

The Speetirophotometric Deternimetion of Disesceiation Constanta of Dibasie Meids. Nothode Dising a Ninimis Anourt of Date"
by

Burtion J. Themer

## univessity of catriaruma LOS ANANOS BCTMETIFIC LABOPATOETY LOS ALANOS, ymer mexico

This report has been photomated to filis your requent as our aupply of copies was exhausted. If you should find that you do not seed to retain this copy permanently in your fites, we would freatly apprectate your retrinitigg is to Tis ao that it may be uned to fill furnure requesto from ofter ABC festallations,

Work Cone under the ausplees of the Atcate Bergy Corntasion

## Abetrent

Two apectrophotometric methods are given ror deternintng dissceiation constants of aibesie selde. Beh method is applicmble for any degree of overInppires of the diemoelation constante. Weither method rogutres a direet meapurement of the extinetion ecofricient of ary of the individual opeoies that are in equilibrium with eweh other. A mintimas anount of ditie is regutred is wither method.

The ionisation equilibris of a light-abeorbing eeld frequentiy any be
 auch that the dirferent ionie form of the neld have maricedily dirferent mbeorption coefrileiente. The ecnceatration of the meid unfer inveetigntion and the length of the abeorytion cell are kept econtant ror this purpose. Ir, in adaltion, the tepperature and ionie atrongth are mintriained eonstant the equilibria of a Asbasie aela 耳oA ma bo ropresented by the equations

Where a represente the menaured hordrogon Ion eativity and braokete inttente concentratiens. ${ }^{2}$ The thermolyminile diescoiation oonstante onn be eatimated from the menourved dissoeliation conatante $k_{1}$ and $k$ if if the value of the lonife atrongth Io faitriy lov. As previounly indtonted the optical denesty D after correetilon for abeorption ky the solvent and any beffer that min be prosent may be representeat by
there I is the length of the abeorgtion eell, e fo the tetal eonoentration of the vela In all ite fors, and $E_{2}, E_{0}$ and $E_{0}$ are the molar extinetion coerfielerits of the rorms $\mathrm{H}_{\mathrm{f}} \mathrm{A}_{2}$, th and A , reapectivily. ${ }^{2}$

If $\mathrm{k}_{1}$ and $\mathrm{k}_{\mathrm{e}}$ are groatly dirforent in mingitude they ean be detarnimed eoperately ${ }^{3}$ aince then only ome atage of contmation is appreetably operative at a
 $\frac{k_{1}}{k_{0}}$ is ereater then 50 , they could be deterninnd sepparately without eerious error

[^0]because the "alimale neld" I-A might be a conjugnte nold of an appholyte, for exieple.

${ }^{(a)}$ D. H. Ropenblett, fb14., 28, 40, equintion (e) (1954).
by the method of "Indireet colorinetry," vhich, hovever, reguires equifnemt not ondinarily available in the iaboratory * The separate ceteraination of
 but the erthod is aubjeat to scon inneourncy if $\mathrm{k}_{1}$ and ha are wtrongly orenr Iapping. ${ }^{\circ}$ A mathod by Minnerr and Voigt is deasgmad upeoirionily for the ease
 trontinant regutree that a plot of optical denaity woraus pll have a macting or a miniman in the region of the eurve where the internedinte apecies B predentmates. The Latter reguiriment can frequantly be met, burt one aupt devote at lempt a fevr potuta to the deternination of the optieal denaity -n+1-2 ${ }^{3}$ at the martime (or mintma) ot the eurve. It is asaumed in their method that the opticel

 be cotifisted from the available date at the levest or hlgheot pif, reapeotively.

