Inferring Social and Internal Context Using a Mobile Phone

PDF Version Also Available for Download.

Description

This dissertation is composed of research studies that contribute to three research areas including social context-aware computing, internal context-aware computing, and human behavioral data mining. In social context-aware computing, four studies are conducted. First, mobile phone user calling behavioral patterns are characterized in forms of randomness level where relationships among them are then identified. Next, a study is conducted to investigate the relationship between the calling behavior and organizational groups. Third, a method is presented to quantitatively define mobile social closeness and social groups, which are then used to identify social group sizes and scaling ratio. Last, based on the ... continued below

Creation Information

Phithakkitnukoon, Santi December 2009.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 325 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Phithakkitnukoon, Santi

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

This dissertation is composed of research studies that contribute to three research areas including social context-aware computing, internal context-aware computing, and human behavioral data mining. In social context-aware computing, four studies are conducted. First, mobile phone user calling behavioral patterns are characterized in forms of randomness level where relationships among them are then identified. Next, a study is conducted to investigate the relationship between the calling behavior and organizational groups. Third, a method is presented to quantitatively define mobile social closeness and social groups, which are then used to identify social group sizes and scaling ratio. Last, based on the mobile social grouping framework, the significant role of social ties in communication patterns is revealed. In internal context-aware computing, two studies are conducted where the notions of internal context are intention and situation. For intentional context, the goal is to sense the intention of the user in placing calls. A model is thus presented for predicting future calls envisaged as a call predicted list (CPL), which makes use of call history to build a probabilistic model of calling behavior. As an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be the callers within the next hour(s), which is useful for scheduling and daily planning. As an outgoing call predictor, CPL is generated as a list of numbers/contacts that are the most likely to be dialed when the user attempts to make an outgoing call (e.g., by flipping open or unlocking the phone). This feature helps save time from having to search through a lengthy phone book. For situational context, a model is presented for sensing the user's situation (e.g., in a library, driving a car, etc.) based on embedded sensors. The sensed context is then used to switch the phone into a suitable alert mode accordingly (e.g., vibrate mode while in a library, handsfree mode while driving, etc.). Inferring (social and internal) context introduces a challenging research problem in human behavioral data mining. Context is determined by the current state of mind (internal), relationship (social), and surroundings (physical). Thus, the current state of context is important and can be derived from the recent behavior and pattern. In data mining research area, therefore, two frameworks are developed for detecting recent patterns, where one is a model-driven approach and the other is a data-driven approach.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2009

Added to The UNT Digital Library

  • March 17, 2010, 11:40 a.m.

Description Last Updated

  • May 10, 2010, 2:59 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 325

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Phithakkitnukoon, Santi. Inferring Social and Internal Context Using a Mobile Phone, dissertation, December 2009; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc12183/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .