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This dissertation is an attempt at establishing a bridge between biology and physics 

leading naturally from the field of phase transitions in physics to the cooperative nature 

of living systems. We show that this aim can be realized by supplementing the current 

field of evolutionary game theory with a new form of self-organized temporal criticality. 

In the case of ordinary criticality, the units of a system choosing either cooperation or 

defection under the influence of the choices done by their nearest neighbors, undergo a 

significant change of behavior when the intensity of social influence has a critical value. 

At criticality, the behavior of the individual units is correlated with that of all other units, 

in addition to the behavior of the nearest neighbors. The spontaneous transition to 

criticality of this work is realized as follows: the units change their behavior (defection or 

cooperation) under the social influence of their nearest neighbors and update the intensity 

of their social influence spontaneously by the feedback they get from the payoffs of the 

game (environment). If units, which are selfish, get higher benefit with respect to their 

previous play, they increase their interest to interact with other units and vice versa. 

Doing this, the behavior of single units and the whole system spontaneously evolve 

towards criticality, thereby realizing a global behavior favoring cooperation. In the case 

when the interacting units are oscillators with their own periodicity, homeodynamics 

concerns, the individual payoff is the synchronization with the nearest neighbors (i.e., 



 

lowering the energy of the system), the spontaneous transition to criticality generates 

fluctuations characterized by the joint action of periodicity and crucial events of the same 

kind as those revealed by the current analysis of the dynamics of the brain. This result is 

expected to explain the efficiency of enzyme catalyzers, on the basis of a new non-

equilibrium statistical physics. We argue that the results obtained apply to sociological 

and psychological systems as well as to elementary biological systems. 
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1. Introduction to Evolutionarty Game Therory

The main problem of the field of Evolutionary Game Theory is to explain the evo-

lutionary emergence of cooperation in spite of the selfish nature of the single individuals.

Nowak and May in their 1992 pioneer work on Nature [1] adopted the concept of network

reciprocity to settle this paradox. Their idea rests on the assumption that the individuals of

the complex systems are the nodes of a regular network where the clusters of cooperators are

richer than the clusters of defectors. As a consequence, if the players of the game are allowed

to change their strategy, selecting the choice done by their most successful nearest neigh-

bors, it may happen that they select cooperation. This approach to settling the altruism

paradox is not quite convincing for two main reasons. One of these reasons, concerning the

sociological application of their network reciprocity principle, is the fact that the individuals

of a social network, in addition to the interaction, described by the prisoners dilemma game,

have also a social activity that has been proved to disrupt the benefits of network reciprocity.

Another reason is the use of a network structure. Many researchers are assigning to the net-

work topology a scale-free structure, leaving unanswered the question of what the dynamical

origin of the scale-free structure may be. In this work, we prove that the social activity may

not disrupt the benefit of network reciprocity if the social activity of the individual rests on

the Ising-like interaction structure of the DMM, based on the realistic assumption that each

individual makes choices based on the influence of the nearest neighbors.

This property is realistic but the assumption that the social imitation strength of the

DMM has a critical value for the onset of phase transition is not in turn satisfactory, because

the evolutionary process is spontaneous and the crucial value of the imitation strength must

be reached as an effect of the interaction between the individuals by itself. Our attempt at

bypassing this problems led us to a way of settling the altruism paradox with a theoretical
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proposal that is equivalent to a new approach to criticality, the Self-Organized Temporal

Criticality (SOTC). This theoretical proposal settles the altruism paradox by assuming that

each individual decides to increase or decrease the degree of her social attention to the

nearest neighbors according to whether her payoff, done on the basis of the choices made by

her nearest neighbors, increases or decreases.

1.2. Introduction to Complexity Matching and Homeodynamics

Complexity matching is an attractive way of emphasizing the caution we have to adopt

in order to transport information from one complex system to another and the mechanism

can be traced back to the 1957 Introduction to Cybernetics by Ross Ashby. Unlike this

earlier work we argue that complexity can be expressed in terms of crucial events, which

are generated by the processes of spontaneous self-organization. The Complex processes,

ranging from biological to sociological, must fit the homeodynamic condition and should

host the crucial events that in the recent past have been shown to drive the information

transport between complex systems. We adopt a phenomenological approach, based on the

subordination to periodicity that makes it possible to combine homeodynamics and self-

organization induced crucial events. The complexity of crucial events is defined by the

waiting time probability density function (PDF) of the intervals between consecutive crucial

events, which have an inverse power law (IPL) PDF ψ(τ) ∝ 1/(τ)µ with 1 < µ < 3. We

establish the coupling between two temporally complex systems using a phenomenological

approach inspired by models of swarm intelligence and prove that complexity matching,

namely sharing the same IPL index µ facilitates the transport of information, generating

perfect synchronization, reminiscent of, but distinct from, those obtained in the field of chaos

synchronization. We use this phenomenological approach to recover the recently derived

main results on social cognition, as well as, on the EEG dynamics of subject addressing the

solution of difficult tasks.

It is slightly over a half century since Ross Ashby, in his masterful book [2] warned

scientists, aware of the difficulty of regulating biological systems, that “the main cause of

2



difficulty is the variety in the disturbances that must be regulated against”. This insightful

observation need not lead to the conclusion that complex systems cannot be regulated:

It is possible to regulate them if the regulators share the high intelligence of the systems

being regulated. Herein we refer to the Ashby’s principle as complexity matching. The

term complexity matching was widely used in the recent past [3, 4, 5, 6, 7, 8] to denote the

synchronization between the finger tapping and a complex metronome interpreted to be a

system as complex as the human brain. These synchronizations are certainly a realization

of the regulation of the brain fitting the remarks of Ashby.

It is important to stress that there exists further research work aiming at the foun-

dation of social learning [9, 10, 11, 12] that is even more closely connected to the ambitious

challenge by Ashby. In fact, this research work aims at evaluating the transfer of information

from the brain of one player to the brain of another player through the interaction that the

two players establish the one with the other through their avatars. The results are exciting:

the trajectories of the two players turn out to be significantly synchronized.

Even more important than synchronization is the fact that the trajectories of the

two avatars have universal structure shared EEGs of the human brain. This work affords

a proper theory to understand this universal structure, representing either the brain of two

interacting individuals or the communication between the heart and the brain [13]

The transfer of information has been addressed using different theoretical tools, such

uas chaos syncronization [14], self-organization [15], resonance [16]. On the other hand, in a

system as complex as the brain [17] there is experimental evidence of the existence for crucial

events. These crucial events can be interpreted as organization rearrangement or renewal

failures. The interval between consecutive crucial events is described by a waiting-time IPL

PDF ψ(t) ∝ 1/tµ, with µ < 3. The crucial events are generators of ergodicity breaking and

are widely studied to reveal fundamental biological statistical properties [18].

Another important property of biological processes is homeodynamics [19], which

seems to be in conflict with homeostasis advocated by Ashby. Lloyd et al [19] invoke the

existence of bifurcation points to explain the transition from homeostasis to homeodynamics.
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The transition from homeostasis to homeodynamics, moving from Ashby’s emphasis on the

fundamental role of homeostasis, has been studied by Ikegami and Suzuki [20] and by Oka

et al. [21] who coined the term dynamic homeostasis using Ashby’s cybernetics to deepen

the concept of self and to establish if the behavior of Internet is similar to that of the human

brain.

Experimental results exist for the correlation between the dynamics of two distinct

physiological systems [22], but they are not explained with any of the earlier mentioned

theoretical approaches [14, 15, 16, 17, 18]. Here we relate this correlation to the occur-

rence of crucial events. The crucial events are responsible for the generation of 1/f noise,

S(f) ∝ 1/f 3−µ [23] and the results of the psychological experiment of Correll [24] imply that

activating cognition has the effect of making µ < 3 cross the barrier between the Lévy and

Gauss basins of attraction, namely making µ > 3. This has the devastating effect of violating

the linear response condition, according to which a perturbation should be sufficiently weak

as to not affect the dynamical complexity [25]. As a result of this experimental observation

we have to go beyond the linear response theory adopted in earlier works to explain the

transfer of information from one complex system to another, through the matching of the

power index µ of the crucial events of the regulator with the IPL index µ of the crucial

events of the system being regulated [26, 27]. The earlier work of Ref. [28] shows that a

system at criticality can force another system at criticality to synchronize. A system either

in the subcritical or supercritical condition cannot force a system at criticality to synchro-

nize. These numerical results, which can be interpreted as a genuine form of complexity

matching, are observed at the level of single realizations with no need of making averages on

a large number of responses to the same perturbation as done in [26, 27], in spite of the fact

that the intensity of the forcing is modest but large enough as to violate the linear response

theory. These results were obtained by assuming that a small fraction of the units of the

driven system can perceive the mean field of the driving system. This small fraction, at

criticality is large enough as to make the driven system synchronize with the driving system.

This important property of criticality is interpreted as swarm intelligence [29].
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CHAPTER 2

IMITATON-INDUCED CRITICALITY: NETWORK RECIPROCITY AND

PSYCHOLOGICAL REWARD

In this chapter we study the case where the nodes of a regular two-dimensional lattice

play a game based on the joint action of two distinct levels. At the beginning of the game,

using a random prescription half players are assigned the cooperation and half the defection

state. At the bottom level the strategy choice is done on the mere basis of imitation according

to the homo imitans principle, generating a form of collective intelligence that makes the

system sensitive to the criteria determining the strategy choice adopted at the top level.

The units of the top level, in fact, play the prisoner’s dilemma game and are allowed to

update their strategy either by selecting the strategy of the most successful nearest neighbor,

success model, or merely on the basis of the criterion of the best financial benefit, selfishness

model. The intelligence emerging from imitation-induced criticality leads in the former case

to the extinction of defection and in the latter case to the extinction of cooperation. The

former case is interpreted as a form of network reciprocity enhanced by the imitation-induced

criticality and contributing to the evolution towards cooperation. Then the selfishness model

gets perturbed with a form of morality pressure, exerted by a psychological reward λ for

cooperation, to establish the sensitivity of collective intelligence to morality. We find that

when λ gets a crucial value λc, exceeding the temptation to cheat, the system makes a

transition from the supercritical defection state to the critical regime, with the warning that

an excess of morality and religion pressure may annihilate the criticality-induced resilience

of the system.

2.1. Introduction

The unification of behavioral sciences is an attractive and challenging enterprise that

would be impossible without using game theory [30]. The recent book by Gintis [30] aims at

the unification of Behavioral Sciences, namely, at the ambitious purpose of unifying biology,
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psychology, economics, anthropology and political science, stressing however that game the-

ory alone is not enough to realize this important goal. Game theory is a theoretical attempt

at explaining why the selfish action of single individuals is compatible with the emergence of

altruism and cooperation. Nowak and May [1] have attracted the attention of an increasing

number of researchers on the network reciprocity, a special condition where spatial structure

favors the emergence of altruism, see also [31], in spite of its nodes playing the prisoner’s

dilemma game [32], which is expected to favor defection. Actually, since the patch owner,

either a cooperator C or a defector D is replaced by the neighbor with the largest payoff [1],

this is equivalent to updating the strategy of each player adopting that of the most successful

neighbor, and a cluster of cooperators has the effect of protecting the units of the cluster

from the exploitation of the defectors.

As illustrated in the recent review paper of Wang et al [33], the research work in

this field is now focusing on the topology of networks and especially on the emerging field of

multilayers networks to explain the pattern formation with production of clusters protecting

cooperators from the exploitation of the defectors so as to favor their survival of coopera-

tors. This work adopts a multilayers perspective, by using however dynamical rather than

merely topological arguments, in such a way as to be as close as possible to the project of

unification of behavioral sciences recently proposed by Grigolini et al [34, 35], as an attempt

at addressing the challenge of Gintis [30]. Furthermore the multiple layers do not necessarily

correspond to different nodes, but here refer to different levels of human behavior, the social,

the financial and the spiritual. The bottom layer of this work is based on the observation

that the individuals of a network playing the prisoner’s dilemma game are the units of a

human society and are expected to be strongly influenced by imitation [36, 37]. The indi-

viduals of this network make a choice between the cooperation state C and the defection

state D, without any form of cognition. This choice is not determined by the wish of maxi-

mizing the personal benefit through imitation of the most successful neighbor [31] or by the

greedy choice of an immediate payoff, but imitation is as blind as the bird tendency to select

their flying direction on the basis of the flying directions of the neighbor birds [38], with
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no consideration of the personal benefit, either direct or indirect. The imitation strength is

a control parameter hereby denoted by the symbol K1. A critical value of K1, called K1c,

exists making it possible for the swarm to fly as a whole. Although the action of the single

individuals of the network does not require any form of cognition, as stressed by the authors

of Ref. [29, 39], criticality generates a form of collective intelligence. This collective intel-

ligence is characterized not only by the criticality-induced long-range correlation but also,

and especially, by temporal complexity [40, 29, 41], a condition making the complex network

flexible and resilient. It is important to stress that the supercritical condition is characterized

by fluctuations around a non vanishing mean field as random as the fluctuations around the

vanishing mean field of the subcritical regime, thereby lacking the flexibility and resilience

of criticality.

At the top layer the units play the prisoner’s dilemma game [32] and exert an influence

on the bottom level choosing their strategy according to either the success or selfishness

criterion.

The success model is realized as follows. For most of time steps the choice of strategy

is determined by the bottom level, and from time to time the units are allowed to select

their strategy adopting that of their most successful nearest neighbor, as suggested by the

pioneer work of Ref. [1]. The success model yields the impressive effect of annihilating the

emergence of the branch with the majority of defectors when the system adopting this choice

is made intelligent by imitation-induced criticality. This effect affords a solid explanation of

the evolution towards cooperation.

We compare the success model to the selfishness model, where the player does not

adopt the strategy of the most successful nearest neighbor, but she makes her choice only

on the basis of her personal benefit. She evaluates the financial benefit derived from the

defection choice and the financial benefit that she would get from the cooperation choice,

giving larger weight to the maximal profit. The benefit of a given choice is done assuming

that the unit in action can play with equal probability with all her neighbors. The selection

of the convenient strategy is weighted with a second control parameter K2, with the ratio

7



ρK = K2/K1 establishing if the link with the top layer is stronger, ρK > 1, or weaker,

ρK < 1, than the link with the bottom layer. Switching on the interaction with the top layer

has the effect of leading to the extinction of cooperation with a big loss for society, even if,

as we shall see hereby, K1 > 0 yields imitation-induced clusters of cooperators with financial

benefit for society, this being the reason why the success model, for K � K1c leads to the

extinction of defectors. The strategy choice determined by the criterion of maximal personal

benefit, rather than by the choice of the strategy of the most successful nearest neighbor [1],

on the contrary, yields the extinction of cooperation, with an even very small value of ρK ,

as an effect of imitation-induced intelligence.

To complete the illustration of the role of criticality-induced intelligence we study

the influence of morality on the dynamics of the selfishness model showing that as an effect

of imitation-induced intelligence the system becomes so sensitive to morality as to make

a psychological reward moderately exceeding the temptation to cheat, robust enough as

to prevent the collapse of the social system into the sub-criticality disorder. In principle

the influence of morality on the system should be established by the interaction of the

network with an additional layer. For simplicity’s sake, we modify the conventional prisoner’s

dilemma game [30, 42] through the introduction of the psychological reward for the choice

of cooperation. The strength of psychological, called λ, affords a simplified way to describe

the influence that an additional layer, concerning morality and religion, may have on the

selfishness model. We find that, when the bottom layer operates at criticality, a crucial value

λc exists with the effect of preventing the extinction of cooperators and of recovering the

criticality-induced temporal complexity that is essential for the healthy behavior of the social

system. We call this Asbiyyah effect [43], this arabic world meaning group feeling, namely

the natural tendency of human beings to cooperate. This natural disposition is enhanced by

religion and it has the eventual effect of increasing the social prosperity, but, in accordance

with the observation of Ahmed [44], we find that λ > λc, the super-asbiyyan condition, may

be as bad as the lack of social cohesion.
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2.2. Game Theory

well known Prisoner’s Dilemma game [32] rests on the crucial inequality

(2.1) T > R > P > S,

where R denotes the reward that a cooperator gets when playing with another cooperator.

The parameter T > R is the payoff of a defector: it is larger than R thereby t = T −R is a

measure of the temptation to cheat. S is the payoff of a cooperator playing with a defector,

and P < R is the payoff of a defector playing with another defector. The condition

(2.2) 2R > T + S

indicates that the community gets a larger benefit from the play between two cooperators

than from the play between a cooperator and a defector. Of course, also the play between

two defectors with 2R > 2P is less beneficial to the community than the play between two

cooperators. We adopt the choice made by Gintis [30, 42] and we set R = 1, P = 0, T = 1+t

and S = −s. To study the influence of morality on the selfishness model we introduce the

psychological reward λ, setting

(2.3) R = 1 + λ,

(2.4) T = 1 + t,

(2.5) P = −λ

and

(2.6) S = −s.

In this work we adopt always but in Fig. 2.3 the choice

(2.7) s = 3

and

(2.8) t = 2.
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Note that we denote by N the total number of players. They are the nodes of a

two-dimensional regular network of size 32. We adopt N = 32X32. We use the symbol L to

denote the number of time steps, ranging from L = 104 to L = 106.

2.3. Decision-Making, Success, Selfishness and Influence of Morality Model

To establish an interaction between the bottom and the top level we adopt a natural

extension of the Decision Making Model (DMM) of Ref. [36]. The transition rate from the

cooperator to the defector state, g12, is given by

(2.9) g12 = g0exp

[
−K1

(
M1 −M2

M

)
−K2

(
ΠC − ΠD

|ΠC |+ |ΠD|

)]
and the transition rate from the defector to the cooperator state, g21, is given by

(2.10) g21 = g0exp

[
K1

(
M1 −M2

M

)
+K2

(
ΠC − ΠD

|ΠC |+ |ΠD|

)]
.

The meaning of this prescription is as follows. The parameter 1/g0 defines the time scale

and we set g0 = 0.1 throughout. We consider N units. Each unit has M neighbors (four

in the case of the regular two-dimensional lattice used in this work). The cooperation state

corresponds to the state |1 > and the defector state to the state |2 >. In the case K2 = 0,

this is the ordinary DMM of Ref. [36]. If the unit is in the cooperator state, |1 >, and the

majority of its neighbors are in the same state, then the transition rate becomes smaller and

the units sojourns in the cooperation state for a longer time. If the majority of its neighbors

is in the defector state, then the unit that has to make a decision sojourns in the cooperator

state for a shorter time. Analog prescription is used if the unit is in the defector state.

Note that at K = K1c the units move from a dynamical condition where they are virtually

independent the ones from the others to a condition where global order emerges. In the case

of two-dimensional regular lattice of this article, K1c ≈ 1.65.

Fig. 2.1 illustrates the second-order phase transition generated by the DMM, namely,

the model of this work when K2 = 0. This corresponds to the condition where no bias exists

for the choice of either cooperation or defection. In the initial condition the N units of the
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Figure 2.1. Mean field of the bottom level when K2 = 0.10 realizations had done.

network are randomly assigned to either the cooperation or the defection state with the same

probability, making zero the mean field of the network

(2.11) 〈ξ〉 ≡
∑N

i ξi
N

,

where either ξ=1 or ξ = −1, according to whether the i− th unit is in the cooperation or in

the defection state. Of course, due to the fact that, as earlier stated, we are using a finite

number of units, N = 1024, the mean field fluctuates around the vanishing mean value.

As we increase K1 the intensity of fluctuations tends to increase. This is a finite-size effect

discussed in detail in the applications of the DMM model [40]. In the case where each node is

coupled to all the other nodes, the DMM yields analytical results for the mean field that can

be interpreted as the space coordinate of a particle in a non-linear over-damped potential

under the action of a random fluctuation generated by the finite size effect. At criticality,

the potential is quartic, exerts a weaker containment on diffusion and makes larger the width

of its equilibrium distribution. The mean field fluctuation around the origin has an inverse

power law with index µ = 1.5: a form of temporal complexity ensuring the maximal efficiency

in the transport of information from one network to another with the same complexity[29].
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This important effect has been proved also in the case of a neural network model [41],

thereby suggesting that criticality-induced temporal complexity may be a condition of great

importance for the sensitivity of a complex system to its environment. Temporal complexity

must not be confused with critical slowing down [40]. Both properties are manifestations

of criticality and both properties are characterized by the emergence of an inverse power

law, which makes the survival probability not integrable. However, critical slowing down is

a property of the thermodynamic limit, implying that the number of units N is virtually

infinite, whereas temporal criticality is a finite size effect [45]. Temporal complexity, in the

ideal case where the inverse power law is not truncated has to be thought of as a form of

perennial out of equilibrium condition, which should force physicists to extend the linear

response theories to the non-ergodic condition [35].

Note that the cooperator and the defector payoffs are determined by the states of the

nearest neighbors. Thus, we have

(2.12) ΠC = (1 + λ)
MC

M
− sMD

M

and

(2.13) ΠD = (1 + t)
MC

M
− λMD

M
,

where MC is the numbers of neighbors in the cooperative state and MD is the number of

neighbors in the defector state. We remind the readers that in this work M = 4. It is

important to state that we evaluate also the financial benefit for the community by making

an average over all possible pairs of interacting units, according to the prescription:

(2.14) Bij = 2,

if both units of the pair (i, j) are cooperators,

(2.15) Bi,j = 1 + t− s,

if one unit of the pair (i, j) is a cooperator and the other is a defector,

(2.16) Bi,j = 0,
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if both units of the pair (i, j) are defectors.

Notice that the choice between the cooperation and defection state is done with λ ≥ 0,

while the financial benefits for the society are evaluated, as shown by Eqs. (2.14), (7.3) and

(2.16), by setting λ = 0. This is so because λ, the psychological reward, is an incentive to

cooperate that does not directly increase the social payoff, even if it has the eventual effect of

increasing the society wealth by stimulating cooperation. In conclusion, the societal benefit

Π is given by

(2.17) Π =
∑
(i,j)

Bij,

denoting the sum over all possible pairs (i, j).

To define the selfishness model we set λ = 0 and we establish the interaction between

the bottom and the top level by assigning a positive value to the coupling coefficient K2.

In this case, a cooperator is encouraged to adopt the cooperator state for a longer time if

the financial benefit associated the choice of the cooperator condition, ΠC , is larger than

the financial benefit ΠD, corresponding to selecting the defector state. The success model is

established by setting both λ = 0 and K2 = 0. The influence of the top on the bottom level

is established by randomly selecting a fraction r of the total number L to allow each unit to

adopt the strategy of the most successful nearest neighbor. Note that small values of r play

the same role as small values of ρK in the selfishness model. The influence of morality on

the selfishness model is studied by setting λ > 0, while keeping λ = 0 for the evaluation of

the social benefit, as earlier stated.

2.4. Criticality-Induced Network Reciprocity

In Fig. 3.1 we show the social benefit as a function of K1 when K2 = 0, namely, the

strategy choice is only determined by imitation. The social benefit in the supercritical regime

is obviously maximal when all the units select the cooperation strategy and it vanishes when

all the units select defection. Much more interesting is the social benefit for K < K1c. We

see that there is an increase of social benefit with increasing K1. This is a consequence of
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Figure 2.2. Social benefit as a function of K1 when K2 = 0.10 realizations

had done. Notice that the social benefit increases upon increase of K1 in the

whole subcritical region.

the fact that imitation generates clusters of cooperators and clusters of defectors and the

increasing social benefit is due to the increasing size of the clusters of cooperators.

The results of Fig. 3.2 support our claim. In fact, we see that the social benefit

increases in a way that is qualitatively very similar to the increase of the number of units that

have four neighbors in the same state, either cooperation or defection state. A cluster of units

belonging to the same state increases as a function of K1 with a prescription qualitatively

similar to the increase of the number of units with four neighbors in the same state.

We now adopt the success model, namely, we perturb the imitation-induced strategy

choice making the units pay some attention to the success of their nearest neighbors. We

run the model for L time steps, and we randomly select 1% of them to update their strategy

adopting the one of their most successful nearest neighbor. As earlier stated, we use a two-

dimensional regular network, where each unit has 4 neighbors. The results illustrated by

Fig. 2.3 are impressive. The adoption of the strategy of the most successful nearest neighbor

has a very modest effect in the subcritical region. At criticality, on the contrary, the effects
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Figure 2.3. The mean field of the imitation model as a function of K1 ran-

domly selecting 0.1% of L steps to update the strategy of each unit by adopting

the strategy of the most successful nearest neighbor.

of this choice become macroscopic and the imitation-induced phase transition, when the

two branches, one with a majority of cooperator and one with a majority of defectors, are

generated with equal probability, the success model selects the branch with a majority of

cooperators. At very large values of K1 this leads to the extinction of defectors. On the

basis of the results done by our group on the DMM dynamics we make the very plausible

conjecture that this effect is independent of the topology of the adopted network. In fact,

moving from one topology to another has only the effect of reducing the intensity of the effort

necessary to get consensus, the condition K1 = 1 representing the ideal topology requiring

the weakest effort to get consensus [36].

2.5. Morality Stimulus on the Selfishness Model at Criticality

As earlier mentioned the parameter λ is only a psychological benefit implying no

direct financial benefit for society. We interpret λ as the strength of the influence that the
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Figure 2.4. The mean field of the selfishness model as a function of K2 for

different values of K1. We make ten realizations.

morality network has on the selfishness model.

Here we find the imitation-induced intelligence has a twofold effect. The collective

intelligence is proved to lead to the abrupt extinction of cooperators, if λ = 0, and to the

abrupt extinction of defectors when λ = λc. With the values of the parameters adopted here,

λc = 2.5. Fig. 3.4, illustrating the effect of a strategy choice when λ = 0, shows that in the

sub-critical regime a very large value of ρK is required for the extinction of cooperation. As

we approach criticality, namely as the system becomes more and more intelligent, an even

very weak interest for the personal financial benefit leads to the extinction of cooperators,

which, in fact, is shown to occur for ρK ≈ 0.06 when K1 = 1.6.

The swarm intelligence of the system makes the model very sensitive to the influence

of morality, as it is clearly shown by Fig. 2.5. We see, in fact, that as consequence of

the imitation-induced criticality, the average social benefit undergoes a kind of first-order

transition at λc = 2.5, with a jump from the lack of benefit to a very large value, when

K1 = 1.65 and ρK ≈ 0.12. This indicates that the criticality-induced intelligence wisely

turns the psychological reward for the choice of cooperation into a significant social benefit.
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Figure 2.5. The personal benefit of the selfishness model as a function of λ.

We make an average on ten realizations.

However, a value of λ too large may have the same bad effects as a value of λ too

small. The corresponding cumulative probability is illustrated by Fig. 2.6, which shows that

the distribution density of the time distances between two consecutive renewal events is an

inverse power law with the power index µ = 1.5 when λ = λc = 2.5 and it is an exponential

function for both λ < λc and λ > λc. This is a clear sign that the collective intelligence

generated by criticality [40, 29, 41] is lost if the moral incentive to altruism λ is either weak

or excessive.

2.6. Concluding Remarks

In conclusion we have proved that imitation-induced criticality has the effect of en-

hancing the phenomenon of network reciprocity. The adoption of the strategy of the most

successful nearest neighbor not only protects the cooperator from extinction, as in the pioneer

work of Nowak and May [1], but, at criticality, it annihilates the branch with the majority of

defectors. If we adopt the selfishness model for the choice of strategy, the imitation-induced
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Figure 2.6. The cumulative probability of the time distances between two

consecutive regressions to the origin.

criticality has the effect of favoring the extinction of cooperators. Under the influence of

morality stimulus, however, imitation-induced criticality has the opposite effect of leading

to the extinction of defectors. However, the temporal complexity of the system is lost for

both λ < λc and λ > λc, indicating, in accordance with Ahmed [44], that a condition of

super-asabiyya is detrimental for human society as the lack of asabiyya.
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CHAPTER 3

EVOLUTIONARY GAME THEORY AND CRITICALITY

Here we study a regular two-dimensional network of individuals playing the Prison-

ner’s Dilemma game with their neighbors, assigning to each individual the adoption of two

different criteria to make a choice between cooperation and defection. For a fraction q < 1 of

her time the individual makes her choice by imitating those done by the nearest neighbors,

with no payoff consideration. For a fraction ε = 1 − q the choice between cooperation and

defection of an individual depends on the payoff difference between the most successful neigh-

bor and her payoff. When q = 1 for a special value of the imitation strength K, denoted as

Kc, the model of social pressure generates criticality. When q = 0 a large incentive to cheat

yields the extinction of cooperation and a modest one leads to the survival of cooperation.

We show that for K = Kc the adoption of a very small value of ε exerts a bias in favor of

either cooperation or defection, as a form of criticality-induced intelligence, which leads the

system to select either the cooperation or the defection branch, when K > Kc. Intermediate

values of ε annihilated criticality-induced cognition and, as consequence, may favor defection

choice even in the case when a wise payoff consideration is expected to yield the emergence

of cooperation.