Bquation 2 is valid for eeph solution that io menaured at the given vave length and under the experimental eomistionis mentioned in the rirat parmgraph. Molcing the oubetitutiony $\mathrm{LeI}_{1}=\mathrm{D}_{2}$ and $\mathrm{LeF}_{0}$ - Do, and rearranging terna, equation 2 enn be brought futo the folloving form for eweh 1 -th destgnated solution of a eeries of solutions:

$$
\begin{equation*}
a_{1} D_{1}\left(k_{1}\right)+D_{1}\left(k_{2} k_{2}\right)-\left(D_{2} k_{2} k_{m}\right)-a_{1}\left(\operatorname{Le}_{n} k_{2}\right)-a_{1}\left(D_{2}\right)=-m_{1} D_{1} \tag{3}
\end{equation*}
$$

In the general ense of a dibnate seld eseh of the rive quantitise enelosed in parmatheses in equation 3 is an umlonovm ocnstant and ali quantitiee outinide of
 could be deternatsed by the simultaneous eolution of rive equations of the type of equastien 3 thus mequiring measuremente at only five escrerent veluee of pill." Two methoflo of fmplesemting this atteck on the poobles wisi be derivod. Bheh of these methoth (1) vill be rigorounly applicmble for ang value or $\frac{k y}{k g}$ that migy
 or $\mathrm{Da}_{9}=\mathrm{Le}_{\mathrm{g}}$ for pure $\mathrm{A}_{\text {, }}$ and (5) vili not require that a plot or options donaity
(8) Dota $=58,42$, equation (2954).
(a) mota., 28,42 (19st).
against pill have a maximum or a minimum corresponding to the intermediate species FA. Furthermore a minima amount of date villi be required.

In either method the hydrogen ion activity $\mathrm{a}_{1}$ end $\approx$ measure of the optical density $D_{1}$ must be known for esth of five solutions. The rive assured solutions will be referred to an $\alpha_{,} \beta, \gamma, 8$ and 4 . The individual signiriennce of each solution can best bn described by reference to Fig. 1 which contains data previously reported by Theme and Voigt for 1 mophthalife acid." (The Tact that there is a maxima in the curve is immaterial for the present discussion.) The labeled solid points have been chosen for solutions $\alpha, 3,7,8$ and 5 . SolusLion $a$, in effect, serve for a determination of $D_{2}=L e \mathbb{K}_{2}$ in equation 5 and, ap such, should have se low a pill te possible in order to have s high concentre-
 centration of the intermediate species EA exiete in order for it to best failrisk its function of allowing an evaluation of the quantity Kelp in equation 3. Solution e corresponds to the determination of $D_{3}$ and it should have as mach as possible of the species A present, ie., be at a high pill. Solution B, in conjunction with points $\alpha$ and 7 , is the mont ifportennt point in the waiuution of $\mathrm{k}_{2}$. Jor beat accuracy ito optical denali boule lie about midvey between the optical dentition of $\alpha$ and 7 . Similarly solution B, in conjunction with 7 and 4 , is the important point in evaluating le. Its opiticni density preferAbly ahould le miduny between the optical deniaitien of $\gamma$ and \&*

The first method of handling the problem might be referred to an a "complete" solution because it allows the direct calculation or $\mathrm{k}_{\mathrm{l}}$ and ko without making any "\{mplifying assumptions regarding the values of $\mathrm{D}_{2}$, Leta or Da. In the derivation advantage may be taken of the fact that only differences in optical densities need to be anploged. Thus the bertie equation, equation 2 , any be written in the form

In the example given, a pill of approxiantely 1.6 was the lowest obtainable in order not to expend an joule strength of 0.030 that vas maintelnet for each solution.

$$
D_{1}-D_{d}=\frac{\left(D_{2}-D_{a}\right)+\frac{k_{2}}{a_{1}}\left(L_{e} R_{a}-D_{a}\right)+\frac{k_{2} k_{2}}{a_{1}}\left(D_{a}-D_{a}\right)}{1+\frac{m_{1}}{Q_{1}}+\frac{k_{1} k_{1}}{a_{1}}}
$$

or

$$
\begin{aligned}
a_{1}\left(D_{1}-D_{\alpha}\right)\left[k_{2}\right]+ & \left(D_{2}-D_{\alpha}\right)\left[k_{2} k_{a}\right]-\left[k_{2} k_{a}\left(D_{a}-D_{\alpha}\right)\right]-a_{1}\left[k_{2}\left(L_{c} B_{a}-D_{\alpha}\right)\right]-a_{1}\left[D_{2}-D_{\alpha}\right]= \\
& -a_{1}{ }^{2}\left(D_{1}-D_{\alpha}\right)
\end{aligned}
$$

