

independently from the constraints on time.

5.1. Generalizing the OVRP-UT for Capacity Constraints

We denote the open vehicle routing problem with uniform capacity constraints (OVRP

UC) as a generalization of the OVRP-UT where minimizing m, the number of required
vehicles, remains the primary objective. However, we assign Z < oo, removing the con-

straint on time allowed for the completion of all tours. Instead, given the set of all locations,
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Vo ={0,1,2,...,n}, where index 0 denotes the depot and the remaining n elements denote the
set of customers, the cost of tours are quantified by the total demand of the customer’s vis-
ited on the tour. Accordingly, let d; denote the demand of customer i, where i = {1,2,...,n}
representing all of the customers in V,,. Further let d; be distributed according to some
distribution defined as d; € (a,b], and 0 < a < b < @, where ) denotes the identical vehicle
demand capacity for all vehicles. For the remainder of this chapter we will assume that the

customer demands are sorted in a non-increasing order so that

dy>dy> ... >d, . (44)

Each vehicle tour is denoted as 7}, where j = {0,1,...,m — 1} representing the set of all m
tours. The total demand associated with a single tour is denoted as 7(77j). This is calculated
as the sum of all customers’ demand served by tour 7}, where j = {0,1,...,m — 1} for
the m tours respectively. As a consequence of excluding the uniform time constraint, we
can simply describe the OVRP-UC as partitioning the set of n customers into a minimum
number of m disjoint sets (i.e., tours), subject to the following constraints: (i) all customers
must be visited once, (ii) no customer demand shall be split between multiple tours (i.e.,
each customer must only be visited by a single tour), and (iii) the total sum of demand for

the customers within in a single tour must not exceed @ (i.e., the vehicle capacity).

When the objective to minimize the number of required tours is presented in this
manner, it is analogous to the one dimensional Bin Packing problem (BPP). The objective for
both problems can be informally described as minimizing the number m of bins each with the
identical capacity (). With this in mind, the terms bins and items are used interchangeably
with tours and customer demands, respectively, for the remainder of this chapter as it relates
to the current context being discussed. Furthermore we continue to let m* denote the optimal
solution representing the absolute minimum number of tours (i.e, bins) required. Leveraging
existing literature for the BPP, the performance of a general partitioning heuristic is observed
in solving the OVRP-UC. The analysis of lower bounding procedures for the BPP, such

as those presented in [59] and [48] are of particular interest. The worst-case asymptotic
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performance of these lower bounds demonstrated in [15], [31] and [22] are additionally of use

in this chapter.

Considering that the OVRP-UT will always include the time constraint by definition,
explicitly defining a lower bound procedure for the OVRP-UC is admittedly not very bene-
ficial in solving a capacitated OVRP-UT instance. Therefore the objectives in this chapter
is to demonstrate the effect that a partitioning procedure will have on the performance of
optimal capacity utilization. The partitioning procedure in this chapter is similar to the
partitioning heuristic presented in Chapter 3. With this in mind, the applicable BPP lower
bound procedures that currently exist are presented in Section 5.1.1. The construction of
an upper bounding procedure subsequently follows in Section 5.2. Specifically this bound
is derived by solving an optimization function that models an optimal partitioning towards
the (i) minimization of discrepancy of total demand between the partitions [36], and the (ii)

maximization of capacity usage.

5.1.1. Overview of Lower Bound Procedures

In this section we observe two lower bound procedures presented by Martello and
Toth in 1990 [48], motivating the construction of the upper bound presented in the following
section.! It is assumed that all units of measure for the capacity and demand in this chapter

are homogeneous.

LOWER BOUND [
The lower bound procedure, L;, presented in [48] implies an obvious lower bound to the

BPP resulting from a continuous relaxation of the problem. It is computed in O(n) time as

L - {%} , (45)

Martello et al., denote Li and Ly as both the lower bound procedure and the value computed for a specific
BPP instance.
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where 7(d) denotes the sum total demand of all n customers calculated as

7(d) = Zdi : (46)

To obtain this bound it is assumed that individual customers’ demands can be split between
different tours. Conversely if phrased in the context of a BPP, the demands and tours
represent the items and bins respectively. Moreover, let P represent an instance of the BPP,
and P be the relaxed instance of P constructed under the assumption that demands can be
split between tours. Thus for P we observe that m* = L; as customers can be iteratively
assigned to a tour until the demand of the customers assigned exceeds (). This process is
repeated for the construction of a new additional tour until all n customers are assigned to

a tour. The worst-case performance ratio of L; for P, when P # P, is

Ly

* —

[48]. (47)

3
DO | —

LOWER BOUND L,

The lower bound, Ly, is best suited for problem instances where the customer demands, d;,
are small in relation to Q). Conversely Martello et al., 1990 [48] additionally present the
lower bound procedure, Ls, for instances where the size of customer demands are large with
respect to (). Accordingly, instances of this type limit the amount of customers that can be
assigned to each tour. To obtain the lower bound L, the customers with a demand that
exceeds half of the total capacity (i.e., )/2) are partitioned into two subsets. The remaining
customers are assigned to a third subset. This partitioning exploits the non-feasible pairings
for customer demands whose sum would exceed (). The worst-case performance ratio of Ly

is proven as

L2 _ Z [48]. (48)

m*

Although the formal definition of Ly is beyond the scope of this research, the intrinsic

observations of this bound are beneficial nonetheless. A detailed review of both lower bound
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procedures L, and Lg, are alternatively provided in [15], and additionally analyze these
lower bounds both analytically and computationally.

These lower bound procedures are leveraged in the following sections. Namely, Section
5.2 constructs an upper bound for the OVRP-UC that is based on an optimal capacity

utilization that exploits the L; bound.

5.2. Constructing an Upper Bound for the OVRP-UC

From the lower bound procedure, Ly, it is clear that splitting any customer’s respec-
tive demand between two or more tours yields a substantial improvement in minimizing m.
The OVRP-UC, however, strictly restricts any single customer’s demand from being divided
in such a manner. Moreover, obtaining the lower bound L; is admittedly not always feasible
for most practical problem instances. Despite L; not always being a good indicator of the
optimal value (i.e., m*) for all instances, it is beneficial nonetheless. Defining the relation-
ship between m* and the reduction of wasted capacity. Using notation that is similar to that
presented in [31], we let W (V},) denote the total wasted (i.e., unused) capacity. The value
for W(V,,) is calculated as

W) = @m —7(d) , (49)

where m is the minimum number of tours calculated for the OVRP-UC. Initially by assuming

the lower bound L; as the derived value for m, the total waste will be

W(Vn) = QL — T(d)

(50)
=Q {%w —7(d) .

If [%W = %, accordingly, all m tours will have completely utilized the entire available
capacity. In other words, the total wasted capacity, W (V},), is equal to 0. Hence the value
of m is a result of the proportion of capacity used. We conversely represent this as 7(d)/m.

So for this case where m = L, with no wasted capacity, the capacity used equals exactly the

value of Q.
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Given that the optimal value, m*, is not currently known, we can only infer that
the proportion of capacity used must be no greater than (). Otherwise the solution would
not be considered feasible and thus is not an optimal solution. Further, we recall that the
OVRP-UC restricts any single customer demand from being split between multiple tours.
From these circumstances we observe that any value of m resulting from any algorithm,
where m > m* > L, defines the total customer demand to serve for each tour. This is
additionally simplified as m > L;.

With the association between minimizing m, and the maximization of capacity usage
for each tour in mind, we let A; denote the proportion of capacity used in 7j. Using the total

demand of each tour’s respective customers, \; is calculated as:
(51)

Further observation shows that as the value of % tends towards @), the value of m similarly

tends towards m*.

In the following section (sec. 5.2.1) we construct an upper bound by further constrain-
ing the OVRP-UC. The worst case performance of this bounding procedure is presented in
Section 5.2.2.

5.2.1. Maximizing Identical Usage of Capacity

Given that the optimal value m* is associated with the minimization of the total
unused capacity, we define an upper bound, U;, based on a general recursive partitioning

heuristic. Accordingly, U; is constructed by solving the following optimization problem:
Minimize m (52)

s.t.,

(53)
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which consequently implies that

m

D= k={1,2,..,m}. (54)

j=1
We let A denote a constant value for the identical proportion of capacity used as for all
m tours. This ensures that the total demand of all customers is equal to the sum total of
capacity used for all of the tours. The second constraint just further enforces this restriction
by preventing any tour’s total demand served from exceeding its capacity. As a consequence
of these constraints, maximizing capacity utilization will result in the optimal solution. In
other words, this formulation is defined to exploit the association previously observed be-
tween minimizing m and maximizing capacity utilization. With this in mind, U; is calculated
as the minimum required vehicles that solves this optimization problem.

To calculate Uy, let p denote the number of times that the total demand of all

customers exceeds the allowed capacity.
p=—" (55)

where 1 € [0,00). Given that all tours use must use an equal proportion of their capacity,
they must similarly have an equal proportion of capacity remaining. Thus the minimum
number of tours required can be derived from the value of h, which denotes the minimum
number of times that p must be equally divided into two, recursively, until the result equals
at most 1. This partitioning procedure is exemplified in Figure 5.1. The minimum number

of recursive levels, h, must result in the following inequality:

I

oh <1, (56)
where lemma 5.1 describes the value of h.

LEMMA 5.1. The minimum value of h that is required for the inequality, 5z < 1 to hold is

h = [logy(p)].

PROOF. We observe that 2" must be at most equal to j, otherwise 2= > 1. Moreover if
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FIGURE 5.1. Each node represents the proportion of demand to the allowed capacity re-

sulting from each phase of a general equal partitioning, where h denotes the height of the
full binary recursion tree.

2" = i then £ = ﬁ = 1. Hence this inequality will not hold, accordingly, for any value of

2h

2" that exceeds p. When rearranging Equation 56 using the binary logarithm:

L h
on <1l = u<L?2
(57)
= h<logy(p)
Observing that [logy(p)] < log,(p), we know that h must be at most equal to [log,(u)]

since h < [logy(p)| < logy(p). Accordingly p/ 2Mog2(] must be at most equal to 1, given

that
7 poo
Mow( = Jom (58)
Therefore the minimum value of h for & < 1is [log,(u)]. O

Due to the fact that 4 < 1 when h = [log,(u)], accordingly, the value of X is

calculated as

N p
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In this case, the value of m can be solved since all of the variables required to solve for m
are now known since the values for 7(d) and @ are both defined by the specific problem

instance.

7(d) = \Qm = @ m (60)

Q-
Alternatively, the equation is simplified by substituting the value of X as

7(d)=\Qm = 7(d) = 2mg%)@m

_ 7(d)
= 7(d) = 2“0g2(ﬂﬂQ)Qm (61)
_ 1(dm
= SMloga()]
in order to solve for the value of m:
_ 1(d)m _ m
Td) = T = 1 = g (62)
= m = 2“08;2(11)-\ .

