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Effective supply chain management gains much attention from industry and academia 

because it helps firms across a supply chain to reduce cost and improve customer service level 

efficiently. Focusing on one of the key challenges of the supply chains, namely, demand 

uncertainty, this dissertation extends the work of Zhao, Xie, and Leung so as to examine the 

effects of forecasting method selection coupled with information sharing on supply chain 

performance in a dynamic business environment. The results of this study showed that under 

various scenarios, advanced forecasting methods such as neural network and GARCH models 

play a more significant role when capacity tightness increases and is more important to the 

retailers than to the supplier under certain circumstances in terms of supply chain costs. Thus, 

advanced forecasting models should be promoted in supply chain management. However, this 

study also demonstrated that forecasting methods not capable of modeling features of certain 

demand patterns significantly impact a supply chain’s performance. That is, a forecasting method 

misspecified for characteristics of the demand pattern usually results in higher supply chain 

costs. Thus, in practice, supply chain managers should be cognizant of the cost impact of 

selecting commonly used traditional forecasting methods, such as moving average and 

exponential smoothing, in conjunction with various operational and environmental factors, to 

keep supply chain cost under control.  This study demonstrated that when capacity tightness is 

high for the supplier, information sharing plays a more important role in effective supply chain 

management. In addition, this study also showed that retailers benefit directly from information 

sharing when advanced forecasting methods are employed under certain conditions.  
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CHAPTER 1  

INTRODUCTION 

During the past decades, the supply chain literature has focused on strategies such as just-

in-time and total quality management to make individual firms efficient and competitive. As the 

complexity of supply chains increases, managers are realizing that efficiency at each stage of the 

supply chain does not necessarily lead to optimal supply chain performance. The rule of global 

competition has shifted from “firm versus firm” to “supply chain versus supply chain.” That is, 

firms are realizing that a competitive strategy involves making the entire supply chain 

competitive, both upstream and downstream, and not just the stand-alone firm (Christopher, 

2005). Success stories of companies such as Procter & Gamble and Wal-Mart suggest that 

supply chain management (SCM) is perhaps the single most critical factor determining a firm’s 

success (Simchi-Levi, Kaminsky, & Simchi-Levi, 2007). In essence, managing the supply chain 

effectively can improve customer service levels dramatically, reduce excessive inventory in the 

system, and thus reduce supply chain cost significantly.  

Effective SCM is the next logical step toward reduced costs and increased profits. SCM 

is related to the coordination of products and information flows among suppliers, manufacturers, 

distributors, retailers, and customers. With effective information sharing and coordination of 

replenishment and production decisions under demand uncertainty, supply chains can further 

reduce costs and improve customer service levels. However, a prominent challenge faced by 

SCM is the bullwhip effect, which is the phenomenon of increased order variability throughout 

the supply chain. The bullwhip effect potentially leads to serious supply chain inefficiencies that 

may cost companies millions of dollars via excessive inventory costs, low capacity utilization, 

excessive freight charges, and loss of sales. Jay Forrester (1958) first discovered this 
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phenomenon and noted its serious consequences.  

Industry and academia have researched strategies to synchronize supply and demand to 

further reduce unnecessary costs due to the bullwhip effect. Among these strategies, lead-time 

reduction, information sharing, and demand forecasting have proven to be effective in reducing 

costs and improving system performance. In particular, research has addressed the impact of 

traditional forecasting methods and information sharing on supply chain performance (Chen, 

Drezner, Ryan, & Simchi-Levi, 2000a, 2000b; Zhao, Xie, & Lau, 2001; Zhao, Xie, & Leung, 

2002; Sohn & Lim, 2008). However, as supply chain complexity evolves and the intensity of 

competition increases, a better assessment of the impact of forecasting model selection coupled 

with other operational factors on supply chain performance in a broad, realistic context is 

required. This study not only considered the operational causes of the bullwhip effect such as 

demand forecasting and information sharing, but also included environmental factors such as 

capacity tightness and demand patterns in assessing supply chain performance.  

 Among the factors that could influence the performance of a supply chain, demand 

forecasting ranks as one of the critical factors since SCM is “driven by demand” (Stadtler, 2005, 

p. 580). In reality, retailers and suppliers cannot determine market demand with certainty in 

advance. Therefore, they must base their inventory decisions and production planning on demand 

forecasts. Demand forecasting plays an important role in SCM because forecasts generated by 

the retailers affect not only the retailers’ own performances but also those of other chain 

members. Overestimating demand forecasts usually leads to excessive inventory and extra 

production capacity while underestimating forecasts results in stock-out, loss of sales, and poor 

customer service levels. Ideally, more accurate demand forecasts are preferred.  

However, a supply chain usually involves many uncertainties from both the supply side 
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and the demand side. These uncertainties may include highly uncertain product demand, 

unreliable product yield, and supply chain disruption, all of which make demand forecasting 

more difficult and make production and inventory planning more challenging. In today’s modern 

economy, companies must be responsive to customers’ demands despite these uncertainties. 