3.1. Introduction

The unification of behavioral sciences is an attractive and challenging enterprise that

would be impossible without using game theory [30]. The recent book by Gintis [30] aims at

the unification of Behavioral Sciences, namely, at the ambitious purpose of unifying biology,

psychology, economics, anthropology and political science, stressing however that game the-

ory alone is not enough to realize this important goal. Nowak and May [1] have attracted the

This chapter was adapted from Mahmoodi, Korosh and Grigolini, Paolo, ”Evolutionary game theory and
criticality ”, published on 30 November 2016 in Journal of Physics A: Mathematical and Theoretical, Vol.
50, 015101, with permission from IOP.
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attention of an increasing number of researchers on network reciprocity, a special condition

where spatial structure favors the emergence of cooperation, see also [31], in spite of its nodes

playing the Prisoner’s Dilemma game [32], with an incentive to defect. Actually, the players

update their strategy with the criterion denoted in the literature [46, 47] as Unconditional

Imitation (UI), which forces the individuals to select the strategy of the player with the

maximal payoff in their neighborhood, including themselves. The adjective unconditional

suggests that the choice of the largest payoff is not influenced by any inclination to either

cooperate or to defect, thereby implying that the emergence of cooperation only depends on

network reciprocity.

The assumption that the use of the UI alone thanks to network reciprocity may be

a universal property for the survival of cooperation has been questioned by many authors

[48, 49, 50, 51]. How to supplement the evolutionary game theory with dynamical properties

that may overcome the limits of the Nowak and May UI? We find very promising the approach

by Vilone et al. [47]. The players are the members of a society and as consequence they

make the choice between cooperation and defection not only on the basis of UI, but, as

wisely pointed out by the authors of Refs. [47], under a social pressure without a rational

background. Thus, the single individuals make the choice between cooperation and defection

strategy adopting the UI prescription with probability 1 − q and with probability q under

the influence of their nearest neighbors, as prescribed the Voter Model (VM) [52].

This article is based on realizing the social pressure by means of the Decision Making

Model (DMM) of [36], rather than through the VM. We note that both DMM and UI are

decision making models with the main difference though, that UI focuses on payoff whereas

DMM is merely based on imitation. To stress this difference we refer to DMM as Local

Conformism Model (LCM).

To a first sight one may have the misleading impression that our proposal is essentially

equivalent to that of Vilone et al. [47], since both LCM and VM belongs to universality

class of Ising models. The authors of Vilone et al. [47] adopt a condition equivalent to the

Ising model at zero temperature [52, 53] with the complex network moving towards the all
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spin up condition with the average interface density ρ(t) changing in time either as t−1/2

(one-dimensional condition) or as 1/lnt (two-dimensional condition). We note that this is a

form of critical slowing down and that the authors of Ref. [40] devoted some attention to

make a clear distinction between critical slowing down and temporal complexity. The LCM

model is characterized by a control parameter K, changing from K = 0, corresponding to

the single individuals undergoing Poisson dynamics with no correlation the ones from the

others, to a critical value Kc, at which a phase transition from disorder to order occurs,

and beyond it. At criticality, when the total number of individuals N is very large, the

mean field of the system, x = (NC −ND)/N , namely, the difference between the individuals

selecting cooperation and those selecting defection divided by N , makes a regression to

equilibrium from an initial out of equilibrium condition with the decay t−1/2, which is critical

slowing down. The important property of LCM, responsible for interesting social effects, is

temporal complexity [54], which is a small size effect. Temporal complexity refers to the

time distance between two consecutive regressions of the mean field x to the vanishing value.

In a time scale smaller than Teq ∝
√
N , corresponding to the time it takes the mean field

to perceive the repulsive quartic potential generated by criticality [40], the time distance

between two consecutive regressions to x = 0 is given by the waiting time distribution

density ψ(τ) ∝ τ−0.5, which must not be confused with critical slowing down [40]. Temporal

complexity is closely related to the criticality-induced long-range correlation establishing a

form of interaction between individuals acting at large distance the ones from the others

[55]. These individuals are the nodes of a network, and the distance between two nodes is

evaluated counting the minimal number of links to go through to move from one to the other

nodes. The network topology influences the critical value Kc, namely the strength of the

social pressure necessary to get consensus, but temporal complexity, long-range correlation

and the double-well potential created by criticality are conjectured to be independent of

the network topology. Furthermore, although the intensity of the correlated fluctuations

generated by temporal complexity tends to vanish for N → ∞, there exists a crucial value

Nmin, below which no phase transition occurs and no form of dynamical complexity emerges
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[56, 57].

In this article each individual uses UI for a randomly selected fraction ε < 1 of her

time. We show that criticality may produce big effects even if the condition ε� 1 is adopted.

Note that the parameter ε is related to the parameter q of Vilone [47] by the relation ε = 1−q

so as to emphasize the originality of this article compared to the model of Vilone et al. [47],

where the small parameter producing big effects is q rather than ε. We show that, thanks

to the criticality of LCM social pressure, the individuals of this model playing UI for even

a small fraction of their time, ε � 1, make all the social network sensitive to the choices

that the system would do with ε = 1, with the impressive effect of suppressing either the

branch of cooperators or the branch of defectors, while with ε = 0 both branches occur with

equal probability [40]. This is a form of intelligence that we refer to as criticality-induced

intelligence. A solid foundation of this form of intelligence is given by the results of numerical

experiments Refs. [40, 54, 55, 56, 57, 40, 58], but hereby we use the figures of Section 4 and

Section 5 to explain these properties with intuitive and qualitative arguments.

To make the role of criticality more evident we do not limit our discussion to the

condition of very small ε but we move from ε = 0, where only the imitation-induced social

pressure is active, to ε = 1, where the systems evolves only under the influence of UI. Note

that we denote by N , as earlier mentioned, the total number of players and by T the number

of time steps we run the dynamical model. Throughout the whole article we adopt N = 1024

(namely, we use a two-dimensional regular network of size 32) and T = 106.

3.2. Local Conformism Model (LCM)

With probability q we adopt the Decision Making Model of Ref. [36], here referred to

as Local Conformism Model (LCM). The transition rate from cooperation to the defection,

gCD, is given by

(3.1) gCD = g0exp

[
−K

(
MC −MD

M

)]
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and the transition rate from defection to the cooperation, gDC , is given by

(3.2) gDC = g0exp

[
K

(
MC −MD

M

)]
.

The meaning of this prescription is as follows. The parameter 1/g0 defines the time scale and

we set g0 = 0.1 throughout. We consider N individuals. Each individual has M neighbors

(four in the case of the regular two-dimensional lattice used in this article). If the individual

is in C, and the majority of its neighbors are in the same state, then the transition rate

becomes smaller and the individual sojourns in the cooperation state for a longer time. If

the majority of its neighbors are in D, then the individual sojourns in the cooperator state

for a shorter time. Analog prescription is used if the individual is in the defection state. We

evaluate

Fig. 2.1 illustrates the second-order phase transition generated by the LCM, when

q = 1. This corresponds to the condition where no bias exists for the choice of either

cooperation or defection. In the initial condition the N individuals of the network are

randomly assigned to either the cooperation or the defection state with the same probability,

making zero the average over many realizations. Fig. 2.1 shows the mean field of ten single

realizations. We run the LCM for the time T and at time T we evaluate

(3.3) x(T ) ≡
∑N

i ξi
N

,

where ξ = 1 or ξ = −1, according to whether the i − th individual is in the cooperation

or in the defection state, respectively. Of course, due to the fact that, as earlier stated, we

are using a finite number of individuals, N = 1024, the mean field fluctuates around the

vanishing mean value.

Note that at K = Kc the individuals move from a dynamical condition where they are

virtually independent the ones from the others to a condition where global order emerges.

In the two-dimensional regular lattice of this article Kc ≈ 1.5.

It is important to stress that the single realizations for K < Kc fluctuate around

x = 0 and for K > Kc they fluctuate around non-vanishing equilibrium values [40]. As

discussed in Ref. [40], the time evolution of x(t) is equivalent to the motion of a particle in
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an over-damped potential and at K > Kc this potential turns into a double-well potential,

with the two wells, one corresponding to the C state, and one corresponding to the D state,

separated by a bell-shaped barrier. The choice of the initial condition x = 0 locates the

system at the top of the barrier and a very weak erratic fluctuation makes the system fall

with equal probability either into the state C or into the state D, the top and the bottom

branch of Fig. 2.1, respectively. An external field of intensity larger than this fluctuation

can make the system select either the state C or the state D and with enough large intensity

it can lead to the complete extinction of the other state. The main result of this article is

that a very small probability ε of adopting UI makes the system select either the state C

or the state D as effect of criticality-induced intelligence. This is a dynamical process that

is impressively different from the action of an external field on a Ising-like phase transition

process.

We notice that in the region K ∼ Kc the fluctuation intensity is larger, in accordance

with the results of Refs. [40, 54, 55, 56, 57, 40, 58]. This is the region characterized by long-

range correlation [55] generating criticality-induced intelligence, termed as swarm intelligence

in Refs. [29, 30]. This is a form of Turing intelligence [39] allowing the lookout birds of a flock

to communicate to all the other individuals the arrival of a predator [29, 30]. In this article

the LCM-induced swarm intelligence makes it possible for the small number of individuals

adopting at a given time the UI directions to transmit their choice to all the other individuals,

with the effect of generating a bias that can be mistaken as being equivalent to an external

field. In fact, increasing the parameter ε makes the dynamics of this system depart from the

swarm intelligence condition with the consequence of conflicting with the UI direction.

3.3. Unconditional Imitation Model (UI)

As well known [32], Prisoner’s Dilemma game rests on the crucial inequality T >

R > P > S, where R denotes the reward that a cooperator gets when playing with another

cooperator. The parameter T > R is the payoff of a defector: it is larger than R thereby

t = T − R is a measure of the temptation to cheat. S is the payoff of a cooperator playing
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with a defector, and P < R is the payoff of a defector playing with another defector. The

condition 2R > T + S indicates that the community gets a higher benefit from the play

between two cooperators than from the play between a cooperator and a defector. The play

between two defectors yields the societal benefit 2P that, due to the condition P < R is

less beneficial to society than the play between two cooperators, in spite of the incentive to

defect. We adopt the choice made by Gintis [30] and we set R = 1, P = 0, T = 1 + t and

S = −s. Let us assume now that the individuals of our network play this game with their

8 nearest neighbors and that they select their strategy according to an updated version of

the Nowak and May UI [59] that from now on we shall refer to as probabilistic UI. Notice

that this version of UI is less favorable to cooperation than the deterministic version of Ref.

[31]. In this version the players adopt the strategy of the most successful neighbor with

a probability equal to the ratio of the difference between the payoff of the most successful

player and their own payoff to the sum of the absolute values of these two payoffs, if the

payoff of the successful player is larger that their own payoff. If it is smaller, they keep their

strategy. In the model of Ref. [31], termed by us as deterministic UI, the payers adopt with

no uncertainty the strategy of the most successful neighbor and keep their strategy if they

are the most successful players of their environment. The main result, illustrated in Section

4, rests on the use of probabilistic UI, but, as stressed in Section 5, the use of deterministic

UI yields identical results.

Fig. 3.1 compares the probabilistic to the deterministic model, showing the mean

field as a function of (t, s) at time T = 106. It is evident that the (t, s) region generating a

large majority of cooperators, and so a large mean field close to 1, intense yellow squares,

is much broader in the case of deterministic UI. The sea dominated by defectors, intense

blue squares, is less extended and hosts many cooperation islands. Furthermore we notice

that the patterns of cooperators are unpredictable, this being a consequence of the spatial

chaos pointed out by the authors of Ref. [31]. In other words, the deterministic UI favors

cooperation much more than the probabilistic UI.

The individuals of our model use the portion ε of their time to perceive the influence
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of UI. In Fig. 2 we select three indicator points, a, b and c, for the purpose of defining a

moderate influence in favor of cooperation, a, a strong influence in favor defection, b, and a

strong influence in favor of cooperation, c. Notice that the mean field corresponding to a is:

x(T ) = 0.5, probabilistic UI, x(T ) = 0.9, deterministic UI. The mean field corresponding to

b is: x(T ) = −1 for both probabilistic and deterministic UI. The mean field of c is: x(T ) = 1,

probabilistic UI; x(T ) = 0.9, deterministic UI. Notice that the moderate influence in favor of

cooperation of the probabilistic UI is selected to be smaller than the moderate influence in

favor of cooperation of the deterministic UI. In the deterministic case the mean field moves

from 1 and it will remain close to 1 before dropping to values close to −1. This is the reason

why the moderate field in favor of cooperation of the deterministic UI is significantly larger

than moderate field of the probabilistic UI. The strong influence in favor of cooperation of

the probabilistic UI has intensity larger than the strong influence in favor of cooperation of

the deterministic case. The readers have to keep in mind these choices to fully appreciate

the results of Section 5.

The annihilation, illustrated in Section 4, of either the D or the C branch of Fig. 1,

as an effect of a bias in favor of cooperation or defection, is discussed using the probabilistic

UI (no change occurs using the deterministic UI). For this reason here we limit ourselves to

make comments on the points a, b and c of the left panel of Fig. 2. The points a = (0.2, 0.2)

and b = (0.3, 0.3) correspond to two crucial conditions illustrated in Fig.2, the first being

compatible with the survival of cooperators, while the second, already imbedded in the

defection (blue) region, due to the large incentive to cheat and the large punishment to

the sucker, yields extinction of cooperators and the mean field close to x(T ) = −1. In

Section 3.4 we show that the joint action of LCM and UI makes condition b produce effects

symmetric to those of condition a, in spite of the fact that the modulus on the negative

field b is smaller than the positive field of a. We consider also the condition c = (0.1, 0.1)

which strongly favors cooperation. The numerical calculations of this article show that the

response to the bias of a is virtually indistinguishable from the response to the bias of c,

thereby suggesting that the swarm intelligence is sensitive only to the sign of the bias. The
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Figure 3.1. Mean field of individuals playing only UI at time T = 106,

probabilistic UI, left panel; deterministic UI, right panel. One realization for

each (t,s). The points a, b and c are the indicators of three different kind

of influences exerted by UI on the individuals playing it. Probabilistic UI,

a = (0.2, 0.2), b = (0.3, 0.3) and c = (0.1, 0.1); Deterministic UI, a = (0.3, 0.3),

b = (0.5, 0.3), c = (0.2, 0.2).

swarm intelligence makes the system select either the cooperation branch or the defection

branch as an effect of criticality-induced cognition, if ε if very small. Section 3.5 shows that

the effect of increasing ε is impressively different from that of an external field on an Ising-like

model. This is a consequence of the fact that LCM disrupts the action of UI, in the absence

of criticality-induced cognition.

Notice that the main purpose of UI is to explain why society makes the choice of

social benefit with individuals paying attention to their payoff, and the purpose of this work

is to prove that, thanks to criticality, the social pressure exerted by LCM may confirm this

choice. We evaluate the social benefit for the community, independently of either UI or

LCM, or of their joint use, by making an average over the payoff Bij of all possible pairs of

interacting neighbors, according to the prescription Bij = 2, if both individuals of the pair

(i, j) are cooperators, Bij = 1 + t− s , if one individual of the pair (i, j) is a cooperator and

the other is a defector, and finally Bij = 0, if both individuals of the pair (i, j) are defectors.
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Figure 3.2. The social benefit generated by the use of the LCM social pres-

sure alone. It is evaluated using Eq.(4.6). The red triangles correspond to

a = (0.1, 0.1) and the black squares correspond to b = (0.3, 0.3) of the left

panel of Fig. 2.

In conclusion, the societal benefit Π is given by

(3.4) Π =

∑
(i,j) Bij

4N2
,

with the sum being done, as earlier mentioned, over all possible pairs (i, j).

This allows us to turn the bifurcation structure of Fig. 1 into to social benefit bifur-

cation of Fig. 3, obtained playing only LCM and evaluating the corresponding social benefit

with Eq. (4.6). We see that the selection of the cooperation branch yields the maximal social

benefit as possible for K � Kc and the selection of the defection branch leads to no social

benefit in the same limit, as a consequence of the fact that according to Prisoner’s Dilemma

model defectors benefit from cooperators and the extinction of cooperators yields no payoff

for defectors.
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Figure 3.3. The mean field as a function of K. The empty squares corre-

spond to ε = 0. The yellow squares correspond to ε = 0.01 with the condition

a = (0.2, 0.2) of Fig. 3.1. The blue squares correspond to ε = 0.01 with the

condition b = (0.3, 0.3) of Fig. 3.1.

3.4. Joint Action of LCM and UI

This Section shows the main result of this article. Hereby we study the joint action

of social pressure and probabilistic UI. Each individual of the network adopts LCM for most

of time and probabilistic UI for a randomly selected fraction ε = 0.01 of it. Note that UI in

the absence of the social pressure would generate the mean field of the top-left panel of Fig.

3.1.

Fig. 3.3 shows that the condition a = (0.2, 0.2), favoring in Fig. 3.1 the survival of

cooperators, annihilates the branch of defectors, whereas the condition b = (0.3, 0.3), which

in the absence of social pressure, as shown by Fig. 3.1, would fill the whole network with

defectors, annihilates the branch of cooperators. The adoption of the condition c = (0.1, 0.1)

generates effects virtually indistinguishable from those of condition a = (0.2, 0.2). Plotting

these results would have made Fig. 4 blurring and for this reason we plot only the results

produced by condition a = (0.2, 0.2).
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It is impressive that such a modest use of probabilistic UI, namely the individuals

using this UI for only 1% of their times, generates the visible departure illustrated by Fig.

3.3, from the unbiased phase transition. However, these macroscopic effects are a natural

consequence of the LCM properties discussed in the earlier work of Refs. [40, 54, 55, 56, 57,

40, 58].

Let us use intuitive and qualitative arguments to explain these results, examining

first the supercritical condition. For K > Kc the system selects either the state C or the

state D as an effect of a very weak fluctuation, with no bias. The small fraction ε = 0.01 of

time spent by the individuals under the influence of the UI with a bias favoring cooperation,

condition a = (0.2, 0.2), is large enough as to overcome the fluctuations that may make the

system fall in the D state. On the same token, the small fraction ε = 0.01 of time spent

by the individuals under the influence of the UI prescription with a bias favoring defection,

condition b, is large enough as to overcome the fluctuations that may make the system fall

in the C state.

At K = Kc there is no barrier, and it is apparently more difficult to explain why a

small bias may lead the system to select the upper or bottom branch. This is where we must

invoke the criticality-induced swarm intelligence discussed in [29, 30]. The authors of Refs.

[29, 30] showed that at criticality a small number of lookout birds can make the system

adopt their choice. The lookout birds are a small fraction of individuals who perceive,

for instance, the arrival of a predator, and select the flying direction permitting them to

avoid a danger. The criticality-induced long-range correlation allows them to transmit this

information to all the other individuals, thereby making it possible for the whole swarm to

avoid the danger. In this article the individuals adopting the probabilistic UI perceive the

benefit of the cooperation choice, condition a = (0.2, 0.2), and transmit the convenience of

selecting cooperation to all the other individuals, thereby making the whole system select

the cooperation branch. On the same token, if the probabilistic UI yields condition b =

(0.3, 0.3) favoring the extinction of cooperators, social pressure-induced criticality makes all

the individuals aware of the personal convenience of adopting defection, thereby generating
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the extinction of the cooperation branch.

We do not illustrate the effect of using the deterministic UI, which generates the same

extinction process of the branch of defector, if the condition a is used, and of the branch of

cooperator if the condition b applies. However, in Section 5 we show also the deterministic

UI in action for the main purpose of making our arguments on the role of criticality much

more compelling.

3.5. Illustration of Criticality Effects

The main aim of this Section is to prove with additional numerical results that chang-

ing the intensity of the parameter ε is not equivalent to changing the intensity of an external

field acting on a Ising-like phase transition process. For extremely small values of ε the

probabilistic UI exerts a small bias on the system, in favor of either the C or the D state,

and the intensity of this bias does depend on the intensity of the mean field generated by

the probabilistic UI. As earlier mentioned, the adoption of condition c = (0.1, 0.1) for very

small values of ε makes the extinction of the defection branch indistinguishable from that

generated by the adoption of condition a = (0.2, 0.2).

Fig. 5 allows us to establish that the phenomenon of criticality-induced cognition

requires that ε < 0.1. We notice, first of all, that, in a qualitative accordance with Vilone,

[47], the social pressure on the UI choice has the effect of disrupting the effects of UI dynamics.

The mean field generated by UI alone is either positive, condition a and c , or negative,

condition b. The use of a very small value of q has the effect of decreasing the intensity of

the mean field, in the first two cases, and of increasing it in the last case. Moving from ε = 1

to ε = 0 corresponds to move from the action of UI alone to the action of LCM alone. This

has the effect of producing a behavior quite different from that earlier found from Vilone et

al. [47].

Let us consider the condition a, top panel of Fig. 5, and the adoption of probabilistic

UI first, namely, more precisely, the top-left panel of the same figure. We notice that the

blue curve, illustrating the mean field at criticality, moves from the value 0.5, determined by
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Figure 3.4. The mean field as a function of ε for different values of K. In the

top panel, in addition to the mean field we illustrate also, using orange squares,

the social benefit Π of Eq. (4.6) corresponding to K = 1.8, the intensity of

which is defined in the right ordinate . In all the panels the colors orange, blue,

green and black refer to K = 1.8, K = 1.5, K = 1 and K = 0.1, respectively.

The top, middle and bottom panel lllustrate the mean field as a function of ε

for the conditions a, b and c, of Fig. 2, respectively.

the probabilistic UI to smaller values upon decrease of ε. The disruption effect, in qualitative

accordance with the numerical results of Vilone et al. [47], yields a fast decrease of the mean

field that makes it become negative. However, at criticality, when ε = 0 is adopted, the

mean field must vanish. As a consequence of that the dependence of the mean field on ε
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is not monotonic. At about ε = 0.2 a minimal value is reached and a further decease of ε

is expected to yield an increase of the mean field. This is, in fact, what we can see in the

top-left panel of Fig. 5. However, the mean field at about ε = 0.08 is positive. This peak is

not a statistical fluctuation, but it is the manifestation of swarm intelligence. About 8% of

individuals perceive the indication that the system should move to the positive mean field

of about 0.5, to get the largest payoff. The number of the other 92% individuals is large

enough as to properly maintain the phase-transition structure of LCM, and especially the

condition of temporal complexity occurring at K ≈ 1.5. This is the real reason why the

mean field gets a value that is approximately equal to 0.25. Smaller values of ε generate

smaller positive mean field, this being the main reason why at bifurcation the system selects

the cooperation branch.

Let us move to consider the orange curve, corresponding to the supercritical value

K = 1.8. In this case when ε = 0, the mean field generated by the LCM is about 0.75,

significantly larger than the equilibrium mean value of 0.5 established by the probabilistic

UI. Yet, also in this case the disrupting action of LCM makes the mean field decrease with

the decrease of ε from the maximal value of 1. At about ε = 0.4 an inversion occurs, and for

values of ε of the order of 0.01, the system adopts the value of the mean field of about 0.6

of the cooperation branch, corresponding to K = 1.8, as shown in Fig. 4.

It is interesting to notice that the same non-monotonic behavior is generated in the

subcritical region. In this case, however, the disruptive action of LCM combined with the

lack of cognition of the subcritical condition makes the mean field remain negative for the

whole range from ε = 0 to ε ≈ 0.8. This is a clear consequence of the lack of cognition:

preventing the emergence of cognition favors defection.

It is interesting to notice that the adoption of the condition b = (0.3, 0.3) at criti-

cality yields a monotonic behavior. This is a consequence of the fact that in this case the

disruption action of LCM generates an increase of the mean field. The equilibrium value of

the probabilistic UI is negative and, at criticality, the LCM mean value vanishes. Thus, in

this case the disruptive nature of LCM makes the system move in a monotonic way towards
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the vanishing mean field generated by the action of LCM alone. Yet, also in this case the

adoption of the supercritical condition K = 1.8 makes the system move from probabilistic

UI mean field to the LCM mean field of the defection branch that is very close to −1.

Finally, let us discuss condition c = (0.1, 0.1), the left panel of Fig. 2. The illustration

of the effect of social pressure on this condition, shown in the bottom-left panel of Fig. 5,

explains why the numerical calculation done to get Fig. 4 makes condition c = (0.1, 0.1)

virtually identical to condition a = (0.2, 0.2). In fact, we see that this condition yields a

dependence on social pressure qualitatively identical to that of the top-left panel of the same

figure, corresponding to a weaker UI field. The consequence of this condition is that when

the value ε = 0.1, where swarm intelligence becomes active, the mean field is larger than 0.5,

whereas in the top panel is about 0.25. The swarm intelligence makes the system aware of

the financial benefit of cooperation. However, with ε = 0.01 the mean field is significantly

smaller and this is the reason why in Fig. 4 it would be impossible to see the difference

between the two conditions.

The adoption of the deterministic UI (top-right, middle-right and bottom-right of

Fig. 5) yields results confirming the crucial role of criticality as a generator of intelligence.

In fact, also in this case we have a non monotonic dependence of the mean field x(T )

on the parameter ε for both top and bottom panel and a monotonic behavior with the

middle panel. It is impressive that the criticality-induced intelligence yields effects that are

very sensitive to the intensity of the UI influence. In fact, as mentioned in Section 3, for

condition a the deterministic mean field x(T ) is 0.9, to be compared to the value 0.5 of the

probabilistic UI. As a consequence, the bump emerging after inversion of the mean field upon

decrease of ε, corresponds to the mean field getting the value of about 0.5, to be compared

to the corresponding value of about 0.25 of the left panel. This maximum is reached with

ε ≈ 0.06 versus the corresponding value of the left panel, which is ε ≈ 0.04. In this case the

criticality-induced intelligence is generated by about 96% of the individuals playing LCM,

to be compared to about the 94% of the individuals of the corresponding case of the top-

left panel. In the bottom panel the reverse condition applies. As pointed out in Section 3,
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for condition c the deterministic UI influence is exerted through a mean field x(T ) = 0.8,

which is smaller than the corresponding value of x(T ) = 1 of the bottom-left panel, and,

as a consequence, the intensity of the criticality-induced peak is slightly smaller than 0.5,

whereas the corresponding value of the bottom-left panel is significantly larger than 0.5.

3.6. Concluding Remarks

In this article we benefit from the adoption of the proposal of Vilone et al. [47],

but the adoption of LCM to establish the social pressure has the effect of creating a form

of cognition that makes all the individuals realize the social benefit of cooperation or the

personal convenience of selecting defection. This is a consequence of the fact that we rest on

the criticality of LCM, whereas Vilone et l. [47] adopt the VM in the condition corresponding

to the Ising model at vanishing temperature, with no temporal complexity.

Increasing the value of ε has the effect of perturbing the dynamics of LCM. As a

consequence the criticality-induced swarm intelligence is reduced or even completely an-

nihilated with the effect of favoring defection also in the case where the probabilistic UI

dynamics would favor cooperation. The main result of this article, Fig. 4, is obtained using

the probabilistic UI, but the adoption of the deterministic UI [1], which is more favorable to

cooperation, yields a virtually identical result.

On the basis of the earlier work of Ref. [58] changing network topology has the

effect of increasing or reducing the imitation effort K to reach criticality. However, the

criticality-induced effects illustrated in this article are expected to be independent of the

network topology.

It is important to stress that criticality-induced temporal complexity has also the

effect of making the complex network flexible [40, 40, 30, 41]. This is the reason why a

complex network at criticality is sensitive to the influence of other networks at criticality.

However, this important aspect of criticality is beyond the purpose of this article, even

if we believe that future research work will prove it to be very important for the field of

evolutionary game theory.
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The content of this work can be summarized as follows. The individuals of a society

make decision on the basis of two processes, the blind imitation of the choices made by the

neighbors and the imitation of most successful neighbor. This second kind of choice, called

UI, may lead to the cooperation choice, if the incentive to cheat is not too large. However,

the big problem to address in this case is as to the cooperation decision is made also when

the choices of the single individuals are mainly determined by a fully blind social pressure.

One may expect that the social pressure may annihilate the benefits of social reciprocity.

This work shows that it is not so if the social pressure is established through the LCM at

criticality. The conclusion is therefore that criticality is an important property that the

rapidly evolving field of evolutionary game theory should take into account.
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CHAPTER 4

SELF-ORGANIZING COMPLEX NETWORKS: INDIVIDUAL VERSUS GLOBAL

RULES

We introduce a form of Self-Organized Criticality (SOC) inspired by the new gener-

ation of evolutionary game theory, which ranges from physiology to sociology. The single

individuals are the nodes of a composite network, equivalent to two interacting subnetworks,

one leading to strategy choices made by the individuals under the influence of the choices

of their nearest neighbors and the other measuring the Prisoner’s Dilemma Game payoffs

of these choices. The interaction between the two networks is established by making the

imitation strength K increase or decrease according to whether the last two payoffs increase

or decrease upon increasing or decreasing K. Although each of these imitation strengths is

selected selfishly, and independently of the others as well, the social system spontaneously

evolves towards the state of cooperation. Criticality is signaled by temporal complexity,

namely the occurrence of non-Poisson renewal events, the time intervals between two con-

secutive crucial events being given by an inverse power law index µ = 1.3 rather than by

avalanches with an inverse power law distribution as in the original form of SOC. This new

phenomenon is herein labeled self-organized temporal criticality (SOTC). We compare this

bottom-up self-organization process to the adoption of a global choice rule based on assigning

to all the units the same value K, with the time evolution of common K being determined

by consciousness of the social benefit, a top-down process implying the action of a leader.