This results in m = 2M1°82(01 tours, each with the identical demand of AQ. Hence the upper

bound of from this optimization is

U1:2[1°g2(“ﬂ = Q(bgz(fg))] (63)

A consequence from the construction of this bounding procedure is that m* < Uj is
not always guaranteed. Instead this bound is only guaranteed for OVRP-UC instances when
m* is obtained by supposing the division of individual customer demands. For this reason,
the worst-case performance of this bound is quantified in the next section for instances when

splitting the demands is not assumed.

5.2.2. An Upper Bound for a Continuous Partitioning Algorithm

The ientical distribution of customer demands is admittedly not likely in practical
instances of this problem. However, existing literature does demonstrate the benefit of miti-

gating a bio-disaster by setting up dispensing facilities such that they all serve approximately
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the same number of people [34]. Hence uniform resource demand for each facility is often
a priority to achieve in this instance. In this section we quantify the performance of U; in
the worst-case scenario. The focus is centered around an existing continuous partitioning
algorithm. In particular the algorithm similarly reflects the heuristics presented in the pro-
ceeding chapters for optimizing the time restricted variant of this problem. As a consequence
of maintaining a consistent heuristic structure, the properties independently associated with
optimizing the OVRP-UT and OVRP-UC are leveraged to design strategies to solve more

complex variants of the problem.

Jimenez et al. [34] introduce a universal partitioning algorithm (UPAS) [34] that
optimizes the geographic placement of resource dispensing facilities in the event of a bio-
emergency. UPAS defines the placement of these facilities by constructing non-overlapping
regions. Further, the resulting regions are constructed such that the amount of required
resources for each region will be equal or near-equal to the all of the remaining regions.
The resources often correspond directly with the affected population to serve within their
respective region’s boundary. This assumes that all individuals within a partition are served

by their closest facility, and that they are all served with the same type of resource.

We abstractly extend the UPAS algorithm to construct uniform partitions to solve
the OVRP-UC. Namely, the set of customer demands (i.e., d;) define the items to partition.
This replaces the set of census regions quantified by the total population within each of them
of which UPAS is designed for. Since none of the census regions are split between partitions
in UPAS, it will represent all instances of the OVRP-UC. This is critical in analyzing the
worst-case performance of U; when the division of individual customer demands are not

assumed.

The resulting partitions obtained from appplying the UPAS algorithm will each de-
note a tour serving all of the customers’ demand assigned to this partition. Therefore we
let UPAS(k) denote the resulting k tours from the UPAS algorithm where & is a positive
integer required as input to the algorithm. Constructing k partitions from this generaliza-

tion of the UPAS algorithm for solving the OVRP-UC presents two conflicts that must be
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noted. The first of these relates to the sole optimization objective of the OVRP-UC, i.e.,
minimizing the total number of vehicles. In contrast, the objective of the UPAS algorithm
is to construct k total partitions while minimizing the discrepancy between each partition’s
total population assigned (or customer demand for this use case). The second issue is that
UPAS does not enforce a capacity restriction for each partition. These issues are directly
related as the minimum number of tours required is a consequence of the capacity available.
To resolve these conflicts, it can be assumed that UPAS(k) is repeated with an arbitrarily
high value of k (i.e., the number of total partitions) initially, that is then reduced until a
feasible solution is constructed. Apart from these issues the construction of k partitions from
applying the UPAS algorithm does indeed adequately represent a OVRP-UC solution. For
additional procedural details of the UPAS algorithm, we refer the reader to the referenced
article, Jimenez et al.[34], as this detail is outside the scope of our analysis. The performance
analysis presented in this article, however, is crucial in proving the worst-case performance

of Ul.

With the objective of determining the worst-case performance of Uy, k is assigned this
upper bound according. Thus the UPAS algorithm will attempt to construct k partitions
such that 7(d)/k < @Q. Theorem 5.2 defines the worst-case case performance of U;. Figure

5.2 exemplifies such a solution demonstrating this worst-case performance.

THEOREM 5.2. Let k equal the upper bound, Uy, obtained for an OVRP-UC instance with n
customer demands, d;,¥i = {1,2,...,n}. Further, assume d; is distributed according to any
distribution d; € (a,b], such that 0 < a < b < Q. Then UPAS(k)/m* > 271, represents the

worst-case performance for the upper bound Uy .

ProOOF. To prove the theorem 5.2 we first observe the error in UPAS(k) constructing k
identical partitions each with the optimal partition size 7(d)/k. Jimenez et al. prove asymp-

totically that

Hm A g = 2dmas (64)

k—o0
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{3.3,2.7,2,2}
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{3.3,2} {2.7,2}

/NN

{3.3} {2} {2.7} {2}

FIGURE 5.2. A scenario where {3.3,2.7,2,2} denote the set of customer demands to parti-
tion. 7(d) = 10 and the capacity @ = 5. The upper bound U; = 2, yet the minimum tours
required in this scenario, 4, is demonstrated.

where A, is the maximum difference between any two partitions for k approaching infinity,
and d,,q, is the maximum customer demand of the n customer. It is additionally shown
that the total demand assigned to any of the k partitions < d,,,,. From this error bound
we observe that each of the k partitions, respectively, will have a total demand within
(1(d)/k) £ dypas. As a result, it is possible for all k partitions to have a demand equal to
(7(d)/k) 4+ dpaz in the worst-case. All that remains is to determine if the addition d,q,
to the perfect partition value, (7(d)/k), would exceed the capacity (). Since k is equal to
the lower bound U;, the proportion of capacity used is assumed as A, where A < 1. Hence
we alternatively represented the partitions by their proportion of capacity used. In other
words, the proportion of capacity used is A + (dynaz/@), by assuming A = 1 for the worst-
case. Then if d,.., equals Q, or any other value in (0, Q] such that AQ + dy,a exceeds Q,
it is possible for the demand of all k partitions to exceed Q. Conversely, since A < 1 and
dmaz < @, none of the k partitions will exceed 2Q. It then follows that AQ + dmes < 2,

proving UPAS(k)/m* > 27! in the worst-case. O
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CHAPTER 6

TWO-PHASE PARTITIONING ALGORITHM

The objective of this chapter is to provide an efficient and flexible meta-heuristic algo-
rithm for the VRP under high-consequence constraints, such as those commonly identified in
responding to a disaster situation. Bio-emergencies in particular call for a specific hierarchy
of optimization priorities. Accordingly, the focus of the algorithm presented in this chapter
is the construction and optimization of vehicle routes that address these type of emergency

response scenarios.

In contrast to the classical formulations of VRP variants (e.g., Capacitated VRP
(CVRP), Multiple Depot VRP (MDVRP)), vehicle routing logistics for bio-emergency re-
sponse introduce a hard constraint on time. Unless all resulting routes are completed within
the maximum time allowed, mitigation efforts for the entire response plan can be severely
impacted. Accordingly, the high-consequence term is used to categorize this constraint. The
phases of responding to a bio-emergercy, as shown in Figure 2.1, motivate this type of clas-
sification. The moment a response plan is activated, the entire affected population must be
treated within a specific time frame. This phase of mass prophylaxis is achieved most com-
monly by treating the population through strategically placed points of dispensing (POD)
facilities. Moreover, the amount of time required to complete the mass prophylaxis can be
determined [58]. By subtracting the time duration for this mass prophylaxis phase from the
total time allowed between the plan activation and completion, the remaining time defines
the hard time constraint for the delivery of resources to the PODs. As a result, all vehicle
routes constructed under these circumstances must complete their tour within this maximum
tour duration. A formal definition of this high-consequence VRP variant is presented in Sec-
tion 6.2. Namely, the hard constraints for the maximum tour duration and the identical

vehicle capacity are reflected in this optimization.

As previously illustrated in Section 2.2, most VRP formulations define a specific type

of graph to model the logistical network. These abstract formulations are beneficial when
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applying this research across different domains. However, it is presumed that networks in
most practical instances (e.g., real road network) can be modeled by these formulations.
For this reason, a practical network for a classical road network is provided in Section
6.1. Additionally, the procedures to construct a complete graph representation of this road
network are presented. The construction of this graph is utilized in Section 6.2 for the
formal definition of the aforementioned VRP under high-consequence constraints. A two-
phase partitioning algorithm is presented in Section 6.3 that constructs a set of vehicle routes
that are optimized for this high-consequence VRP. The chapter concludes with an illustration

of the algorithm’s application on a simple network instance in Section 6.3.5.

6.1. Modeling the Road Network

Formally we denote the road network as the graph Gr = (V, E), where V(Gr) =
{v1,v9,...,0,}, and E(GRr) = {e1, ea, ..., ex}, represent the vertex and edge set respectively,
so that E(GRr) defines k total road segments where the end points represent the n vertices.
This reflects a common structure in geographic road network data sets where a single tradi-
tional road will usually consist of contiguous and intersecting road segments. As is typical in
road networks, multiple paths may exist that could be traveled between any two points in the
network. As a result, G, is assumed to be a multi-graph. Each path is defined by an ordered
sequence of edges. In an effort of generalization, we make the assumption that any path be-
tween two locations has a symmetric cost resulting in the undirected graph. This assumption
is based on the realization that most roads are (i) two-way, representing an equivalent costs
to travel in either direction, or (ii) a comparable one-way road in opposite directions exists.
For simplicity, each path is described only by its origin and destination location. We denote,
P, as the set of paths that exist from v, to vy, Yo, v, € V(GR). According, let 7, € O
denote the path, p, that begins at v, and ends at v,. The unique path, p, is specifically ref-
erenced since multiple paths can exist from v, to v,. Furthermore, this description of paths
define the relation between V(Gg) and E(Gg), as a function f : {v,v,} — E(GRg), such that
one or more mappings exist for any vertex pair {v,v,} € V(GRg), to the corresponding or-

dered sequence of edges, e € E(GR), that define the path(s) from v, to v,. This assumes
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that the graph is connected accordingly.

The associated weight or cost with each edge can represent various measures such
as the travel distance between two locations, classification of the road segments and travel
time (i.e, distance x rate of speed). For the purpose of this research, we assume that the
edge cost represents the time to travel the road segment. Accordingly, let 7%, denote the

associated cost for traveling from v, to v, on the path, p.

(a) (b) () (d) (e)

FIGURE 6.1. (a) illustrates a multi-graph, Gr(V,E), for a traditional road network.
V(Gr) = {v1,v,...,u7} denotes the set of geographic points in the road network. The
edge set, E(GR), depicts the road segments between any pair of points in V(Ggr). The
subset, L = {v1, va, vg, v7}, denotes a set of locations to visit for a particular VRP problem,
where L C V. (b) depicts the sub-graph, H C G, of the road network that only includes
the geographic points and road segments that exist in at least one least cost path between
any location pair in L. (e) illustrates a complete undirected graph, G¢(V, E), commonly
used as an abstract representation of the VRP for the locations, L, on the road network;
the edge set, F(G¢) denotes the shortest paths between all pairs in V(G¢) derived from
constructing the graph. (b) through (d) depicts the suppression and contraction of all geo-
graphic points not included in L; (e) illustrates the edges added (dashed lines) to achieve a
complete graph.