where $D_{2}=L_{c} \mathbb{Z}_{2}, D_{3}=L_{e} \mathbb{K}_{0}$ and 1 represents the 1 -th solution. When 1 denotes solution $\alpha, 1.0 ., 1=\alpha$, the letter equation reduces to

$$
-\left[k_{2} k_{a}\left(D_{a}-D_{\alpha}\right)\right]-a_{a}\left[k_{2}\left(\operatorname{LeH}_{e}-D_{\alpha}\right)\right]-a_{\alpha}\left[D_{2}-D_{\alpha}\right]=0 .
$$

Upon combining the latter two equations one obtains

$$
\begin{align*}
a_{1}\left(D_{2}-D_{\alpha}\right)\left[k_{2}\right]+ & \left(D_{1}-D_{\alpha}\right)\left[k_{2} k_{2}\right]+\left(a_{\alpha}-a_{1}\right)\left[k_{2}\left(\operatorname{Le} \mathbb{R}_{2}-D_{\alpha}\right)\right]+\left(a_{\alpha}^{2}-a_{1}{ }^{2}\right)\left[D_{2}-D_{\alpha}\right]= \\
& -a_{1}{ }^{2}\left(D_{1}-D_{\alpha}\right) \tag{4}
\end{align*}
$$

The four unknown quantities enclosed in brackets in equation is my be determined by the simultaneous solution of the four equations resulting then 1 equate successively B, $7, B$ and e. Solving for the first two unknown quantities one obtains

$$
\mathbf{k}_{\mathbf{1}}=\frac{\Delta \mathbf{n}}{\Delta}
$$

and

$$
k_{2} k_{2}-\frac{\Delta}{\Delta}
$$

giving

$$
k_{2}=\frac{\Delta_{n}}{\Delta_{2}}
$$

$$
281-6
$$

where

Upon simplification these equations give solutions for $k_{2}$ and $k$ in the form
and
where

$$
\begin{aligned}
& \lambda_{2}=\left(D_{\beta}-D_{\alpha}\right)\left(D_{7}-D_{\alpha}\right)\left(a_{\alpha}-a_{8}\right)\left(n_{\alpha}-a_{e}\right)\left(a_{\beta}-a_{\gamma}\right)\left(a_{p}-a_{c}\right) \\
& \lambda_{2}=\left(D_{\beta}-D_{\alpha}\right)\left(D_{8}-D_{\alpha}\right)\left(a_{\alpha}-a_{p}\right)\left(a_{\alpha}-a_{c}\right)\left(a_{s}-a_{8}\right)\left(a_{c}-a_{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{8}=\left(D_{7}-D_{\alpha}\right)\left(D_{8}-D_{\alpha}\right)\left(a_{\alpha}-a_{p}\right)\left(a_{\alpha}-a_{c}\right)\left(a_{c}-\theta_{8}\right)\left(a_{p}-a_{c}\right) \\
& \lambda_{s}=\left(D_{7}-D_{\alpha}\right)\left(D_{c}-D_{\alpha}\right)\left(a_{\alpha}-a_{b}\right)\left(a_{a}-a_{b}\right)\left(a_{7}-a_{c}\right)\left(a_{s}-a_{8}\right) \\
& \lambda_{0}=\left(D_{s}-D_{a}\right)\left(D_{c}-D_{a}\right)\left(s_{\alpha}-s_{\beta}\right)\left(\alpha_{\alpha}-a_{p}\right)\left(z_{8}-A_{c}\right)\left(s_{s}-a_{p}\right)
\end{aligned}
$$

The point referred to in Pig. i have been tabulated in mable 1 . The values of $k_{2}$ and $k_{2}$ calculated