In this case self-organization is impeded by large intensity fluctuations and the global social

benefit turns out to be much weaker. We conclude that the SOC model of this work fits the

requests of a manifesto recently proposed by a number of European social scientists.

This chapter was adapted from Mahmoodi, Korosh and West, Bruce J and Grigolini, Paolo, ”Self-organizing
Complex Networks: individual versus global rules”, published on 07 July 2017 in Frontiers in physiology,
Vol. 8, 478, Open access.
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4.1. Introduction

One of the main goals of computational social models is to quantify the mechanisms

generating the emergence of collective behavior of social groups. A particularly useful mod-

eling tool in this regard has been evolutionary game theory. This tool was used to explain

the emergence and survival of cooperation in society, in contrast to the widely recognized

selfish character of single individuals. Axelrod and Hamilton [32] have addressed the ap-

parent contradiction and their work has drawn the attention of an increasing number of

researchers to the surprising condition that altruism may have originated much earlier than

the dawn of human civilization. Altruism may, in fact, correspond to the birth of life itself,

although the concepts of kinship and reciprocity, widely adopted in game theory, seem to

refer to complex social networks and not to individuals. In fact, Axelrod and Hamilton based

their life evolution study on the use of the Prisoner’s Dilemma game, with its crucial conflict

between the individual’s temptation to cheat and to act in the community’s benefit, a model

that seems to apply only to human society.

More recently, evolutionary game theory concepts, which were apparently introduced

to discuss the social effect of public good, are used to gain insight into enzyme chemistry

processes [60]. Another sociological concept, currently adopted to illustrate the conflict

between the use of limited shared resources and individual self-interest [61], “the tragedy

of the commons”, has been used [62] to discuss the evolution of cooperation in ecological

networks.

The argument of network reciprocity, in the form illustrated by Nowak and May

[1], rests on the observation that in a network of cooperators and defectors, the richer

environment of cooperators prevents the spreading of defectors. This argument has been

questioned by some, noting the social activities in which the individuals are engaged, who

are also involved in playing the Prisoner’s Dilemma game. The additional social interaction

of the individuals within this social group was found to disrupt network reciprocity [47].

However, when this additional activity is based on individuals imitating the choices made

by their nearest neighbors, it may favor the survival of cooperation [63]. This survivability
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is a consequence of the imitation strength being sufficiently strong to generate criticality as

in the Decision Making Model (DMM) [36].

The criticality condition exploited by Mahmoodi and Grigolini [63] is obtained by

tuning the imitation strength to the theoretical value that in the limiting case of an infinitely

large network is expected to be determined by an Ising-like prescription, since the DMM

used is in the Ising universality class [36]. Criticality entails long-range correlation among

the members of the society, even those communicating solely by means of nearest-neighbor

interactions. Such criticality has been interpreted as a form of global intelligence, identified

as swarm intelligence [29], a phenomenon that may be shared by microbial communities

and mechanisms of carcinogenesis as well as, by neural systems [64]. In the specific case of

individuals playing the Prisoner’s Dilemma game, the criticality-induced swarm intelligence

enables the members of society to become aware of the benefits of network reciprocity, and

thereby biases their interactions to favor, rather than disrupt, this network property [63].

The manifesto of computational social science [65] relies on the assumption that

criticality is a consequence of self-organization, and thereby implies that social criticality is

a form of self-organized criticality (SOC). A word of caution is appropriate here, now that

the term SOC has been used. A 25-year review of the concepts and controversies surrounding

SOC [66], emphasize that SOC occurs in open, extended, dissipative dynamical systems that

automatically go to the critical state. This is distinct from a continuous phase transition

where at a critical point correlations become long-range and are characterized by an inverse

power-law (IPL) probability density function (PDF). In order to arrive at the critical point

an external control parameter, such as temperature, must be fine-tuned to its critical value.

We refer to that control parameter with the symbol K. On the other hand, SOC occurs

universally where any fine-tuning is accomplished by means of its internal dynamics [67].

This independence from an external tuning is the defining property of a SOC phenomenon.

The emergence of SOC is usually signaled by the births of anomalous avalanches, see

[68] and [69] for more recent work. Here we illustrate a form of SOC based on the spon-

taneous search for the critical value of the parameter K, which is selected by the network
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through a bottom up process, that is, through the dynamic behavior of the individuals and is

not externally imposed. The main signature of self-organized criticality is the time interval

between two crucial events, with a non-exponential waiting time probability distribution

density (PDF), a property referred to as temporal complexity in earlier work [54]. We there-

fore refer to the form of SOC developed as self-organized temporal criticality (SOTC). The

crucial events are defined by comparing the variable K(t) to its time average K and are

identified with the variable ζ = K(t)−K changing sign.

We emphasize that the form of SOTC is realized in full accordance with the spirit

of the Axelrod and Hamilton [32] theoretical perspective. In fact the payoff of the choices

made by the individuals of the composite network is established using the Prisoner’s Dilemma

game, without neglecting the incentive to defection. The choice of the strategy to adopt is

determined by the individual’s imitation of the choices made by their nearest neighbors.

The single units only decide to increase or decrease their tendency to imitate these choices

according to whether on the basis of the last two payoffs this imitation increased or decreased

the benefit to them as an individual. This indirect and apparently blind strategy choice does

not disrupt the beneficial effects of network reciprocity [1], but it is a way of efficiently

establishing the reciprocity condition hypothesized by Axelrod and Hamilton [32].

Returning to the SOTC issue, we stress that the imitation strength K is not a con-

ventional fine tuned control parameter, that is artificially fixed to make the network achieve

criticality. The parameter K is freely selected by the dynamics of the network itself.

The numerical calculations presented herein show that increasing the dependence of

the individuals on the strategic choices of their neighbors has the effect of increasing their

payoff. Imitation of the choices of their neighbors is a form of social interaction that is made

at the level of the individuals and is not forced upon them in a top-down process. There

exists a parameter, call it χ, which determines the rate of change of K, as a function of the

last two payoffs. However, no recourse is made to the fine tuning of this parameter, insofar

as changing χ has only the effect of influencing the time scale of the process of transition

to altruism. This is, as we show, a bottom-up process that generates self-organization,
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and along with self-organization generates swarm intelligence, with the ultimate effect of

increasing the wealth of society, thereby affording strong support to the increasing conviction

that real social improvements do not require the action of benevolent dictators [70, 71].

4.2. The Prisoner’s Dilemma Game

This section is devoted to illustrating the criteria adopted in the subnetwork of logical

choices to evaluate the payoff associated to the cooperation or the defection choice. This

is done using the Prisonner’s Dilemma game. This game was originally introduced as a

metaphor for the problems affecting the emergence of cooperation [32]. Two players interact

and receive a payoff from their interaction adopting either the defection or the cooperation

strategy. If both players select the cooperation strategies, each of them gets the payoff R

and their society receives the payoff 2R. The player choosing the defection strategy receives

the payoff T . The temptation to cheat is established by setting the condition

(4.1) T > R.

However, this larger payoff is assigned to the defector only if the other player selects coop-

eration. The player selecting cooperation receives the payoff S, which is smaller than R. If

the other player also selects defection, the payoff for both players is P , which is smaller than

R. The game is based on the crucial inequalities

(4.2) T > R > P > S.

It is evident that for a player, let us call her #1, the choice of defection condition is always

the most convenient, regardless of the choice made by the other player, let us call her #2.

In fact, if the player #2 selects cooperation, player #1 receives R, but the better payoff

T if she selects defection. If player #2 selects defection, player #1 receives the payoff S if

she selects cooperation and the larger payoff P if she selects defection. However, the whole

society receives the largest payoff, 2R, if both players select cooperation, a smaller payoff,
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T +S, if one selects defection and the other cooperation, and the smallest payoff, 2P , if both

players select defection.

Axelrod and Hamilton [32] noted that if the Prisoner’s Dilemma game is played only

once no strategy can defeat the strategy of pure defection. If the game is played more than

once, reciprocity may make the choice of cooperation become the winning strategy. Nowak

and May [1] substantiated this concept with their model of network reciprocity. The players

are the nodes of a regular two-dimensional lattice and each players can interact with her

nearest neighbors. The players are initially randomly assigned either the cooperation or the

defection strategy. After each play, before the next play, they are left free to update their

strategy selecting the strategy of their most successful nearest neighbor. Since the environ-

ment of the cooperators, as above noted, is wealthier than the environment of defector, it

is possible that the most successful nearest neighbor is a cooperator, rather than a defector.

This is a rational form of imitation that may lead to the survival of cooperators. Here we use

only the Prisoner’s Dilemma game to evaluate the payoff and we realize the network reci-

procity with the interaction between the two subnetworks that will be described in Section

7.1.3.

4.3. Decision Making Model

In this Section we illustrate the dynamics of the subnetwork where decisions are

made by the individuals under the influence of their nearest neighbors. These dynamics

are realized by using Decision Making Model (DMM) [36]. In the earlier work [63], this

model was denoted as Local Conformism Model (LCM), to emphasize that according to the

work of Vilone [47] social influence may disrupt the benefits of the Nowak and May network

reciprocity [1], if the social influence does not establish a correlation between the dynamics

of different individuals. As shall see in Section 7.1.3, the interaction between the DMM

subnetwork and the Prisoner’s dilemma subnetwork generates criticality. The individuals of

the composite networks in this and in the following sections of this work are the nodes of a

regular two dimensional network, denoted by the symbol r equivalent to the double index
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(i, j).

Here we describe the DMM behavior in the absence of this interaction. The transition

rate from cooperation to defection, g
(r)
CD, is given by

(4.3) g
(r)
CD = g0exp

[
−K

(
J

(r)
C − J

(r)
D

J

)]
and the transition rate from defection to cooperation, gDC , is given by

(4.4) g
(r)
DC = g0exp

[
K

(
J

(r)
C − J

(r)
D

J

)]
.

The meaning of this prescription is as follows. The parameter 1/g0 defines the time scale of

interest and we set g0 = 0.01. Time is discrete, starting from 1 and the distance between

two consecutive time events is ∆t, which is also selected to be 1. We consider M = N ×N

individuals of a regular two-dimensional network with periodic boundary condition. Each

individual has J neighbors (four in the case of the regular two-dimensional lattice used

herein). J
(r)
C neighbors are in the cooperation state and J

(r)
D of them are in the defection

state. If the individual r is in the cooperation state C, and the majority of its neighbors are

in the same state, then the transition rate becomes smaller and the individual sojourns in the

cooperation state for a longer time. If the majority of its neighbors are in the defection state

D, then the individual r sojourns in the cooperator state for a shorter time. An analogous

prescription is used if the individual r is in the defection state.

To denote the effect of imitation we assign to the units selecting the cooperation state

the value ξr = 1 and to the units in the defection state the value ξr = −1. To establish

whether cooperation or defection is selected by the social system we use the mean field x(t)

defined by

(4.5) x(t) =
1

M

M∑
r

ξr.

For K < KC the mean field vanishes, but at criticality, when K = KC , the social

system can select either the cooperation or the defection branch yielding for K � KC either

the value x = 1 or x = −1. The critical value of the control parameter K is KC = 1 in the

43



all-to-all coupling case and KC = 1.5 (M = 100) in the case of a regular two-dimensional

lattice [63].

4.4. Self-Organization

The earlier work [63] was based on the assumption that the players are the nodes

of a regular two-dimensional network. The players adopt for most of their time the blind

imitation of LCM and for a small portion of their time the rational imitation of Nowak

and May. Quite surprisingly the exceedingly large use of the blind imitation, rather than

disrupting the benefits of network reciprocity, has the effect of forcing the system to select the

cooperation branch, leading to the extinction of defectors. This is an interesting effect that

is due however to the fine tuning of LCM imitation strength to the critical value generating

criticality.

The main purpose of this work is to overcome this limitation with a natural SOC

process. This significant step ahead is realized without using the Nowak and May network

reciprocity. The earlier work [63] was based on the single units adopting of the Nowak and

May network reciprocity for a limited amount of their time and on the criticality-induced

swarm intelligence making the network realize the benefits of Nowak and May network

reciprocity. Herein the swarm intelligence condition emerges from self organization, which

makes it possible for the collective mind to realize that the choice of cooperation makes

society wealthier.

We adopt the choice of parameters made by Gintis [30] and set R = 1, P = 0,

T − R = 0.5 and S = 0. We evaluate the social benefit for the single individual and for the

community as a whole as follows. We define first the payoff Pr of the single unit r. Each

unit gets a total payoff from the play with its four nearest neighbors. Namely we have to

consider four pairs of players. If both players of a pair are cooperators the contribution to

the payoff of the unit r is Br = 2. If one the two playing units is a cooperator and the other

is a defector, the contribution to the payoff of the unit r is Br = T . If both players are

defectors the contribution to the payoff of the unit r is Br = 0. The payoff Pr of the unit r
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is the sum over the four Br. The mean benefit for the units of this society is

(4.6) Π =
1

M

M∑
r

Pr.

Self-induced criticality is realized in two distinct ways: individual and global :

4.4.1. Individual

It is important to notice that Kr, the value of imitation strength adopted by the

generic unit r to pay attention to the choices made by its four nearest neighbors about

selecting either the cooperation or the defection strategy, is not necessarily adopted by its

four nearest neighbors. In other words, the imitation strength Kr(t) is unidirectional and

it goes from r to all its nearest neighbors. The imitation strength Kr(t) changes from

individual to individual, as well as in time, and it is consequently very different from the

control parameter K of the conventional DMM phase transition processes, where K has a

single value throughout the whole network.

Each member is assigned a vanishing initial imitation strength, corresponding to a

total independence of the choices made by its nearest neighbors. At each time step the units

play the game and they independently change their imitation strength doing the implicit

assumption that the increase (decrease) of their individual payoff in the last two trades

makes convenient for them to increase (decrease) the imitation strength. More precisely,

they adopt the following rule. As stated earlier, time is discrete and the interval between

two consecutive time events is ∆t = 1. The imitation strength of the unit (i, j) changes in

time according the individual choice rule:

(4.7) Kr(t) = Kr(t−∆t) + χ
(Pr(t−∆t)− Pr(t− 2∆t))

(Pr(t−∆t) + Pr(t− 2∆t))
,

where the parameter χ determines the intensity of the interest of the units for their payoff.

Pr(t) is the payoff of the unit r at time t. The intensity of the imitation strength increases

or decreases according to whether in the two last trades the individual payoff increases or

decreases. If the payoff does not change, the imitation strength remains unchanged. To
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Figure 4.1. Individual case: Time evolution of, from the top to the bottom,

the benefit Π(t) of Eq. (4.6), the variable K(t) of Eq. (4.8) and the mean field

x(t) of Eq. (8.8). We adopted the values: T = 1.5, χ = 4, M = 100.

make a comparison with the global condition we evaluate also the mean imitation strength

(4.8) K(t) =
1

M

M∑
r

Kr(t).

Fig. 4.1 shows the self-organization of the social system as a result of individual

choices of the interacting units. The average imitation strength moves very quickly from

the vanishing initial value, corresponding to no social interaction, towards a maximal value

which is K ≈ 1.8. Notice that in the absence of interaction with the Prisoner’s Dilemma

process, the Ising-like DMM for the case of a regular two-dimensional lattice [36] would

require the critical value KC ≈ 1.65 for M = ∞ and, as earlier mentioned, KC ≈ 1.5 for

M = 100.

It is important to notice that in the case of criticality generated by a fine tuning

parameter the fluctuations of the mean field around the equilibrium value have an increasing

intensity upon decrease of the number of units [40]. We show that this property is shared

by the SOTC. Let us define
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(4.9) ζ(t) = K(t)−K,

(4.10) ζ(t) = x(t)− x

and

(4.11) ζ(t) = Π(t)− Π.

The symbols K, x and t Π denote the time mean values of the corresponding fluctuations

evaluated on the time series of length L. The intensity of these fluctuations is defined by

(4.12) ∆ζ =
√
V (ζ),

where

(4.13) V (ζ) ≡
∫ L

0
dtζ(t)2

L
,

with L denoting the length of time series.

We expect that

(4.14) ∆ζ ∝ 1

Mν
.

In the case of the criticality with a fine tuning parameter of Ref. [40], ν = 0.25. Presently

we do not have a theory to determine ν for SOTC, but it is interesting to notice that the

numerical calculations illustrated in Fig. 4.2 show that ν = 0.5, making fluctuation intensity

of ζ(t) more significant than in the case of the ordinary criticality of [40]. The fluctuations

of ζ are determined by the crucial events and their complexity constitutes the information

transferred from one to another self-organizing network. Increasing the intensity of these

fluctuation favors this transport process, but, as we see in Section 4.5, there exists a crucial

value of M , below which no signs of the IPL properties of temporal complexity remain.

47



Figure 4.2. Individual case: The square root of the fluctuation variance, ∆ζ

of Eq. (4.12), as a function of M . In this case ζ ≡ K(t)−K. We adopted the

values: T = 1.5, χ = 4.

4.4.2. Global

In the global case we assume that all the units share the same K, which changes in

time according global choice rule:

(4.15) K(t) = K(t−∆t) + χ
(Π(t−∆t)− Π(t− 2∆t))

(Π(t−∆t) + Π(t− 2∆t))
.

The global payoff Π(t) is evaluated by making a sum over all possible pairs (i, j), as defined

by Eq. (4.6). In the global case we select as initial condition K(0) = 0.5. The implicit

rationale for Eq. (4.15) is that the social community makes the same assumption as the

individuals of Eq. (4.7), namely that a payoff increase (decrease) in the last two trades

before setting the imitation strength to adopt at time t suggests its increase (decrease) to

be convenient. This condition requires a top down process, a decision made by a leader on

the appropriate imitation strength that the single units are forced to adopt for the benefit

of society.

Fig. (4.3) shows the self-organization of the social system as a result of the global

choices with all units sharing the same value of imitation strength. The qualitative behavior
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Figure 4.3. Global case: Time evolution of, from the top to the bottom, the

benefit Π(t) of Eq. (4.6), the variable K(t) of Eq. (4.15) and the mean field

x(t) of Eq. (8.8). We adopted the values: T = 1.5, χ = 4, M = 100.

is similar to that of the individual choice, thereby suggesting that the individual choices

of the interacting units are characterized by the same intelligence as that of the leader

driving the global choice. In fact, the global case is tacitly based on the assumption that

the collective payoff is communicated to the individuals who are forced to share the same

imitation strength, while the individual choice is based on the realistic assumption that

each unit is aware of its individual payoff, without requiring any information transmission

from a leader to the individuals. Thus, we are led to the conclusion that the SOC of the

model proposed in this work should be interpreted as a spontaneous emergence of the swarm

intelligence that in the earlier work is based on tuning a control parameter K to a critical

value [29].

The comparison between Fig. 4.3 and Fig. 4.1 leads us to an even more interesting

observation. We notice that the global choice yields an intermittent behavior that has the

effect of significantly reducing the social benefit, even if, in qualitative accordance with the

individual choice rule, the system moves towards cooperation. The individual choice rule
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is more efficient than the global choice rule and is not affected by the strong fluctuations

that intermittently reduce the social wealth. For this reason we are inclined to identify the

society leader of the global choice with the benevolent dictator discussed by Helbing and

Pournaras [70]. According to these authors, in fact, the centralized top-down organization

has various flaws reducing their efficiency and they propose instead a bottom up pluralistic

model inspired by neural processes. We believe that the numerical results of this work

lend support to the conclusion that the bottom up process of the individual choice is more

efficient than the top down process of the global choice. Therefore it seems that our model

of a self-organizing network supports the concluding remarks of Helbing: “I am convinced

that co-creation, co-evolution, collective intelligence, self-organization and self-governance,

considering externalities (i.e. external effects of our actions), will be the success principles

of the future”[71]. In fact, the spontaneous transition to criticality proposed in this work

is associated with the emergence of significant resilience and adaptivity. This will be made

clear in the next two sections devoted to designate temporal complexity rather than spatial

avalanches as a signature of criticality (Section 4.5) and to illustrate the related property

of complexity matching (Section 4.6). We think that the individual choice is an example of

SOTC more interesting than the global choice and for this reason we restrict our attention

to study the individual dependence on M .

4.5. Temporal Complexity

How is criticality defined in a social model? This is a difficult question, because

even in the well known condition of the Ising Universality class [36] we have to take into

account the observation of systems with a number of units much smaller than the virtually

infinite Avogadro number of units in a physical network, which has the effect of breaking

the singularity condition of ordinary thermodynamic systems. The authors of Ref. [54, 72]

defined the occurrence of criticality through the observation of temporal complexity. In the

case of a phase transition falling in the range of the Ising Universality class, the occurrence

of phase transition in a system with a finite number of interacting units, at criticality the
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mean field x(t) fluctuates around the vanishing value and the time interval between two

consecutive origin crossings is described by a markedly non-exponential waiting time PDF

ψ(τ) [54]. In the subcritical regime the interval between two consecutive crossings of the

origin is exponential and in the supercritical regime the interval between two consecutive

crossings of the non-vanishing mean field is again exponential. Temporal complexity emerges

at criticality and for the proper function of the network it requires that the IPL PDF of the

distances between two consecutive crucial events is exponentially truncated [29, 40, 23].

The adoption of temporal complexity as the signal of criticality occurrence led the

authors of Ref. [72] to notice that this may be a more convenient indicator than the observa-

tion of avalanches with a PDF becoming IPL. This assumption was confirmed by the authors

of Ref. [41], who found that two networks in critical states signaled by temporal complexity

exchange information with an efficiency larger than in the correspondence with the state of

criticality signaled by IPL avalanches. The reason for the close connection between maximal

efficiency of information transport and temporal complexity is based on the theory illustrated

in [29, 54] and [30]. Criticality generates non-Poisson renewal events characterized by the

IPL indexes and the exchange of information is based on the occurrence of the non-Poisson

renewal events of network influencing the occurrence of the non-Poisson renewal events of

the other network, this being the Principle of Complexity Management [36].

We conjecture that the SOTC model spontaneously generates temporal complexity.

The present section is devoted to establishing that this conjecture is correct and to prove it

we use a numerical approach treatment, applied to the individual choice rule.

We monitor the times at which the fluctuations ζ(t) cross the origin and find that the

three waiting time PDF coincide. For simplicity, in Fig. (4.4) we illustrate only the waiting

time PDF of ζ(t) of Eq. (4.10). The fact that fluctuations of K(t), x(t) and Π(t) around

their average values yield indistinguishable results is an incontrovertible consequence of the

fact that all three properties are driven by the non-Poisson renewal events with the same

statistical properties.

It is known that in systems of finite size the IPL are exponentially truncated [40].
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Figure 4.4. Waiting time distribution density of the time distance between

two consecutive origin crossings of the function ζ(t) defined by Eq.(4.10) cor-

responding the function x(t) of Fig. (4.1). We adopted the values: T = 1.5,

χ = 4, M = 100.

As a consequence, the non-Poisson nature of the crucial events is established analyzing the

intermediate time region. Therefore, to estimate with accuracy the IPL index generated

by the SOTC of Section 4.3 we focus on the time region between t ≈ 2 and t ≈ 200, as

illustrated by Fig. (4.4). We find that the waiting time PDF is IPL:

(4.16) ψ(τ) ∝ 1

τµ

with

(4.17) µ = 1.3.

rather than the traditional µ = 1.5 generated by DMM at criticality [40].

It is interesting to notice the length of the time region characterized by µ = 1.3

depends on M . Fig. (4.5) shows that for M = 400 the IPL region is more extended. We also

see, Fig. 4.5, that for M = 25 the short time region is characterize by a very large value of
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Figure 4.5. Waiting time PDF of the time distance between two consecutive

origin crossings of the function ζ(t) defined by Eq.(4.10). We adopted the

values: T = 1.5, χ = 4.

µ and by a pronounced exponential shoulder, both conditions generating non-crucial events.

Although the fluctuation intensity is very large, much larger than for M = 100 and M = 225

(see Fig. 4.2), the extended IPL region is lost and with it the efficiency of the process of

information transport, as we see in Section 4.6.

To help the reader to appreciate the importance of SOTC model we mention that

the research work done some years ago [73] on the random growth of surfaces, which can

be interpreted as a form of SOC [74], suggests that the Laplace transform of the survival

probability

(4.18) Ψ(t) ≡
∫ ∞
t

dt′ψ(t′)

has the following form, using the notation Ψ̂(u) ≡
∫∞

0
dtexp(−ut)Ψ(t),

(4.19) Ψ̂(u) =
1

u+ λα(u+ ∆)1−α ,

where α = µ− 1 < 1 and λ is a parameter measuring the interaction between the unit and

∆ ∝ λ determines the exponential truncation of ψ(t). In the case where λ� ∆ an extended
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Figure 4.6. Spectrum of the fluctuations of K(t) for T = 1.5, χ = 4, M = 100.

time interval exists, 1/λ � t � 1/∆, where ψ ∝ 1
t1+α , thereby yielding Eq. (4.16) and Eq.

(4.17) when α = 0.3. This structure is lost for M = 25, when temporal complexity is gone.

The most important reason for the use of Eq. (4.19) is that when an extended IPL

emerges from it, the process is distinctly non-ergodic. The spectrum of the fluctuation in

that case cannot be derived from the Wiener-Khintchine theorem, resting on the stationarity

assumption. It is necessary to take into account that µ < 2, µ = 1.3 in this case, the average

time interval between two consecutive events diverges, thereby making non-stationary the

process driven by the crucial events. This anomalous condition yields [23]

(4.20) S(ω) ∝ 1

L2−µ
1

ωβ
,

with

(4.21) β = 3− µ.

In the case where the process yields a slow but stationary correlation function, we would

have β < 1 [23]. Evaluating the power spectrum in this case becomes computationally

challenging because, as shown by Eq. (4.20), the noise intensity decreases with increasing

the length L of the time series. Nevertheless, the results of Fig. 8.6, yielding β = 1.67,
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afford a satisfactory support to our claim that the origin crossings of ζ are renewal non-

stationary events. In conclusion, the SOTC spontaneously generates the crucial events of

criticality-induced temporal complexity.

4.6. Complexity Matching

It has to be stressed that the synchronization between two networks is not a form of

chaos synchronization. It is due to the non-Poisson renewal events of the driving network

exerting influence on the renewal events of the driven network, as pointed out in Ref. [27]

(see also Aquino et al [26]). The non-Poisson renewal events are generated by criticality and

in the composite network proposed here they are the result of a spontaneous process. In

Fig. 4.7 we illustrate the remarkable synchronization between two identical self-organized

complex networks, A and B, with M = 100. We select a random subgroup SA of the network

A, consisting of 5% of the units of A, and we assign to each of them the strategy of a unit of

B, also randomly selected. We follow the same prescription with a subgroup SB consisting

of 5% of units of B following the strategy of randomly selected units of A. We see in Fig.

4.7 that a remarkable synchronization between the two networks is realized.

To establish the accuracy of this synchronization we apply the same procedure to two

self-organized networks A and B with M changing from M = 25 to M = 900. We study the

cross correlation C(τ) defined by

(4.22) C(τ) ≡
∫ L−τ

0
dt (x(t)− x) (y(t+ τ)− y)√∫ L

0
dt (x(t)− x)2 ∫ L

0
dt (y(t)− y)2

.

The numerical result is illustrated in Fig. (4.8). To understand the importance of this

result, we must make a short digression to mention an important result recently reached in

the field of evolutionary game theory [62]. This earlier paper stresses the connection between

emergence of cooperation and memory. Our SOTC model based on the memory of the last

two trades before making a decision about the degree of attention to the nearest neighbor

may be related to the model of Ref. [62]. Fig. (4.8) seems to confirm this interesting relation

insofar as it establishes that the cooperation-induced efficiency increases with decreasing the
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Figure 4.7. The mean field x(t) of two identical self-organizing networks

connected to each other according to text illustration. The self-organization

is realized through the individual choice. We adopted the values: T = 1.5,

χ = 4, M = 100.

size of the interacting networks. However, Fig. (4.8) shows that there exists a small size,

M = 100, at which the efficiency of information transport from one to another self-organizing

network is maximal. The heuristic interpretation of this effect is that temporal complexity

is a finite size property of intensity proportional to 1/
√
M [40], thereby explaining why

the communication efficiency increases upon decreasing M . Temporal complexity is the

signature of criticality that we adopt, rather than avalanche size, to reveal criticality in the

case of self-organization as well as in the case of criticality generated by the fine tuning of

the control parameter K. In the case of this work as we have earlier shown with the help

of Fig. (4.1) and Fig. (4.3), the fluctuating field may be K itself, which, as we have seen in

the case of individual choice fluctuates around K ≈ 1.8, when M = 100. The length of this

complexity time region decreases upon decreasing M . Therefore, it explains the interesting

result that an optimal size exists, at which the efficiency of information transport becomes

maximal. In fact, complexity matching depends on both the complexity index µ and the
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Figure 4.8. Cross correlation between two identical self-organizing networks

with different size of size M . The different curves refer from top to bottom

to: M = 100, 225, 400, 49, 900, 25. The self-organization is realized through

the individual choice. We adopt for the cross-correlation the definition of Eq.

(4.22) and the values: T = 1.5, χ = 4.

fluctuation intensity. Decreasing M makes the fluctuation intensity increase (see Fig. 4.5)

but it decreases the length of the time duration region characterized by the complex value

of µ.