Currently, Gg provides an accurate representation of a classical road network. Most
common formulations of the VRP, however, provide a more abstract model of the network.
Namely, if two or more edges exist for a pair of adjacent vertices, only the least cost edge
is kept in the formulation. Furthermore, an undirected complete graph is commonly used
to define the network of a VRP. For this reason, a sub-graph, H, is constructed from G to
model a network, optimized for common routing operations (e.g., determining the shortest

path), for a VRP instance. An abstract representation, denoted as G, is subsequently
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derived from the sub-graph, H, of this road network. This final representation of the road

network is utilized for the VRP presented in Section 6.2.

To define the procedures for the construction of H and Gg, let L, define the set
of locations in the road network that are defined for a VRP instance. In other words, let
L C V(Gpg) denote the set of customer locations to visit, and at least one depot location
that all vehicle routes must begin at. Figure 6.1 illustrates the construction of the graphs
H and G¢ on a simple road network, G'r, where L = {vy,vq, v6,v7} is the set of locations

defined by some VRP instance.

CONSTRUCTING H C Gg

For the set of locations defined by some VRP instance, L C V(Gg), the optimized routing
network, H, defines a sub-graph of Gy that only includes the geographic points and road
segments that exist in one or more least cost path between any location pair in the set L.
Hence L C V(H) C V(Gg) and E(H) C E(Gg). Formally, we define the set of edges, E(H),

as the following
E(H) = {e € E(Gg)|(e € D" )N (75, < Téb),Va,b € L,Vp,l € Dy, p#1l,a#b} (65)

where V(H) is subsequently defined by the end points for all e € E(H). This process can
be efficiently computed by applying Dijkstra’s Algorithm [24] in finding the shortest path
between all pairs and creating an edge at the obtained cost. Figure 6.1(b) depicts the sub-
graph, H, for the defined set of VRP locations, L.

CONSTRUCTING G¢(V, E)

The graph, G¢(V, E), represents an abstract network for the set of locations, L, defined
by some VRP instance. Therefore G¢ is derived from the entire road network, Gg, but
instead is defined in a manner that is consistent with common formulations of the VRP. G¢
is constructed from the sub-graph H, such that V(G¢) = L. Accordingly, E(G¢) results

from augmenting H by (i) contracting every vertex v € V(H) \ L, and then (ii) inserting an
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edge to join all pairs of non-adjacent vertices. In other words, following the first procedure,
the second procedure, (ii), results in a complete graph by adding an edge on all vertices
with a degree less than |L| — 1. Figure 6.1 illustrates these procedures for constructing G¢
for a set of locations, L, defined for some VRP instance. Specifically, Figure 6.1(b),(c) and
(d) illustrate this first procedure by contracting the vertices, v3 and vy, since these points in
the road network are not included in the set L. The second procedure is depicted in Figure
6.1(e), representing the graph, G¢, by adding an edge between the vertex pairs, vjv; and
Va7,

In the following section (Section 6.2), the graph network model, G¢(V, F) is utilized

in the formulation of the aforementioned high-consequence VRP variant.
6.2. Mathematical Formulation

Utilizing the previously defined graph, G, constructed from the road network graph,
we define a high-consequence variant of the VRP. To establish the context of the VRP,
all the locations, V(G¢), are assumed to represent either a depot location (i.e., where all
vehicle routes must start at), or the location of a customer that must be visited in a vehicle
route. Formally, let the subset, D C V(G¢), represent all vertices v € V(G ), where v is a
depot. Similarly let the subset C' C V(G¢) represent all v € V(G¢) where v is a customer.
Accordingly, D = {dy, ...,ds} and C = {¢cy, ..., ¢,,_s} denote, respectively, the set of all depot
locations and customer locations. Let ¢)(c) denote the demand asociated with each customer,
Ve e C.

Additionally we define the solution to obtain for the VRP formulation by a set of
vehicle routes, R. Let R;, for each i = 1,2, ..., |R|, denote a single vehicle route that defines

an ordered sequence of vertices as

Ri = (Vp(0) Vp(1)s -+ Vg (k)) 5 (66)

where vy, for each t = 0,1, ..., k, is a vertex v € V(G¢) whose subscript, ¢(t), denotes the
tth position in the route and maps to a specific vertex in V(G¢). This ordered sequence

defines a vehicle route by representing the locations that the vehicle will visit, in the order
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they are visited in. As shown in Equation 66, the first index, vy, of each route represents
the depot, d € D, where the route will begin at. The sub-sequence <v¢(t))f:1, denotes the
customers, ¢ € (', and their order that the route will visit them in.

For this VRP formulation, all vehicles are assumed to have identical constraints.
Specifically, each vehicle will have a capacity, denoted by the positive constant (3, to serve

the set of customers in its route. The total customer demand associated with a vehicle route

is denoted as 1 (R;), calculated as

| Rl

Y(R;) = Z Ulve), (67)

t=1

where ¢ (v;) denotes the demand of the individual customer in the tth position of the route.
Furthermore, all vehicle routes will be restricted to by a constant time constraint, denoted
as «, which defines the maximum tour duration allowed. Accordingly, let 7(R;) denote the
total travel cost for the vehicle route, R;, calculated as

|Ri|—1

T(Ri) =7 * |[Ri| + Z Ty 1) Ve (t41) (68)
=0

where v denotes a constant unloading time that is assessed for each customer visited, and

TU¢(t)U¢(t+1) represents the amount of time to travel from Vg (1) to Ugp(t+1)-

The VRP optimization problem is then defined as:

Minimize |R| (69)
subject to:

T(R) <a, i=12,..,|R| (70)

1/1(31) < 5) t= 1727 ) |R| (71)
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R

U{R: = v} = O v € R (72)
=1
|R|
(VR —vs} = 0, vy € Ry (73)
i=1
Vp(0) ﬂ D 7& ®7 Vg(0) € Ria =12, .., |R’ (74>

Objective 69 is the optimization objective of this VRP variant, and is subject to Constraints
70, 71, 72, 73 and 74. Objective 69 minimizes the total number of vehicles required to serve
all customers. In this formulation, Constraint 70 restricts every route to be completed within
the allowed time. Constraint 71 requires that the resources demanded by the customers on
the routes do not exceed the capacity of the vehicle serving it. Constraint 72 requires that
each customer must be visited by a vehicle route. Constraint 73 restricts every customer
to be visited only once. Constraint 74 forces a route to initially start at one of the depot
locations. However, once the resources are delivered and the route is complete, there are no
constraints forcing a vehicle to return back to its starting depot within the required time,

instead representing a variant of the Open VRP (OVRP).

We define a solution to this problem formulation as the set of vehicle routes, R, that
deliver the resources demanded from each customer. A solution is determined to be feasible
when all routes R; € R have satisfied the constraints (i.e., Constraint 70, 71, 72, 73 and
74). A solution is considered optimal when it is feasible and Objective 69 is minimized.
Determining the optimal solution for most practical and non-trivial instances is not compu-
tationally feasible since this VRP variant is a generalization of the TSP [45]. Accordingly,
a novel two-phase meta-heuristic algorithm is devised in the following section to construct a

minimized set of vehicle routes.
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The Vehicle Routing Problem: Notation

D cCV(Ge) Set of provided depots in the road network

C Cc V(Ge) Set of provided customers in the road network

R Resulting set of vehicle routes

R; = (vg(0), Vg(1), -, Vo))  Ordered sequence of locations defining the route R; € R
vg(0) € R; Depot, d € D, defining the starting location in R;
(vn>2:1 Ordered sub-sequence of customers, ¢ € C, in R;

V(R;) Total capacity required to serve all customers in R;
T(R;) Total travel time required to visit all customers in R;

a Maximum tour duration allowed for all routes

I5] Maximum capacity for any vehicle in R

vy Time required for unloading at each customer in the route

Table 6.1: Mathematical model notation for the VRP

6.3. Two-Phase Spatial Meta-Heuristic

In this section we present a meta-heuristic algorithm to solve the problem formulated
in Section 6.2. Initially, a high-level overview of the heuristic strategy is presented. The de-

tails of the two-phase spatial meta-heuristic algorithm subsequently follow in Section 6.3.1.

HEURISTIC OVERVIEW
To solve our VRP formulation we designed a heuristic that is partially based on the decom-

position of the problem into two natural phases generally described as:

(i) Vertex Clustering: In this initial phase the customers required to be served are
strategically placed into a known constant number of clusters. Membership within
each cluster represents the selected customers that are to be incorporated into a
single feasible route.

(ii) Route Construction: This phase exploits the individual clusters to independently
construct a single optimal route for each cluster. Subsequently this phase is the
reduction of the VRP by solving a mutually independent set of TSPs so that each
route defines the optimal order to visit the customers that are members for the

route’s respective cluster.
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This decomposition of the VRP into these two phases originates from the heuristic stategy
put forth by Fisher and Jaikumar [25]. In the initial phase clusters are formed by solving the
Generalized Assignment Problem (GAP). Algorithms based on this strategy have previously
shown the ability to produce quality solutions while benfiting from accelorated computational
execution times [8]. However, heuristics for the GAP often assume that the vehicle fleet size
is known. This represents an important distinctive characteristic that deviates from the
high-consequence VRP variant defined in Section 6.2.

Based on the benefits observed from the decomposition of the problem, we adopt
the underlying strategy by approaching the problem from its two natural phases. Due
to the unique conditions enforced by the high-consequence VRP formulation, we alter the
initial phase of the problem decomposition and present a heuristic based on spatial parti-
tioning. In particular, the universal partitioning algorithm (UPAS) [34] that optimizes the
geographic placement of resource dispensing facilities in the event of a bio-emergency is ob-
served. Jimenez et al. [34] define the placement of facilities to be optimal when every facility
has a uniform resource demand or population to be served or treated. UPAS partitions the
geographic region of the affected population into a specified number of sub-regions, with
the objective of each sub-region maintaining spatial contiguity and a equal population count
assigned. We abstractly extend the conceptualization of assimilating uniform spatial parti-
tions put forth in UPAS. Assuming equal capacity availability for each vehicle in the fleet to
route, a similar partitioning can be conceived to optimize the customers to be delivered by
each route. We embed these observed characteristics into the procedures of the multi-phase
algorithmic framework presented in Section 6.3.1. The algorithm incorporates both phases of
the problem decomposition, accordingly, to solve the high-consequence VRP variant defined

in Section 6.2.