Effective demand forecasting helps firms achieve this goal. Moreover, as a business function of a 

company, effective forecasting remains an important asset because inefficiencies in the supply 

chain often result from unreliable forecasts (Zhao et al., 2002). Effective demand forecasting can 

be realized through proper selection of forecasting methods based on demand patterns and the 

characteristics of the products. More importantly, managers and practitioners should understand 

the factors that influence a forecasting method’s impact on a supply chain’s performance. This 

knowledge helps minimize the negative impact of uncertainties related to the supply chain 

system on supply chain performance. 

At the executive level, management often lacks knowledge about forecasting issues 

related to effective SCM. Although forecasting is an ancient activity, it is still an underrated field 

of research in SCM (Datta, Granger, Barari, & Gibbs, 2007). Recently, forecasting has become 

more sophisticated as it requires greater expertise and skills on the part of managers and 

practitioners to use it properly. Although advanced methods are being investigated and are 

coming into use, they are not popular in practice. Surveys indicate that the moving average and 

exponential smoothing methods are among the most frequently used forecasting techniques in 

practice because managers or analysts are familiar and satisfied with these simple forecasting 

models (Kim & Ryan, 2003).  

The use of advanced demand forecasting models does not automatically result in cost 

reduction for the supply chain. Zhao et al. (2001, p. 3936) reported that “the choice of 
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forecasting model alone did not account for the cost saving achieved. However, the effectiveness 

of early order commitment in conjunction with different forecasting models was largely 

determined by the accuracy of the models’ demand forecast.”  In the same vein, Jeunet (2006) 

showed that improved demand forecast accuracy might not be rewarded if lot-sizing techniques 

perform equally badly due to forecast error. This raises two questions: “Is it worth the effort to 

promote advanced forecasting techniques in SCM?” and “Should practitioners continue using the 

traditional forecasting methods, or should they adopt advanced forecasting methods?”  To 

answer these questions, this dissertation systematically investigates the impact of forecasting 

method selection on supply chain performance under a variety of conditions in order to provide 

managerial guidelines on improving the entire supply chain performance.  

 

Foundational Background 

This section provides the background information that forms the foundation for this 

study. The bullwhip effect has prompted research in lead-time reduction, information sharing, 

earlier order commitment, effective demand forecasting, lot-sizing techniques, and inventory 

policies to improve supply chain performance. In fact, a stream of literature has developed 

around the operational causes of the bullwhip effect: lead-time, demand forecasting, batch 

ordering, gaming and promotions (Lee, Padmandabhan, & Whang, 1997). Focusing on demand 

forecasting, researchers have taken different approaches and constructed various models to 

investigate the impact of demand forecasting on the supply chain (Graves, 1999; Chen et al., 

2000; Zhao et al., 2002; Alwan, Liu, & Yao, 2003; Dejonckheere, Disney, Lambrecht, & Towill, 

2003; Zhang, 2004). These authors reported that forecasting method selection plays an important 

role in reducing the bullwhip effect in a supply chain. Among them, Zhao et al. (2002) made 
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important contributions in illustrating the significant impact of forecasting model selection on the 

value of information sharing in a supply chain.   

In a series of papers by Zhao et al. (2001, 2002) and by Lau, Xie, & Zhao (2008), the 

impact of different factors such as information sharing, earlier order commitment, and inventory 

policies coupled with demand forecasting on supply chain performance were investigated. An 

important conclusion was that the selection of a forecasting model alone might not account for 

cost reduction achieved. They showed that information sharing, earlier order commitment, and 

lot-sizing techniques, coupled with effective demand forecasting, all played a role in achieving 

significant cost savings for the supply chain. Although the traditional forecasting models in this 

series of papers generally work well for demand with a relatively stable trend or seasonality, the 

results of these papers may not hold for demand processes exhibiting time-varying volatility. “It 

is highly unlikely that the demand for innovative products, durables, or products marketed by a 

few competitors exhibits the i.i.d. [independent and identically distributed] behavior. In the case 

of an innovative product, early product diffusion tends to generate highly correlated and varying 

demand over time” (X. Zhang, 2007, p. 128).  In the same vein, F. Zhang (2007) also 

demonstrated the heteroscedastic nature of demand process in semiconductor supply chain 

planning and proposed a combinational forecasting method to forecast product demand. In fact, 

few empirical studies have documented this heteroscedastic effect in the supply chain and 

operations management literature. It is clear that research in the supply chain literature has paid 

little attention to this effect despite the fact that recent research has shown that traditional time 

series forecasting models do not yield satisfactory results for products that exhibit time-varying 

demand (Sohn & Lim, 2008). 