It is important to stress that M = 100 depends also on the parameters defining the

Prisoners’ Dilemma game. The weakening of cooperation with the increase of the number

of players is a subject of interest, see [75] as well as [62], thereby generating the issue of

establishing if there exists an optimal size of the number of interacting units [76]. We cannot

rule out that a more refined treatment of the dependence on the parameters of the Prisoner’s

Dilemma game may lead to an optimal value of M much smaller than M = 100 of Fig. (4.8).

However, the emergence of a waiting time PDF with IPL seems to prevent us from accounting

for the results of the experimental investigation of Ref. [76], setting M = 2 as the optimal

size for cooperation emergence.
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4.7. Concluding Remarks

This reseaarch work has been stimulated by the manifesto of computational science

[65] listing scaling and criticality as two crucial aspects of computational social science.

Herein, criticality was not forced upon the networks by setting the suitable value K for

the imitation strength, as done in earlier work [63, 54, 72]. The critical value of K is

spontaneously reached without artificially enhancing altruism, but assuming that each unit

selects the value of K assigning to themselves the maximal benefit.

It is important to notice that the SOTC condition is reached regardless of whether we

adopt the individual or the global choice rules. The global choice rule implies the existence of

a leader and consequently of intelligence driving the social system. The fact that criticality is

spontaneously generated adopting also the individual choice rule is a compelling indication

that the model of this work can be interpreted also as a spontaneous transition to the

condition of swarm intelligence.

The connection between criticality and swarm intelligence was widely discussed in

Refs. [29, 77]. Due to the criticality-induced long-range correlation a small number of

lookout birds, perceiving the arrival of a predator and changing flying direction, thanks also

to the simultaneous occurrence of crucial events, do succeed in exerting a strong influence on

the swarm, enough to make the swarm change direction. This form of collective intelligence,

due to the criticality-induced long-range space correlation is the intuitive explanation of the

surprising fact that the local interaction between the single individuals and their four nearest

neighbors generates the emergence of cooperation at the level of the whole network. This is

due to the fact that the SOTC is equivalent to a spontaneous transition to the condition of

swarm intelligence.

Notice that K in the earlier work of our group was interpreted as a form of blind

imitation [36]. On the other hand the SOTC leads us to interpret K, the intensity of which

is decided by the individuals on the basis of their benefit as the origin of intelligence and

altruism, rather than a form of blind imitation. This model does not require to go through [1]

to prevent the infiltration of defectors in cooperation clusters but it establishes the emergence
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Figure 4.9. The blue curves denote the mean field x(t). The red curves

denote the ratio of number of cooperator units that are surrounded by 4 co-

operators to the total number of units. The top panel refers to the individual

choice and the bottom panel to the global choice. For both choices we adopted

the parameters: T = 1.5, χ = 4, K(1) = 0.5, M = 100.

of cooperation with the mere use of the Prisoner’s Dilemma payoff thereby connecting the

evolution of cooperation [32] with the search of agreement between the individuals and their

nearest neighbors.

The global choice does not prevent the occurrence of organization collapses of the

system, as clearly illustrated by Fig. (4.9). This figure indirectly evaluates the size of clusters

of cooperators by counting the number of cooperator units surrounded by four cooperators.

We see that the global condition is characterized by frequent collapses corresponding to the
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fragmentation of the clusters of cooperators, whereas the individual self-organization is not

affected by these collapses.

As mentioned earlier, the global choice rule is a form of top-down process, implying

the action of a benevolent dictator [70, 71]. Thus, as earlier, the SOTC model strongly

supports the conjectures of [70, 71].

We stress that the SOC model can also be interpreted as a contribution to evolu-

tionary game theory explaining the origin of morality. Although morality is triggered by

the macroscopic property of social prosperity as an effect of the bottom up process, it may

be the source of a form of downward causality: we make the plausible conjecture that the

action of morality on a social system under the influence of the individual SOC will have the

effect of reinforcing the evolution towards social prosperity. This would not conflict with the

observation made herein that the global choice rule is not as efficient as the global choice

rule. We plan to study this reinforcement action in future work.

The SOTC model is highly simplified and ignores, for instance, the cost of the coop-

eration choice, which is explicitly taken into account, for instance, by Archetti and Scheuring

[60]. We expect that the inclusion of the cost may have an effect equivalent to increasing the

incentive to cheat and that this will affect the time scale for the emergence of cooperation. In

other words, the transition to the complex fluctuations that in Fig. 4.1 is so fast as to be not

visible in the scale of that figure,, may become significantly slower, without changing, how-

ever, the main properties of temporal complexity and complexity matching, illustrated here.

We conjecture that this and other issues, including those of anthropological interest, may be

included in the composite network without affecting the main conclusion that this form of

SOTC has a general validity, ranging from the random growth of surfaces [73] to sociology.

It is also important to stress that SOC is invoked by an increasing number of researchers in

the field of complexity but its connection with the open field of phase transitions in systems

of small size is not yet properly taken into account. This work affords a contribution to this

still open research subject that hopefully may attract the attention of the researchers in the

field of complexity, from biology to anthropology and from neurophysiology to sociology.
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CHAPTER 5

RESOLVING THE PARADOX OF COOPERATION BETWEEN SELFISH UNINTS

USING SELF-ORGANIZED TEMPORAL CRITICALITY

Ways to reconcile paradox have occupied the best scientific minds for centuries.

Herein we contribute to the ongoing discussion regarding empirical paradox, using a so-

cial network model showing how individuals, acting solely in their own self-interest, can

simultaneously maximize the benefit to society. We generalize the self-organized criticality

(SOC) model to one of self-organized temporal criticality (SOTC). The SOTC model iden-

tifies the timing of events as a new mechanism with which to generate criticality, thereby

establishing a way for the internal dynamics of the decision making process to resolve the

conflict between the two poles of the paradox.

5.1. Introduction

Early in the twentieth century there existed a large body of empirical evidence estab-

lishing that light was a wave phenomenon. It was puzzling therefore that there also existed

a significant amount of data establishing that light was a particle phenomenon. The fact

that a particle is localized in space and a wave is extended in space thereby produced a

physical paradox, that being, the existence of a given phenomenon possessing contradictory,

or mutually exclusive, properties. Resolving this paradox led to wave-particle duality, the

Copenhagen interpretation of quantum phenomena, with the result that the interpretation

of what is observed is determined by the measurement that is made. It was resolved that

light is neither a particle nor a wave, but paradoxically it is both, but one can only know

its state by measurement, which produces either a particle or a wave at any given time, but

never both simultaneously.

Herein we are interested in the notion of an empirical paradox (EP), a seemingly

self-contradictory nature of two observed characteristics of a given phenomenon. This is

different from a logical paradox, such as the sentence: I am a lair. The truth value of
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the sentence switches with each reading and therein lies the paradox. This is separate

and distinct from the EP found in a scientific theory, since nature has resolved the latter

paradox by manifesting the contradictory traits in an observed phenomena. It is the logic

of the explanatory theory that contains contradictory elements, and these contradictions

lead to confusion. We investigate EP using a recently developed social network model [78],

whose properties are shown to compliment and extend the understanding reached by others.

This in itself is not surprising, since we incorporate some aspects of existing theory, with

modification, into the new model that had previously been used independently to study

contradictory characteristics of social behavior. What is surprising is the emergence of

properties that did not appear when the modeling pieces were applied separately, as we

subsequently disucuss.

There always exists a tension between the short term needs of individuals and the

long term needs of the organized group to which they belong that address the challenges

of the future; the delicate balance between stability and change. We take a networked-

based approach to modeling in order to capture the emergence of the difference in behavior

of the group from that of the individual. It is determined that the individual in our model

recognizes that inconsistency is often necessary, even if not desirable, being capable of holding

conflicting views, and is able to transition from either/or -thinking to both/and -thinking [79].

Computational social science relies on the recognition that criticality, such as reaching

consensus, is a consequence of self-organization. A number of investigators have devised

mathematical models by which to quantify critical phenomena and are reviewed by Sornette

[80]. These models can be widely separated into two groups: those that achieve criticality

through the external tuning of a control parameter, such as changing the temperature to

induce physical phase transitions among gases, fluids and solids, contrasted with those in

which criticality emerges due to internal dynamics, without adjusting an external control

parameter. The former is the less interesting for our purposes here. The latter has acquired

the name self-organized criticality (SOC) and has been applied in multiple biological and

social, as well as, physical contexts [66].
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5.2. On Modeling

We introduce a two-level dynamic network model of decision making, having criticality

as an emergent property, and show how such a model can drive the social group, through the

selfish behavior of individuals within the group, to spontaneously achieve maximum social

benefit. Previous models attempted resolution by placing the good of the individual and

the good of society in competition, with a clear winner and a loser. The self-organized

temporal criticality (SOTC) model [78], or two-level dynamic network, introduced in the

next section, shows that an individual can consistently act in their own self-interest, while

simultaneously producing social benefit of their decisions. This benefit occurs independently

of any specific physical, social or biological mechanism. The mathematics demonstrates that

the intellectual conflict in an EP is mitigated when treated dynamically. The SOTC model

reveals that what is good for society need not be purchased at the cost of what is good

for the individual. In other words, the resolution of EP is not an either/or choice between

absolutes.

The decisions made by individuals within the SOTC model are herein assumed to be

consistent with the criterion of bounded rationality [81], which were expanded by Kahneman

[82], and more recently discussed from the perspective of evolutionary game theory [83, 84].

Rand and Nowak [83] acknowledge the tension between what is good for the individual, what

is good for society and they discuss it in the language of evolutionary game theory. Without

reviewing the long history of studies on the nature of cooperation and defection, we note

the meta-analysis of 67 empirical studies of cognitive-manipulation of economic cooperation

games by Rand [84]. He concluded from his meta-analysis that all the experimental data

could be explained using a dual-purpose heuristic model of cooperation; a model consisting

of a balance between deliberation and intuition. Deliberation is considered to be a rational

process that always favors non-cooperation, whereas intuition is treated as an irrational

process that can favor cooperation or non-cooperation, depending on the individual.

Herein we adapt these linked concepts of intuition and deliberation by constructing

a dynamic two-level network model [78]. One subnetwork (level) is based on the decision
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making model (DMM) [36] and leads to strategy choices made by the individuals under

the influence of the choices adopted by their nearest neighbors. The other subnetwork

(level) quantifies these choices using the payoffs of the Prisoner’s Dilemma Game (PDG).

The interaction between the two levels is established by making the imitation strength K

increase or decrease, according to whether the average difference of the last two payoffs

increases or decreases, in accordance with the corresponding changes in K. Although the

value of the imitation strengths is selected selfishly at each point in time, which is to say the

individual choices of imitation strengths are always made in the best interest of the individual

making the decision, the social system is driven by the resulting internal dynamics towards

the state of cooperation, which has the greatest social benefit. In this way the EP is resolved

by means of the internal dynamics of the two-level network.

5.3. Two-Level Network Model

The intuition mechanism proposed by Rand is realized through the dynamics of one

subnetwork through the DMM [36]. The DMM on a two-dimensional lattice is based on

individuals imperfectly imitating the majority opinion of their four nearest neighbors, thereby

biasing the probability of deciding to transition from being a cooperator (C) to being a

defector (D):

(5.1) g
(r)
CD = g0 exp

{
−Kr

N
(r)
C −N

(r)
D

N

}
,

where N
(r)
C is the number of nearest neighbors to individual r that are cooperators, N

(r)
D the

number of defectors, and each individual on the simple lattice has N = 4 nearest neighbors.

In the same way the probabilistic transition rate from defectors to cooperators g
(r)
DC is give

by Eq.(7.3) by interchanging C and D. The unbiased transition rate is taken to be g0 =

0.01 throughout the calculations, and 1/g0 defines the time scale for the process. The

original DMM assigns to all the individual imitation strengths Kr the same value K, a single

parameter. This constant imitation parameter has been shown [36] to have a critical value

that makes this theory undergo critical phase transitions and to be a member of the Ising
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universality class. At criticality all the members of the network act cooperatively, depending

on the magnitude of K. In the present two-level model the individual imitation parameters

Kr can all be different. This decision making process is fast, emotional and does not involve

any reasoning about a payoff.

The connection with self-interest, according to the slow thinking mechanism of Kah-

neman [82] is established by a second subnetwork that determines the payoff for the choices

made. To define the payoff we adopt rules based on the PDG [30] so that the second subnet-

work becomes a realization of Rand’s deliberative mechanism within the two-level network

model. In the second subnetwork, two players interact and receive a payoff from their in-

teraction adopting either the defection, or the cooperation strategy. The PDG is based on

the crucial payoffs T > R > P > S. Note that their choices are made continuously as

the network dynamics unfold. We adopt the choice of parameter values made by Gintis

[30], set R = 1 ,P = 0 ,T − R = 0 .9 and S = 0 and evaluate the social benefit for the single

individual, as well as, for the community as a whole as follows. The payoff Pr is defined

for individual r as the average over the payoffs from the interactions with its four nearest

neighbors. If both players of a pair are cooperators, the contribution to the payoff of the

individual r, is Br = 2. If one of the two playing individuals is a cooperator and the other

is a defector, the contribution to the payoff of r is Br = T . If both players are defectors the

contribution to the payoff of r is Br = 0. The payoff Pr to individual r is the sum over the

four Br’s.

Each individual receives a total payoff from the play with the four nearest neighbors

and adjusts their present imitation strength based on their two previous payoffs as follows:

(5.2) Kr(t) = Kr(t−∆t) + χ
Pr(t−∆t)− Pr(t− 2∆t)

Pr(t−∆t) + Pr(t− 2∆t)
,

where the parameter χ determines the intensity of interest of the individuals to the fractional

change in their payoffs in time and is taken to be unity in the calculations. Consequently, the

imitation strength of the individual in the DMM network is responsive to the recent history
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of the payoffs determined by the PDG network, through this coupling. Note that in the limit

of vanishing time intervals that Eq.(5.2) relates the time rate of change of an individual’s

imitation strength to the time rate of change of the logarithm of the local payoff to that

individual. In this way the individual’s DMM dynamics is not responsive to the absolute

level of the payoff received, but instead responds to the relative change in the payoff over

time, just as Daniel Bernoulli postulated in 1738 marking the beginning of utility theory.

In the two-level network simulation we work with a society of M individuals. On the

global scale, the mean benefit to society of all the individuals is given by the average over

all the individual payoffs Pr (t):

(5.3) Π(t) =
1

M

M∑
j=1

Pr(t),

whereas the mean imitation strength is given by the average over all the individual imitation

strengths Kr(t):

(5.4) K(t) =
1

M

M∑
j=1

Kr(t).

The internal dynamics generated by the interaction of the two subnetworks as pre-

scribed by inserting Eq.(5.2) into the expression for the rate of transition given by Eq.(7.3),

drives the mean imitation strength, as well as, the mean social benefit to the fluctuating

plateau values shown in the next section. The emergence of the maximum mean social bene-

fit corresponds to the network evolving towards a majority of cooperators, thereby requiring

the definition of the mean field X(t) given by

(5.5) X(t) =
1

M

M∑
j=1

ξr(t),

where ξr(t) is the state of individual r and is either +1 or −1.The condition X(t) = 1

corresponds to a social group consisting entirely of cooperators. The calculation shows
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however that the mean field is a stochastic dynamic variable confined to the interval −1 ≤

X(t) ≤ 1.

In the absence of interaction with the PDG (χ = 0), the DMM for the case of a reg-

ular two-dimensional lattice with M = 100 would achieve criticality at the value KC ≈ 1.45.

At criticality the mean field X(t) fluctuates around zero and the time interval between con-

secutive zero-crossings is described by a markedly non-exponential waiting-time probability

density function (PDF) ψ(t), with the inverse power law (IPL) structure:

(5.6) ψ(τ) ∝ τ−µ,

where it is determined by numerical calculations that µ = 1.5. In the sub-critical regime

K < KC the interval between consecutive zero-crossings is exponential, as are the intervals

in the super-critical regime K > KC .

Criticality generates non-Poisson renewal events characterized by an IPL PDF. Crit-

ical behavior is manifest through crucial events, which have been shown to generate phase

transitions, modeled by members of the Ising universality class, in the DMM [36]. The

occurrence of a phase transition in a DMM network, with a finite number of interacting

individuals, occurs at a critical value of the imitation parameter K = KC = 1.45.

When χ = 1 the calculation is done for a two-dimensional regular lattice (with pe-

riodic boundary condition) having M = 100 units, g0 = 0.01 and T = 1.9, with the mean

social benefit, mean imitation strength and mean field, all starting from zero. The mean field

of the two-level network is driven toward criticality by its internal dynamics, where the time

averaged value of the mean field, X(t), is different from zero, due to the fact that criticality

in this case generates a majority of cooperators. To stress the occurrence of crucial events in

a social system we adopt a method of event detection based on recording the times at which

the mean variable crosses its time averaged value. Thus, there are fluctuations around X(t)

and the IPL structure for the PDF is obtained by evaluating the distribution of time inter-

vals between consecutive re-crossings of X(t). As shown by Figure 6.2, the time intervals

between consecutive crucial events is given by an IPL with index µ ≈ 1.3, a property shared
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Figure 5.1. The black, red and blue curves are the waiting time PDF of

the time interval between two consecutive crossings of X(t) , K(t) and Kr(t)

with their average values respectively. The pink curve is the waiting time

PDF of the time interval between two consecutive crossings of Kr(t) with zero.

The numerically determined PDF’s have exponentially truncated IPL with an

index of µ ≈ 1.3.

by other systems at criticality, see, for instance [29].

It is important to stress that in addition to X(t) that the variables K(t) and Kr(t) are

also characterized by the same property, namely, the waiting-time PDF of the time interval

between consecutive crossings of K(t) by K(t) and of Kr(t) by Kr(t) . These PDFs are

graphed versus time on log-log graph paper in Figure 6.2, and yield an IPL index close to

that of X(t), which is, as written earlier, µ ≈ 1.3.

Notice that the regime of intermediate asymptotics [85] for K(t) is as extended as that

for X(t), while the regime for the individual Kr(t) is somewhat shortened. This shortening

is a consequence of the fact that the behavior of the single individual is characterized by

frequent collapses to zero and even negative values of Kr(t). On the basis of the definition of

the transition rates we can interpret these rare events as individuals turning into contrarians.
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Figure 5.2. Top: The red and black curves are the time evolution of the

mean social benefit Π(t) and the mean field X(t) respectively. Bottom: Red

and gray curves are the time evolution of the mean imitation strength K(t) and

the imitation strength of one of the units Kr(t) respectively. The mean field

fluctuates around 0.7 which means about 85% of individuals are cooperators

and 15% are defectors. A mean field of 1 has all individuals in the state

of cooperation, and the maximum average social benefit reaches the value 4,

because this is the number of nearest neighbors on the 2D lattice.

The calculations done yield: X(t) ≈ 0.7, K(t) ≈ 1.4 and Kr(t) ≈ 1.4 as depicted in Figure

5.2. This is the recently identified phenomenon of self-organized temporal criticality [78].

The quantity Kr (t) is the value of imitation strength adopted by the generic indi-

vidual r under the influences of the choices made by its four nearest neighbors, concerning
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their selecting either the cooperation, or the defection, strategy. This value is not necessar-

ily adopted by its four nearest neighbors, however, as distinct from the network reciprocity

assumption of Nowak and May [1]. Consequently, the dynamics of the two-level network

never reduce to the dynamics of the Nowak and May game theory network.

In other words, the imitation strength Kr(t) is unidirectional and determines the

interaction of r with all its nearest neighbors, but is not necessarily reciprocated. The lack

of reciprocity is a consequence of the fact that each of the neighbors experiences a different set

of nearest neighbors. The time-dependent imitation strength Kr(t) changes from individual

to individual, as well as in time and is depicted in Figure 5.2 along with the erratic time-

dependence of the mean field X(t), the mean social benefit Π(t) and the mean imitation

strength K(t).

Figure 5.2 shows the self-organization of the social system as a result of individual

choices of the separate individuals. The mean imitation strength K(t) moves very quickly

from its zero initial value, corresponding to no social interaction, towards a maximal value

of K ≈ 1.4, the critical value in this case. Notice that the mean social benefit Π(t) at the

top of this figure, which results from averaging over each of the individual payoffs obtained

from the play of the PDG with their four nearest neighbors, also moves very quickly from

its negligible initial value to a fluctuating plateau. The rate of the transition to the SOTC

plateau is controlled by the parameter χ of Eq. (5.2) and it does occur, either sooner or

later, for any positive value of χ.Thus, a smaller parameter indicates a weaker response to

the change in payoffs, thereby slowing the transition to the plateau of the asymptotic state.

5.4. Discussion

As pointed out by Nowak and Sigmund [86] the PDG is a leading metaphor for

the evolution of cooperative behavior in populations of selfish agents. They introduced

a protagonist, with a Pavlov strategy, into the PDG, which they determined to be more

robust in establishing cooperative stability than the leading alternative strategies of the

time. The modification of the imitation strength in the SOTC model, incorporates a memory
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dependence of the behavior strategy of the individual, based on the utility of prior payoffs.

This utility strategy is related to, but is not the same as, the Pavlov strategy, however this

introduction of memory into the decision making process does achieve similar stabilizing

results.

We emphasize that the SOTC model [78] is here interpreted as a contribution to

evolutionary game theory, and provides a resolution of the conflict between cooperators and

defectors, by replacing the either/or with a both/and strategy. This replacement suggests

that the SOTC model might be useful in the resolution of a number of EPs, including one

with a long history, the altruism paradox (AP). It was first recognized by Charles Darwin

that some individuals in a number of species act in a manner that although helpful to others,

may jeopardize their own survival and yet this property is often characteristic of that species.

He identified such altruism as contradicting his theory of evolution [87]:

It is extremely doubtful whether the children of such [altruistic] individuals

would be reared in greater number than the children of selfish and treach-

erous members of the same tribe...Therefore it hardly seems probable...that

the standard of their excellence could be increased through natural selec-

tion, that is, by the survival of the fittest.

The crux of the paradox lies in the distinction between what is best for the group to

function as an adaptive unit resulting from interactions within the social group, compared

with interactions between social groups. This failure of the group to achieve maximum fitness

through the self-sacrifice of individuals within the group forms the AP. Darwin proposed a

resolution to this problem by speculating that natural selection is not restricted to the lowest

element of the social group, the individual, but can occur at all levels of a biological hierarchy,

which constitutes multilevel selection theory, as paraphrased by Wilson and Wilson [88]:

Selfish individuals might out-compete altruists within groups but internally

altruistic groups out-compete selfish groups. This is the essential logic of

what has become known as multilevel selection theory.

Theoretical inconsistency arose in sociobiology with the rejection of Darwin’s multi-
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level selection hypothesis in the 1960s and the subsequent ambiguities, contradictions, and

confusion that framed the subsequent theoretical discussion of the next half century in terms

of the individual. We do not believe we can improve on the detailed critique of the alter-

natives to multilevel selection theory presented by Wilson and Wilson, even though there

are a few details with which we may not completely agree. However, going into that level

of detail here does not support our major purpose, that being, to demonstrate that the

re-convergence of scientific consensus on the use of multilevel selection theory to resolve the

AP in sociobiology is compatible with the results of the SOTC model shown herein.

We concur with the multilevel selection hypothesis of Darwin, but not necessarily

with the biological requirement that there exist strictly altruistic individuals. Historically,

the alternative theories to multilevel selection were based on the failure to make the altruistic

actions of individuals compatible with the more universally accepted action of individual

acting in their own self-interest. The SOTC model of decision making does not rely on such

an either/or choice for the behavior of the individual on which AP is based. The two poles

of the AP, selfishness and altruism, stand in such sharp contrast to one another that their

incompatibility appears irrefutable. But if this logical incompatibility were not routinely

resolved at the operational level, in the form of heroes, first responders, martyrs and other

indicators of people caring for other people, often strangers, the need to resolve the AP

would not be so compelling.

The SOTC model does not lead to the unrealistic condition of having a society with

100% cooperators, asymptotically. Note the fact, as shown by the black curve of top panel

of Figure 5.2, that 15% of individuals remain defectors. The mean field increases to 0.7

and then fluctuates around this time average value. Some individuals may be converted

to cooperation, but all individuals are equivalent and the conversion to cooperation is not

permanent, meaning that no individual is a hero all the time, but neither are they perpetual

scoundrels. As a consequence, 15% of each individual’s time is spent in the defection condi-

tion. The gray curve of Figure 5.2 shows that while the mean value of the imitation strength

K generates weak fluctuations around a mean value K ≈ 1.4, the imitation strength of the
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single individual may undergo collapses to a condition of total independence of the others.

Space limitations prevent us from making a proper comparison between the SOTC

model and the vast literature on the subject of paradox. Consequently, we limit ourselves to

noticing that most of the PDG work done along the lines of the pioneering work of Nowak

and May [1] pointed out that the social activity of the single individual, which is described in

the SOTC approach to EP, by adopting the DMM, has the effect of disrupting the benefits

realized by the evolutionary PDG. Earlier work [63] presents the first attempt at making the

behavior of individuals within the social network significantly reinforce, rather than disrupt,

the benefits derived from the repeated use of the PDG. The DMM, on the other hand, has

been discussed in detail [36] and the tendency to imperfectly imitate has been used for a

variety of purposes, including the communication between the brains of two rats [89]. The

SOTC model is based on the assumption that individuals may change imitation strengths,

so as to maximize individual payoff and this extension of the DMM realizes a spontaneous

transition to temporal criticality, meant as a sequence of unpredictable crucial events, which

are non-ergodic and non-Poisson. These are the properties of living systems that must be

made compatible with the traditional approaches to statistical physics, based on the adoption

of stationary correlation functions [90]. The SOTC model successfully realizes this important

task.

5.5. Concluding Remarks

Contradictions always exist in real world, complex, organized social groups, some of

which form EPs that cannot be resolved by adopting to support one side of the paradox

or the other. Both sides of the contradiction have value and a successfully organized group

is one that can devise and implement enabling strategies to cope with paradox, without

becoming doctrinaire. The resolution of EP entails that diametrically opposed alternatives

be examined and consequently, such alternatives not only contradict one another, but also

depend on one another. The dynamic stability of the SOTC model embraces EP, stability

that emerges and then persists over time.
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Using the terms adopted by Rand [83] we identified intuitive decision making with

the choice of imitation strength and deliberative decision making with the direct adoption of

the PDG. The resolution of EP and more specifically the AP made herein is accomplished by

both X(t) and Π (t) simultaneously plateauing at their maximal values. This stabilization

of the dynamics in SOTC is a consequence of scaling and criticality in the complex decision

making process. In the SOTC model criticality is not forced upon the network, as it would

be by externally tuning the imitation strength K to a critical value. The critical value of

the imitation strength is spontaneously reached without artificially enhancing the level of

altruism within the network, and is dynamically attained by assuming that each individual

selects the value of Kr that assigns maximum benefit to themselves at each point in time.

Individuals weigh each and every decision they make, using the two subnetworks to

adapt to the changing two-level network behavior. Note that the value of K used in earlier

work was interpreted as a form of blind imitation [36]. But the SOTC model leads us to

interpret Kr, the intensity of which is decided by the individuals on the basis of their own

benefit, as the origin of cooperation, or altruism, rather than a form of blind imitation. The

SOTC model does not require us to adopt the network reciprocity argument of Nowak and

May [1] to prevent the infiltration of defectors in cooperation clusters, but instead establishes

the emergence of cooperation by the mere use of the PDG payoff, thereby connecting the

evolution of cooperation with the search for agreement between individuals and their nearest

neighbors.

The dynamics of the SOTC model establishes the kind of dynamic steady state that

balances the tension generated by the conflicting characteristics of an EP. This tension is

inherent and persistent within EP typical of complex organizations, as discussed qualitatively

by Smith and Lewis [91] for organizations within a business context. In Figure 5.2 we see

the fluctuations in the dynamic steady state that are a consequence of the finite size of the

social network and has nothing to do with the thermal fluctuations observed in physical

phenomena, see [36] for a more complete discussion.

The SOTC model presented herein is illustrated using the simple prescription of the
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PDG to take into account the incentive to cheat. More complex games may be used, see, for

instance the work of Archetti and Scheuring [92, 60]. Also other issues, including those of

anthropological interest, may be dealt with in the composite network without affecting the

main conclusion that this form of SOTC has general validity, ranging from macro-evolution

to sociology.
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CHAPTER 6

SELF-ORGANIZED TEMPORAL CRITICALITY: BOTTOM-UP RESILIENCE 

VERSUS TOP-DOWN VULNERABILITY

In this chapter we propose a social model of spontaneous self-organization generating

criticality and resilience, called Self-Organized Temporal Criticality (SOTC). The criticality-

induced long-range correlation favors the societal benefit and can be interpreted as the

social system becoming cognizant of the fact that altruism generates societal benefit. We

show that when the spontaneous bottom-up emergence of altruism is replaced by a top-

down process, mimicking the leadership of an elite, the crucial events favoring the system’s

resilience are turned into collapses, corresponding to the falls of the leading elites. We also

show with numerical simulation that the top-down SOTC lacks the resilience of the bottom-

up SOTC. We propose this theoretical model to contribute to the mathematical foundation

of theoretical sociology illustrated in 1901 by Vilfredo Pareto to explain the rise and fall of

elites.