6.3.1. An Algorithmic Framework

Algorithm 4 formally describes the process of constructing a minimized set of open
vehicle tours required to serve all customers. Without loss of generality, it is assumed that

a minimum of two vehicle routes are required for the context of this research. For smaller
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Phase 1: Vertex Clustering Phase 2: Route Construction
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FIGURE 6.2. Multi-phase algorithm framework

instances that only required a single route, the problem can be generalized as a TSP instead.
In that case, the exact and approximation algorithms reviewed in Chapter 2 are better suited
for solving a TSP instance. Nonetheless, this algorithm can easily be extended to construct
a single tour from the initial input to test the feasibility of a single tour. In particular, an
existing/known TSP algorithm can be selected for this procedure based on solution quality
and computational efficiency preferences.

Figure 6.2 illustrates the flow of Algorithm 4 through both phase 1 (vertex clustering)
and phase 2 (route construction). The initial phase employs a priority tiered, multi-stage
termination criteria when determining the minimized number of unique clusters of customers
to each be constructed into vehicle routes in phase 2. The construction of these clusters in
the initial phase primarily consists of two core procedures: continuous partitioning the set
customers into new clusters for optimal route construction, and identifying optimal cuts
along vehicle routes for further optimization. Due to the possibilities of significant variation
in geographic distribution of customer placement and the resource demands by each, these
procedures are essential to obtain the clusters of customers that can result in an optimal

solution R.

In order to define the process of phase 1 in the algorithmic framework, we first explain
the SPATIALPARTITION heuristic in Section 6.3.2 that incorporates a parameterized priority
weighting scheme associated with the partitioning. Section 6.3.3 will explicitly illustrate

this procedure and describe the evolution of the priority weighting scheme as described
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Algorithm 4 Two-Phase Spatial Partitioning Meta-Heuristic Algorithm
Input: C': Set of customers required to be serve by a vehicle route;

D : Set of depots used as the origin of vehicle routes;

a : Maximum tour duration allowed for any vehicle route;

[ Maximum vehicle capacity;

A : Continuous weight reduction factor
Output: R : Set of vehicle routes

1: Initialize empty set of routes R < ()

2: Initialize optimization priority weight w < 1

3: Initialize weight reduction factor variable A\ € [0, 0.5]
4: {Rrp,, Ry} < SPATIALPARTITION(C, D, w, a, )

5 R+ {RT17 RTQ}

6: while T(RJ > «a, R;VR do

7 R, < argmaxy . 7(R;)

8§ 1 {Rs — vy}

9: {Rr,, Rp,} <= SPATIALPARTITION(7, D, w, «, ()
100 R« {R\{R.}} U {Rn, B}
11: end while
12: PRUNEROUTES(R, D, w, a, [3)
13: while 7(R;) > a or ¥(R;) > 5, R,VR do
14: if w=1and 7(R;) < o, R;VR then

15: W 4= wA

16: end if

17: R, < argmaxy .r¥(R,) > Route with largest resource demand
18 if Y(R,) < then

19: R, < argmaxp p7(R,)
20: end if
21: n < {R:v — U(l)(O)}
22: {Rr,, Ry} < SPATIALPARTITION(7), D, w, «, f3)
23 R {R\{R.}} U{Bz, Br,}
24: end while
25: for i < 1 to |R| do
26: SoLvE TSP(R;)
27: end for

in the framework. Additionally this section will describe the identification of optimal cuts
among unfeasible vehicle routes using the PRUNEROUTES procedure that follows the state of

optimization where the priority will shift to another tier during the continuous partitioning.

6.3.2. Vertex Clustering through Spatial Partitioning

Algorithm 5 formally presents the heuristic SPATIALPARTITION to partition a pro-

vided set of customers 1 and return two temporary vehicle routes (i.e., Rp,, Rr,) that serve
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Algorithm 5 Spatial Partition

Input: 7 : Set of customers to spatially partition into two routes;

D : Set of depots used as the origin of vehicle routes;

w: Optimization priority weight;

a : Maximum tour duration allowed for any vehicle route;
[ : Maximum vehicle capacity

Output: {Rp, Rr,} : Two new partitioned vehicle routes

WO NN RN NN N KN N DN o e s b
S © 0T U A WO © OO E W= O

. Initialize empty routes Ry, < Ry, < ()
{vq, 0p} + arg maxa’ben{Tab}
Vg(1) < Vg for Vg(1) € R,
vg(1) < vy for vy € Ry,
n<n \ {'Uaa Ub}
while |n| > 0 do
Ry = max {x(Ru,), x(Rx,) |
k= |Rx|
v; = arg Minye, {Vg(1), Voky € R | Min{ 7,0, Toggv 1
i Ty0,0) < Toggye: then
else
end if
<1\ v;

: end while

k= |RT1|

» d; < argmingg, {vs), Vo) € By | min{ o0, s Toygva b}
o if Tdiv¢(1) S T%(k)di then

RTl < <dl> + RTl

. else

Ry, < Ry, + (d;)

: end if

k= |RT2‘

s dy < argminge, {vs), Vok) € By | min{ Ty, Togva )t}
. if Tdvgy < Toggds then

RT2 < <dl> + RT2

. else

RT2 — RT2 + <dl>

. end if

all customers in 7. Although the objective of the first phase of the problem decomposi-
tion is to construct clusters of customers that are optimally configured into vehicle routes
in the following phase, we initially represent each of the clusters by naively constructing a
vehicle route from its members. This is necessary for determining the clusters feasibility of

constructing a vehicle route and measuring its progress towards the optimization objectives.
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Input Parameters

C' C V(Ge) Set of customers required to be visited
D C V(G¢) Set of depots that the routes must begin at

a Maximum tour duration (i.e., travel time) allowed for any route

I} Maximum capacity for any vehicle in R

w Weight of optimization priority constraint; value initially assigned as 1
A Continuous weight reduction factor [0, 0.5]

nCccC Subset of customers to be partition into two new tours, Ry, Rr,

Output Parameters

R Resulting set of vehicle routes
Ry, Ry, Temporary routes

Table 6.2: Parameter variable notation used in Algorithms 4, 5, and 6

The goal of this procedure is to assign all customers in the set, 7, to construct two
uniform clusters. Specifically, the uniformity will be measured by the temporary route
constructed for each cluster (i.e., Ry, Rr,) independently. Ideally this measure of uniformity
should describe the equivalence of the vehicle properties so that Rp, is uniform to Ry,
when 7(Rp,) = 7(Rp,) and ¥(Ry,) = ¥(Ryp,). However unless the resources demanded by
each customer or the distance between all pairs of customers can be defined by a known
functional relationship, maintaining this type of uniformity is not feasible. Furthermore, the
formulation of this VRP variant under high consequence constraints calls for a priority on
certain properties of the route, such as the constrain on time in emergency response. As
a result of these circumstances Algorithm 5 attempts to build two routes that are uniform
with respect to their individual value obtained from the scoring function x(R;). We define
this function in Equation 75 to associate the route with the allocation of priority weighted
resources.

(R = (1 - %) @)+ (1 - @) (- ®

This allows the time and capacity constraints to be prioritized by the associated weight

w. Additionally it will penalize routes that have limited resources still available or even
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surpassed the limitations outline by the optimization constraints. This situation occurs
when the time or capacity required to serve the customers in the vehicle route exceeds the
vehicle constraints, specifically when 7(R;) > « or )(R;) > [ respectively. The priority
weight variable w is a parameter of this heuristic and its value is managed by the algorithm
framework (Algorithm 4), assigning w the value associated with the current priority tier at
each phase of the mutli-stage termination criterion. The evolution of w and the determination
of its value is explained in Section 6.3.3 for the illustration of Algorithm 4.

Utilizing Equation 75 as a measurement in obtaining uniformity, we extend the con-
cepts in UPAS previously discussed to partition 7. As described in Algorithm 5, we initially
initialize two temporary routes by assigning them each the two customers v,, v, that have
the largest distance between them, followed by removing these customers from 7 (lines 1-5).
Note that this meta-heuristic SPATIALPARTITION must return two routes that contain all
customers in 7 and as a result a feasible solution might not exist. As a consequence we allow
the temporary routes at each stage of this algorithm to be infeasible. Following this initial-
ization we iteratively select R, of the temporary routes where R, = max {X(RTI), X(RTQ)}
at each iteration and find the customer v; € n that minimizes the distance to either end of
R, and insert it into the selected route (lines 6-16). After the insertion, v; is removed from
n and this process repeats until |n| = 0 indicating that all customers are partitioned into
two clusters and naively formed into the two temporary routes Ry, Rp,. The final steps of
this heuristic is to simply add to each temporary route the depot d € D that minimizes the
distance to either end of the routes so that they confirm to the formal route structure so

that global optimization and feasibility can again be determined (lines 17-29).

6.3.3. Evolving Resource Prioritization from Infeasible Routes

Using the SPATIALPARTITION heuristic we now briefly describe the first phase of the
general framework as illustrated in Figure 6.2. Initially we define the priority weight w in
the first optimization tier such that we can continuously partition the set of customers C' as
a set of routes R; € R until the priority condition (7(R;) > «) for all routes are met. With

this intention we assign w — 1, effectively prioritizing the vehicle routes with respect to time
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Algorithm 6 Prune Routes
Input: R : Set of vehicle routes;
D : Set of depots used as the origin of vehicle routes;
w: Optimization priority weight;
a : Maximum tour duration allowed for any vehicle route;
[ : Maximum vehicle capacity
Output: R : Set of vehicle routes

L+ 0 > Empty set of customers pruned from routes
2: S« 0 > Empty list of pruned route indexes
3 A0 > Empty set of new pruned routes

4: for i+~ 0 to |[R| — 1 do

5: if ¥(R;) > [ then

6: S <« S U Rl

T d + Vg(0) € R;

8: R, = {<'U¢(t)>teRi Tdvy) > Tdvg 41y t=20,1,..., ‘Rl‘ — 1} > Sort R;
9: k<+0 > Capacity required in route
10 for j < 0to |R;| —1do

11: UV <= Ug(s) € R;

12: if kK +1(v) < then

13: k< k+¢(v)

14: else '

15: Rl = (V40120 > R; represents the pruned route of R;
16: =R} -1

17: d, < argminge p{vg(0), Vo) € B | Min{Ta, v, Togqyd. |}

18: R, = (d,) + R; > Add closest depot to either end of route
19: A+~ AUR;
20: n<<nU {(%(t%}i@m}
21: Break > Continue to the next route over capacity
22: end if
23: end for
24: end if
25: end for
26: R+ R\ S

27: {Rp,, Ry} < SPATIALPARTITION(7), D, w, «, [3)
28 R {R} U{A}Y U {Rn, B}

when applying the scoring function x previously described in Equation 75. Consequently
this allows a temporary relaxation of the capacity constraints when building the uniform
clusters (i.e., temporary routes) in Algorithm 5. To this end we initialize the empty solution
set of all vehicle routes R, by appending the temporary routes { Ry, Rr, } returned by the
SPATIALPARTITION procedure. Observe that for each instance of the procedure the values of

the first and third parameters (7, w) are dynamic, while the remaining parameters (D, «, ()
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represent static values. In particular when initializing R (Algorithm 4 line 5), w — 1 reflects
the value of the first tier in priority weighting, and n — C' such that all customers in the

road network are to be initially partitioned.