## Table I

Bpectrophotametrie Data for Ieophthalie AcId at $2460.0 \AA^{\circ}$

from equations 5 and 6 are $k_{1}=2.51 \times 10^{-4}$ and $k_{2}=3.96 \times 10^{-5}$. Thee 51 eure agree with $k_{1}=(2.67 \pm 0.28) \times 10^{-4}$ and $k_{2}=(4.00 \pm 0.62) \times 10^{-7}$ previously calculated by Thenar and Volgt from all of the data of Fig. $1 .{ }^{*}$

The second method involves successive approximations which converge replay to the final solution. In this method, as e will be shown abortiy, eweceealive approximations are mede of the value or $D_{2}=I_{c} \mathrm{I}_{1}$ from the point $\alpha$ and of the value of $D_{3}=L C l \mathrm{~B}_{0}$ froe the point .. In each cycle of the successive approxrations $k_{1}$ and $k_{g}$ are calculated as ir the approximations to $D_{2}$ and $D_{p}$ were the metal values of $D_{2}$ and $D_{g} . A$ rearrangement of equation 3 with $D_{1}$ and $D_{0}$ soused to be known given the equation

$$
D_{1} k_{2}+\frac{1}{a_{1}}\left(D_{1}-D_{2}\right) k_{2} k_{2}-L c I_{2} k_{1}+a_{1}\left(D_{2}-D_{1}\right)
$$

where $k_{1}$, $k_{e}$ and tell are umknovi quantities. Points $B, Y$ and 8 provide the necessary throe equations of the form of equation 3'. The ablution of the throe equation e give a



Values of $k_{1}$ and $k_{e}$ are colleulated from equations 7 and 8 . These values are used in the following equations (9, 10 and 11) which are remrrungen forme of equation 2. A value for Lelia is enlewiated from point 7 and the equation

The values obtained thus far are then used in the following two equations to obtain better approximations to $D_{1}$ and $D_{2}$. Point $\alpha$ is used for a recalculation of the value of $D_{2}$ :

$$
\begin{equation*}
p_{x}=p_{\alpha}-\frac{k_{1}}{\alpha_{\alpha}}\left(\operatorname{ter}_{\alpha}-p_{\alpha}\right)+\frac{k_{x} k_{z}}{a_{\alpha}}\left(p_{\alpha}-p_{\alpha}\right) \tag{10}
\end{equation*}
$$

Point a ie used for the recalculation of the value or $D_{s}$ ?

The nev values of $D_{2}$ and $D_{2}$ are then weed in the next cycle of calculations using equations $7,8,9,20$ and 12 in succession. The enleulatione would be continued until the nev values for $D_{1}$ and $D_{3}$ agreed within the limits of expertmetal error with their respective preceding values. For the very rivet cycle or caleviation it might be assumed that $D_{1} \simeq D_{\alpha}$ and $D_{2} \simeq D_{c}$. The application of this method to the data of Table I is anmarimed in Table II.

Table II
The Calculation by Successive Approximations of $k_{1}$ and $k_{2}$ for Inophthnile AcId from the Date of Table I.

First Cycle
Aspunied value or $D_{2}$ Attuned value of $\mathrm{D}_{9}$ Calculated value of $\mathbf{k}_{\mathbf{2}}$ Celleulated value of $k_{k}$ Calculated value of $\mathrm{Le} \mathrm{K}_{\mathrm{a}}$ Calculated value of $D_{2}\left(-L_{2} \mathrm{~K}_{2}\right)$ Calculated value of $D_{y}\left(-\mathrm{LE}_{\mathrm{o}}\right)$

$$
1.298 \quad 1.295
$$

$$
1.149
$$

$$
2.54 .790 \times 10^{-*}
$$

$$
4.06920 \times 10^{-3}
$$

$$
1.636,052
$$

$$
1.294,984 \div 1.295
$$

$$
1.148,849 \div 1.149
$$

Second Cycle

$$
\begin{aligned}
& 1.295 \\
& 1.149 \\
& 2.50441 \times 10^{-4} \\
& 5.97290 \times 10^{-8} \\
& 1.629,281 \\
& 1.294,848=1.295 \\
& 1.148,848=1.149
\end{aligned}
$$