6.1. Introduction

The recent book of Haidt [93] aims at explaining the psychological reasons for the

conflicts between parties with arguments ranging from psychology to evolutionary biology

and from religion to theoretical sociology. There exists a connection between these conflicts

and the societal resilience that is supposed to be sufficiently robust as to prevent either

societal collapses or rapid social changes. These important sociological issues were addressed

in 1901 by Vifredo Pareto [94], who discussed the capability that elites should develop in

order to adapt themselves to changing circumstances. The main goal of the present work is to

contribute to the discussion on the resilience issue, with a simplified model that was recently

This chapter was adapted from Mahmoodi, Korosh and West, Bruce J and Grigolini, Paolo, ”Self-Organized
Temporal Criticality: Bottom-Up Resilience versus Top-Down Vulnerability”, published on 26 March 2018
in Complexity, Vol. 2018, 8139058, Open access.
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proposed by our group to resolve the altruism paradox, namely the emergence of cooperation

from the social interaction of individuals who make their choice between cooperation, C, and

defection, D, on the basis of their self interest [78].

The new model of spontaneous organization [78] is based on the conjecture that there

are close connections between resilience and information transport, resilience and conscious-

ness, as well as bewteen consciousness and criticality.

6.1.1. Criticality and Temporal Complexity

Phase transitions and critical phenomena occur frequently in nature and have been

widely studied by physicists, see for instance [68]. The Ising model [95] originally introduced

to explain ferromagnetic phase transition is well known, and the exact solution found by

Onsager [96] for the occurrence of phase transition in the two-dimensional case is widely

recognized as an example of outstanding theoretical achievement. In the last few years

some scientists have used the Ising model to shed light on biological and neurophysiological

collective processes [97, 98, 99, 100]. More precisely, the authors of [97] used the Ising model

to explain the collective behavior of biological networks and the authors of [98, 99, 100]

adopted the Ising model for the purpose of supporting their hypothesis that the brain works

at criticality, but without establishing a clear distinction between phase transition and self-

organized criticality [101]. Finally, we have to mention that the Ising model is frequently

used, see for instance [102, 103], to model neurophysiological data subject to the constraint of

maximal entropy. The term criticality is used to denote the physical condition corresponding

to the onset of a phase transition, generated by the adoption of a suitable value of the control

parameter K.

The Decision Making Model (DMM) [36], which is used in Section 6.2 and in Section

6.3, was proved [54] to generate phase transition as a function of its control parameter K

identical to that of the Ising model, where the control parameter is the temperature. In

other words, the DMM belongs to Ising universality class [36].

At criticality, namely, when the dynamics of the system are determined by the control
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parameter generating phase transition, the mean field x(t), which is defined as the ratio of

the difference between the number of cooperator and the number of defectors to the total

number of units, fluctuates around the vanishing value. The occurrence of a vanishing value

is a crucial event. The crucial events are defined as follows. The time interval between con-

secutive crucial events is described by the waiting-time probability density function (PDF)

ψ(τ) that in the long-time limit τ →∞ has the inverse power law (IPL) structure:

(6.1) ψ(τ) ∝ 1

τµ
,

with µ < 3. The crucial events are renewal thereby making the correlation function < τiτj >

vanish if i 6= j.

In the case of the brain dynamics there is wide consensus on the connection between

consciousness and criticality. See, for instance, [99], [17], [104], [105] and the recent review

paper [46]. The electroencephalogram (EEG) signals are characterized by abrupt changes,

called rapid transition processes (RTP), which are proved [106] to be renewal non-Poisson

events, with µ ≈ 2. This means that the brain in the awake state is a generator of crucial

events.

The crucial events are responsible for the information transport from one system

at criticality to another system at criticality [77]. Furthermore, the emergence of crucial

events requires that the size of the complex system is finite. M is the total number of units

within the system. The intensity of the fluctuations of the mean field x(t) obey the general

prescription

(6.2) ∆ζ ∝ 1

Mν
,

where

(6.3) ∆ζ = A(t)− A

When working with DMM at criticality, A is the mean field x, with x = 0, ν = 0.25 [40].

In the case of SOTC [78], with A = K, see Section 6.2, we find ν = 0.5. These criticality-
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induced fluctuations, becoming visible for finite values of M , are referred to as an expression

of temporal complexity.

6.1.2. Swarm Intelligence and Resilience

We may afford an intuitive interpretation of crucial (complex) events, using the ex-

ample of a flock of birds flying in a given direction, as an effect of self organization. A

crucial (complex) event is equivalent to a complete rejuvenation of the flock that after an

organizational collapse may freely select any new flying direction. An external fluctuation of

even weak intensity can force the complex system to move in a given direction, if it occurs at

the exact instant of the free will of the SOTC model system. It is important to stress that

the organizational collapse is not the fall of an elite, which will be discussed subsequently,

because the flock self-organization occurs spontaneously and does not rest on the action of

a leader. The choice of a new flying direction is thus determined by an external stimulus

of even weak intensity occurring at the same time as the collapse, thereby implying the

property of complexity matching between the perturbed and the perturbing complex system

[36].

As mentioned earlier, the crucial events favor the transport of information from one

complex system to another [77]. Crucial events are generated by criticality and consequently

the transport of information becomes maximally efficient at criticality [41].

However, criticality may also be Achilles’ heel of a complex system, if criticality is

generated by a fine tuning control parameter. In fact, committed minorities acting when a

crucial event occurs in the case of DMM can make the system jump from the state C to

the state D [55]. Herein we show that this lack of resilience is not shared by the bottom-up

approach to SOTC modeling, in fact, starting from the bottom generates a very resilient

social organization.
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6.1.3. From Criticality Generated by the Fine Tuning of a Control Parameter to Self-

Organization Temporal Criticality

The model of [78] is a form of spontaneous transition to criticality, revealed by the

emergence of events with the temporal properties of crucial events, thereby explaining the

adoption of the name Self-Organized Temporal Criticality (SOTC) to define it. We show

that the bottom-up SOTC modeling is resilient and that the top-down SOTC modeling is

not.This SOTC model may help to contribute to the discussion of the sociological issues of

Haidt [93] with the tools of Complexity Science. In fact, Haidt emphasized that the political

conflict between conservatives and liberals is due to cultural and religious influences that

have the effect of creating divisions. The top-down SOTC approach may be used to model

these cultural influences. This is an extremely difficult problem, made even more difficult

by the philosophical controversies on definition of morality [107]. According to the brilliant

picture of Haidt, the philosophy of Hume and Menciu may be compatible with the bottom-

up origin of cooperation, while the hypothesis that morality transcends human nature, an

interpretation moving from Plato to Kant [93], may justify a top-down perspective. We make

the extremely simplified assumption that the top-down SOTC, undermining social resilience,

explains the fall of elites, if they represent only limited groups, a phenomenon that may be

explained by noticing that “our minds were designed for groupish righteousness” [93]. The

source of social conflict seems to be that cultural evolution differs from life evolution. These

culturally-induced conflicts may overcome the biological origin of cooperation.

6.1.4. Bottom-Up Versus Top-Down Approach to Morality

For clarity in Section 6.2 and Section 6.3 we provide a review of the SOTC model [78],

while stressing some properties of SOTC model that were not discussed. For instance, the

behavior of single units with their frequent regression to the condition of independence of the

other units, for the bottom-up process and the Pareto cycles of the top-down version of the

model. The original results of this work indicated a lack of resilience of the top-down SOTC

model and a robustness of the bottom-up SOTC model, which are illustrated in Section
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6.4. Section 6.5 is devoteed to balancing the results of the present work against the open

problems that we propose to study in future research.

6.2. Bottom-Up Approach to Self-Organized Temporal Criticality

The decisions of single individuals in our model are made in accordance with the

criterion of bounded rationality [108, 81], expanded by Kanheman [82] and more recently

discussed from within the perspective of evolutionary game theory (EGT) [83], [84]. The non-

rational component of the decision making process is stressed also by the work of Gigerenzer

[109]. Herein individuals make decision using DMM. The individuals of the social network

aim at increasing their payoff make the control parameter Kr, for individual r, evolve towards

criticality, thereby creating an intelligent group mind [34]. As we shall see, the time evolution

ofKr is slow, because it depends on the payoffs of the individual at earlier time, corresponding

to the slow thinking mechanism discussed by Kanheman [82].

6.2.1. The Intuitive and Emotional Level

We use the DMM on a two-dimensional lattice of size L, with M = L×L individuals,

and we set L = 10. The DMM is based on individuals imperfectly imitating the majority

opinion of their four nearest neighbors, thereby biasing the probability of making a transition

from being a cooperator (C) to being a defector (D):

(6.4) g
(r)
CD = g0 exp

−Kr

(
N

(r)
C −N

(r)
D

)
N

 ,

where N
(r)
C is the number of nearest neighbors to individual r that are cooperators, N

(r)
D the

number of defectors, and each individual on the simple lattice has N = 4 nearest neighbors.

In the same way the transition rate from defectors to cooperators g
(r)
DC is

(6.5) g
(r)
DC = g0 exp

Kr

(
N

(r)
C −N

(r)
D

)
N

 .
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The unbiased transition rate is g0 = 0.01 throughout the calculations, and 1/g0

defines the time scale for the process. The DMM has been shown [36] to undergo critical

phase transitions and to be a member of the Ising universality class in which all the members

of the network can act cooperatively, depending on the magnitude of the interaction strength

K [36]. However, this important result is obtained by assigning to all the individuals the

same degree of attention to the opinions of their nearest neighbors, called K. Herein each

individual may have a different degree of attention and this degree of attention does not

fit the reciprocity principle. The degree of attention that the individual r devotes to the

individual r′ may differ from the degree of attention that the individual r′ devotes to the

individual r. To explain how the individual r is influenced by her nearest neighbors, let us

consider for instance Eq. (6.4). The individual we are considering is a cooperator and Eq.

(6.4) establishes the rate of her transition to the defection state. If N
(r)
C > N

(r)
D the rate

decreases and will vanish in the extreme limit Kr = ∞. Of course, this will have the effect

of favoring the cooperation state.

6.2.2. The Rational Level

This decision making process is fast, emotional and does not involve any direct reason-

ing about the payoff. The connection with the self-interest, according to the slow thinking

mechanism disscussed by Kanheman [82] is established over a more extended time scale,

where the single individual exerts an influence on the process aiming at maximizing her

payoff. To define the payoff we adopt the Prisoner’s Dilemma Game (PDG) [30]. Two play-

ers interact and receive a payoff from their interaction adopting either the defection or the

cooperation strategy. If both players select the cooperation strategies, each of them receives

the payoff R and their society receives the payoff 2R. The player choosing the defection

strategy receives the payoff T . The temptation to cheat is established by setting the condi-

tion T > R. However, this larger payoff is assigned to the defector only if the other player

selects cooperation. The player selecting cooperation receives the payoff S, which is smaller

than R, If the other player also selects defection, the payoff for both players is P , which is
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smaller than R. The PDG is based on the crucial payoffs T > R > P > S and S + T < 2R.

We adopt the choice of parameter values made by Gintis [30] and set R = 1, P = 0

and S = 0. The maximal possible value of T is 2, and we select the value T = 1.9, which

is a very strong incentive to cheat. We evaluate the social benefit for the single individual,

as well as for the community as a whole as follows. We define the payoff Pr for individual

r as the average over the payoffs from the interactions with its four nearest neighbors. If

both players of a pair are cooperators, the contribution to the payoff of the individual r, is

Br = 1. If one of the two playing individuals is a cooperator and the other is a defector, the

contribution to the payoff of r is Br = T . If both players are defectors the contribution to

the payoff of r is Br = 0. The payoff Pr to individual r is the sum over the four Br’s.

Each individual receives a total payoff from the game with the four nearest neighbors

and adjusts her imitation strength as follows:

(6.6) Kr(t) = Kr(t−∆t) + χ
Pr(t−∆t)− Pr(t− 2∆t)

Pr(t−∆t) + Pr(t− 2∆t)
,

where the parameter χ determines the intensity of interest of the individuals to the fractional

change in their payoffs in time. The key equation (6.6) is based on the assumption that the

intuitive decision making process is so fast that at both time t−∆t and t−2∆t is possible to

evaluate the corresponding payoffs on the basis of fast decisions made by each individual and

by her 4 nearest neighbors. The decision of adjusting the social sensitivity Kr(t) requires

the time interval 2∆t, while the intuitive decision is virtually instantaneous.

The second term on the right-hand size of Eq. (6.6) is the ratio between two quantities

that for special cases vanish. In these cases we set the condition

(6.7) Kr(t) = RKr(t−∆t),

with R < 1. We selected R = 0 but for other values we get the same result. When Kr(t)

goes to negative values we set it equal to zero.

Note that in the limit of vanishing time intervals Eq.(6.6) relates the time rate of

change of an individual’s imitation strength to the time rate of change of the logarithm of
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the local payoff to that individual. On the global scale, the mean benefit to society of all

the individuals is given by the average over all the Pr’s:

(6.8) Π(t) =
1

N

N∑
r=1

Pr(t),

whereas the mean imitation strength is given by the average over all the Kr(t):

(6.9) K(t) =
1

N

N∑
r=1

Kr(t).

Figure 6.1. For the bottom-up SOCT: Time evolution of the average social

benefit Π(t), the average imitation strength K(t), the mean field x(t) and the

imitation strength of one of the units Kr(t) plotted versus time. The mean

field fluctuates around 0.8 which means about 90 percent of individuals are

cooperators and 10 percent are defectors. Mean field of 1 has all individuals

in the state of cooperation, and the maximum average social benefit has the

value 4, because this is the number of nearest neighbors on the two-dimensional

lattice.
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For the bottom-up case discussed in this section, the calculation is done with the

parameters M = 100, g0 = 0.01, T = 1.9 and χ = 1, with the social benefit, imitation

strength and mean field starting from zero.

The results of Figure 6.1 are used to establish the bottom-up origin of altruism,

rather than interpreting it, as it is frequently done, to be the result of a religion-induced top-

down process. The calculations show that the top-down process generating altruism weakens

the system’s resilience, whereas the genuinely bottom-up approach makes the emergence of

altruism robust against external perturbation. Figure 6.1 shows that the time evolution of the

individual social sensitivity Kr is characterized by abrupt jumps that from time to time may

also bring the single individual back to a behavior totally independent of the choices made

by her nearest neighbors. This is a healthy social condition that has the effect of making

the global properties x(t), K(t) and Π(t) host crucial events favoring the transmission of

information between different social systems, either countries or parties.

To stress the occurrence of crucial events in a social system resting on the bottom-

up emergence of altruism, we have to extend the method used for criticality generated by

the fine tuning of the control parameter K. In that case, at criticality the mean field

fluctuates around the vanishing value and the crucial events correspond to the occurrence

of this vanishing value [54, 40]. We follow [110] and evaluate the fluctuations around the

proper non-vanishing mean value of K = 1.5. To explain this choice notice that in the

conventional case of criticality, generated by the choice of a proper control parameter K,

with M = 100, K = 1.5 is the value at which the onset of phase transition occurs. This

is the value making the mean field x(t) of the conventional DMM fluctuate around x = 0

with complex fluctuations and which generates criticality-induced intelligence [29, 58]. In the

case of the SOTC model this condition of criticality-induced intelligence, with fluctuations

of K(t) around 1.5 is spontaneously generated. When the criticality condition is reached the

complex fluctuations of x(t) do not occur any longer around x = 0, but around a positive

value of the order of 0.8. The time intervals τ between consecutive crossings of the 1.5 level

are monitored and the corresponding waiting-time PDF ψ(τ) is illustrated in Fig. 6.2.
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Figure 6.2. For bottom-up SOTC: the waiting time PDF of the time interval

between two consecutive crossings of the average value of the mean value of

K(t), which is ≈ 1.5, is graphed. ψ(τ) is exponentially truncated and has an

intermediate asymptotic regime with an index of µ ≈ 1.3. This figure was

taken from [78] with permission.

Figure 6.2 is taken from [78] and illustrates the effects of perturbation (see Fig.

6.4). We limit ourselves to noticing that temporal complexity shows up in the intermediate

asymptotics regime [78] and it is characterized by the IPL index µ = 1.3, a property shared

by other systems at criticality, see, for instance, [77]. This is evidence that the spontaneous

transition to criticality also generates the crucial events responsible for information transport.

Earlier work [78] confirms that the crucial events facilitate the transport of information from

one complex social system to another, if the two systems are at criticality as a result of the

spontaneous process of self-organization.

In spite of the exponential truncation that may lead to the misleading conclusion that

the Poisson-like character of the long-time regime quenches the manifestations of complexity,

the transport of information is determined by the intermediate asymptotics. In the earlier

work of Ref. [78] we studied the efficiency of transport of information from one bottom-up
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SOTC to another identical SOTC and we found that the maximal efficiency of the infor-

mation transport corresponds to about M = 100, which is the condition studied here. The

explanation of this interesting effects is the following. The intensity of fluctuations generat-

ing crucial events decreases with the size increase, according to the formula (see Eq. (14) of

Ref. [78])

(6.10) ∆ζ ∝ 1

Mν
,

with ν = 0.5. Note that ∆ζ denotes the intensity of the fluctuations of the variables K,Π and

x(t) around their mean values. Therefore the systems with M > 100 have crucial fluctuations

of smaller intensity, thereby explaining the reduction of the process of information transport.

For values M < 100, the role of the exponential truncation becomes more important and

the time extension of the complex intermediate asymptotics is reduced and eventually the

intermediate asymptotics regime vanishes, turning the system into a Poisson system, with

no complexity. This has the effect of significantly reducing the efficiency of the process

of information transport. As far as the resilience of the bottom-up SOTC is concerned,

the theory of this work rests on the connection between resilience and the efficiency of

information transport. As a consequence the results on the resilience of the bottom-up

SOTC for M = 100 automatically correspond on the condition of maximal resilience [111].

6.3. Top-Down Approach to Self-Organized Temporal Criticality

The top-down approach to self-organization is done using again Eq. (6.4) and Eq.

(6.5). The adoption of the top-down perspective is realized by replacing Eq. (6.6) with

(6.11) K(t) = K(t−∆t) + χ
Π(t−∆t)− Π(t− 2∆t)

Π(t−∆t) + Π(t− 2∆t)
.

The top-down origin of this process is made evident by the fact that all individuals in the

network are forced to adopt the same time-dependent imitation strength. Furthermore,

rational choice is made on the basis of the collective payoff Π(t), using PDG. The conceptual

difference with the bottom-up approach of Section 6.2 is impressive. In fact, with Eq.
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(6.11) all the individuals of this society must change their social sensitivity at the same

time and the information about the increase or decrease of the global payoff implies that

all the individuals are given this information from a central source such as the government,

suggesting that a form of organization already exists and is not created by the interaction

between the individuals. In Ref. [78] the assumption was made that a benevolent dictator

exists and leads such a process. Using Pareto’s social theory we make the assumption that

this process implies the leadership of an elite [94].

The second term on the right-hand size of Eq. (6.11) is the ratio between two quanti-

ties that, similarly to the bottom-up model, for special cases vanish. In these cases, as done

in Section 6.2, we set the condition

(6.12) Kr(t) = RKr(t−∆t),

with R < 1. We selected R = 0. When Kr(t) goes to negative values we set it equal to zero.

For the top-down case discussed in this section, the calculation is done with the

parameters M = 100, g0 = 0.01, T = 1.9 and χ = 4, with the social benefit, imitation

strength and mean field starting from zero. χ is chosen to be larger than in the bottom-up

case because of the fact that transition to criticality in the top-down case is much slower

(see Fig. 6.1 and Fig. 6.3).

Under the leadership of an elite, see Figure 6.3, the control parameter K(t) shows a

behavior totally different from that of Figure 6.1. In this Section we focus on the behavior

of K(t) in the absence of perturbation and discuss the effects of perturbation in Section

6.4. With no perturbation there is a transient from t = 0 to t ≈ 40000, after which time

a sequence of rises and falls occur. The value of K adjusts according to Eq.(6.11) from

small values around 0.2 to a maximal value of 1.8, which is known to correspond to a

supercritical condition in the case of the conventional DMM. When using the fine tuning

control parameter approach we set K = 1.8 the social system is far from the intelligence

condition that according to a widely accepted opinion [99, 17, 104, 105, 46] requires criticality.

The mean field x(t) has very fast fluctuations around a mean value close to 1, but these
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Figure 6.3. Black line: The time evolution K(t) of Eq. (6.11) for the same

regular two-dimensional network of Figure 6.1; Red line: The time evolution

of K(t) of the self-organized system described by the black under the influence

of the weak noisy perturbation described in Section 6.4.

fluctuations are Poisson and the conventional DMM system loses its complexity [77].

The falls to the small values of K are interpreted as falls of elites. The subcritical

condition, as well as the supercritical, is characterized by a lack of intelligence. We have

to remark also that values of K significantly smaller than K ≈ 1.5 indicate that there are

many units with Kr = 0, like the single unit of Figure 6.1 at a time close to t ≈ 2000.

In conclusion, both small and maximal values of K are affected by a lack of consciousness,

and the transitions through K ≈ 1.5 are too fast for the social system to benefit from the

intelligence of the critical condition. This lack of intelligence is responsible for the lack of

resilience. The sojourn times in the supercritical state correspond to the time durations of

elites. We do not have to confuse the fluctuations of K(t) with those of the mean field x(t)

that are not shown here. The fluctuations of x(t) are always Poisson, around mean values

close to 1, when K(t) is close to 1.8 and around the vanishing mean value when K(t) drops.

It is interesting to notice that also the time interval between consecutive falls of elite
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Figure 6.4. For bottom-up SOTC, the waiting time PDF of the time inter-

vals between two consecutive crossings of the horizontal line with K = 0.7

(black and red line) and K = 1.7 (blue line) for the top-down SOTC. The blue

and the black lines describe the unperturbed case and the red line describes

the perturbation described in Section 6.4.

is a complex dynamical process characterized by an IPL, with µ ≈ 2 in this case, as shown

by Figure 6.4. However, the system is not resilient. The sojourn in a supercritical state

with a K significantly larger than K ≈ 1.5 is characterized by fast Poisson fluctuations and

an external perturbation can easily affect the time duration of this regime [112]. In fact,

the big difference between Poisson events and crucial events is that the former events obey

conventional linear response theory and any forms of perturbation can deeply affect their

dynamics, thereby undermining the social resilience, as we show in the next section.

6.4. Perturbing the Self-Organized Society

To substantiate the arguments of the earlier section with the results of a numerical

simulation we devote this section to illustrating some numerical experiments on the effects

of a perturbation on the process of societal self-organization.
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First of all let us define two different sources of perturbation, the independent and

the committted minorities. We assume that a minority of independent individual exists. An

independent individual is a unit that is characterized by Kr = 0. As a consequence this unit

does not adopt Eq. (6.6) and is completely insensitive to the connection between individual

and societal benefit that yield the emergence of cooperation [78]. The perturbing nature of

this independent individual is realized by the fact that, while the independent keeping Kr = 0

is completely independent of the choices made by the other units, her nearest neighbors are

influenced by the choices of the independent through the DMM and through the evaluation

of the payoff Pr(t) of Eq. (6.6).

In the top-down SOTC model the independent influences the process through his

vanishing contribution to K(t) and through his contribution to the global payoff of Eq.

(6.11). The perturbation of independents is made more devastating when the independents

are allowed to move randomly through the social network.

The other kind of perturbation, that produced by committed minorities, has already

studied studied elsewhere [55]. These are minorities that keep selecting the state D. The

committed minorities are also called zealots and have been the subject of many publications,

see [113] for a wide set of references. These publications emphasize the dramatic consequences

that the zealots have on their societies, thereby implying that their models of organization

are not resilient. The experiment on the perturbation of zealots done herein shows that the

top-down SOTC model shares the lack of resilience observed in these earlier studies on the

social influences of zealots. The bottom-up SOTC model seems to be the only fully resilient

model.

Let us discuss first the strongest source of perturbation, the randomly moving inde-

pendents. At any time step one of the M = 100 is randomly selected to play the role of

independent, namely we force her to adopt the value ξ = 1 or the value ξ = −1, with equal

probability. In the case of the bottom-up SOTC this perturbation does not have significant

effect on the time evolution of K(t), as shown by Figure 6.5.

In the case of the top-down SOTC the effects of this perturbation are impressive. The

91



Figure 6.5. K(t) as a function of time for the bottom-up SOTC, in the

no-perturbation (black line) and perturbed case (red line).

black line of Figure 6.3 shows the rise and the fall of an elite. The weak noisy perturbation

makes K(t) evolve as illustrated by the red line of the same figure, which shows that the

sojourn times of unperturbed elites are filled with many falls that are a clear manifestation

of the lack of societal resilience.

Important information on the lack of resilience of the top-down SOTC are afforded

by Figure 6.4, showing ψ(t) for different values of the threshold used to find the statistics

of crucial events. When the threshold is 1.7, close to the top super-critical region reached

by the system the intermediate asymptotics has a power index µ ≈ 1.45, larger than that

of the bottom-up SOTC. The adoption of the threshold K = 0.7 as an effect of the collapse

of elites cancels the intermediate asymptotic temporal complexity, and favor the birth of a

Poisson shoulder. The noisy perturbation of independents makes this behavior even more

pronounced. This strong exponential shoulder is a signature of the death of dynamical

complexity and of the transition from non-Poisson to Poisson behavior [78].

The perturbing action of independents is weaker if the independent individuals do

not move. This response to this form of perturbation is illustrated in Fig. 6.6, showing that
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even in this case the bottom-up SOTC model is more robust than the top-down.

Figure 6.6. Dependence of mean field (at time 106) on the ratio ρ of inde-

pendent units (which are fixed on the lattice) for the bottom-up SOTC modell

(black line), top-down SOTC model (red line) and ordinary DMM with tuned

control parameter Kc = 1.5 (green line). Ensemble average is done over 10

experiments.

We establish the perturbation of independent individuals in a different way. We

assume that all the units are independent for a fraction η of their time. The results are

depicted in Figure 6.7. It is clear from the figure that the bottom-up SOTC model is more

resilient than the two-down, even to this most violent form of disruption.

Finally in Figure (6.8) we show the action of committed minorities. We see that only

the bottom-up SOTC model is resilient. The top-down SOTC model shares the same lack

of resilience shown by ordinary DMM at criticality.

6.5. Concluding Remarks

It is remarkable that according to SOTC the crucial events may be harmful as well

as beneficial. If the global parameter K(t), fluctuating around the long-range correlation
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Figure 6.7. Dependence of mean field (at time 106) on η (the ratio oftime

in which units behave individually) for bottom-up SOTC model (a), top-down

SOTC model (b) and for ordinary DMM with tuned parameter Kc = 1.5 (c).

Each set of colored dots is correspond to one experiment and the black solid

lines are the average of them.
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Figure 6.8. Dependence of mean field (at time 106) on the ratio ρ of fanatics

(having fixed position on the lattice) for the bottom-up SOTC model (red

line), Top-down SOTC model (black line) and ordinary DMM with tuned

control parameter Kc = 1.5 (green line). Ensemble average is done over 10

experiments.

generating mean value, return to the vanishing value, the temporary collapse is turned into

a societal disaster. The collapse into K = 0 would correspond to a new initial condition and,

as shown by Figure 6.1, K(t) would start increasing again generating a new organization led

by a new elite [94]. However, the genuinely bottom-up process leading the time evolution

illustrated by Figure 6.1 is expected to keep forever the social system in the condition of

weak fluctuations around K ≈ 1.5. In other words, there is an impressive difference between

the crucial events hosted by the weak fluctuation around K ≈ 1.5 and the regressions of

K(t) to values of K � 1.5, generated by the adoption of a top-down process led by an elite.

The main conclusion of this part concerning resilience is that criticality is necessary

for resilience, but it is not sufficient. The top-down SOTC model generates criticality, but

it is not resilient. Therefore information transport from one top-down SOTC model system

to another top-down SOTC model system is expected to occur by means of complexity
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matching, in spite of the fact that the two systems are not resilient and the information

transport may be easily quenched by stray perturbing noises.

An attractive interpretation of the resilient nature of the bottom-up SOTC model is

that the ideal condition of full democracy is the most robust form of social organization.

Here the social payoff is evaluated using the PDG [30]. The prisoner’s dilemma game

is frequently used in the field of EGT [32, 1]. EGTs aim at solving the altruism paradox

using the concept of network reciprocity [1]. A game is played many times on a network

where each individual is surrounded by a set of nearest neighbors and adopts the strategy of

the most successful nearest neighbor. Since the clusters of cooperators are richer than the

clusters of defectors it is plausible that the most successful nearest neighbor is a cooperator.

However, this attempt at mimicking the action of a collective intelligence failed because

the social activity of the units, being subcritical, disrupts the beneficial effects of network

reciprocity [63, 49]. We note that SOTC modeling represents an attempt to amend the field

of EGT by the limitations preventing, for instance, the concept of network reciprocity from

yielding a satisfactory resolution of the altruism paradox.

The human inclination to cooperate is the result of biological evolution and of the

spontaneous evolution towards criticality. The time appear ripe to unify the models of biol-

ogy and physics made necessary to reach the ambitious goal of achieving a rigorous scientific

foundation of this important human characteristic [114, 115]. The spontaneous transition

to criticality of SOTC contributes to bypassing the current limitations of the field of EGT.