Once R is initialized, Algorithm 4 will continuously partition any route R; € R
exceeding the time constraint (7(R;) > «) until all routes meet the constraint (70) defining
the initial stage of the termination criteria (lines 6-11). At each iteration R, is selected
as the route that maximally exceeds the time constraint. The customers served by R, are
removed from R (excluding the depot) and assigned to the parameter 7. Before the start of
the next iteration, R, is removed from the set R and replaced by the two routes obtained

from performing the SPATIALPARTITION procedure on the customers in 7.

In this first priority tier where w = 1, the scoring function (Equation 75) assigns the
sole priority on improving the component of time constraints accordingly. This is specifically
demonstrated in Algorithm 5 (line 7) when constructing two new routes. As a consequence
the routes are continually partitioned until the initial termination criteria in Algorithm 4
(line 6) has been met. At this point every route will have met the priority criteria constraint,
enforcing the maximum tour duration allowed. In other words, all routes are now guaranteed
to serve their respective customers within the allowed time. But even so, the capacity
criteria has not been addressed. Hence any number of these routes could be exceeding their
maximum capacity. For this reason, the optimization priority weight w then evolves into its

second priority tier for the remainder of phase 1 of the algorithm framework.

This second tier is represented by reassigning w <— wA where A € [0, 0.5]. The value of
A defines the factor by which to reduce w. The resulting value represents this second tier for
w to shift the optimization to the capacity criteria. The degree by which the priority changes
corresponds directly to parameter value A\. Moreover, the factor by which the time criteria is
reduced by will equal the proportion of priority the capacity criteria will receive. When A = 0
only capacity in vehicle routes are considered. Conversely if A = 0.5, equal priority to both
time and capacity constraints are assigned. This updated value of w will therefore adjust the

partitioning procedure by including the capacity utilization when constructing the routes.
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We assume )\ is provided as a parameter to Algorithm 4, and obtained by experimentation

of this value based on the specific network defined for optimization.

With the shift of w into the second tier, we repeat the continuous partitioning steps
but instead with a different termination criteria. Namely, satisfying all of the problem
constraints will trigger the termination of the partitioning. Before we do this however, the
current set of routes are strategically reorganize to improve the optimization performance
of the partitioning. The PRUNEROUTES procedure in Algorithm 6 performs this process by

identifying optimal customers to cut from routes that exceed their capacity.

To identify theses optimal cuts we first select all routes that currently exceed their
allowed capacity. Since all routes are currently about to be completed with the maximum
time allowed, those that exceed their capacity are all that is required to partition further.
Furthermore, it is observed that no removal of any customer from these routes will result
in a route that exceeds the maximum tour duration. In other words, since there currently
exists a permutation (i.e., path) of customers for every route that can be performed within

the time allowed, any subset of customers can be similarly visited in the same time or less.

The number of customers pruned from each route is determined by the proportion
the route exceeds the available capacity. Customers are continually pruned from the route
until the route’s remaining customers’ demand can be fully served by the available capacity.
As described in the algorithm, these remaining customers are strategically picked such that
they are near each other. The customers are removed in an increasing order of their distance
to the depot. Once the pruning process has completed, all remaining routes will satisfy both
the time and capacity criteria. Those customer removed will define the final set of customers
to construct into routes. As previously mentioned, the continuous partitioning on this set of
routes is adjusted to prioritize the capacity criteria. After feasible routes have been formed
from the pruned customers, Algorithm 4 begins a post optimization procedure as define by

its second phase.
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6.3.4. Route Construction

Following the first phase, we additionally utilize existing exact and heuristic ap-
proaches (see general surveys [12] [11]) to solve the TSP for each cluster in the second
phase of Route Construction in the problem’s decomposition. Essentially this step simply
optimizes the order by which the route visits the customers to improve the resource uti-
lization. This phase of the algorithm is a common post-optimization step in many VRP
algorithms. Further this step can be formulated as solving a TSP for each individual cluster
and existing research is utilized. Algorithm 4 (lines 25-27) demonstrate this optimization
by independently treating each route in R as its own general Open TSP to be solved. Of
course, selecting the algorithm to use for this procedure will depend on the specific problem
domain and size. For example, if the average customer only requires a very insignificant
amount of vehicle capacity in relation to the total capacity available, each route is likely to
include a large number of customers. In this case, a faster approximation algorithm might
be the most appropriate procedure to use here. Conversely for longer distance routes each
with minimum customers included, accuracy from exact algorithms might be the best suited.
Overall there are many acceptable choices for this stage that can be used in satisfying the
requirements of the application. For the bio-emergency response domain that has motivated
the development this algorithm, simulated annealing [39] in particular demonstrated to be
the best fit. At the conclusion of this second phase the algorithm returns R, the optimized

set of feasible vehicle routes, solving the optimization problem formulated in Section 6.2.

6.3.5. An Illustrative Example

The application of Algorithm 4 is exemplified in this section using the simplistic
network illustrated in Figure 6.3. This network consists of 14 customers and a single depot.
From this network a set of routes are construct such that the fleet size is minimized. Figures
6.4 and 6.5 illustrate the steps and procedures associated with constructing the solution for
this network.

Algorithm 4 begins by first selecting the two customers who are the furthest apart. It

is assumed that the cost to travel between any two customers is calculated by their euclidean
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FIGURE 6.3. Ilustration of a simple network with labeled customers for identification in
Figures 6.4, 6.5, and 6.6

distance as mentioned in the previous section. The yellow circles in Figure 6.4(b) identify
the customers furthest from each other. Each of these two customers will be included in
one of the two routes that result from this first level of partitioning. Using each of the
selected customers as an endpoint for a route, the next closest customer to each are assigned
to their respective partition. Figure 6.4(c) accordingly demonstrates the current customer
assignment following this step. Both sets of the assigned customers each represent a route
defined by the order by which these customers are connected. Since the euclidean distance
provides an asynchronous travel cost for each connection, the route can be assumed to begin
at either of the two the ends. The remaining construction of these two tours is continued from
this assignment of the next closest insertion heuristic at either end. This process is formally
defined by the aforementioned SPATIALPARTITION procedure. Accordingly, both routes in
are each scored using the Equation 75 following every customer assignment. As shown in
Figures 6.5(d) and (e), the route with the highest score is assigned the next customer. Until
all customers have been assigned to a route where the complete set of routes do not exceed
the maximum tour duration, routes with the shortest travel time are assigned the highest
scores. Once all customers are assigned to one of these two tours the depot is attached to the

closest endpoint of each route. This is illustrated in Figures 6.5(f) and (g) and signifies the
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FIGURE 6.4. Tllustration (1 of 2) of the SPATIALPARTITION procedure as called in Algorithm 4

(i) (i) (k) (n

(m) (n) (o) (p)

FIGURE 6.5. Tllustration (2 of 2) of the continued partitioning from Figure 6.4 in (i),(j),
and (k). (1) through (p) illustrate the PRUNEROUTES procedure as called in Algorithm 4

completion of the SPATIALPARTITION procedure for the first iteration. The children of the

root node in the tree illustrated in Figure 6.6 represents these two routes accordingly. This
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procedure is independently repeated for any route that exceeds the maximum duration. It is
assumed in Figure 6.4(h) that both routes exceed the maximum time allowed in this example.
As a result, this process is repeated for one of the routes and then again for the remaining
route, as illustrated by Figures 6.5(i)(j) and Figure 6.5(k) respectively. The resulting set
of the four routes constructed at this point are defined by the children nodes at the second
level of the tree in Figure 6.6. For the purpose of this example, it is assumed that all four of
these routes no longer exceed the maximum tour duration allowed. However, it is assumed
that all of the routes do exceed their vehicle capacity. Figure 6.5(k) illustrates each of the
four current routes of which are identified accordingly with a single color for each one.

To demonstrate the PRUNEROUTES procedure in Algorithm 4, Figure 6.5(1) depicts
the maximum number of customers in yellow that can be selected from the blue route (i.e.,
Ry) without exceeding the vehicle capacity. These customers are selected in order according
to their distance from the depot. As a result, the remaining customers are also the closest
to the depot. Figure 6.5(m) shows the resulting pruned route where the remaining blue
circle is the only removed customer. The pruning of the remaining routes are additionally
illustrated in Figures 6.5(n) and (o). Once the set of customers, {4,6,10,11}, are removed
from this pruning procedure, the resulting routes will all be feasible. The set of the removed
customers will then continue to be partitioning; basically restarting the entire process using
this set alone. The only change is that the optimization priority on time will be reduced
such that the scoring function will instead now prioritize the optimization of capacity usage.
However, for the purpose of this example, it is assumed that the set of customers pruned
from the routes can be constructed into a single feasible route. This result is demonstrated
in Figure 6.5(p) and the routes are defined accordingly by the leaf nodes in Figure 6.6.

In Chapter 7 we illustrate the direct application of this two-phase algorithm in the
context of bio-emergency response. Namely, a case study is constructed from a large region

in the state of Texas to exemplify the performance and outcomes of the algorithm.
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FIGURE 6.6. Tree representation of the route partitioning and pruning performed in Figures
6.4nd 6.5 The leaf nodes denote the five routes as the solution. The dashed lines denote the
pruning of customers from a route. The numbers in each route correspond to the customers
as labeled in Figure 6.3
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CHAPTER 7

APPLICATION TO RESPONSE PLANNING

To demonstrate the applicability of the Algorithm 4 (Two-Phase Partitioning Algo-
rithm) previously defined in Chapter 6, an illustrative large-scale case study is created in
Section 7.1. The first phase of a bio-emeregency response plan (Resource Transportation &
Distribution) as depicted in Figure 2.1 is the focus of the study. Multiple variants of the
priority strategy for Algorithm 4 are described in Section 7.2. Two of these strategies in par-
ticular are modeled after the analysis of the partition heuristics solving the OVRP-UT and
the OVRP-UC defined in the previous chapters. The remaining strategies are constructed
specifically for solving the formal optimization problem defined in Section 6.2. The perfor-
mance of these optimization procedures are presented in Section 7.3. Section 7.4 describes
the integration of these methods into a computation framework to aid public health officials

in bio-emergency response planning.
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7.1. Regional Case Study

To analyze the performance Algorithm 4, a bio-emergency scenario is constructed.
Moreover, this provides verification of the correctness of the computational framework pre-
sented in Chapter 6 as a consequence of the experimental evaluation.