Contributing to this research stream, Datta et al. (2007) theoretically proposed that a 
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generalized autoregressive conditional heteroscedasticity (GARCH) model be used in demand 

forecasting for a supply chain since a GARCH model is able to capture the time-varying 

volatility or cluster volatility as it does for financial time series data. Datta et al. (2007) argued 

that forecasting is needed in almost any operation. However, in general, forecasting methods 

used in practice are still primitive compared to the progress made by research. Advanced 

forecasting methods used in predictive analytics in reducing uncertainty and volatile 

characteristics of global trade are urgently needed. However, little research has been done to 

empirically demonstrate that the increased accuracy of demand forecasts generated by a GARCH 

model indeed brings significant benefits to the entire supply chain system. 

Moreover, Carbonneau, Laframboise, & Vahidov (2008) investigated the forecast 

accuracy of  both the traditonal methods, such as moving average and mutiple linear regression, 

and non-traditonal forecasting methods, such as neural networks and support vector machines, by 

using simulated data and real data (Canadian Foundries orders). The authors reported that, in 

general, nontraditional methods outperformed traditional methods on real data in terms of 

accuracy. However, advanced forecasting models did not provide a large improvement over 

traditional forecasting methods for their simulated data sets. In particular, they did not find that 

machine learning techniques significantly outperformed multiple linear regression. They also 

suggested that future resarch should consider the impact of information sharing on forecasting 

accuracy. 

Also examining nontraditional forecasting methods, Aburto & Weber (2007) combined 

autoregressive integrated moving average (ARIMA) models and neural network models to 

develop a hybrid intelligent system to forecast demand for a Chilean supermarket. The results 

showed that the improved forecasting accuracy led to few sales failures and low inventory levels 
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compared with the previous solution. According to F. Zhang (2007, p. 289), “the combinational 

forecast can increase forecasting accuracy by integrating several separate forecast models when 

difficulties arise in identifying a single model.” When forecasts from different models are 

averaged, biases among individual models should compensate for one another. As a result, 

predictions obtained from different forecasting models are expected to be more useful in cases of 

high uncertainty. Recent research is focusing on how to achieve high accuracy with demand 

forecasting by employing advanced forecasting techniques. However, it is not certain whether 

the value of improved forecasting accuracy can be realized in a complex and dynamic business 

environment. 

In short, forecasting methods have been studied in relation to their impact on the 

bullwhip effect and on supply chain performance under a variety of assumptions and operational 

settings. Earlier research showed that forecasting models play an important role in reducing the 

bullwhip effect. It is noted that early research efforts focused on quantifying the bullwhip effect 

and provided solutions to reduce this effect. However, little research has been conducted to study 

the cost impact of the bullwhip effect. Zhao et al. (2002) extended the model by Chen et al. 

(2000) and incorporated different forecasting methods, information sharing, and cost structures 

into their study to quantify the financial inefficiency resulting from the bullwhip effect. They 

reported that forecasting method selection greatly impacts the value of information sharing and 

supply chain performance. However, forecasting method selection by itself may not account for 

the cost reduction across a supply chain. Thus, the effectiveness of forecasting method selection 

and its impact on supply chain performance must be evaluated in a broader operational 

environment.  

A limitation of Zhao et al. (2002) is that their results from using traditional forecasting 
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methods assuming relatively stable demand might not hold under a volatile demand process. 

Another limitation is that traditional forecasting methods may not be able to capture the 

nonlinear patterns in a demand process. More recent research (Datta, 2007; Aburto & Weber, 

2007; Zhang, 2007; Carbonneau et al., 2008) has proposed using advanced forecasting models to 

cope with demand uncertainty in a supply chain. Unlike Zhao et al. (2002), these authors did 

focus on demand forecast accuracy, but they did not incorporate other operational factors such as 

inventory policies and information sharing into their models. Therefore, it is not clear whether 

advanced methods bring significant improvement to the supply chain’s performance since the 

improved forecast accuracy might not be rewarded if other operational factors such as inventory 

policy or lot-sizing technique are not properly selected and employed. Moreover, none of these 

studies specifically investigates the impact of forecasting methods on supply chain performance 

under temporal demand heteroscedasticity. This dissertation systematically investigates the 

impact of forecasting models on supply chain performance under different demand patterns 

including heteroscedasticity. 

Finally, ample forecasting techniques are available to practitioners. There are over 70 

different time series techniques (Mentzer & Moon, 2005). Even with these forecasting methods 

on hand, supply chain managers and practitioners may not use the optimal method to forecast 

demand under certain demand patterns. Instead, they may select simple forecasting methods such 

as moving average and exponential smoothing because they are comfortable or satisfied with 

these methods. Limited research has addressed the impact of suboptimal forecasting method 

selection on the supply chain in terms of costs in a dynamic business environment. With the 

development of information technology, advanced forecasting methods, and the evolution of the 

supply chain, there is an urgent need for mangers and researchers to have a better understanding 
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of the impact of forecasting model selection coupled with other operational and environmental 

factors on the overall supply chain performance. Table 1-1 compiles the major research that 

forms the foundation of this study and the focus of the previous work.  