SOTC model can be adapted to take into account the top-down processes connected with the

non-resilient action of elites. It is possible to supplement the non-rational decision making

process based on Eq. (6.4) and Eq. (6.5) with self-righteous biases [93] taking into account

the influence of religion or other polarizing influences. We expect that such generalizations

of SOTC theory will lead to a lack of societal resilience. However, this is left as a subject

for future research.
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CHAPTER 7

ON SOCIAL SENSITIVITY TO EITHER ZEALOT OR INDEPENDENT MINORITIES

Individuals act in their own self-interest, but in so doing contribute to the observed

wellbeing of society, as determined using the self-organized temporal criticality (SOTC)

model. This model identifies the timing of crucial events as a new mechanism with which

to generate criticality, thereby establishing a way for the internal dynamics of the decision

making process to suppress the sensitivity of social opinion to either zealot or independent

minorities. We find that the sensitivity to the influence of zealots is much smaller than in

the case of criticality with a fine tuning control parameter and the action of independent

minorities may affect temporal complexity so as to realize the condition of ideal 1/f noise.

The role played by committed minorities, zealots or fanatics, in the behavior adopted

by large groups, whether it is in the apparently frivolous taking on of a fad or fashion,

or the more serious adoption of new social conventions, has attracted the attention of a

significant number of sociologists [116, 117, 118], physicists [55, 119], network scientists

[120, 121, 122, 123], in addition to scientists working in many other disciplines. These

investigators explore, using a variety of models from multiple vantage points, how in times of

crisis, committed activists may produce political, or other, changes of significant importance

to society, in spite of their relatively small number. A common feature of these models is

criticality, at which point the aggregate of individuals becomes a collective with a single

purpose, and under the right conditions the zealots can leverage the organized behavior to

redirect the collective. We observe that in a system of finite size the global consensus state is

not permanent and times of crisis occur when there is an ambiguity concerning a given social

issue. The correlation function within the cooperative system becomes similarly extended

This chapter was adapted from Mahmoodi, Korosh and West, Bruce J and Grigolini, Paolo, ”On social
sensitivity to either zealot or independent minorities”, published on 20 March 2018 in Chaos, Solitons &
Fractals, Vol. 110, 185, Open access.
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as it is observed at criticality. This combination of independence (free will) and long-range

correlation makes it possible for very small, but committed minorities to produce substantial

changes in social consensus, see e.g. [36].

On the other hand, fluctuations are assumed to be generated by the same form of

self-organization that brought the system to criticality in the first place. This assumption

is frequently made by researchers studying the dynamics of the human brain [124, 125, 126,

127] leaving open, however, the origin of criticality in this context. Allegrini et al. [128]

emphasized that the intermittent nature of these fluctuations, according to the prediction

that the inverse power-law (IPL) spectrum:

(7.1) S(f) ∝ 1/fβ,

with the IPL index,

(7.2) β = 3− µ,

should lead to the ideal 1/f - noise condition β = 1 for µ = 2. The IPL index µ labels

the time intervals between crucial events [36] at the tipping point (critical point of a phase

transition); the three dimensional Ising model [129] generates µ = 1.55, whereas the decision

making model (DMM) [55] yields µ = 1.5 at criticality.

Xie et al. [130] studied the influence of inflexible individuals on social behavior, using

the Naming Game to model the social interaction, and found that when the committed

minority reaches a threshold of 10% of the population the opinion of the entire social network

can be reversed to conform to that of the minority. The theoretical results were shown to be

supported by laboratory experiment [116]. The theoretical influuence of the minority was

also shown to be largely independent of the structure of the interactions within the social

model, but can be determined by as much as 10% to as little as 4% for a sparse network

[131]. The percentage at which the tipping point occurs is clearly model dependent and can

vary from 4% to 15% [132, 133].

Here we consider also another kind of minority, the minority of independents. An

independent is an individual who makes her choices with no influence from her nearest
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neighbor. In the long-time scale the behavior of the independent looks erratic and she exerts

an influence on society, because their nearest neighbors make their choice taking into account

also the erratic choices of the independent.

The analysis herein is based on the form of self-organization, called Self-Organized

Temporal Criticality (SOTC) recently proposed in [78]. The individuals of this society have

to make a choice between cooperation and defection. This research shows that the bottom-up

form of spontaneous organization described by SOTC strongly reduces the efficiency of the

committed minority in redirecting the behavior of society. We show that the SOTC model

also disrupts the action of independents, paying however the price of changing the IPL index

µ that provides a measure of the system’s complexity.

In Section 7.1 we adapt the linked concepts of intuition and deliberation by con-

structing a dynamic two-level network model, where single individuals are located at the

two-dimensional lattice nodes of a composite network. The composite network consists of

two interacting subnetworks. One subnetwork is based on the decision making model (DMM)

[36] and leads to strategy choices made by the individuals under the influence of the choices

of their nearest neighbors. The other subnetwork measures the Prisoner’s Dilemma Game

(PDG) payoffs of these choices [30]. The interaction between the two subnetworks is carried

out by increasing or decreasing the individual imitation strength Kr according to the history

of payoffs to that individual. This is a generalization of the self-organized criticality (SOC)

model [66], called the self-organized temporal criticality (SOTC) model [78].

In the SOTC model the decisions made by individuals are assumed to be consistent

with the criterion of bounded rationality [81], which were expanded by Kahneman [82], and

more recently discussed from the perspective of evolutionary game theory [83, 84]. Rand

and Nowak [83] acknowledge the tension between what is good for the individual, what is

good for society and they discuss the tension between them in the language of evolutionary

game theory. Without reviewing the long history of studies into the nature of cooperation,

defection, and the theoretical strategies that people may adopt to overcome their selfish

urges, we note the meta-analysis of 67 empirical studies of cognitive-manipulation of eco-
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nomic cooperation games by Rand [84]. He concluded from his meta-analysis that all the

experimental data could be explained using a dual-purpose heuristic model of cooperation, a

model consisting of a dynamic interaction between deliberation and intuition. Deliberation

is considered to be a rational process that always favors non-cooperation, whereas intuition

is treated as an irrational process that can favor cooperation or non-cooperation, depending

on the individual.

In Section 7.1 we present numerical results built on those presented earlier [78] to

determine the social sensitivity to the uncompromising behavior of a small number of indi-

viduals holding either inflexible opinions or changing their opinion with no influence from

their nearest neighbors. The committed minority individuals are assigned the state D and

do not change their opinion. The independent change their choices in random way. In both

these cases the minorities are totally independent of their nearest neighbors but their near-

est neighbors are influenced by them according to the DMM rules. The remarkable result is

that the SOTC approach to criticality turns out to be much less sensitive to the influence

of these minorities that in the case of criticality is obtained by a fine tuning of the control

parameter K. It is also remarkable that the independent minority does succeed in affecting

the temporal complexity making it possible to realize µ = 2, the condition that generates

1/f noise, produced by the brain in the wakefulness state.

7.1. Two-Level Network Model

The dynamics of the model of interest consists of the interaction between two distinct

subnetworks. The behavior of one subnetwork consists of decisions made by individuals

influenced by their nearest neighbors and realized by the DMM [36]. The second subnetwork

assesses the choice made by the individual and assigns a payoff based on the PDG model. The

interaction between the two subnetworks is established by making the individual’s imitation

strength Kr increase or decrease, according to whether the average difference of the last two

payoffs increase or decrease, in accordance with the corresponding changes in Kr. Although

each of these imitation strengths is selected selfishly, which is to say the individual choices
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of imitation strengths are made in the best interest of the individual making the decision

at that time, the social system is driven by the resulting internal dynamics towards the

state of cooperation, which has the greatest social benefit, which is a unique property of

the SOTC. The individuals of the two-level network are located at the nodes of a regular

two-dimensional network, denoted by the symbol r, which is equivalent to the double index

(i, j).

7.1.1. The DMM Subnetwork

The intuition mechanism proposed by Rand [84] is realized through the dynamics

of one subnetwork through the DMM. The DMM on a two-dimensional lattice is based

on individuals imperfectly imitating the majority opinion of their four nearest neighbors,

thereby biasing the probability of deciding to transition from being a cooperator (C) to

being a defector (D):

(7.3) g
(r)
CD = g0 exp

{
−Kr

N
(r)
C −N

(r)
D

N

}
,

where N
(r)
C is the number of nearest neighbors to individual r that are cooperators, N

(r)
D the

number of defectors, and each individual on the simple lattice has N = 4 nearest neighbors.

In the same way the transition rate from defectors to cooperators g
(r)
DC is obtained from

Eq.(7.3) by interchanging indices. The unbiased transition rate is g0 = 0.01 throughout the

calculations, and 1/g0 defines the time scale for the process.

To realize SOTC, as we shall explain in Section (7.1.3), the imitation strength of the

single individual changes in time, according to the interaction with the PDG subnetwork.

The goal of this work, as mentioned in Section 7, is to discuss the influence on the SOTC

organization of a fraction ρ of individuals that do not fit the bottom-up approach to co-

operation. These individuals are zealots (fanatics) or independent individuals. The zealots

are individual who do not change their choice. In this work they always select defection.

The independent individuals exert a random perturbation on the SOTC organization. These
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individuals have an imitation strength Kr = 0, which does not change in time. Furthermore

to enhance their random nature we assign to them g0 = 0.5.

The DMM in isolation, with neither zealots nor independent individuals either, assigns

to all the individual imitation strengths Kr the same value K, a control parameter that has

been shown to make this theory undergo critical phase transitions and to be a member of

the Ising universality class in which all the members of the network can act cooperatively,

depending on the magnitude of K [36]. In the present two-level model the Kr can all be

different. This decision making process is fast, emotional and in its original form does not

involve any reasoning about payoff.

To denote the effect of imitation we assign to the units selecting the cooperation state

the value ξr = 1 and to the units in the defection state the value ξr = −1. To establish

whether cooperation or defection is selected by the social system we use the mean field x(t)

defined by

(7.4) x(t) =
1

M

M∑
r=1

ξr(t).

For the isolated DMM if imitation strength K is less than the critical value K < KC the

mean field vanishes, but at criticality, when K = KC , the social system can select either

the cooperation, or the defection, branch yielding for K � KC , either the value x = 1 or

x = −1. The same situation arises when the DMM is allowed to interact with the PDG,

but the critical value of the imitation strength shifts to a new value. The critical value of

the imitation parameter K is KC = 1 in the all-to-all coupling configuration and KC = 1.5

(for M = 30 × 30) in the configuration of a regular two-dimensional lattice, with nearest

neighbor coupling.

7.1.2. The PDG Subnetwork

The connection with self-interest, according to the slow thinking, cognitive, mecha-

nism of Kahneman [82] is established by a second subnetwork that determines the payoff

for the choices made. To define the payoff we adopt rules based on the PDG [30], so that
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the second subnetwork becomes a realization of Rand’s deliberative mechanism within the

two-level network model.

Two players interact and receive a payoff from their interaction adopting either the

defection or the cooperation strategy. If both players select the cooperation strategies, each

of them receives the payoff R and their society receives the payoff 2R. The player choosing

the defection strategy receives the payoff T . The temptation to cheat is established by setting

the condition T > R. However, this larger payoff is assigned to the defector only if the other

player selects cooperation. The player selecting cooperation receives the payoff S, which is

smaller than R. If the other player also selects defection, the payoff for both players is P ,

which is smaller than R. The game is based on the crucial payoffs T > R > P > S. Note

that their choices are made continuously as the network dynamics unfold.

We adopt the choice of parameter values made by Gintis [30] and set R = 1, P =

0, T − R = 0.9 and S = 0. We evaluate the social benefit for the single individual, as well

as, for the community as a whole as follows. We define first the payoff Pr for individual

r as the average over the payoffs from the interactions with its four nearest neighbors. If

both players of a pair are cooperators, the contribution to the payoff of the individual r, is

Br = 2. If one of the two playing individuals is a cooperator and the other is a defector, the

contribution to the payoff of r is Br = T . If both players are defectors the contribution to

the payoff of r is Br = 0. The payoff Pr to individual r is the sum over the four Br’s.

We work with a society of M individuals, so that on the global scale, the mean benefit

to society of all the individuals is given by the average over all the payoffs Pr’s:

(7.5) Π(t) =
1

M

M∑
r=1

Pr(t),

whereas the mean imitation strength is given by the average over all the imitation strengths

Kr(t):
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(7.6) K(t) =
1

M

M∑
r=1

Kr(t).

7.1.3. The Interaction

It is important to notice that Kr , the value of imitation strength adopted by the

typical unit r to pay attention to the choices made by its four nearest neighbors, about

selecting either the cooperation or the defection strategy, is not necessarily adopted by its

four nearest neighbors. In other words, the imitation strength Kr(t) is unidirectional and it

determines how r reacts to all its nearest neighbors. The imitation strength Kr(t) changes

from individual to individual, as well as in time, and it is consequently very different from

the control parameter K of the conventional DMM phase transition processes, where K has

a single value throughout the entire network.

Each member of the present network is assigned a vanishing initial imitation strength,

corresponding to complete independence of the choices made by its nearest neighbors. At

each time step the units play the PDG and independently change their imitation strengths

making the implicit assumption that the increase (decrease) of their individual payoff in

the last two time steps makes it convenient for them to increase (decrease) their imitation

strength. More precisely, they adopt the following rule. As stated earlier, time is discrete

and the interval between two consecutive time events is ∆t = 1. The imitation strength of

the individual r changes in time according the individual choice rule as follows:

(7.7) Kr(t) = Kr(t−∆t) + χ
[Pr(t−∆t)− Pr(t− 2∆t)]

[Pr(t−∆t) + Pr(t− 2∆t)]

where the parameter χ determines the intensity of interest of the individuals to the fractional

change in their payoffs in time and is set to one in the calculations presented herein. The

second term on the right-hand size of Eq. (7.7) is the ratio between two quantities that for
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special cases vanish. In this case we set the condition

(7.8) Kr(t) = RKr(t−∆t),

with R < 1. We select R = 0.5 but for other values R < 1 we get the same result.

The internal dynamics generated by the interaction of Eq.(7.7), that is between the

two subnetworks, drives the average imitation strength and social benefit to the fluctuating

plateau values shown in Section 7.2.

7.2. Results

In the case when a phase transition is generated by fine tuning of the control param-

eter, criticality generates non-Poisson renewal events characterized by an IPL probability

density function (PDF) [36]. Critical behavior is manifest through events generating phase

transitions, modeled by members of the Ising Universality class, as is the DMM. The occur-

rence of phase transition in a DMM network, with a finite number of interacting individuals,

occurs at a critical value of the imitation parameter K = KC . At criticality the mean field

x(t) fluctuates around zero and the time interval between two consecutive zero-crossings is

described by a markedly non-exponential waiting-time PDF ψ(t), with the IPL structure

(7.9) ψ(τ) ∝ 1

τµ
,

where µ = 1.5.

Here we activate SOTC for a two-dimensional regular lattice (with periodic boundary

condition) having M = 30 ∗ 30 units and we set g0 = 0.01 and T = 1.9, with the mean social

benefit, mean imitation strength and mean field starting from zero. The mean field of the

two-level network is driven by internal dynamics toward criticality, where the time averaged

value of x(t), x(t), does not vanish, due to the fact that criticality in this case generates a

majority of altruists. Before the interaction with either the zealot or independent minorities

is turned on, the mean field reaches a critical state with x(t) = 0.7, which is to say the social
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Figure 7.1. Effect of fanatics (top) and Independents (bottom) on the 1D

SOTC DMM system. At time 5 ∗ 104 fanatics/independents started to act.

Black and red correspond ρ = 0.1 and ρ = 0.3 respectively. (a) and (b) refer

to Π; (c) and (d) refer to K; (e) and (f) refer to x.

network has a steady state consisting of 85% altruists or cooperators, as depicted in Figure

7.1.

At time t = 5 × 104 after the calculation has been started, a number of individuals

are selected at random positions on the lattice and their behavior is modified. In the top

panel of Figure 7.1, these randomly chosen individuals are zealots and they are assigned the
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opinion state D and not allowed to change, although in every other way they interact with

their nearest neighbors as usual. In the bottom panel the randomly selected individuals are

independent. Their random behavior is totally independent of the choices of their nearest

neighbors, but the choice of their nearest neighbors are influenced by them according to the

rules defining the interaction between the two networks.

The two panels show the mean field x(t), the mean global benefit Π(t) and the mean

imitation strength K(t).

The black curve has ρ = 0.1 of the society selected at random to be fanatics, whereas

for the red curve ρ = 0.3. There is a precipitous drop in the mean field once the modified

behavior is introduced, falling from 0.7 to 0.35 and to -0.15 respectively. The dependence

on the fraction of fanatics is remarkable.

In the lower panel of this figure we examine the influence on the mean field, not by

individuals who do not change their opinion, but by independent individuals who capriciously

change their opinions at random. The influence of this cohort group lacks the coherence of

the fanatics and may be barely perceptible even at ρ = 0.3.

The mean field of the two-level network is driven toward criticality by its internal

dynamics, where the time averaged value of the mean field x(t) does not vanish, due to the

fact that criticality in this case generates a majority of altruists. To stress the occurrence of

crucial events in a social system we adopt a method of event detection based on recording the

times at which the mean variable crosses its time averaged value. Thus, there are fluctuations

around x(t) and the IPL structure of Eq. (7.9) is obtained by evaluating the time distance

between two consecutive re-crossings of x(t). As shown by Figure 7.2, the time intervals

between two consecutive crucial events is given by an IPL with index µ ≈ 1.35, a property

shared by other systems at criticality, see, for instance [29].

It is important to stress that in addition to x(t) also the variables K(t) and Kr(t)

are characterized by the same property, namely, also the waiting time PDF of the time

interval between two consecutive crossings by K(t) of K(t) and by Kr(t) of Kr(t), graphed

versus time on log-log graph paper, yield an IPL index close to that of x(t) [78]. This is a
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Figure 7.2. Effect of fanatics (top) and independents (bottom) on complex-

ity of the SOTC model system. Black, light blue, red, dark blue and purple

correspond to ρ = 0, 0.1, 0.2, 0.3 and 0.4 fanatics/independents respectively.

In top figure the slopes are approximately 1.35 and in the bottom figure slopes

(from top to bottom) are approximately 1.35, 1.66, 1.81, 1.91 and 2.17.

consequence of the fact that the behavior of the single individual is characterized by frequent

collapses to vanishing and even negative values of Kr(t). On the basis of the form of the

transition rate given by Eq. (7.3) we interpret Kr negative as a single individual turning into

a contrarian. The calculations done here and elsewhere [134] yields: x(t) ≈ 0.7, K(t) ≈ 1.4

and Kr(t) ≈ 1.4. This is the new phenomenon of self-organized temporal criticality.

Here again we are interested in the changes in the IPL PDF induced by the committed

108



minorities in the social network. In the upper panel of Figure 7.2 we see essentially no change

in the slope of the IPL PDF of approximately 1.35, even though the calculation has been

done with the behavior of ρ = 0, 0.1, 0.2 and 0.3 assigned the permanent opinion D. The

four calculation deviate slightly as the asymptotic exponential region is approached, since the

finite number of individuals contributing to the exponential tempering of the IPL decreases

as the number of fanatics increases. Note that this measure of sensitivity does not register

the strength of the response to the change in the number of fanatics that the amplitude of

the mean field records in Figure 7.1.

The curves in the lower panel tell a different story. The slope for the IPL of unmodified

network is 1.35, whereas when ρ = 0.1, 0.2 , 0.3 and 0.4 ratio of the randomly selected

individual change their opinion choices to noise the slopes denoting the IPL indices become

1.66, 1.81, 1.91 and 2.17 respectively. So, there exist a ρ between 0.3 and 0.4 with IPL

index µ = 2, thereby realizing according to Eq. (7.2) the ideal 1/f noise that is expected

to correspond to the dynamics of the brain in the awake state [128]. Thus, the significance

of the behavior modification depends on the measure employed. The mean field is relatively

insensitive to a noisy minority, as depicted in the lower panel of Figure 7.1, whereas the

statistics of the mean field is quite sensitive to the noisy behavior as depicted in Figure 7.2.

It is interesting to determine how the social response changes with the fraction of

aberrant individuals is increased. In Figure 7.3 the top panel records the asymptotic per-

centage of cooperators as a function of the fraction of randomly located fanatics within the

social network. There is a monotonic decrease from a mean field of 0.7 with no fanatics to 1.0

with a 100% fanatics, with the mean field crossing the zero axis at approximately 20% fanat-

ics. Note that the sensitivity of the social response is greatly suppressed compared to that

of previously considered models in which a 10% contamination brought about a complete

reversal of behavior.

The lower panel of Figure 7.3 shows the effect of increasing the percentage of individ-

uals who make random choice. It is necessary to force all the individuals to make random
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Figure 7.3. The mean field of the SOTC model at time 105 versus the ratio

of fanatics (top) and independent minorities (bottom) which was turned on at

time 5× 104.

choice to totally disrupt the social organization generated by the SOTC bottom up approach.

The maximum disruption of the social order is a reduction to subcritical behavior, where the

individuals act independently of one another, which is to say they cease to act as a social

group.
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7.3. Concluding Remarks

In the SOTC model criticality is not forced upon the network by setting the indi-

vidual imitation strength to a critical value. The critical value of the imitation strength is

spontaneously reached without artificially enhancing the level of altruism within the net-

work, but is dynamically attained by assuming that each individual selects the value of the

imitation strength that assigns maximum benefit to themselves at a given time. The SOTC

model does not require us to adopt the network reciprocity argument of Nowak and May

[1] to prevent the infiltration of defectors in cooperation clusters, but instead establishes

the emergence of cooperation by the mere use of the PDG payoff, thereby connecting the

evolution of cooperation with the search for agreement between individuals and their nearest

neighbors.

We think that the theoretical perspective advocated in this work may afford a scien-

tific perspective to address a debate on the failure of liberalism [135]. According to Brook

[136]:

The difficulties stem not from anything inherent in liberalism but from the

fact that we have neglected the moral order and the vision of human dignity

embedded within liberalism itself. As anybody who has read John Stuart

Mill, Walt Whitman, Abraham Lincoln, Vaclav Havel, Michael Novak and

Meir Soloveichik knows, liberal democracy contains a rich and soul-filling

version of human flourishing and solidarity, which Deneen airbrushes from

history.

Herein we have presented the SOTC model, which shows that the bottom-up approach

to cooperation (solidarity) is the fundamental ingredient for the resilience of an organized

society.
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CHAPTER 8

EMERGENCE OF MULTIFRACTALITY AS A RESULT OF COOPERATION

This chapter is devoted to the discovery of renewal events, hidden in the computed

dynamics of a multifractal metronome. We show that metronome simply has the proper-

ties of a SOTC system which also has complex-periodicity, for example heart or the brain.

Multifractal analysis helps us to study homeodymamics. We also study the multifractality

of the DMM model which at criticality is equaelent to a SOTC system. We find conditions

in which transfer of information could occur between two metronomes as well as two DMM

systems. We establish that the phenomenon of complexity matching, which is the theme

of an increasing number of research groups, has two distinct measures. One measure is the

sensitivity of a complex system to environmental multifractality; another is the level of infor-

mation transfer, between two complex networks at criticality. The cross-correlation function

is evaluated in the ergodic long-time limit, but its delayed maximal value is the signature

of information transfer occurring in the non ergodic short-time regime. It is shown that a

more complex system transfers its multifractality to a less complex system while the reverse

case is not possible.

8.1. Introduction

The central role of complexity in understanding nonlinear dynamic phenomena has

become increasingly evident over the last quarter century, whether the scientific focus is on

ice melting across the car windshield, stock prices plummeting in a market crash, or the

swarming of insects [134]. It is remarkable, given its importance in modulating the behav-

ior of dynamic phenomena, from the cooperative behavior observed in herding, schooling,

and consensus building, to the behavior of the lone individual responding to motor control

response tasks, that defining complexity has been so elusive.

The work of Ref. [134] affords theoretical arguments on the phenomenon of complexity

matching that is frequently interpreted as transport of multifractality from the perturbing to
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the perturbed network. The main purpose of this part is to draw the attention of the inves-

tigators in this field of research that multifractality may be the signature of crucial events,

hereby defined in Section 8.1.2, generated by the processes of self-organization to criticality.

This connection may be of significant importance, given the fact that mulifractality is well

known in many areas of research, whereas criticality-induced crucial events are not widely

known, in spite of the fact that they are generators of multifractality.

8.1.1. A Short Review of Multifractality in Physiological Dynamics

Multifractality has been revealed by the analysis of human heartbeat dynamics [137,

138, 139]. It is interesting to notice that Ref. [138] associates multifractality to the 1/f noise.

Ref. [140] also devotes some attention to 1/f noise. The theory of present work connects

multifractality to 1/f noise, showing however that this form of noise is due to crucial events

rather than to Fractional Brownian Motion (FBM). The connection between FBM 1/f noise

and multifractality would create a conflict with the conjecture made in the 2002 work of

[141] that the multifractality of healthy subjects may be a signature of crucial events. The

papers [142] and [143] are of remarkable interest for their possible contribution to bypass

this conflict. The key results of Refs. [142, 143], emphasizing the role of magnitude for the

emergence of multifractality allow us to focus on the crucial events approach to 1/f noise,

since the FBM sub-diffusion associated to the study of sign fluctuations is proved to not

yield significant contributions to multifractality.

In fact, splitting the analysis of time series into the analysis of magnitude fluctua-

tions and sign alternation shows that the analysis of signs yields a form of anti-correlation,

suggesting FBM sub-diffusion, but not significant contribution to multifractality. Note that

the conjecture of the connection between crucial events and multifractality has been fully

supported by the later work of our group [144]. In conclusion, thanks to the results of Ref.

[142] and [143] we feel free to focus on the 1/f noise induced by crucial events rather than

on FBM 1/f -noise.

Further interesting examples of multifractality in complex biological systems are af-
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forded by Refs. [145, 146, 140]. Of remarkable interest is the connection with the biological

rhythms [145, 146]. Although in principle the biological rhythm may be mimicked by the

multifractal metronome of this work, we decided to leave the study of rhythm and complexity

as subject of investigation for future research work.

8.1.2. Complexity Management

The focus of this part is on experimental psychology. As Delignières and Marmelat

[147] point out, a complex system consists of a large number of infinitely entangled elements,

which cannot be decomposed into elementary components. They go on to provide an elegant,

if truncated, historical review of complexity, along with its modern connection to fluctuations

and randomness. They provide a working definition for complexity, as done earlier by West

et al [134], as a balance between regularity and randomness.

In order to sidestep the impasse of providing an absolute definition of complexity,

West et al. [134] introduced the complexity matching effect (CME). This effect details how

one complex network responds to an excitation by a second complex network, as a function

of the mismatch in the measures of complexity of the two networks. An erratic time series

generated by a complex network hosts crucial events, namely events characterized by the

following properties. The time distance τ between two consecutive events has a probability

density function (PDF), ψ(τ), that is inverse power law (IPL) with IPL index µ < 3. Different

pairs of consecutive times correspond to time distances with no correlation, renewal property.

The measure of complexity is taken to be the IPL index µ. Aquino et al. [26] show that

a complex network S with IPL-index µ < 2, has no characteristic time scale, and in the

long-time limit is insensitive to a perturbation by a complex network with a finite time

scale, including one having oscillatory dynamics. It is important to notice that when µ < 2,

the first moment of ψ(τ) is divergent, thereby generating a condition of perennial aging,

while the condition µ < 3, making the second moment of ψ(τ) divergent, generates non-

stationary fluctuations that become stationary in the long-time limit. The spectrum of these

fluctuations in the region 2 < µ < 3 can be evaluated using the ordinary Wiener-Khintchine
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theorem, whereas the region of perennial aging, µ < 2, requires the adoption of a generalized

version of this theorem [23].

The network S is expected to be sensitive to perturbations having the same IPL

index. This observation generated the plausible conjecture that a complex network, with a

given temporal complexity, is especially sensitive to the influence of a network with the same

temporal complexity, this being, in fact, a manifestation of CME.

The crucial events are generated by complex systems at criticality [148]. On the basis

of this property, Turalska et al. [28] afforded strong numerical support to the CME, showing

that a network at criticality is maximally sensitive to the influence of a identical network

also at criticality. In this case, the IPL-index of both the perturbed network, µS, and the

IPL-index of the perturbing network, µP , must be identical, because the perturbing and the

perturbed network are identical systems in the same condition, that being the criticality

condition. It is known [40] that at criticality µS = µP = 1.5, thereby implying that the two

systems share the same temporal complexity, with the same lack of a finite time scale. The

CME was subsequently generalized to the principle of complexity management (PCM), where

the network response was determined when both the perturbing and responding networks

have indices in the interval 1 < µ < 3. This latter condition was studied by means of

ensemble averages [26, 149] and time averages [27], leading to the discovery that in the

region of perennial aging 1 < µ < 2 the evaluation of complexity management requires

special treatment. This conclusion is based on the observation that renewal events are

responsible for perennial aging, with the occurrence of the renewal events in the perturbed

network being affected by the occurrence of the renewal events in the perturbing network. A

careless treatment, ignoring this condition may lead to misleading observations characterized

erratic behavior making it impossible to realize the correlation between the perturbed and

the perturbing signal [27]. This is where the adoption of the multifractal perspective adopted

by the authors of [150] to study CME may turn out to be more convenient that the adoption

of the method of cross-correlation functions.