In the event of a bio-emergency (as described previously in Section 2.1), the federal
government will ship Medical Countermeasures (MCMs) from the Strategic National Stock-
pile (SNS) to the local state government’s Receiving, Storing and Staging (RSS) warehouses.
These MCMs must then be distributed to the affected region’s strategically placed Point of
Dispensing (POD) facilities to treat the population. Short time frames (e.g., 24 or 36 hours)
for dispensing the MCMs are mandated by the federal government to reduce the severity
of the emergency. We illustrate these mitigation efforts by constructing a scenario a large
geographic region in Texas containing a significantly sized population. Figure 7.1' demon-
strates geographic boundaries defining the health service regions by the Texas Department
of State Health Services (DSHS). The health service region 2/3 is observed for this case-
study. A response plan was created for this region accordingly in determining the quantity
and placement of the PODs by using existing response planning software and methodology
as presented in [51] and [57]. Figure 7.2 illustrates the placement of 341 PODs and 2 RSS
warehouses. The resource demand (i.e., supplies required) is defined by the total population
count assigned/affiliated with each individual POD. Figure 7.3 illustrates the demand for
each POD relative to the overall distribution by the size of each red circle. The red circles
denote the location of a POD while the size of the circles represent the total amount of re-
sources that are required by the POD. The larger sizes indicate a larger demand accordingly.

As previously described in Figure 2.1, the resources required by each of these PODs
will be delivered by a set of vehicle routes that all start from the two RSS warehouses.
Furthermore, the following assumptions complete the configurations required in constructing

the scenario before executing the experiments:

(1) All resources must be delivered form the RSS warehouses to all POD locations and

Hmage courtesy of UNT Center for Computational Epidemiology & Response Analysis (CeCERA)
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FIGURE 7.2. Texas DSHS Region 2/3 (Case Study): Bio-emergency response plan

unloaded within 12 hours

(ii) For every POD visited in each tour, the process of unloading the resources to deliver
will take 30 minutes to complete

(iii) Each POD must be delivered enough supplies to fulfill the resources required to
serve its specified population demand

(iv) Population demand (i.e., required resources for each individual POD) have been
determined by assigning the sourcing population to their respective closest POD
location to calculate the total population demand

(v) Each delivery vehicle must not exceed its max capacity allowed

(vi) Vehicles are assumed to be large distribution trucks with trailers that can sufficiently
carry enough supples to fulfill a POD population demand of up to 211,000 people,
calculated by the following:

e 22 regular sized pallets per vehicle
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FIGURE 7.3. Texas DSHS Region 2/3 (Case Study): POD demand by location

e 9.600 bottles per pallet

e 1 bottle per person for sufficient treatment

The following section defines multiple variants of Algorithm 4. We apply an im-
plementation of these optimization strategies to the illustrated bio-emergency scenario and

examine their respective performance in Section 7.3.

7.2. Optimizing Vehicle Routes with Two-Phase Partitioning

This section describes multiple optimization priority strategies associated with Algo-
rithm 4. The implementation of each strategy will each generate a set routes as the solution
to the optimization problem in Section 6.2 for the illustrated bio-emergency scenario in region
2/3.

Each strategy places a different a optimization priority on the available time and

vehicle capacity. As a result, each provides a different perspective on the performance of
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utilizing resources while all attempting to achieve the identical goal of minimizing the fleet

size. These strategies are each denoted and described as the following;:

(1)

(i)

(iii)

TiME ONLY OPTIMIZATION (TOO): This strategy attempts to minimize the num-
ber of required vehicles by optimizing only the time constraint while disregarding
the capacity constraint. In other words, it assumes that each vehicle has an unlim-
ited capacity. Thus the sole priority during the recursive partitioning is placed on
optimizing the required time for each route to complete it’s respective tour.
CapACITY ONLY OPTIMIZATION (COO): This strategy is similar to the TOO
strategy but instead places the sole optimization priority on optimizing the capacity
utilization for each route. It assumes that routes are not restricted by any maxi-
mum tour duration. Instead only the capacity constraints are considered during the
recursive partitioning.

TiME PRIORITY OPTIMIZATION (TPO): The goal of this strategy is to optimize
on the time constraint, while still considering the capacity constraints. Similar to
the TOO strategy, the sole optimization priority initially is the utilization of time
allowed for each route complete its tour. In the contrary to the TOO strategy
however, once all routes adhere to the time constraints, all routes that still exceed
their vehicle capacity are further partitioned with the sole optimization priority on
capacity utilization.

CAPACITY PRIORITY OPTIMIZATION (CPO): This strategy is similar to the TPO
strategy but instead first places the sole optimization priority on optimizing the ca-
pacity utilization for each route. Once all routes adhere to the capacity constraints,
the sole optimization priority is shifted to utilization on time until all routes are
feasible.

Two PHASE OPTIMIZATION (2P0): This strategy represents Algorithm 4 exactly
as described in Algorithm 4. The 2P0 strategy utilizes the TOO strategy and the
COO strategy in two sequential phases with an additionally optimization procedure

between them. Consistent with the TOO strategy, the first phase assigns the sole
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optimization priority on optimizing the capacity utilization for each route. The
second phase is similarly to the COO in this same manner. Following the first
phase, all routes exceeding their capacity are pruned as described in Algorithm 4

before proceeding with the second phase.

The TOO, COO, TPO, and CPO optimization strategies are all implemented in a manner
similarly described by Algorithm 4 with slight modifications. The 2PO strategy on the other
hand is implemented exactly as stated in the algorithm. Using the constructed bio-emergency
scenario in region 2/3, the maximum tour duration allowed, a, and the maximum vehicle
capacity, 3, are assigned the values 12 (denoting the unit of time in hours) and 211,000

respectively.

Implementation of the TOO strategy follows the algorithm exactly with the exclusion
of executing lines 13 through 24, and also assigns w < 1. The COO strategy is implemented
similarly as TOO, but instead assigns w < 0, and includes two modifications: (mod. i)
change the termination criteria on line 6 to terminate when all of the routes no longer
exceed their maximum capacity, and (mod. ii) replace line 7 with the statement on line 17.
The (mod. ii) modification returns the route with the largest resource demand instead of
the route that completes in the maximum time. As a consequence, both of the TOO and
COO strategies do not guarantee a solution that can be classified as feasible according to the
formal problem defined in Section 6.2. Nonetheless, these theoretical solutions are beneficial
to include in this case-study. Namely, observations of their performance in minimizing the

fleet size can provide insights to what a specific problem instance is most constrained by.

The implementation of the TPO strategy similarly follows Algorithm 4 with only
the exclusion of the PRUNEROUTES procedure on line 12. Furthermore, the TPO strategy
assigns the priority parameters as w < 1 and A < 0. Similar to the TOO strategy, the
implementation of the CPO strategy excludes the PRUNEROUTES procedure. This imple-
mentation also includes both of the modifications made for the COO strategy, i.e., (mod. 1)
and (mod. ii). Moreover, the CPO strategy implementation includes the following remaining

modifications: (mod. iii) replace the test case (w = 1 and 7(R;) < «) with the test case
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(w = 0and ¥(R;) < ) on line 14, (mod. iv) swap the statements on line 17 and line
19 with each other (i.e., replacing each line with the other), and (mod. v) replace the test
case (Y(R;) < ) with (7(R;) < «) on line 18. The parameters for the CPO strategy are
assigned as w < 0 and A < 1. For the final modification (mod. vi), swap the assignment
statement (w <— wA) on line 15 with the statement (w < \) instead. Therefore w will be
assigned the value of A\ directly. This prevents the value of A from being discarded given
that wA = (0)A = 0.

As defined by Algorithm 4, the parameters assigned for the 2PO strategy are w < 1
and A < 0. The Input Parameters section in Table 7.1 reflects this assignment of the
algorithm parameters for each of the strategies. The following sections presents the results

from applying these strategies based on their implementations as previously described.

7.3. Case Study Results

Optimization Strategy

Input Parameters TOO COO TPO CPO 2PO
a : (MAaxiMuM TOUR DURATION) 12 N/A 12 12 12
B : (VEHICLE CAPACITY) N/A 211,000 211,000 211,000 211,000
w : (PRIORITY CONSTRAINT) 1 0 1 £ 1
A : (PRIORITY REDUCTION FACTOR) N/A N/A 0 1 0
Optimization Performance

m : (FLEET SIZE) 32 61 59 58 51
PROPORTION EXCEEDING Z 0.000 0.032 0.000 0.000 0.000
PROPORTION EXCEEDING () 0.500 0.000 0.000 0.000 0.000

Route Statistics

MIN. POPULATION SERVED 19,379 77,245 19,379 33,852 19,379
AvG. POPULATION SERVED 233,550 122,518 126,671 128,855 146,541
MAX. POPULATION SERVED 502,165 202,207 210,719 207,113 210,572
MIN. ELAPSED TIME 6.81 0.91 1.28 1.68 1.20
AvG. ELAPSED TIME 8.24 4.66 4.62 4.70 5.25
MAX. ELAPSED TIME 10.84 14.24 11.49 11.28 10.84

Table 7.1: Texas DSHS Region 2/3 (Case Study): Optimization strategy results. The unit
of time, «, is represented in hours. Vehicle capacity, 3, is represented by the max number
people it can pack mitigation resources for.
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FIGURE 7.4. Texas DSHS Region 2/3 (Case Study): Resulting vehicle routes

The results of the previously defined five priority optimization strategies in their
application to the bio-emergency scenario constructed in region 2/3 is shown by Table 7.1.
In particular we observe that the 2PO strategy produced the best feasible solution, resulting
in a fleet size of 51. Conversely, both TOO and COO produced solutions that are not feasible
as some portion of the solution exceeded either the time or capacity constraints.

When reviewing the results from the different implementations, it is beneficial to
recall a basic bound of the problem itself. Namely, the Texas DSHS Region 2/3 has a total
population that is over 7.4 million people. Assuming that a single vehicle has a capacity
capable of carrying enough supplies to serve 211,000 people, then without any consideration

for time it is clear that 36 vehicles will be required at minimum.
[(7.4 million people) /(211,000 people per vehicle capacity)| = 36 vehicles (76)
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However, this is under the assumption that the vehicles can perform partial delivery to PODs
so that they may fully utilize their capacity. In other words, instead of a vehicle delivering
only to PODs it has enough capacity for, underutilized capacity could be used to deliver
at least part of the supplies. Therefore these results demonstrate the best feasible solution
for this specific scenario will require a fleet size of 51 when using the 2PO optimization
strategy. The exact tour for each of these 51 routes in this solution are shown in Table A.1.

Furthermore, a visual illustration of this solution is shown in Figure 7.4.

o m NUMBER OF PALLETS IN VEHICLE
(Max TiME ALLOwED)* (FLEET SIZE) 1-3 4-6 7-9 10-12 13-15 16-18 19-22

12 51 1 3 3 9 3 9 23
11 o1 1 3 3 9 3 9 23
10 o4 1 7 3 8 4 9 22
9 o4 4 6 3 ) 3 9 24
8 66 10 10 6 ) 10 7 18
7 69 10 14 7 ) 9 ) 19
6 73 15 14 6 ) 9 ) 19
5 83 23 17 8 1 9 7 18
4 122 51 24 12 12 10 4 9

VEHICLE FREQUENCY
*The unit of time, «, is represented in hours.