Table 1-1  

Forecasting Methods Investigated in Supply Chain Management 

 

Forecasting Methods Focus of Study Demand Pattern Ordering 
Policy Authors 

Exponential-weighted 
moving average 

Amplification of 
demand variability in a 
single-item inventory 
model 

ARIMA(0,1,1)  Adaptive 
base-stock 
policy 

Graves (1999) 

Moving average,  
Single exponential 
smoothing  

The impact of 
forecasting methods on 
the bullwhip effect 
(BWE) 

AR(1) demand 
process 

Order-up-to 
policy 

 Chen et al. 
(2000a,b)  

Naive forecasting, 
Moving average, 
Double exponential 
smoothing, 
No-trend Winters’ 
method, 
Winters’ three-
parameter model 

The impact of 
forecasting methods 
selection on the value 
of information sharing 
in a supply chain 

Constant 
demand, 
demand with 
seasonality, 
demand with 
seasonality and 
trend 

Economic 
Order 
Quantity 
(EOQ) policy 

Zhao et al. 
(2002) 

Minimum mean-
squared error (MMSE) 
forecasting method 

The impact of 
forecasting method on 
BWE 

AR(1) 
ARMA(1,1) 

Order-up-to 
policy 

Alwan et al. 
(2003) 

Moving average, 
Exponential smoothing  

The impact of 
suboptimal forecasting 
and limited demand 
information on the 
expected inventory 
costs in a supply chain 

AR(1) Order-up-to 
policy 

Kim & Ryan  
(2003) 

 
(table continues) 
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Table 1-1 (continued). 
 

Forecasting Methods Focus of Study Demand Pattern Ordering 
Policy Authors 

Simple exponential 
smoothing , 
Moving averages 

The impact of 
forecasting method on 
BWE  using a control 
theoretic approach 

Sine wave 
demand pattern 

Order-up-to 
policy 

Dejonckheere 
et al. (2003) 

Minimum mean-squared 
error (MMSE) forecasting 
method, 
Moving average, 
Exponential smoothing  

The impact of 
forecasting methods on 
BWE 

AR(1) demand 
process 

Order-up-to 
policy 

Zhang (2004) 

Holt’s method,  
Brown’s double-
exponential smoothing 

The impact of 
forecasting methods 
and ordering policies 
on BWE 

Demand with 
trend and 
random noises 

Based on 
Sterman’s 
model: 
Generic 
stock 
acquisition 
and an 
ordering 
heuristic 

Wright  & 
Yuan (2008) 

Hybrid demand forecasting  
ARIMA+Neural Network 

Improved supply chain 
management based on 
hybrid demand 
forecasts 

Sales data None Aburto & 
Weber  (2007) 

GARCH model 
 

Use of the GARCH 
model to forecast 
demand theoretically 

None None Datta et al. 
(2007) 

GARCH model Application of the 
vector GARCH model 
in semiconductor 
demand planning 

Sales data None F., Zhang 
(2007) 

Naive forecasting, 
Average, 
Moving average, 
Trend, 
Multiple Linear 
Regression, 
Neural Networks, 
Recurrent Neural 
Networks, 
Support Vector Machines 

The effectiveness of 
forecasting distorted 
demand signals with 
advanced  nonlinear 
machine learning 
technique in the 
extended supply chain 

Data set 1: 
simulation data 
set (sine wave 
pattern plus 
white noise) 
Data set 2: 
Foundries data 
provided by 
Statistics Canada 

None Carbonneau  
et al. (2008) 
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Research Gaps 

Gaps exist in the supply chain literature with regard to the impact of forecasting method 

selection on supply chain performance. First, prior studies concentrated on the impact of the 

traditional time series forecasting methods on supply chain performance under relatively stable 

demand patterns. However, none of these studies considered temporal demand heteroscedasticity 

in their models nor investigated the impact of heteroscedasticity on forecasting method selection 

and supply chain performance. Even though empirical studies addressing GARCH behavior are 

numerous in the financial literature, “the operations management community by large has paid 

little attention to the variability in higher moments of the demand, theoretically or empirically” 

(Zhang, 2007, p. 141). The good news is that a recent study (Zhang, 2007) has empirically 

demonstrated that the variability in the higher moments of the demand exists in the supply chain 

and has argued that it might be associated with the bullwhip effect. Moreover, Datta et al. (2007) 

theoretically proposed that a GARCH model be used in demand forecasting in SCM because of 

the variability in the higher moments of the demand and high volume of data available to the 

supply chain. Motivated by recent research, one of the foci of this dissertation is to investigate 

the impact of forecasting method selection on supply chain performance under temporal demand 

heteroscedasticity, which has not been addressed in prior SCM studies. 