Since the respective calculated values of $D_{2}$ and $D_{2}$ in the first two cycles agree with each other within experimental error ( $\pm 0.001$ optical density units at beat), the valued of $k_{2}$ and $k_{2}$ calculated in the second cycle can be taken as final values. These values of $k_{1}=2.50 \times 10^{-4}$ and $k_{e}=3.97 \times 10^{-3}$ differ by only one in the third place from the values obtained by the "complete" solution. The difference is probably due to the rounding of the seemed valve of $\mathrm{D}_{2}$ and Do in Table IT and, in may event, the difference is negligible compared with the actual experimental error. The values of the second cycle in Table II have been upend in equation 2 to calculate the solid curve Y blotted in Fig. I. The agreement between the plotted curve and the experimental point provides some experimental support for the validity and usefulness of the two methods presented here.

Although the two methods required about the same amount of calculating in the extmple that was given, the "complete" method sometimes will be quicker because the polis $D_{\alpha}$ and/or $D_{c}$ many not lie so close to the respective value of $D_{1}$ and/or $D_{p}$ and more than two cycles then might be required in the above method of successive approximations. Disadvantages of the "complete" method are the slightly greater compleasty of the terms involved in it and the fact that
arithmetical errors might be harder to detect than they would be in the method of auccesalive approximations. In the interests of accuracy it would be desirable in either method to determine each of the five points at least in duplicate. Also the measurement of a rev trial point might be helpful in finding a favorable pill at which to menaure solution $\%$. Only optical density differences much as $D_{1}-D_{a}$ need to be measured. Consequently only four wpectrophotonitrice quantties, erE-, $D_{B}-D_{a}, D_{7}-D_{\alpha}, D_{8}-D_{\alpha}$ and $D_{6}-D_{\alpha}$, require meneurenent and in measuring them increased accuracy could be obtained by using the technique of differential spectrophotometry.*

Each of the above methods provides a solution to the problems posed by overlapping values of $\mathrm{k}_{1}$ and $\mathrm{k}_{\mathrm{a}}$ ae does also the method of Thamer and Voigt. ${ }^{\text {E }}$ A possible disadvantage of the methods presented here is the fact that the amount of data employed does not itself permit a verification that equations 1 and footnote 1 represent the actual equilibria of the system. Agreement between the plotted curve and additional points as in Fig. I would be necessary to show that such were the equilibria over the whole pill range. The advantage of the present methods lies in the fact that they would require little experimental work and little calculating. In the event that the optical densities were measured for each solution at more than one wave length they could be combined for calculating purposes into a composite $\mathbf{C}$ by means of the relation

$$
c=\bar{F}_{3} g_{3} D_{3}
$$

where $J$ represents each wave length at which measurements were made and each $\boldsymbol{g}_{J}$ is an arbitrarily chosen weighting factor. Each resulting C-value could be used in place of the D-value at the same pi in each of the foregoing equations. The weighting factors would be chosen to give maximum values for

$$
\frac{\left|c_{\alpha}-c_{y}\right|}{y\left|E_{j}\right|} \quad \text { and } \quad \frac{\left|c_{y}-c_{c}\right|}{\frac{y}{j}\left|s_{j}\right|}
$$

Instead of making the calculation at each wave length at which data were available and averaging the results, one could by this mean utilize all of the data in a less time-consuming manner by making one calculation with composite values.
(e) See, for example, R. Bastion, R. Weberling and F. Pallia, Anal. Chert. 22, 160 (1950).


Fig. t-Spectrophatometric deta on isophthalic acid at 24600 \&: solid circles, experimental pointe used in the colculations of this paper; open circles, other axperimental polints solid curve, colculated from Ea, 2 waing the rewits of Tablo 2 .


[^0]:    ${ }^{(2)}$ Charges are not atteched to the ayntiols HoA, Hi and A in the equitioria

    $$
    \begin{aligned}
    & \text { Ha }=\mathrm{B}^{+}+\mathrm{H} \sim
    \end{aligned}
    $$