Table 7.2: Comparing the distribution of demand across a set of vehicle tours as the maxi-
mum tour duration is reduced

Further analysis of the performance of the 2PO strategy for the same constructed
scenario is provided as it relates the an incremental reduction in the maximum tour duration
allowed. Table 7.2 shows the resulting fleet size using the 2PO strategy where « is reduced
by one hour at each row of the table. It is clear that the solution significantly worsens for
a < 7. Furthermore, from the number of pallets used for each vehicle it can be observed

that the efficiency of utilizing vehicle capacity is similarly reduced as the « is reduced.
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FIGURE 7.5. Abstract diagram showing a data editing step for associating realistic travel
distances with point locations. Locations that do not correspond exactly with a road segment
end point are moved onto the closest such point.

7.4. Integration of Computational Framework

Due to limitations in the granularity of the population data available, individuals
are accounted for by their defined grouping (i.e., population block) with respect to their
geographic location provided in the data. For example, data collected by the United States
Census Bureau provides populations counts at various geographic scales such as Cencus
blocks, block-groups and tracts that define this grouping. Further, these population group-

ings provide no guaranteed uniformity of population counts or demographic makeup.

Data initialization is included in the framework to process and format the road net-
work data for consistency with the algorithm approach and the graph representation de-
scribed previously in Section 6.1. The final graph representation described in that chapter
assumes a complete graph with a provided set of locations that exist on the road network
that are also consistent with the road segment vertices. However in a practical situation
this may not be the case. Facilities (i.e., depots and customers) will usually be located at
some measure of distance away from the road and not directly on the road. Therefore to
enforce this consistency we redefine the geographic location of each facility to its nearest

road segment vertex on the network. This is shown in Figure 7.5. Depending on the level
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_
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FIGURE 7.6. Software Ul simulating the optimization in real-time while solving the problem

of granularity defined by the data of the road network, this process can introduce error into
the travel time by not not accounting for this modification of the facilities actual location in
the path cost. However the error introduced by this process is likely to be minimal and can
easily be ignored. Figures A.1, A.2, and A.3 in the appendix demonstrate how this is

presented using a real road network data set such as Open Street Maps.

All of these optimization strategies presented in this chapter have been integrated into
a computational framework. These tools will enhance the ability of public health officials
and emergency response planners constructing a set of routes in bio-emergencies similar to
the case-study presented in this chapter. Figure 7.6 shows the main interface for selecting

and executing one of the optimization strategies.

This interface simulates all tours at every step of the partitioning during the execution
of the algorithm. As illustrated in Figure 7.6, information describing the routes are updated
and displayed in the table view following each step in the simulation. Each row describes a

single route in this table accordingly. Furthermore, the background color of each row indi-

108



Vehicles Required By Time Allowed

125
120
115
110
105
100

Vehicles Required
Z &

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Time Allowed (in hours)
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F1GURE 7.7. Software interface showing an algorithm performance analysis based on the
maximum allowed time

cates if the routes are currently exceeding the maximum time and/or capacity. Specifically,
rows with a red background indicate that the route currently exceeds the maximum time
allowed. The blue background indicates the route can be completed with the allowed time,
but sum total of the POD’s demand included in the route exceed the vehicle’s capacity. Rows
with a white background indicate that the route is in compliance with all of the constraints.

Figure 7.7 depicts the interface for presenting an analysis that is similar to Table 7.2.
This enables planners to determine the additional costs of reducing the allowed time for all
routes to be completed by. Once a strategy has been picked, all of the parameters have been
set, and a solution is determined, the framework will present the resulting routes so that
they can be used by both the planners and those carrying out the plans. Figure 7.8 shows

an example of the reports generated for each route within a single solution.
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Route_001: Loading Sequence Route_001: Travel Order Sequence
Load Vehicle At RSS Location: [START] Naval Air Station Joint Reserve Base, 1510 Chennault Ave,
Naval Air Station Joint Reserve Base, 1510 Chennault Ave, Fort Worth, Fort Worth, ;65131 I3D' 101
TR68181 :I?‘D' 101 Coordinates: [32.769162, -97.436229]
: Population Served: 0
Load Vehicle By The Following Order: 1: Lovejoy High School, 2350 Estates Pkwy, Lucas, 75002
POD ID: 16

1 Blue Ridge High School, 11020 CR 504, Blue Ridge, 75424 Coordinates: [33.127864, -96.611087]

POD ID: 8 Population Served: 21937

Population Served: 8128 Boxes/Pallets To Deliver: 3

Boxes/Pallets To Load: 1

2: Allen High Scheol, 300 Rivercrest Blvd, Allen, 75002

2: Farmersville High School, 499 SH 78 North, Farmersville, POD ID: 6
75442 Coordinates: [33.114326, -96.658728]

POD ID: 10 Population Served: 63610

Population Served: 8086 Boxes/Pallets To Deliver: 7

Boxes/Pallets To Load: 1

8 Blue Ridge High School, 11020 CR 504, Blue Ridge, 75424

8: Lovejoy High School, 2350 Estates Pkwy, Lucas, 75002 PoD 1526

POD ID: 16 Coordln_ates: [33.308951, -96.406150]

Population Served: 21937 Population Served: 8128

Boxes/Pallets To Load: 3 Boxes/Pallets To Deliver: 1

(a) (b)

FIGURE 7.8. Software result reporting for enhancing public health officials’ and response
planners’ bio-emergency mitigation efforts. (a) shows the report for each individual route
defining the amount and sequence to load the supplies into the truck. (b) shows the report
for each route of their sequence of stops in the order they must be visited in. (b) is in the
reverse order of the report shown in (a).
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CHAPTER 8

SUMMARY AND CONCLUSION

Optimization of relief networks in humanitarian logistics often exemplifies the need
for solutions that are feasible given a hard constraint on time. The distribution of medical
countermeasures immediately following a biological disaster event is often required to be
completed within a short time-frame. When these supplies are not distributed within the
maximum time allowed, the severity of the disaster is quickly exacerbated. Therefore emer-
gency response plans that fail to facilitate the transportation of these supplies in the time
allowed are simply not acceptable. Thus certain optimization solutions that fail to satisfy
this criterion would be deemed infeasible. This creates a conflict with the priority optimiza-
tion objective in most variants of the generic VRP. Instead of efficiently maximizing the
usage of vehicle resources available to construct a feasible solution, these variants ordinarily
prioritize the construction of a minimum cost set of vehicles routes. A comparison of these

conflicting objectives is presented in Section 1.1.

The research presented in this dissertation focused specifically on the design and
analysis of computational methods to address these high-consequence variants of the vehicle
routing problem. The minimization of the vehicle fleet size, in particular, is selected as the
VRP’s primary optimization objective. Accordingly, this optimization priority describes the
fundamental objective underlying the research conducted in this dissertation. The context

of these studies are structured consistently around a continuous partitioning heuristic.

Due to the conflict between the objectives of the minimization of total vehicles and
minimizing the total travel time, the optimization of the time and capacity constraints in
the context of minimizing vehicles are independently examined. Lower bounding procedures
to determine the minimum number of vehicles required for instances of the OVRP-UT (i.e.,
only the time constraint is considered while vehicle capacity is disregarded) were described
in Chapter 3. Given a set of cities, Algorithm 1 defines the strategies to construct a lower

bound on the total number of vehicles required for the OVRP-UT constraints to be satisfied.

111



The analysis and quantification in determining the feasibility of three tours with complete
certainty for any independent set of cities for the OVRP-UT were presented. Accordingly,
methods to estimate this lower bound of vehicles without an explicitly defined solution is
shown in Chapter 4. An upper bounding procedure for the minimum fleet size that is
instead based around the OVRP-UC (i.e., only the vehicle capacity is considered while the
time constraints are disregarded) were introduced in Chapter 5. A worst-case performance
analysis of this bounding procedure is also examined.

A formal definition of the optimization problem for the high-consequence VRP variant
that models a bio-emergency response was presented in Chapter 6. Moreover, the design
of an efficient meta-heuristic algorithm based on a continuous spatial partitioning scheme
were presented. Specifically, Algorithm 4 constructs a minimized set of vehicle routes for
variants of the VRP that are defined by the high-consequence constraints in a bio-emergency
scenario. Notably, the hard constraints for the maximum tour duration and the identical
vehicle capacity are prioritized in this optimization.

The analysis and application of Algorithm 4 was illustrated in Chapter 7. Namely, a
case study is constructed from a large region in the state of Texas to exemplify the direct
application of this two-phase algorithm in the context of bio-emergency response. Multiple
priority optimization strategies were introduced and their associated performance is com-

pared and examined accordingly from the regional case-study.

8.1. Broader Impacts

These methods and strategies have been implemented as a set of computational tools
designed specifically for constructing vehicle routes optimized for the delivery of resources to
dispensing facilities during a bio-emergency. Furthermore, these tools have been integrated
into an existing bio-emergency response planning framework[51], currently being used by
public health officials and emergency response planners. This integration enhances their
ability to deriving a set of vehicle routes that maximize mitigation efforts in coordination
with the usage of available resources.

Although these tools were developed development in the context of a bio-emergency
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they are easily extended to a broader domain. For example, most of the natural disasters
illustrated in Section 2.1 can be modeled similarly as the high-consequence VRP variant
described in this research. This would support the usage of the resulting methods and
algorithms from this research in an almost exact manner. Moreover, any VPP problem
instance that demonstrates these hard-constraints in time and defines the primary objective
as the minimizing the number of required vehicles is applicable. For this reason, most of the
research conducted in this dissertation is described and formalized in a manner consistent

with that of existing VRP literature and research.

8.2. Research Limitations and Future Work

PERFORMANCE BENCHMARKS. One limitation of the research conducted in this disserta-
tion is inability to benchmark the performance of the meta-heuristic algorithm (Algorithm 4)
presented in Chapter 6 for direct comparison with other VRP approximation algorithms. As
illustrated throughout this dissertation, the primary optimization objective defined by public
VRP instances commonly used in literature to benchmark an algorithm’s performance is not
directly aligned with the VRP variants of focus in this research. As a consequence, analyz-
ing the performance of this algorithm in a comparative manner with existing approximation
algorithms is not included in this dissertation. Moreover, due to most existing heuristics be-
ing tailored directly for the individual problem instance used as the benchmark, comparing
any solution constructed from this algorithm with the best known solutions would similarly
not provide a good indication of its performance. Nonetheless, modification of these pub-
lished /known VRP instances provides potential opportunities for performance comparison.
Furthermore, the design of new benchmarks that measure the robustness of the algorithm as
it relates to the parameter input constraints would be of interest. Specifically, quantifying
the relative change in performance as the distribution of the customer’s location and associ-

ated demand are adjusted towards the worst-case scenario.