There is a growing literature devoted to the interpretation that 1/f -noise is the sig-
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nature of complexity, where the spectra of complex phenomena are given by 1/f ν . The

complexity in time series is generically called 1/f -noise or 1/f -fluctuations, even though em-

pirically the IPL index lies in the interval 0.5 < ν < 1.5. The 1/f -behavior can be detected

by converting the underlying time series into a diffusion process. This conversion of data

allows us to determine the corresponding Hurst exponent H for the diffusion process, which

is well known to be related to the dimension of fractal fluctuations [151]. Consequently, we

obtain for the scaling index of the spectrum

(8.1) ν = 2H − 1,

It is important to remark that this approach rests on the Gaussian assumption requiring some

caution when dynamical complexity is incompatible with the Gaussian condition. It has been

observed [152] that the condition µ > 2 generates a diffusion process that, interpreted as

Gaussian, yield the Hurst scaling

(8.2) H =
4− µ

2
,

which plugged into Eq. (8.1) yields

(8.3) ν = 3− µ.

Eq. (8.3) is valid also for µ < 2, but in this case it requires a theoretical derivation taking

into explicit account the condition of perennial aging [23]. It is important to stress that

ν > 1 is consequently a sign of the action of crucial events. The spectrum of a complex

network at criticality with crucial events with IPL index µ < 2, expressed in terns of the

frequency ω = 2πf , is [23]:

(8.4) S(ω) ∝ 1

L2−µ
1

ω3−µ ,

where L is the length of the observed time series. Here we shall use this expression to prove

that the multifractal metronome used by the authors of Ref. [150] is driven by crucial events

responsible for CME [134] and complexity management PCM [26].

116



Fractal statistics appear to be ubiquitous in time series characterizing complex phe-

nomena. Some empirical evidence for the existence of 1/f -noise within the brain and how

it relates to the transfer of information, helps set the stage for the theoretical arguments

given below. The brain has been shown to be more sensitive to 1/f -noise than to white

noise [153]; neurons in the primary visual cortex exhibit higher coding efficiency and infor-

mation transmission rates for 1/f -signals than for white noise [154]; human EEG activity

is characterized by changing patterns and these fluctuations generate renewal events [155];

reaction time to stimuli reveals that the more challenging the task, the weaker the cognitive

1/f -noise produced [24]. Of course, we could extend this list of brain-related experiments,

or shift our attention to other complex systems, but the point has been made.

Here we stress that according to the analysis of [156] the brain dynamics is a source

of ideal 1/f -noise being characterized by crucial events with µ ≈ 2 in accordance with an

independent observation made by Buiatti et al [157] of IPL index µ ranging from 1.7 to 2.3.

It is interesting to notice that heartbeat dynamics of healthy patients were proved to host

crucial events with µ close to the ideal condition µ = 2 [141] and that the recent work of

Bohara et al [144], in addition to confirming this observation lends support to interpreting the

meditation-activated brain-heartbeat synchronicity [158] as a form of CME of the same kind

as that observed by Deligniéres and co-workers [150], namely, as a transfer of multifractality.

8.1.3. Experiments, Multifractality and Ergodicty Breaking

With the increase in geopolitical tensions between states, the enhanced social media

connectivity between individuals along with the rapid progress of neurophysiology, societal

behavior has become one of today’s more important scientific topics, forcing researchers to

develop and adopt new interdisciplinary approaches to understanding. As pointed out by

Pentland [159], even the most fundamental social interaction, that being the dialogue between

two individuals, is a societal behavior involving psychology, sociology, information science

and neurophysiology. Consequently, we try and keep the theoretical discussion outside any

one particular discipline and focus our remarks on what may apply across disciplines.
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Consequently, the same issue of dyadic interaction can be studied from the theoretical

perspective of the Science of Complexity, which we interpret as an attempt to establish a

fruitful interdisciplinary perspective. This view recognizes that the interaction between

phenomena from different disciplines requires the transfer of information from one complex

system to another. The adoption of this interdisciplinary perspective naturally leads us to

use the previously introduced notion of complexity matching [6, 147, 134]. On the other hand,

the transition in modeling from physics to biology, ecology, or sociology, gives rise to doubts

concerning the adoption of the usual reductionism strategy and establishes a periodicity

constraint that is often ignored by physical theories [160].

The observation of the dynamics of single molecules [161], yields the surprising result

that in biological systems the ergodic assumption is violated [162]. On the basis of real

psychological experiments, for instance the remarkable report on the response of the brain

to the influence of a multifractal metronome [163], complexity matching has been interpreted

as the transfer of a scaling PDF from a stimulus to the brain of a stimulated subject. More

recent experimental results [150] confirm this interpretation, based on the transfer of global

properties from one complex network to another, termed genuine complexity matching, while

affording suggestions on how to distinguish it from more conventional local discrete coupling.

We notice that the PCM [134] relies on the crucial role of criticality and ergodicity

breaking, in full agreement with the concept of the transport of global properties from one

complex network to another. This agreement suggests, however, that a connection exists,

but has not yet been established, between multifractality and ergodicity breaking, in spite

of the fact that current approaches to detecting multifractality are based on the ergodicity

assumption [164]. Note that multifractality is defined by a time series having a spectrum

of Hurst exponents (fractal dimensions), which is to say the scaling index changes over

time [165], resulting in no single fractal dimension, or scaling parameter, characterizing the

process. In psycho-physical experiments, for example, a person is asked to synchronize

a tapping finger in response to a chaotic auditory stimulus, and complexity matching is

interpreted as the transfer of scaling of the fractal statistical behavior of the stimulus, to
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the fractal statistical response of the stimulated subject’s brain. This response of the brain,

in such a motor control task, when the stimulus is a multifractal metronome, has been

established [163].

Experimental results [150] confirm this interpretation, based on the transfer of global

properties from one complex network to another. In these latter experiments the multifractal

metronome generates a spectrum of fractal dimensions f(α) as a function of the average sin-

gularity strength of the excititory signal and it is this dimensional spectrum that is captured

by the brain response simulation. The multifractal behavior manifested by the unimodal

distribution provides a unique measure of complexity of the underlying network.It is worth

noting that the same displacement of the metronome spectrum, from the body response

spectrum, is observed for walking in response to a multifractal metronome.

The main purpose of the present work is to establish that the multifractal arguments

advanced by many advocates of complexity matching must be compatible with data display-

ing ergodicity breaking. The dynamical model that we use to establish this connection is the

multifractal metronome [163], described by the periodically driven rate equation with delay:

(8.5) ẋ = −γx(t)− βsin (x(t− τm)) .

This model, originally introduced by Ikeda and co-workers [166, 167], was adopted by

Voss [168] to illustrate the phenomenon of anticipating synchronization. In the present work,

we adopt Eq. (8.5) to mimic the output of a complex network, generating both temporal

complexity [40] and periodicity [169]. More precisely, setting γ = 1, we use Eq. (8.5) with

only two adjustable parameters; the amplitude of the sinusoidal driver β and the delay time

τm, to determine the nonlinear dynamics of a metronome with a multifractal time series. We

should use this simple equation to study the joint action of renewal events and periodicity,

which may have the effect of either annihilating or reducing the renewal nature of events.

This is, however, a challenging issue that we plan to discuss in future work. In this work, on

purpose, we establish a time separation between temporal complexity and periodicity and
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we establish the accuracy of this separation by means of the aging experiment.

We show that this simple equation, with a careful choice of the parameters β and τm,

generates the same temporal complexity as that produced at criticality by a large number

of interacting units in a complex network [40], yielding ergodicity breaking. This earlier

work shows that in the long-time regime the nonlinear Langevin equation, yielding ergod-

icity breaking in the short-time regime, becomes equivalent to an ordinary linear Langevin

equation. Herein we use this theory to establish the cross-correlation between a perturbed

network S and a perturbing network P , identical to the network S, when both networks

are at criticality. Using the important property that in the long-time limit the non-linear

Langevin equation becomes identical to an ordinary Langevin equation, we find an exact an-

alytical expression for the cross-correlation between S and P . We prove that the mulltifractal

metronome, with a suitable choice of the parameters γ, β and τm generates crucial events

and that the temporal complexity of these events is identical to that a complex network at

criticality, more precisely the complex network of Section 8.2. On the basis of this equiv-

alence we predict that the cross-correlation function between the metronome equivalent to

the network S and the metronome equivalent to the metronome P should be identical to the

analytical cross-correlation function between network S and network P . This prediction is

supported with a surprising accuracy by the numerical results of this work.

The strategy of replacing the output of a complex network with the time series solution

to a multifractal metronome equation yields the additional benefit of avoiding numerically

integrating the equations of motion for a complex dynamic network, involving the interactions

among a large number of particles in a physical model, people in a social model, or neurons

in a model of the brain. Although the interplay between complexity and periodicity is an

issue of fundamental importance [169], herein we focus on the IPL complexity, hidden within

the dynamics of Eq. (8.5); complexity that was overlooked in earlier research on this subject.

As pointed out earlier, with our arguments about the generalization of the Wiener-

Khintchine theorem in the case of perennial aging we prove numerically that the spectrum

S(ω) of the metronome fits very well the prediction of Eq. (8.4). On the other hand, we
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prove directly that a network at criticality is the source of the broad multifractal spectrum

used in Ref. [150] to discuss CME.

8.1.4. Outline

Section II shows that a complex network at criticality generates a distinct multi-

fractal spectrum. We devote Section III to detecting the renewal events hidden within the

dynamics of Eq.(8.5) and we establish the equivalence between the multifractal metronome

and a complex network at criticality. In Section IV we find the analytical expression for the

cross-correlation between two complex networks at criticality and we prove numerically that

the two equivalent multifractal metronomes generate the same cross-correlation. Section

V illustrates the transfer of the multifractal spectrum from a complex to a deterministic

metronome. Finally, to support the equivalence between criticality-induced long-range cor-

relation in a model with local-interaction and a model with no-local interaction, in Section

VI we recover a qualitative agreement with the results of Section II, based on a model with

local interaction, by analyzing the time evolution of a mean field of a non-local model. We

use this equivalence to support the concluding remarks of this last Section.

8.2. Criticality, Decision Making Model and Multifractality

8.2.1. Multifractality of the Decision Making Model

As an example of criticality we adopt the Decision Making Model (DMM) widely

illustrated in the earlier work of Refs. [148, 28, 40, 28, 54, 56, 58]. For a review please consult

the book of Ref. [36]. To clarify the connection between criticality and multifractality, we

use the DMM. This model rests on a network of N units that have to make a choice between

two states, called C and D. The state C corresponds to the value ξ = 1 and the state D

corresponds to the value ξ = −1. The transition rate from C to D, gCD, is given by

(8.6) gCD = g0exp

[
−K

(
MC −MD

M

)]
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and the transition rate from D to the C, gDC , is given by

(8.7) gDC = g0exp

[
K

(
MC −MD

M

)]
.

The meaning of this prescription is as follows. The parameter 1/g0 defines a dynamic time

scale and we set g0 = 0.1 throughout. Each individual has M neighbors (four in the case of

the regular two-dimensional lattice used in this article). The cooperation state is indicated

by C and the defection state by D. If an individual is in C, and the majority of its neighbors

are in the same state, then the transition rate becomes smaller and then the individual

sojourns in the cooperation state for a longer time. If the majority of its neighbors are in

D, then the individual sojourns in the cooperator state for a shorter time. An analogous

prescription is used if the individual is in the defection state.

We run the DMM for a time t and we evaluate the mean field

(8.8) x(t) ≡
∑N

i ξi
N

,

where ξi = 1 or ξi = −1, according to whether the i − th individual is in the state C or in

the state D, respectively. For values of the control parameter much smaller than the critical

values Kc, which depends on the network topology, the mean field x fluctuates around the

vanishing mean values. For values of K significantly larger than Kc the mean field x(t)

fluctuates around either 1 or −1. It is important to stress that for values of K in the vicinity

of the critical value Kc, the fluctuations of the mean field have large intensity and the largest

intensity corresponds to the critical value Kc. The exact value of Kc depends also on the

number of units [56]. Here we limit ourselves to notice that in the case of a regular two-

dimensional network Kc, with N = 100 is around 1.5 . The adoption of an irregular networks

with a distribution of links departing from the condition of an equal number of links for each

unit may have the effect of significantly reducing the value of Kc. A scale-free distribution

of links was found [58] to make Kc very close to Kc = 1, which corresponds to the ideal case

where each unit is linked to all the other N−1 units. The PDF of the time intervals between

two consecutive re-crossings of x = 0 in the sub-critical condition K < Kc is exponential. At

K = Kc the PDF becomes an IPL with power index µ = 1.5. In the supercritical state, the
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Figure 8.1. Multifractal spectrum of the DMM network for different values

of the control parameter K. Note the non-monotonic behavior of the location

of the peak , as well as, the width of the distribution, with the value of K.

mean field fluctuates around a non-vanishing mean field. For K � Kc the PDF of the time

intervals between two consecutive re-crossing of this non-vanishing mean field again becomes

exponential. The purpose of this Section is to give the readers a better understanding of

the role crucial events, namely non-Poisson renewal events with power index µ fitting the

condition 1 < µ < 3. Here we limit ourselves to illustrate the connection between criticality

and multifractal spectrum.

Following Delignières and co-workers [150] we apply to the time series x(t) the multi-

fractal method of analysis proposed in 2002 by Kantelhardt et al [170]. The method of Ref.

[170] is an extension of the popular technique called Detrended Fluctuation Analysis (DFA)

of Ref. [171] originally proposed to determine the Hurst coefficient H. The results depicted

in Fig. 8.1 show that the inverted parabola f(α) becomes broadest at criticality. It is inter-

esting to observe that in the sub-critical regime, where the fluctuation of the mean field of

Eq. (8.8) generates ordinary diffusion with Hurst coefficient H = 0.5, the spectrum is much
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sharper and is centered around α = 0.5. Increasing the value of the control parameter has

the effect of shifting the barycenter of the inverted parabola towards larger values of α with

no significant effect on the parabola’s width. The dependence of f(α) on K is dramatically

non-linear. In fact, with K going closer to Kc the barycenter of the inverted parabola jumps

to the vicinity of α = 1.2 and the parabola, as stated earlier, reaches its maximal width.

Moving towards higher values of K, supercritical values, has the effect of further shifting to

the right the parabola’s barycenter. However, the parabola’s width becomes much smaller,

in line with earlier arguments about the super-critical condition being less complex than the

critical condition. It is impressive that with K = 2 the parabola’s barycenter jumps back to

the left, suggesting that for even larger values of K complexity is lost, in a full agreement

with [77, 29].

The work of [144] suggests that the spectrum f(α) is made broader by the action

of crucial events activated by the criticality of the processes of self-organization [78]. The

numerical results of this Section confirms this property. In fact, as remarked earlier, Fig.

8.1 shows that the multifractal spectrum becomes broadest at criticality, while it becomes

sharper in both the supercritical and sub-critical condition, where according to [77] the

time interval between two consecutive events has an exponential PDF. This result suggests

that, as done by Delignières and co-workers [150] it may be convenient to measure CME

observing the correlation between the multifractal spectrum of the perturbed network S

and the multifractal spectrum of the perturbing network P rather than the cross-correlation

between the crucial events of S and the crucial events of P . This method, although more

closely related to the occurrence of crucial events is made hard by ergodicity breaking [27],

even when the crucial events are visible, not to speak about the fact that usually crucial

events are hidden in a cloud of non-crucial events [141].

8.2.2. Transfer of Multifractality from One DMM to Another DMM Network

In this Section we want to discuss an experiment similar to that of Ref. [150]. We

do that with two DMM networks, the perturbing network playing the role of metronome
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Figure 8.2. The dashed black curve is the multifractal spectrum of the sys-

tem A with K = 0.1 and the dashed pink curve denotes the multifractal

spectrum of the system B, with K = 1.4. One network perturbs the other, as

described in the text, with 5% of its units adopting the state C or D according

to whether the perturbing system has a positive or a negative mean field. The

blue curve is the multifractal spectrum of the network B under the influence

of network A and the red curve is the multifractal spectrum of A under the

influence of B.

and the perturbed network playing the role of participants. The complex network A has

the control parameter K = 0.1, namely, it is a system in the subcritical condition and the

network B has the control parameter K = 1.4, close to criticality. We explore two opposite

conditions. In the first the system A perturbs the system B and in the second the system B

perturbs the system A. The perturbation is done as follows. 5% of the units of the perturbed

system adopt either the state C or D, according to whether the perturbing system has a

positive or a negative mean field. We see that when the system B with broader spectrum

perturbs A, with a a sharper spectrum, it forces A to get a much broader spectrum ,even

broader the spectrum of B. When A, with a sharper spectrum than B perturbs B it has
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the effect of making B adopt a spectrum as sharp as that of the perturbing system. This

result can be compared to that of the earlier work of Ref. [28], where 2% of the units of

the perturbed network adopted the choice made by the perturbing network. In that case

no correlation was detected between S and P but in the case where both networks being at

criticality. This suggests that the correlation between the multifractal spectrum f(α) of S

and the multifractal spectrum f(α) of P may be a more proper way to study CME.

8.3. Detecting Renewal Events

We devote this Section to establish the equivalence between the dynamics of metronome

and those of a DMM network at criticality. We make a suitable choice of the parameters β

and τm of Eq. (8.5) so as to make it possible to establish this statistical equivalence.

8.3.1. Renewal Character of Re-Crossings

As done in earlier work [40, 28] attention is focused on events corresponding to zero-

crossings, that is, to the time intervals between succesive crossings of x = 0. Successive

zero-crossings are used to generate a first time (FT) series {τi}, where τi = ti+1 − ti is the

time interval between two consecutive events, that is, zero-crossings. An important question

about this FT series is whether a non-zero two-time correlation, between different events,

exists or not. The events are identified as renewal if all two-time and higher-order correlations

are zero.

The renewal nature of the events generated using the metronome equation is deter-

mined by using the aging experiment [172]. The method, originally proposed by Allegrini et

al. [172], was for the purpose of proving that each zero-crossing of a time series is an isolated

event, with no correlation with earlier events. The lack of correlation implies that when an

event occurs, the occurrence of the next event is completely unrelated and unpredictable; the

occurrence of an event can be interpreted as a form of rejuvenation of the system. Ergodicity

breaking [162] is closely connected to the occurrence of renewal events, as can be intuitively
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understood by assigning to the waiting-time PDF ψ(τ) the IPL form

(8.9) ψ(τ) ∝ 1/τµ.

In the case µ < 2 the mean waiting time is infinite,

〈τ〉 =

∞∫
0

τψ(τ)dτ =∞,

and the longer the total length of the time series under study, the greater the maximum

value of the waiting-time τ detected. In fact, although a very short time interval can be

drawn immediately after a very long one is drawn, due to the renewal nature of the process,

it is impossible that the largest value of τ found, within a sequence of length L1, remains the

maximum in examining a sequence of length L2 > L1. This would conflict with the 〈τ〉 =∞

condition.

To assess whether the FT series {τi} generated by Eq. (8.5) is detected to be renewal,

we generate a second, auxiliary, time series by shuffling the FT series. We refer to the

latter as the shuffled time series. We apply the aging experiment algorithm to both the

original and the shuffled sequence: We adopt a window of size ta, corresponding to the age

of the network that we want to examine. Locate the left end of the window at the time

of occurrence of an event, record the time interval between the right end of the window

and the occurrence of the first event, emerging after the end of the window. Note that

adopting windows of vanishing size corresponds to generating ordinary histograms. The

histograms generated by ta produce different decision-time distribution densities, and these

distribution densities, properly normalized, generate survival probabilities, whose relaxation

can be distinctly different from that of the ordinary survival probability.

A non-ergodic renewal process is expected to generate a relaxation that becomes

slower and slower as ta increases. This lengthening of the relaxation time occurs because

the method leads to a truncated time series. However, the truncation affects the short time

intervals more than it does the long time intervals, thereby reducing the weight of ψ(τ) for

short times, while enhancing the weight of long time intervals. We have, of course, to take
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Figure 8.3. (Color online) Waiting-time PDF for γ = 1, β = 200, tm = 10,

L = 107 and τa = 10.

into account that we adopt normalized histograms. A process is renewal if the aging of the

non-shuffled FT series is identical to the aging of the shuffled time series.

Let us discuss the results of the aging experiment applied to the time series {τi}

generated by the multifractal metronome data of Eq. (8.5). In Fig. 8.3 the shuffled time

series is seen to yield a slight deviation from the non-shuffled time series of approximate

magnitude τ ∼ 10. This is a consequence of setting the delay time to τm = 10, thereby

establishing a periodicity interfering with temporal complexity. On the other hand, Fig.

8.4 shows that the shuffled data curve virtually coincides with the non-shuffled data curve

throughout the entire time region explored by the multifractal metronome.

8.3.2. Long-Time Ergodic Behavior

Note that the data curves in both Fig.8.3 and Fig.8.4 are characterized by long-time

exponential truncations. In the intermediate time regions, both conditions show an IPL

behavior with IPL-index µ = 1.5. This property reinforces the conviction that the metronome

dynamics and that of a network of interacting units at criticality are equivalent. In fact,
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Figure 8.4. Waiting-time PDF for γ = 1, β = 1000, τm = 1000, L = 107

and τa = 100.

in the absence of exponential truncation, the complex network would generate perennial

non-ergodic behavior. The latter behavior would make the network dynamics incompatible

with multifractality, which, as pointed out by Juzba and Korbel [164], requires a condition

of thermodynamic equilibrium.

The recent work of Beig et al. [40] shows that the mean field of a complex network

at criticality generates a mean field x(t), which is well described by the nonlinear Langevin

equation:

(8.10) ẋ(t) = −ax(t)3 + fx(t),

with fx(t) being a random noise generated by the finite size of the network, whose intensity

is proportional to 1/
√
N , and N is the number of the interacting units. Eq.(8.10) describes

the over-damped motion of a particle within a quartic potential, which has a canonical

equilibrium distribution. However, a particle moving from the initial condition x(0) = 0,

undergoes a virtual diffusional process for an extended time Teq. The order of magnitude of
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this time is given by

(8.11) Teq ∝
√
N

a

For times t� Teq the network’s dynamics are non-ergodic, but they become ergodic asymp-

totically for t� Teq.

The zero-crossings are well described by a waiting-time PDF given by Eq.(8.9) for

times τ � Teq. This PDF, however, is exponentially truncated, and as a consequence of

this truncation the renewal aging is not perennial. As a result of aging the IPL index of the

PDF changes from µ to µ− 1, making the decay slower in the intermediate time region, as

shown in Fig. 8.4. However, the aging process has also the effect of extending the exponential

truncation. In the case of the complex network at criticality, this corresponds to the existence

of a thermodynamical equilibrium emerging from the adoption of a large time scale of the

order of Teq. It is known [40] that the normalized auto-correlation function of the mean field

x, to a high degree of approximation, becomes

(8.12) A(τ) = exp (−Γ|τ |)

with the relaxation rate given by [40]

(8.13) Γ ∝ a
〈
x2
〉
eq
.

Note that the theory of Ref. [40] proves that this auto-correlation function is obtained by

replacing the non-linear Langevin equation of Eq. (8.10) with the following linear Langevin

equation

(8.14) ẋ(t) = −Γx(t) + fx(t).

In Section 8.4 we shall use these arguments to prove that the strong-anticipation of

the multifractal metronome may be closely related to the complexity matching observed by

stimulating a complex network at criticality, with the mean field of another complex network

at criticality, see Lukov́ic et al [77] for more details. The authors of the latter article studied

a network of N units, with a small fraction of these units, called lookout birds because of
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the context of the discussion, or more generally labeled perceiving units, are sensitive to the

mean field of another network of N units in a comparable physical condition. The units in

both networks are decision making individuals, who have to make a dyadic choice, between

the yes, +1, and no, −1, state. The perceiving units adopt the +1 state, if the mean field

perceived by them is positive, y > 0, or the −1 state, if they perceive y < 0. The cross-

correlation between the mean field x(t) of the driven network and the mean field y(t) of the

driving network attains maximal intensity when both networks are at criticality. It turns

out that the cross-correlation function is identical to the auto-correlation function of x(t),

with a significant shift, namely, the cross-correlation function 〈x(t+ τ)y(t)〉 gets its maximal

value when τ = ∆, where the delay ∆ represents a delay in transmitting information from

the perturbing to the perturbed complex network.

An intuitive interpretation of the above time delay is that the information perceived

by the lookout birds must be transmitted to all the units of their network. Lukov́ic et al [77]

adopted a different interpretation of this important delay time. To vindicate their view they

studied the all-to-all coupling condition, where the preceptors are coupled to all the other

units in their network. Even in this case the cross-correlation function is characterized by

a significant time delay, with respect to the unperturbed correlation function of x(t). The

reason for the delay is that the group, in the case discussed by [77, 29], a flock of birds,

can follow the direction of the driving network only when a significantly large number of

zero-crossings occur. A zero-crossing corresponds to a free-will condition, where the whole

network, can be nudged by an infinitesimally small fluctuation, to select either the positive

or the negative state. Thus, the renewal nature of the zero-crossing events becomes essential

for the emergence of such cooperative behavior as cognition [29], as in changing one’s mind

for no apparent reason. The zero-crossing is the time at which the network is most sensitive

to a perturbation, so the more zero-crossings the shorter the interval between a perturbation

and response.
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8.3.3. Beyond Ordinary Diffusion

We note that the waiting-time PDF of Fig. 8.4 is given by

(8.15) µ ≈ 1.35

This does not conflict with the earlier arguments on the exponential nature of the infinitely

aged regime. In fact, on the basis of a theoretical approach based on the observation of

random growth of surfaces [73] it is argued [78] that in all the organization processes the

fluctuation of x(t) around the origin are non-Poisson renewal events characterized by the

following common property. Let us call Ψ(t) the probability that no renewal non-Poisson

event occurs at a distance t from an earlier event. The Laplace transform of Ψ(t), Ψ̂(u), is

given by

(8.16) Ψ̂(u) =
1

u+ λα (u+ ∆)1−α .

On the basis of Fig. 8.3 we assume that there exists a wide time interval generating

the PDF index µ = 1 + α, which is 1.35 in the case of that figure. This time interval is

defined by

(8.17)
1

λ
� t� 1

∆
.

This wide time interval in the Laplace domain becomes

(8.18) λ� u� ∆,

thereby turning Eq. 8.16 into

(8.19) Ψ̂(u) =
1

u+ λαu1−α .

This is equivalent to the Laplace transform of the Mittag-Leffler function, which is

known to be a stretched exponential in the time regime t < 1/λ and the inverse power law

1/tα in the time regime t > 1/λ. Due to Eq. (8.17) we conclude that in that time interval
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Figure 8.5. Survival probability of the crucial events of the metronome,

compared to the exponential function corresponding to infinitely large age.The

blue curve is the exponential function of Eq. (8.22).

the waiting time distribution density is an inverse power law with µ = 1 + α while for times

t > 1/∆

(8.20) ψ(t) = Γexp (−Γt) ,

where

(8.21) Γ ≡ λα∆1−α.

Note that the corresponding survival probability, Ψ(t), gets the form

(8.22) Ψ(t) = exp (−Γt)

and is identical an equilibrium correlation function with the same form as that of Eq. (8.12),

with Γ given by Eq. (8.21).

In the example discussed in Section 8.4, where Γ = 0.01, we have ∆ = 0.0078 corre-

sponding to the time t = 129.
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Figure 8.6. The spectrum S(ω) of the metronome in the condition of Fig. 8.4.

In Fig. 8.5 we make a comparison between the numerical results on the aging of

the renewal events and the theoretical prediction of Eq. (8.22). The good agreement be-

tween numerical results and numerical prediction confirms that the metronome hosts crucial

events therefore supporting our conviction that the multifractal properties of the metronome,

stressed by the work of Deligniéres and coworkers [150], are a manifestation of the action of

crucial events.

We afford a further support to this important property studying the spectrum S(ω)

of the metronome in the condition corresponding to Fig. 8.4. According to the arguments

illustrated in subsection 8.6, see Eq. (8.4), the 1/f -noise generated by the metronome in this

condition, with µ = 1.333, should yield ν = 1.67. Fig. 8.6 yields a satisfactorily agreement

between theory and numerical results if we take into account the challenging numerical

issue of evaluating the spectrum of a non-ergodic process with the density of crucial events

decreasing upon increase of L.
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8.4. Complexity Matching Between Two Multifractal Metronomes

In this Section we discuss the results of a numerical experiment done on the cross-

correlation between two identical multifractal metronomes, in the condition illustrated by

Fig. 8.4, which makes them, as shown in the earlier Section, equivalent to the complex

networks at criticality of Ref. [40]. We stress that this equivalence rests on sharing the

same temporal complexity, namely, the same non-Poisson renewal statistics for the zero-

crossings. The results of this experiment of information transport from one to another

identical multifractal metronome generates a qualitative agreement with the results of the

earlier work of Ref. [77] on the information transport from a complex network at criticality

to another complex network at criticality. However, we go much beyond this qualitative

agreement. To do so, we use the theory of Ref. [40] to derive an analytical expression for

the cross-correlation used to evaluate the information transport and compare it to the cross-

correlation between the two equivalent multifractal metronomes done in this Section, and

we find outstanding agreement.

The numerical calculations of this Section are based on the following set of coupled

equations:

(8.23) ẋ = −γx(t)− βsin (x(t− τm)) + χy,

where x(t) is the mean field of the responding network and y(t) is the mean field generated

by the driving network

(8.24) ẏ = −γy(t)− βsin (y(t− τm)) .

This choice of equations is done to mimic the influence that perceptors (lookout birds) exert

on their own network in response to an external network. The interaction term χy must be

weak to mimic the influence of a very small number of perceiving units. For this reason we

assign to the coupling coefficient χ the value χ = 0.1.
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Figure 8.7. (Color online) Complexity matching between driven and driving

metronome. The black curve is the driving system and red curve corresponds

to the driven network.

In Fig. 8.7 we show that this weak coupling results in a remarkable synchronization

of the driven metronome with the driving metronome. Let us now move a quantitative dis-

cussion. To make our results compatible with the observation of single complex systems,

the brain being an example of unique system making it impossible for us to adopt the en-

semble average method, we use the time average approach and we define the autocorrelation

function A(τ) and the cross-correlation function C(τ) as follows:

(8.25) A(τ) =

∫ T−τ
0

dtx(t+ τ)x(t)

T − τ

and

(8.26) C(τ) =

∫ T−τ
0

dtx(t+ τ)y(t)

T − τ
.

In both cases we set T = 107. The auto-correlation function of Eq. (8.36) is evaluated with

χ = 0, namely, when the metronome x is not perturbed by the metronome y.

The bottom panel of Fig. 8.8 shows that the cross-correlation function, as expected,

is characterized by a significant delay, on the order of τ ∼ 100. The cross-correlation function
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is asymmetric with respect to the shifted maximum. Notice that we have selected the value

τm = 1000, of Fig. 8.4 so as to reduce the influence of periodicity on the temporal complexity.

Let us now generate an analytical expression to match these numerical results. First

of all let us stress that setting T = 107 is equivalent to make the numerical observation in

the ergodic regime, where time and ensemble averages are expected to yield the same results.

The adoption of ensemble averages make the calculations much simpler and for this reason,

with no contradiction with the statement that we focus our attention on unique complex

networks, we rest our theoretical arguments on ensemble averages.

The assumption that the time series generated by the multifractal metronome and

that of the complex network are equivalent at criticality, and the arguments [40] proving the

equivalence between Eq. (8.10) and Eq. (8.14) lead us to replace Eq. (8.23) and Eq. (8.24)

with the linearized forms

(8.27) ẋ = −Γx(t) + fx(t) + χy,

and

(8.28) ẏ = −Γy(t) + fy(t),

where fx(t) and fy(t) are mutually uncorrelated Wiener noises. It is straightforward to

show, using the lack of correlation between the two sources of noise, that the stationary

cross-correlation function C(τ) is

(8.29) C(τ) ≡ lim
t→∞
〈x(t+ τ)y(t)〉

and

(8.30) lim
t→∞
〈x(t+ τ)y(t)〉 = lim

t→∞
χ

∫ t+|τ |

0

dt′e−Γ(t+|τ |−t′) 〈y(t)y(t′)〉 .

In the absence of coupling, the two metronomes are characterized by the normalized auto-

correlation functions

(8.31) Ax(τ) = Ay(τ) = e−Γ|τ | ≡ A(τ).
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As a consequence

(8.32) 〈y(t)y(t′)〉 =
〈
y2
〉
eq
e−Γ|t−t′|.

By inserting Eq. (8.32) into Eq. (8.30), and taking into account that for τ > 0, there are

two distinct conditions, t′ < t and t < t′ < t+ τ , we obtain

(8.33) C(τ) ≡ lim
t→∞
〈x(t+ τ)y(t)〉 = be−Γ|τ |, τ < 0,

and

(8.34) C(τ) ≡ lim
t→∞
〈x(t+ τ)y(t)〉 = be−Γ|τ |(1 + 2Γτ), τ > 0.

Note that

(8.35) b ≡
〈y2〉eq χ

2Γ
.

It is important to stress that the normalized auto-correlation function of the multi-

fractal metronome

(8.36) A(τ) ≡ lim
t→∞

〈x(t)x(t+ τ)〉
〈x(t)2〉

= e−Γ|τ |

is evaluated numerically and it is illustrated in the top panel of Fig. 5. We derive the value of

Γ from this numerical treatment and its value Γ = 0.01 is used in Eq. (8.33) and in Eq. (8.34).

As a consequence, to make a comparison between theoretical and numerical cross-correlation

function we have only one fitting parameter, b, the intensity of autocorrelation function at

τ = 0. The bottom of Fig. 8.8 depicts the comparison between numerical and theoretical

results and shows that the agreement between the two goes far beyond the qualitative. It is

interesting to notice Eq. (8.33) yields for the time shift ∆ of the cross-correlation function

the following analytical expression

(8.37) ∆ =
1

2Γ
.

This interesting expression shows that reducing Γ has the effect of increasing the time shift.

On the other hand reducing Γ has the effect of making the non-ergodic time regime t < Teq
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Figure 8.8. (Color online) Top panel: Numerical auto-correlation function

A(τ) of Eq. (8.36). The numerical value of Γ is Γ = 0.01. Bottom panel: The

black curve denotes the numerical result for the cross-correlation function with

γ = 1, β = 1000 and τm = 1000. The red curve is derived from Eq. (8.33)

and Eq. (8.34) with the same Γ as in the top panel and the fitting parameter

b with the value b = 81.8.

more extended, thereby suggesting a close connection between complexity matching and

ergodicity breaking.
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8.5. Transfer of Multifractal Spectrum from a Complex to a Deterministic Metronome

After illustrating the similarity between the metronome-metronome interaction and

the DMM-DMM interaction when both DMM networks are at criticality, let us move to dis-

cuss the transfer of information from a complex metronome to a a deterministic metronome.

On the basis of the PCM we should expect that in this case no significant transfer of infor-

mation occurs. See, for instance, the earlier work of Ref. [28], as an example of a lack of

information transport when the DMM driving network is at criticality and the driven DMM

network is in the subcritical condition.

The field x(t) of the driving network is illustrated by the top panel of Fig.8.9. The

waiting time PDF between two consecutive regressions to the origin is of the same kind as

that illustrated in Fig. 8.3, with an intermediate time region with the complexity µ = 1.35,

and an exponential truncation. The driven metronome in the absence of the influence of the

driving metronome generates the field x(t) illustrated by the middle panel of Fig.8.9. This

is a fully deterministic condition corresponding to the choice of τm = 1, which implies a lack

of complexity. More precisely, Eqs. (8.23) and (8.24) has been changed into

(8.38) ẋ = −γx(t)− βsin (x(t− τS)) + χy,

and

(8.39) ẏ = −γy(t)− βsin (y(t− τP )) ,

respectively, where τS = 1 and τP = 1000.

The influence of the driving metronome on the driven one is illustrated by the bottom

panel of Fig.8.9. It is evident that the driven metronome has absorbed the complexity of

the driving metronome. This important property is made compelling from the results of

Fig. 8.10. This figure was obtained by applying the multifractal algorithm of Ref. [170]

to the time series x(t) of the driven metronome moving under the influence of the driving

metronome.
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Figure 8.9. (Color online) Top panel: Time evolution of driving metronome

with γ = 1, β = 1000 and τm = 1000. Middle panel: Time evolution of driven

metronome (before connection) with γ = 1, β = 100 and τm = 1. Bottom

panel: Time evolution of driven metronome (after connection, χ = 0.1).
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Figure 8.10. (Color online) Black curve: Parabola of driving metronome

with γ = 1, β = 1000 and τm = 1000. Red curve: Parabola of driven

metronome with γ = 1, β = 100 and τm = 1. χ = 0.1.

How to explain this surprising result? The earlier dynamical work on complexity

matching was based on the assumption that a complex network made complex by criticality

is characterized by K = Kc and a network with no complexity has a control parameter

distinctly smaller than the critical value Kc. The crucial events of the driving network exert

an influence on the time occurrence of crucial events of the driven network and consequently

a form of synchronization takes place, when both networks are at criticality. However, the

interaction between the two networks does not affect the values of their control parameters.

If the driven network is in the subcritical regime, the statistics of its events remain of Poisson

kind, thereby making it impossible to realize such a synchronization effect. The parameter

τm apparently plays the same role as the control parameter K of the DMM network, but

βsin (x(t− τS)) + χy of Eq. (8.38), with τS = τm under the influence of perturbation is

turned into βsin (y(t− τP )). The multifractal metronome is more flexible than a DMM

network in the subcritical regime.
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8.6. Concluding Remarks

The discussion on the origin of multifractality done in this work is far from being

complete. Some attention should be devoted to the adoption of wavelet transform modulus

maxima method (WTMM) [173, 174], which unmask singularities covered by higher order

polynomial trends. The traditional f(α) method and the structure function method have

limitations for negative moments, thereby leading to the development of WTMM. Another

discussion of interest is about the role of large and small fluctuations for the different sides of

the multifractal spectrum that correspond to positive and negative moments. We conjecture

that the discussion of these issues and of the role of data length to estimate multifractality

as well, should deserve a proper attention for a more rigorous theoretical foundation of

criticality-induced multifractality.

In spite of these limitations, we state that the main results of this work are the fol-

lowing. The multifractal metronome used by Deligniéres and co-workers [150] is equivalent

to a complex network at crititicality in the sense that it hosts crucial events. This estab-

lishes a connection between multifractal spectrum f(α) and crucial events. This result is in

a qualitative accordance with the observation done in Fig. 8.1. The multifractal metronome

is equivalent to a complex network at criticality, although its temporal complexity is char-

acterized by µ = 1.35 rather than µ = 1.5, as for DMM [40]. The cross-correlation between

two identical networks in the long-time limit is indistinguishable from that of two DMM

networks at criticality, as shown by Fig. 8.8. Thus, we can conclude that the complexity

matching established by Deligniéres and co-workers [150] is a process made possible by the

influence that the crucial events of the metronome exert on the crucial events of the brain

of the participants.

The adoption of f(α) as a measure of the response of S to P seems to be more

powerful than the use of cross-correlation function. In fact, it is also of remarkable interest

to notice that the correspondence between crucial events and broader distribution of f(α)

makes it possible to establish the existence of a correlation between the perturbed network

S and the perturbing network P in conditions far from the complexity matching of both
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networks at criticality, where earlier work did not reveal any significant correlation [28]. The

metronome in the physical condition making it equivalent to a network of interacting units

at criticality exerts a strong influence on a network in the deterministic condition, see Fig.

8.9. Also in this case f(α) is a powerful indicator of correlation. Fig. 8.10 shows that the

perturbed deterministic metronome inherits the spectral distribution f(α) of the perturbing

metronome.

Complexity matching is a phenomenon closely connected to criticality that generates

long-range correlation between the units of a complex network. The multifractal metronome

with the delay t−τ generates a signal equivalent to that produced by a network at criticality

which would require the interaction between a very large number of units and its influence

is perceived by the brain that is a network of interacting neurons at criticality. Criticality

generates long-range correlation and as a consequence a sort of interaction between different

neurons [58], regardless of their Euclidean distance. In the case of DMM, at criticality the

local interaction of each unit with its four nearest neighbors generates long-range correlation

[58] with effects that are indistinguishable from real long-range interactions, thereby gener-

ating multifractality. The authors of Ref. [58] have afforded an intuitive explanation of the

equivalence between long-range correlation and effective non-local interaction by adopting

the concept of Hebbian learning, based on the assumption that a strong correlation between

two units, regardless of their Euclidean distance, is replaced by a real link. They proved

that this approach leads to establish a new scale free network, with a distribution of links

p(k) ∝ 1
kν

with ν ≈ 1. This criticality-induced network structure is virtually indistinguish-

able from an All-to-All coupling network. Running this network has the effect of making

smaller the value of the control parameter K necessary to generate criticality, moving it from

the value K = 1.5, used in Section II, to the value K = 1.

On the basis of this form of equivalence between criticality-induced long-range cor-

relation and effective non-local interaction, leading to the conclusion that multi-fractality

is connected to an effective non-local interaction, we make the plausible conjecture that a

non-local model, based on the All-to-All coupling at criticality, generates a behavior quali-
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Figure 8.11. Multifractal spectrum of the DMM network in the case of All-

To-All coupling, at criticality, K = Kc = 1, in the sub-critical regime, K = 0.1

and in the supercritical regime, K = 2. We use g0 = 0.1.

tatively similar to that of Fig. 2. Hereby we prove that this conjecture is correct. The mean

field x of DMM in the All-To-All case with a finite number of units N is described by [40]

(8.40)
d

dt
x = g0sinh [K(x+ ξ)]− g0xcosh [K(x+ ξ)] .

Note that ξ(t) is a random fluctuation of intensity proportional to 1/
√
N , where N is the

number of interacting units. We assume that

(8.41) ξ = 0.1r,

where r is a random number getting the values r = 1 and r = −1. This simple numerical

prescription serves the purpose of modeling the fluctuations ξ when the number of interacting

units N = 100.

In the All-to-All coupling case criticality is realized by setting K = Kc = 1. In this

condition Eq. (8.40) gets the form of the non-linear Langevin equation of Eq. (8.10). In

the subcritical case, K < 1, it gets the form of an ordinary Langevin equation and in the
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supercritical case, K > 1, it is again an ordinary Langevin equation, although the equilibrium

value is not more x = 0 [40].

If the conjecture about the equivalence between criticality-induced long-range corre-

lation and effective non-local interaction is correct, the application of the analysis of Kantel-

hard et al [170] to the time evolution of x(t) of Eq. (8.40), non-local interaction, should yield

results qualitatively equivalent to those illustrated in Fig. 2, which are obtained applying

the same statistical analysis to the time evolution of x(t) of Eq. (8.8), which is generated

by a model of local interaction. We see that Fig. 8.11 qualitatively reproduces the results

of Fig. 8.1, with a wider multifractal spectrum at criticality, and two sharper ones in both

the sub-critical and supercritical condition, thereby proving that our conjecture is correct.

In this sense the genuine complexity matching is based on effective non-local interac-

tion. The recent experiment described in [3] shows that the correlation between multifractal

spectra could also arise from local corrections processes that have nothing to do with genuine

complexity matching. This observation lends further support to the conclusions of this work

that is, in fact, devoted to the discussion of genuine complexity matching.
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CHAPTER 9

COMPLEXITY MATCHING AND REQUISITE VARIETY

9.1. Introduction

The theory that we use here should not be confused with chaos synchronization.

In fact, our approach aims at establishing the proper theoretical framework to explain,

for instance, brain-heart communication and there exists in the literature the increasing

conviction that heart is not a chaotic system [175].

To deal with the ambitious challenge by Ashby [2] we adopt the theoretical perspec-

tive of subordination theory [176]. This theoretical perspective is closely connected to the

Continuous Time Random Walk (CTRW) [177, 178], which is known to generate anomalous

diffusion. We use this theoretical perspective to establish a satisfactory approach to ex-

plain the experimental results showing the remarkable oscillatory synchronization between

different areas of the brain [22].

9.2. Modeling and Results

Consider a clock, whose hand regularly ticks and the time interval between two con-

secutive ticks, ∆t, is assumed to be equal to 1. At any tick the angle θ of the clock rotates

by the quantity 2π/T , where T is an number corresponding to the number of ticks necessary

to make a complete 2π rotation. We realize subordination by selecting for the time interval

between consecutive ticks a value τ from the waiting -time PDF ψ(τ). This is a way of

embedding crucial events into the periodic process. Notice that in the Poisson limit µ→∞

the resulting rotation becomes virtually indistinguishable from that of the non-subordinated

clock. Note that when µ > 2, the mean waiting time 〈τ〉 is finite. As a consequence, if

T is the information on the frequency Ω = 2π/T , this information is not completely lost.

During the dynamical process the signal frequency fluctuates around Ω and the frequency Ω
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Figure 9.1. The spectrum S(f) of four subordinations to the regular clock

motion. Top panel: Ω = 0.06283, µ = 2.1 (black curve), µ = 2.9 (red curve);

bottom panel µ = 2.1, Ω = 0.06283 (black curve), Ω = 0.0006283 (red curve).

is changed into

(9.1) Ωeff = (µ− 2)Ω.

In fact, µ = 3 is the border with the Gaussian region µ > 3 where both the first and second

moment of ψ(τ) are finite, and the average of the fluctuating frequencies is identical to Ω.
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In the region µ < 2 the process is non-ergodic, the first moment < τ > is divergent and the

direct indications of homeodynamics vanish. The condition 2 < µ < 3 is compatible with

the emergence of a stationary correlation function, in the long-time limit, with µ replaced

by µ− 1. Thus, using the result of earlier work [179] we get for the equilibrium correlation

function exponentially damped regular oscillations, and, at the end of this oscillatory process,

a power law tail proportional to 1/tµ−1. This explains why S(f) becomes proportional to

1/f 3−µ for f → 0. In conclusion, in a log-log representation, we get a curve with different

slopes, β = 3 − µ, at the left of the bump, and β = 2, at its right. β = 2 is a consequence

of the exponentially damped oscillations. Fig. (9.1) illustrates the result of a numerical

approach to subordination, confirming the theoretical prediction.

We interpret the time evolution of x(t), the x-component of subordination to period-

icity, as the result of a cooperative interaction between many oscillators. The inverse power

law index µ is a sign of temporal complexity that is spontaneously realized as an effect of that

interaction. To make system-1 drive system-2 we have to generalize the swarm intelligence

prescription adopted in the earlier work of Ref. [28] and Ref. [29]. This generalization is

necessary because the earlier work was based on the assumption that the single units of the

complex systems, in the absence of interaction, undergo dichotomous fluctuations with no

periodicity. In the absence of periodicity, the mean field x(t) of the complex system can be

written as x(t) = (U(t)−D(t))/(U(t) +D(t)), where U(t) is the number of individual in the

state |+ >, x > 0, and D(t) is the number of individuals in the state |− >, x < 0. Using

this notation (see supplementary material) we show that

(9.2) x2(t)− x1(t) ∝ K(t),

where

(9.3) K(t) ≡ (1− x2(t))(1 + x1(t))− (1 + x2(t))(1− x1(t)).

To take periodicity into account he have to notice that x1(t), has the structure

(9.4) x1(t) = cos(Ω1n1(t)).
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System-2 has the same periodical structure

(9.5) x2(t) = cos(Ω1n2(t) + Φ(t)),

where the phase Φ(t) is a consequence of the fact that the units of system-2 try to compensate

the effects produced by the two independent self-organization processes. The number of

clicks of system-1, n1(t), due to the occurrence of crucial events, tends to become increasingly

different from the number of clicks of system-2, n2(t). The units of system-2, trying to imitate

the choices made by the units of system-1, in addition to the process described by K(t) of Eq.

(9.3) must adjust also the phase Φ(t) of Eq. (9.5). This phase may either increase or decrease

in accordance to the sign of the virtual sine corresponding to Eq. (9.5), sin(Ω1n2(t) + Φ(t)).

The intensity of this virtual sine establishes also a correction to the intensity established by

K(t) of Eq. (9.3). Thus we obtain the central algorithmic prescription of this work:

(9.6) Φ(t+ 1) = Φ(t),

if at t+ 1) no crucial event occurs, and

(9.7) Φ(t+ 1) = Φ(t)− r1K(t)sin (Ω2n2(t) + Φ(t)) ,

if at t + 1 a crucial event occurs. Note that the real positive number r1, smaller than one,

defines the proportionality factor left open by Eq. (9.2), or, equivalently, defines the strength

of the perturbation that system-1 exerts on system-2.

Fig. (9.2) illustrates the significant synchronization between the driven and the driv-

ing system obtained for µ = 2.2, close to the values of the crucial events of the brain dynamics

[17]. This result can be used to explain the experimental observation of Delignières and co-

workers [3] (see supplementary material).

The top panel of Fig. (9.3) shows that the system-2, with µ2 = 2.9, very close

the Gaussian border, gets the higher complexity of system-1 with µ1 = 2.1, namely the

complexity of a system very close to the ideal condition, µ = 2, to realize 1/f noise.

In the bottom panel of Fig. (9.3) we see that a driving system very close to the

Gaussian border does not make the driven system less complex, but it does succeed in
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Figure 9.2. System-1 drives system-2, The two systems are identical: µ =

2.2, Ω = 0.063. r1 = 0.05. The coupling is realized using Eq. (9.2) and Eq.

(9.3).

forcing it to adopt the regulator’s periodicity. Here we have to stress that the perturbing

system is quite different from the external fluctuation that was originally adopted to mimic

the effort generated by a difficult task [180]. In that case the complex system has to address

a difficult task, a cognition problem making its power index µ depart from the 1/f -noise

condition [24].

The theory of this work substantiates the opposite effect of cooperation. It is straight-

forward to extend the treatment of this work to the case where system-1 is influenced by

system-2 in the same way system-2 is influenced by system-1. To make this extension we have

to introduce the new parameter r2, which defines the intensity of the influence of system-2

on system-1. As a result of this back-to-back interaction, we have µ1 → µ
′
1 and µ2 → µ2.

When µ1 < µ2 we expect

(9.8) µ1 < µ
′

1 < µ
′

2 < µ2.

Fig. 9.4 shows that µ
′
1 ≈ µ1, thereby suggesting that the system with larger complexity

drives the system with smaller complexity.

We interpret this result as an indication that the system with higher complexity does
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Figure 9.3. Top: Driven system: µ = 2.9,Ω = 0.063; driving system: µ =

2.1,Ω = 0.063. r1 = 0.1. Bottom: Driving system: µ = 2.9,Ω = 0.0063;

driven system: µ = 2.1,Ω = 0.063. r1 = 0.1.

not perceive its interaction with the other system as a difficult task, while the less complex

system has a sense of relief. We interpret this result as an important property that should be

the subject of psychological experiments to shed light into the teaching and learning process.

The theory of this work makes it possible to go beyond the limitation of the earlier work on
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Figure 9.4. Two cooperating systems with different complexity. System-1:

µ1 = 2.2, Ω1 = 0.063; system-2: µ2 = 2.9, Ω2 = 0.063; r1 = r2 = 0.1.

complexity management, as illustrated in the supplementary material.

9.3. Concluding Remarks

The term “intelligent” that we are using here is equivalent to assessing that a system

is as close as possible to the ideal condition µ = 2, corresponding to the ideal 1/f noise.

Two very intelligent systems are the brain and heart that in the healthy condition share the

property of a µ very close to 2. This work therefore explains the synchronization between

heart and the brain. This work shows that the concept of resonance, based on tuning the

frequency of the stimulus to the frequency of the system to perturb may not be appropriate

for complex biological system. It seems more appropriate for a physical system where the

resonance tuning has been adopted over the years for the transport of energy. This is expected

to contribute a significant therapeutic advance yielding a proper use of bio-feedback methods

[181].

153



CHAPTER 10

CONCLUSIONS

In this work we showed how Self-Organized Temporal Criticality can resolve Eempir-

ical paradox of emergence of cooperation in society of selfish individuals. We also showed

how systems with this new kind of criticality transfer information and multifractality. Based

on properties of SOTC systems we aimed to bridge between physics and biology. The work

of [60], based on the prisoners dilemma game and network reciprocity, is used by biologists to

explain enzyme action, with an extremely good agreement between theory and experimen-

tal observation. However, it is well known that the adoption of non-equilibrium statistical

physics shows that the conventional Transition State Theory requires such an impressively

large reaction rate enhancement [182] as to lead us to consider this problem to be totally

unsettled, on the basis of the current understanding of non-equilibrium statistical physics.

An attempt made many years ago [183] at settling this problem through the assumption

that the enzyme generates a fluctuating temperature, yields us to adopt the model proposed

by Voss and Clarke for the origin of 1/f noise [184]. This model, however, is questionable,

insofar as the physical origin of 1/f noise is still considered an unsettled problem. In this

work we have seen that the subordination to regular oscillation is interpreted as a way of

using SOTC applied to a set of interacting oscillators, and we have seen that this leads to

1/f noise. This is what we mean by moving from the cooperative properties of biological

processes to establish a solid bridge . This dissertation shows that it is necessary to supple-

ment the current field of non-equilibrium statistical physics with the cooperative properties

of living systems.
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A theory of 1/f noise in human cognition, Physica A: Statistical Mechanics and its

Applications 388 (2009), no. 19, 4192–4204.

[181] Lijia Lin and Ming Li, Optimizing learning from animation: Examining the impact of

biofeedback, Learning and Instruction 55 (2018), 32–40.

[182] Martin Karplus and John Kuriyan, Molecular dynamics and protein function, Proceed-

ings of the National Academy of Sciences of the United States of America 102 (2005),

no. 19, 6679–6685.

[183] Mario Compiani, Teresa Fonseca, Paolo Grigolini, and Roberto Serra, Theory of acti-

vated reaction processes: Non-linear coupling between reactive and non-reactive modes,

Chemical physics letters 114 (1985), no. 5-6, 503–506.

[184] Richard F Voss and John Clarke, Flicker (1/f) noise: Equilibrium temperature and

resistance fluctuations, Physical Review B 13 (1976), no. 2, 556.

171


	ACKNOWLEDGMENTS
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION AND MOTIVATION
	1.1. Introduction to Evolutionarty Game Therory
	1.2. Introduction to Complexity Matching and Homeodynamics

	CHAPTER 2. IMITATON-INDUCED CRITICALITY: NETWORK RECIPROCITY AND PSYCHOLOGICAL REWARD
	2.1. Introduction
	2.2. Game Theory
	2.3. Decision-Making, Success, Selfishness and Influence of Morality Model 
	2.4. Criticality-Induced Network Reciprocity
	2.5. Morality Stimulus on the Selfishness Model at Criticality
	2.6. Concluding Remarks

	CHAPTER 3. EVOLUTIONARY GAME THEORY AND CRITICALITY
	3.1. Introduction
	3.2. Local Conformism Model (LCM)
	3.3. Unconditional Imitation Model (UI)
	3.4. Joint Action of LCM and UI
	3.5. Illustration of Criticality Effects
	3.6. Concluding Remarks

	CHAPTER 4. SELF-ORGANIZING COMPLEX NETWORKS: INDIVIDUAL VERSUS GLOBAL RULES
	4.1. Introduction
	4.2. The Prisoner's Dilemma Game
	4.3. Decision Making Model 
	4.4. Self-Organization
	4.4.1. Individual
	4.4.2. Global

	4.5. Temporal Complexity
	4.6. Complexity Matching
	4.7. Concluding Remarks

	CHAPTER 5. RESOLVING THE PARADOX OF COOPERATION BETWEEN SELFISH UNINTS USING SELF-ORGANIZED TEMPORAL CRITICALITY
	5.1. Introduction
	5.2. On Modeling
	5.3. Two-Level Network Model
	5.4. Discussion
	5.5. Concluding Remarks

	CHAPTER 6. SELF-ORGANIZED TEMPORAL CRITICALITY: BOTTOM-UP RESILIENCE VERSUS TOP-DOWN VULNERABILITY
	6.1. Introduction
	6.1.1. Criticality and Temporal Complexity
	6.1.2. Swarm Intelligence and Resilience
	6.1.3. From Criticality Generated by the Fine Tuning of a Control Parameter to Self-Organization Temporal Criticality
	6.1.4. Bottom-Up Versus Top-Down Approach to Morality

	6.2. Bottom-Up Approach to Self-Organized Temporal Criticality
	6.2.1. The Intuitive and Emotional Level
	6.2.2. The Rational Level

	6.3. Top-Down Approach to Self-Organized Temporal Criticality
	6.4. Perturbing the Self-Organized Society
	6.5. Concluding Remarks

	CHAPTER 7. ON SOCIAL SENSITIVITY TO EITHER ZEALOT OR INDEPENDENT MINORITIES
	7.1. Two-Level Network Model
	7.1.1. The DMM Subnetwork
	7.1.2. The PDG Subnetwork
	7.1.3. The Interaction

	7.2. Results
	7.3. Concluding Remarks

	CHAPTER 8.  EMERGENCE OF MULTIFRACTALITY AS A RESULT OF COOPERATION
	8.1. Introduction
	8.1.1. A Short Review of Multifractality in Physiological Dynamics
	8.1.2. Complexity Management
	8.1.3. Experiments, Multifractality and Ergodicty Breaking
	8.1.4. Outline

	8.2. Criticality, Decision Making Model and Multifractality
	8.2.1. Multifractality of the Decision Making Model
	8.2.2. Transfer of Multifractality from One DMM to Another DMM Network

	8.3. Detecting Renewal Events
	8.3.1. Renewal Character of Re-Crossings
	8.3.2. Long-Time Ergodic Behavior
	8.3.3. Beyond Ordinary Diffusion

	8.4. Complexity Matching Between Two Multifractal Metronomes
	8.5. Transfer of Multifractal Spectrum from a Complex to a Deterministic Metronome 
	8.6. Concluding Remarks

	CHAPTER 9. COMPLEXITY MATCHING AND REQUISITE VARIETY
	9.1. Introduction
	9.2. Modeling and Results
	9.3. Concluding Remarks

	CHAPTER 10. CONCLUSIONS
	BIBLIOGRAPHY