RESOURCE PRIORITY OPTIMIZATION STRATEGIES. In Chapter 6, a scoring function was

presented in that constructed two new routes with each partition, independently assigning
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customers to these tours using a two-tier priority weighting scheme. Depending on the tier,
usage of the time or capacity available for each route would dictate the assignment of these
customers. The value assigned to these weights is restricted between certain values, as defined
in Algorithm 4, thus guaranteeing a feasible solution resulting from all instances. However,
observing the performance of the varying priority strategies resulting from the case study
presented in Chapter 7 illustrates the potential for improvement. In particular, if certain
problem instances are dominated by one of two core constraints (i.e., time or capacity), then
improvements are likely to be achieved when prioritizing the optimization of the dominating
constraint. For example, assume all of the customers are sparsely distributed throughout a
very large region. Moreover, assume the average customer demand is small relative to the
vehicle’s capacity. Clearly this describes a scenario that prioritizes the time component for
each route. With this in mind, additional research demonstrating the relationships between
these two constraints would be beneficial. Accordingly, the independent analysis of these
constraints presented in this dissertation could be extended for this purpose. Properties of
this relationship that we believe would be particularly of use are as follows: (i) compare the
growth of complexity of each constraint (i.e., which one grows at a faster rate), (ii) demon-
strate how the optimization of one constraint can negatively affect the other, (iii) quantify
how the relative change to one of the constraint’s distribution either directly or indirectly

affects the other.

HEURISTIC IMPROVEMENTS. In our implementation of the SPATIALPARTITION procedure
presented in Algorithm 5, the route with the highest score is assigned a customer using the
Double-ended nearest neighbor heuristic (DENN) [13]. Since each set is continuously parti-
tioned, each route in this entire first phase is constructed just to determine the feasibility for
a tour through each resulting subset of customers. Recall that the second phase of Algorithm
4 is to use the final partitioning from the first phase and apply more robust TSP heuristics
for the construct of the final resulting routes. Hence, this insertion heuristic is a reasonable

option due to its simplicity and performance. Accordingly, the constructed tour is never
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for more than ([log(n)])/2 times the optimal tour for these assigned customers with this
heuristic [13]. Yet the minimization of cost for both resulting routes defined by the parti-
tion is not considered in the optimization of this heuristic. Instead new insertion heuristics
can be designed that optimize the assignment of customers defining the partition as well.
This would likely improve the efficiency of the partitioning procedure in the algorithm and
consequently has the potential to further reduce of the fleet size. The design of an insertion
heuristics that select a customer for a route based on its high insertion cost to be included
in the other route is one such possibility that could provided improvements. In other words,
instead of selecting the customer with the lowest insertion cost, the customer with the largest
insertion cost to the other tour is selecting. Additionally, this type of heuristic could provide

improvements without much increase to the overall execution time.

Further, optimization strategies need to be explored for allowing vehicles to fully uti-
lize their capacity by delivering a portion of a POD’s supplies even if they cannot deliver
all of the supplies due to capacity constraints. Other strategies could include identifying
optimal auxiliary staging facilities (e.g., Alpha PODs) that have the capability to deliver
to smaller PODs within their proximity, leading to improvements in time and vehicle re-
quirements. Improvements can also be made by allowing multi-stage delivery strategies that
would further decrease capacity and vehicle requirements by allowing vehicles to drop off
only the supplies that a POD will need for a specific time window, and to complete delivery
before the end of that time window (i.e., before the MCM resources have all be distributed

to the population).

PRE- & PoOST-OPTIMIZATION. From the results displayed in Table 7.1 for the 2PO op-
timization strategy described in Chapter 7, the Route Statistics indicate the potential for
improvement with pre- and post-optimization strategies. Specifically, examination of the
actual routes constructed as shown in Table A.1 reveals characteristics with the potential to
be further improved. For example, the three routes within the solution that require the lowest

total time to complete their tour is shown in Table 8.1. These routes indicate the
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possibility of combining two or more routes as a single solution. As a result, the required

fleet size can be reduced.

RoutTe ID  ErApseD TIME (HOURS) PopuLATION SERVED ToOuUR (BY POD ID)

ROUTE_049 1.20 100,324 342, 283, 294]
ROUTE_051 1.59 102,386 342, 55, 56]
ROUTE_037 1.71 125,217 342, 301, 384, 310]

Table 8.1: Texas DSHS Region 2/3 (Case Study): The three routes with the minimum
elapsed time out of the total fifty-one route 2PO solution

Assuming that we only have to make improvements on these three routes (Route_049,
Route_051, Route_037), we know that because the population served in Route_049 plus the
population served in Route_051 has a total of 202,710 which is less than the capacity of a
single vehicle, that if the travel time from combining these routes is lower than the allowed
time of 12 hours, we can reduce the total vehicle count by 1. For example, if the travel time
from the end of Route 049 (POD 294) to the first POD in Route 051 (POD 55) is less the
remaining allowed time calculated as: 12 hours (total allowed time) — 1.2 hours (Route_049
total time) — 1.59 hours (Route_051 total time) + (longest travel time from RSS 342 to
either POD 283 or POD 54), then these routes can be combined by just easily serving one
immediately after the other. To combine the third route (Route_037), we must first return to
the RSS to pick up the MCMs required to fulfill the population served by this route because
after the combination of the first two routes, there is not enough capacity remaining in the
vehicle to append this route’s PODs without a return to the RSS. Although this example
seems to be relatively straightforward when looking only at three routes, finding the best
solution for merging routes is a complex problem for which approximation algorithms must
be developed. Nonetheless, Figure 8.1 presents potential improvements if return trips to the
depot are allowed by adding a post-optimization step to the result of the 2PO optimiza-
tion. The implementation of this post-optimization step basically is a modified version of a

dynamic programming O-1 knapsack algorithm.
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F1GURE 8.1. Comparison of the minimum fleet size required if routes are allowed to return
to the depot

In addition to the potential improvements from combining routes, one other possible
improvement is examined regarding the distribution of POD demand. Figure 8.2 illustrates

the population (i.e., demand) distribution for the PODs in Region 2/3.

Region 2/3 POD Population Distribution
175000
140000
105000
70000

1 15 29 43 57 71 85 99 113127141155169183197211225239253267281295309323337
POD ID

Population Served

FIGURE 8.2. Texas DSHS Region 2/3 (Case Study): Population demand distribution

It is evident from this figure that the population assigned per POD is far from being
identical. The analysis of the OVRP-UC conducted in Chapter 5 indicates the impact that
the demand distribution can have on the optimization of capacity utilization. Accordingly,
modifications to the POD placement that result in a more identical population assignment

per POD could lead to improved results (i.e., fewer vehicles required).
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RoutTkE ID TotaL TIME (HOURS) POPULATION SERVED

Tour (By POD ID)

RouTE_001
RouTE_002
RoOUTE_003
RouTE_004
RouTE_005
RoOUTE_006
RoUTE_007
RoUTE_008
RouTE_009
RouTE_010
RouTE_011
RouTE_012
RouTE_013
RouTE_014
RouTE_015
ROUTE_016
RouTE_017
RoOUTE_018
RouTE_019
RoOUTE_020
RouTE_021
RouTE_022
RouTE_023
RouTE_024
ROUTE_025
ROUTE_026
RoOUTE_027
RoOUTE_028
RoOUTE_029
RouTE_030
RoOUTE_031
RoOUTE_032
RoUTE_033
ROUTE_034
RoUTE_035
ROUTE_036
RoOUTE_037
ROUTE_038
RouTE_039
RoUuTE_040
RouTE_041
ROUTE_042
RouTE_043
RouTE_044
ROUTE_045
ROUTE_046
RoOUTE_047
ROUTE_048
RoOUTE_049
RoUTE_050
RoOUTE_051

3.87
9.36
7.22
8.34
8.29
6.06
8.67
5.70
5.16
4.47
7.08
9.02
3.72
10.84
8.37
8.08
3.60
9.16
6.81
8.49
2.94
4.80
4.77
10.02
8.63
6.49
4.18
8.05
7.87
5.26
3.74
2.57
4.26
2.61
3.50
4.22
1.71
5.26
2.19
1.93
2.09
1.99
3.24
2.55
3.42
4.64
2.78
3.63
1.20
3.74
1.59

163,013
96,247
111,669
74,321
34,090
197,054
93,312
198,245
190,276
187,739
192,353
161,185
108,023
174,830
152,527
173,482
195,946
31,830
19,379
43,166
210,308
175,966
208,282
73,934
85,161
193,456
187,691
97,561
176,478
199,493
92,232
172,303
166,083
113,557
186,115
176,822
125,217
210,572
180,048
197,379
93,628
159,922
161,010
150,038
182,445
177,211
166,109
135,149
100,324
128,034
102,386

[342,106,295,266,305,148,209]
[342,191,200,166,159,161,160,177,13,15,40,28,26]
[342,,133,329,335,334,330,331,183,187,253]
[342,,175,174,171,172,173,165,163,162,164,157,158]
[342,,170,176,46,223,10,181]
[342,,112,114,85,113,210,217,199,190)]
[343,339,315,314,317,312,8,5,7]
342,292,281,286,291,285,288,304,241,237]
342,34,38,18,19,30,22,23)
342,259,57,97,111,65,63,77]
[342,62,73,76,70,92,93,149,144,143,146,145]
[343,325,324,323,322,321,327,9,222,203,204,202]
[342,282,270,276,275,58,135]
[342,4,255,252,318,316,313,230,257]
[342,79,89,198,121,192,193,197,196,195,194,189)
[342,280,273,235,244,247,246,243,239,240,238,336,337,333]
[342,33,36,21,11,25]
[343,201,338,182,167,180,179,178,326,328)]
[343,1,340,341,3,2,221,220,54]
343,256,254,141,140,142,45,154,47]
[342,64,105,104,116]

342,69,251,249,250,118,14]
342,59,81,96,60,124,31]
[343,320,6,44,155,156,188,184,185,186]
342,332,236,242,245,232,231,234,233,319)]
[342,126,129,130,139,53,50,49,48,51,52]
[342,311,302,122,128,127,138)]
342,268,211,219,218,216,214,213,215,228,227,226]
[342,261,78,98,74,150,152,153,151,147,224,229]
[342,109,125,17,16,20,12,168]
[342,132,137,41,169]
[342,297,279,289,303]
[342,94,87,67,72,225]
[342,100,91,103]
[342,298,293,263,258,260,264]
[342,117,35,32,29,24,27]
342,301,284,310]
[342,131,37,42,119,101,102,84]
[342,267,108,99]
342,308,309,110]

342,115 43]

342,287,290,277]
[342,265,95,71,75,66]
342,107,274,207]
342,296,134,136,123,39]
342,262,271,269,306,205,206,208]
342,307,300,299,272,278]
[342,80,68,120,212,248]
[342,283,294]
342,83,86,82,61,90,88)]
342,55,56]

Table A.1: Texas DSHS Region 2/3 (Case Study): 2PO optimized vehicle route solution
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FiGurE A.1. Example road network data
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FicUrRE A.2. Spatial database representation of example road network data
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F1GUuRrRE A.3. Example showing distance calculations between two points by combining
line-string segments within the road network data
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