A variety of time series methods have appeared in SCM literature. Namely, the 

traditional models have been frequently investigated, usually including moving average, double 

exponential smoothing, Holt’s, Winters’, and ARIMA. These models work well under the 

condition that the demand variance (conditional and unconditional) needs to remain 

homogeneous and constant over time. However,  if demand variance is not constant, volatility 

clustering (Gourieroux, 1997) will cause  the predictive accuracy of traditional time series 
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models such as auto-regressive moving average (ARMA)  or Holt-Winters’ smoothing method to 

deteriorate considerably because these models do not take it into consideration (Chang & Tsai, 

2008). Thus, a question arises as to whether advanced forecasting methods can overcome the 

limitations of traditional forecasting methods in SCM. Although advanced forecasting models, 

such as GARCH and neural network, are emerging in the supply chain area, they have not been 

thoroughly researched. Therefore, an assessment of the impact of these advanced models on a 

supply chain is needed. 

Second, although advanced information technology allows retailers to obtain significant 

amounts of information on customer demand, many retailers still rely on relatively simple 

forecasting techniques to forecast customer demand (Makridakis, Wheelwright, & Hyndman, 

1998). Relatively little research has addressed the cost impact of suboptimal forecasting methods 

on a supply chain’s performance. Kim & Ryan (2003) is one of the few studies which 

investigated the impact of suboptimal forecasting methods on system performance. The effect of 

simple forecast techniques on supply chain performance under different demand patterns, 

including temporal demand heteroscedasticity, has not been addressed. This research intends to 

investigate how serious the consequence is if a simple forecasting technique is used by the 

retailers under different demand patterns.  

Lastly, research has been limited in addressing related operational factors and 

environmental variables that affect demand forecasting’s impact on a supply chain’s costs.  Prior 

studies have shown that a forecasting method itself may not account for the improvement of 

supply chain performance. However, a forecasting method, coupled with other operational 

factors, can greatly improve a supply chain’s performance. This dissertation incorporates 

information sharing, capacity tightness, and environmental factors into the simulation model to 
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evaluate the effect of forecasting methods on system performance so that the results can be 

generalized to a broader context. 

 

Purpose of Research 

The purpose of this research is to investigate the impact of forecasting method selection 

and information sharing on supply chain performance under different demand patterns, including 

temporal demand heteroscedasticity, and under different levels of supplier capacity tightness. 

Traditional forecasting methods and their impacts on supply chain performance have been 

intensively studied in SCM literature under relatively stable demand patterns. However, recent 

research has shown that the GARCH error exists in industrial demand, and thus, the influence of 

advanced forecasting methods on a supply chain needs to be addressed. More importantly, a 

steady increase in the complexity of supply chains and in the competition among firms makes 

research examining more effective forecasting techniques and information sharing policies 

compelling and timely. This research provides an understanding of forecast model selection and 

systematically studies its impact on a supply chain’s performance in a realistic context. 

 

Scope of Research 

This dissertation incorporates the factors illustrated in Table 1-2 and focuses on the 

impact of forecasting method selection and information sharing on supply chain performance. 

This study distinguishes itself from prior research in the following aspects. First, different 

demand patterns, including temporal demand heteroscedasticity, which has barely been 

addressed in supply chain forecasting literature, are investigated in this dissertation. Second, 

advanced forecasting techniques, namely the GARCH and neural network models, which have 
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received little attention in supply chain forecasting research, are examined under different market 

environments and scenarios. Third, the scenario involving non-information sharing is 

implemented by the supplier using its own forecasting model on aggregated historical orders to 

plan production. In prior studies, non-information sharing is often implemented by the supplier 

using only the current retailers’ orders. In this study, the supplier’s own forecasts are used in a 

single-item-capacitated lot-sizing rule, in which a fraction of the planning horizon is 

implemented without further changes. This fraction of the planning horizon is referred to as the 

frozen period. Finally, this dissertation focuses on the main effects of each factor and on the 

interaction effects of these factors on supply chain performance as described in Table 1-2 as 

well. A total of 168 combinations of factor levels are investigated in this simulation study. The 

findings should assist supply chain managers and practitioners in selecting suitable forecasting 

techniques and information sharing policies to improve the overall supply chain performance and 

gain competitive advantages. 

Table 1-2  

Factors to Be Examined for Effect on Supply Chain Performance 

Factors Affecting Supply 
Chain Performance 

Number 
of Levels  

Names of Levels of Factors  

Demand Patterns 4 Trend 
Trend & Seasonality 
Trend & Seasonality & Heteroscedasticity 
Trend & Seasonality & Common Disturbance 

Forecasting Methods 7 Moving average 
Double exponential smoothing 
Winters’ method 
ARIMA 
SARIMA 
GARCH 
Neural networks 

Information Sharing 2 No information sharing  
The sharing of planned orders  

Supplier’s Capacity Tightness  3  Low (1.33), Medium (1.18), and High (1.05)   
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Research Questions 

Although there are many factors affecting supply chain performance, this dissertation 

focuses on forecasting method selection and its relationship with information sharing and 

selected environmental variables such as capacity tightness and demand patterns. Accordingly, 

the research objectives for this dissertation are as follows.  

Research Objective 1: To investigate the impact of traditional and advanced forecasting model 
selection on supply chain performance along with information sharing under different demand 
patterns, including temporal demand heteroscedasticity, in a capacitated supply chain.  

Research Objective 2: To investigate how operational and environmental factors interact with 
forecast model selection to influence a supply chain’s performance. 

Research Objective 3:  To provide managers and practitioners with guidelines that provide a 
framework about forecasting method selection and information sharing options.   

To achieve these objectives, this research addresses the following questions: 

1. Does the forecasting method selection by the retailers significantly affect the supply 

chain performance under different levels of information sharing and capacity tightness in 

a two-echelon capacitated supply chain? 

2. Do advanced forecasting methods outperform traditional forecasting methods and bring 

significant cost reduction to the supply chain under different demand patterns? 

3. Are there any significant interaction effects between forecasting method selection, 

information sharing, and capacity tightness? 

The contributions of this dissertation address gaps in the research literature as listed 

below. First, different demand patterns, including temporal demand heteroscedasticity, which has 

seldom been addressed in SCM literature, are investigated in this dissertation. Second, this 

research investigates the impact of nonlinear forecasting methods such as neural network and 

GARCH models on supply chain performance, which has not been done in previous research in a 

realistic supply chain setting. Third, this dissertation addresses the impact of simple and 
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commonly used forecasting methods, such as the moving average and double exponential 

smoothing methods, on supply chain performance to see whether these simple forecasting 

methods lead to worse supply chain performance. Fourth, in the non-information sharing case, 

the supplier is assumed in this dissertation to use its own forecasting intelligence to forecast 

future orders and make its production schedule before orders arrive. Such a situation was not 

addressed in Zhao et al. (2002). Lastly, interaction effects among forecasting methods, 

information sharing, demand patterns, and capacity tightness are further investigated. 

In this study, a simulation model was used as the basis for an experimental analysis. Due 

to the uncertainty and complexity inherent in a supply chain, simulation has emerged as a 

suitable tool for analysis of logistics and supply chain systems (Bowersox & Closs, 1989).  

Although mathematical models are capable of providing accurate and optimal results, they 

cannot readily address the computational complexity of the entire SCM problem. Mathematical 

models require numerous assumptions to make the problem tractable so that an analytical 

solution can be reached. However, simulation is capable of including stochastic conditions and 

providing the flexibility to study system behaviors as system parameters and policies are 

changed (Rosenfield, Copacino, & Payne, 1985). When a supply chain involves more than two 

echelons, managing the entire supply chain becomes more difficult for mathematical analysis 

and is usually carried out with the help of computer simulation (Ballou, 1992). Therefore, 

simulation was employed to investigate the main effect of each critical factor and the interaction 

effect of these factors in this study. 

The next chapter provides a detailed literature review, citing research on the bullwhip 

effect, forecasting methods, and information sharing. In essence, this research has endeavored to 
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fill some of the gaps in the research associated with forecasting demand, capacity constraints, 

and information sharing in a dynamic business environment.  
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CHAPTER 2  

LITERATURE REVIEW 

The bullwhip effect is a source of supply chain inefficiency, resulting in serious financial 

consequences for a supply chain. Studies to mitigate the bullwhip effect have extensively 

researched its causes and have suggested strategies aimed at cost reduction and performance 

improvement for the supply chain. This chapter reviews three important research streams that 

motivate the research in this dissertation: the bullwhip effect, forecasting method selection, and 

information sharing. Research gaps are discussed.  

 

Bullwhip Effect in the Supply Chain 

The bullwhip effect refers to the phenomenon that order variation is amplified as orders 

move upstream in the supply chain. This effect can hurt a supply chain’s performance by causing 

excessive inventory, low capacity utilization and poor customer service. The objective of a large 

body of research on this topic is to reduce costs and improve supply chain performance by 

helping management understand how to tame the bullwhip effect. Jay Forrester (1958) first 

discovered this effect. In the 1960s, the beer distribution game was invented to demonstrate the 

existence of the bullwhip effect and a number of key principles of SCM. Later on, Lee et al. 

(1997) mathematically proved the existence of the bullwhip effect, addressed four operational 

causes of the bullwhip problem, and provided solutions to tame this effect. Much research has 

been devoted to taming the bullwhip effect and searching for solutions to reduce it.   

Causes of the bullwhip effect can be divided into two categories: operational and 

behavioral causes. Most research on the bullwhip effect has focused on the operational causes. A 

number of analytical models have been proposed, and solutions have been provided under certain 
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assumptions. However, studies focusing on behavioral causes of the bullwhip effect report that 

the optimal functioning of a supply chain is often distorted by specific behavior of individual 

decision makers in the chain. For instance, Croson & Donohue (2003, 2006) demonstrated that 

the bullwhip effect still persisted even when the commonly cited operational causes noted in Lee 

et al. (1997) were controlled. More importantly, the behavioral causes responsible for the 

persistence of the bullwhip effect were identified.  

Furthermore, researchers have observed inefficiencies caused by the bullwhip effect in 

the operations of Campbell’s Soup (Fisher, Hammond, Obermeyer, & Raman, 1997), Hewlett 

Packard and Proctor & Gamble (Lee et al., 1997), and Glosuch (McCullen & Towill, 2000). Due 

to global competition, increased uncertainty of the supply chain, and higher customer 

requirements, firms are under greater pressure to tame the bullwhip effect so as to improve 

supply chain performance. As indicated by Lee et al. (1997), identifying the causes of the 

bullwhip effect results in strategies for alleviating the detrimental impact of this phenomenon. 

That is, understanding the root of the bullwhip effect is an important step in attacking the 

bullwhip problem. This section provides a review of the causes of and remedies for the bullwhip 

effect.  

Using computer simulation models, Jay Forrester (1958) demonstrated that the variance 

of the order at the upstream end of a supply chain, as in Figure 1-1, may be much greater than the 

variance of the customer demand at the downstream end. Forrester first observed this 

phenomenon and asserted that the main cause of the bullwhip effect was irrational behavior at 

various stages of the supply chain. Since there is a lack of a holistic view of the supply chain, the 

retailer, wholesaler, distributor, and manufacturer, as displayed in Figure 1-1, may make their 

order decisions from a myopic point of view, which will lead to order amplification.  
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Figure 1-1. Extended supply chain. 

 Sterman (1989) presented seminal work on the effect of human behavior on the bullwhip 

effect through a tabletop management game—the so-called MIT beer game. The author reported 

that individual decisions interacting with the structure of the simulated firm created system 

dynamics that diverged from optimal behavior systematically and argued that misperception of 

feedback was responsible for the bullwhip effect. In other words, participants made poor 

decisions because they had difficulties in evaluating the complex feedback loops in the presence 

of time delays. Finally, the author proposed an anchoring and adjustment heuristic for stock 

management to reduce irrationality in determining orders and emphasized that the key to 

improved system performance lies within the policy used by individuals to manage the system, 

rather than in the external environment. 

Towill (1991) also noted that the bullwhip problem occurred within a supply chain that 

comprised “the behavior of a very complex system involving many players, whose decision-

making procedures may be ill-chosen or who may act upon misinterpretation of true market 

demand” (Towill , 1991, p.198). The chance of counter-intuitive behavior increases as the supply 

chain system becomes more complicated. Using the original Forrester (1958) model as a 

benchmark, the authors showed that demand amplification could be significantly attenuated once 

the information and material delays were eliminated and that greater benefits could be achieved 

by encouraging collaboration between all players within the supply chain. 

Contrary to the previous studies, Lee et al. (1997) argued that the bullwhip effect was a 
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consequence of rational behavior rather than irrational behavior of the decision makers across the 

supply chain. These authors mathematically proved the existence of the bullwhip effect and 

identified five possible causes of this effect: demand forecasting, lead times, batched order, price 

variations, and rationing game under shortage. The authors made significant contributions in 

identifying these causes, providing insights into the effect of each cause on the supply chain and 

suggesting possible strategies to mitigate the bullwhip effect according to the causes identified. 

More importantly, they identified information sharing as the key to resolving demand distortion. 

Croson & Donohue (2003) examined the impact of point of sale (POS) data sharing on 

ordering decisions in a multi-echelon supply chain through a controlled simulation experiment 

from a behavioral perspective. In particular, they wanted to investigate how decision makers use 

their supply and demand lines when POS data are available. They assigned the participants to 

two groups—a control group and a treatment group. The participants in the control group knew 

the underlying demand distribution while those in the treatment group knew both the demand 

distribution and the realized customer demand. They found that participants continued to 

underweight the supply line in placing their orders in the presence of POS data. However, they 

did react differently to the demand line when the POS data were known. They observed that the 

magnitude of the bullwhip effect decreased in the treatment group as compared with the control 

group. That is, the sharing of POS data mitigated the bullwhip effect in their study.  

Croson, Donohue, Katok, & Sterman (2004) demonstrated that the bullwhip effect 

persists even if all four commonly cited operational causes of this effect are controlled and every 

participant knows the constant demand. They proposed a new behavioral cause of the bullwhip 

effect—“coordination risk.” That is, participants place excessive orders to protect themselves 

against the risk that other participants may not behave optimally. They concluded that the 
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bullwhip effect might be mitigated, but the behavioral causes of this effect appear robust. 

Croson & Donohue (2006) continued to study the bullwhip effect from a behavioral 

perspective in a simple supply chain subject to information lags and uncertain demand. They 

conducted two experiments on two different sets of participants. In one experiment, they found 

that the bullwhip effect persisted after they controlled all the commonly cited operational causes 

of this effect (such as batch order, demand forecasting, and price variation). They argued that the 

“bullwhip effect is not solely a result of operational complications such as seasonality or 

unpredictable demand trend” (Croson & Donohue, 2006, p. 333). It is also a product of the 

cognitive limitations, such as underweighting the supply line. In the other experiment, they 

informed the participants of the inventory status across the supply chain and found that the 

bullwhip effect and the tendency to underweight the supply line remained. However, the 

magnitude of the bullwhip effect decreased because the upstream chain members used the 

inventory information to anticipate and adjust their orders. They showed that the sharing of 

inventory information helped alleviate the bullwhip effect to some extent.   

Gino, Bloomfield, & Kulp (2007) investigated the impact of three factors that were 

hypothesized to exacerbate the bullwhip effect: durability of products and orders, transit lags, 

and the nature of demand shocks in experiments in which the operational causes noted in Lee et 

al. (1997) were controlled. The authors showed that the magnitude of the bullwhip effect was 

likely to vary with the three hypothesized factors beyond the effects predicted by optimization 

analyses. In particular, they investigated whether common and consistent errors made by 

individuals in newsvendor games were responsible for the surprisingly non-optimal phenomena 

observed in bullwhip games. They found that transit lags exacerbated the demand amplification 

by interfering with the subjects’ ability to correct prior errors. 
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 Nienhaus, Ziegenbein, & Schoensleben (2006) focused on the impact of human behavior 

on the bullwhip effect using the Online Beer Game. They designed and implemented 

experiments using human players and computer agents and found that both the human players 

and computer players performed worse as retailers when compared with the global optimal 

solution for the retailers. In particular, they showed that human behavior caused the bullwhip 

effect. If players acting as retailers order more than what they actually need for the sake of being 

safe, inventory cost at their tier will increase. This, in turn, puts pressure on wholesalers to order 

more as well. Hence, manufacturers may have to produce more than necessary. Thus, the “safe 

harbor” strategy employed in one tier has a negative impact on the entire supply chain. 

Interestingly, another extreme in human behavior is to empty inventory stock before the increase 

of the consumer demand stops. This action, in turn, results in high penalties for stock-out 

situations in time periods to come. Nienhaus et al. (2006) aptly demonstrated the role that human 

behavior plays in causing the bullwhip effect and showed that information sharing helps reduce 

the bullwhip effect.  

Table 2-1  

Causes of Bullwhip Effect and Proposed Solutions 

Causes of Bullwhip Effect Proposed Solutions Comments and 
Contributions Authors 

Irrational behavior at 
various stages of the supply 
chain 

1) Better understanding 
of the supply chain 
dynamics 

System dynamics leads to 
diverge from optimal 
behavior. 

Forrester 
(1958) 

Misperceptions of 
feedbacks, 
Supply line underweight 

1) Anchoring and 
adjustment heuristic to 
reduce irrationality 

The suboptimal 
performance often results 
from misperceptions of 
feedback. 

Sterman 
(1989) 

Information and material 
delays  

1) Eliminating 
information and material 
delay 
2) Collaboration 

Just-in-time strategy and 
the echelon removal 
strategy proved to be the 
most effective in mitigating 
the bullwhip effect. 

Towill et al. 
(1992) 

(table continues) 
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Table 2-1 (continued). 
 

Causes of Bullwhip Effect Proposed Solutions Comments and 
Contributions Authors 

Lead-times, demand signal 
forecasting, ordering 
batching, gaming, and 
promotions  

1) Information sharing  
2) Lead-time reduction 
3) Echelon-based 
inventory  

Rational behavior rather 
than irrational behavior 
causes the bullwhip effect. 

Lee et al. 
(1997) 

Underweighting supply line 
in the presence of POS data 

1) POS data sharing POS data doesn’t affect 
how subjects react to the 
supply line, but it does 
affect how they react to 
customer demand. POS 
data sharing mitigates the 
bullwhip effect. 

Croson et al. 
(2003) 

Coordination risk 
(the uncertainty about the 
actions of other decision 
makers) 

1) Holding additional 
on-hand inventory 
2) Informing the 
participants of the 
optimal policy 

Behavioral causes of the 
bullwhip effect appear to 
be robust. 

Croson et al. 
(2004) 

Cognitive  limitation such 
as  supply line underweight  

1) Inventory information 
sharing 
 

Information sharing can 
mitigate the bullwhip 
effect, but it cannot 
eliminate it.  

Croson et al. 
(2006) 

“Safe harbor” behavior  
and “panic” behavior  

1) Information sharing 
beyond passing on 
orders among chain 
members 

Impact of human behavior 
on the bullwhip effect is 
demonstrated using the 
Online Beer Game. 

Nienhaus et al. 
(2006) 

Product durability, 
transit lags, 
and nature of demand 
shocks 
 

None The magnitude of the 
bullwhip effects is likely to 
vary with product 
durability, transit lags, and 
the nature of demand 
shocks beyond the effects 
predicted by optimization 
analyses. 

Gino et al. 
(2007) 

 

Table 2-1 summarizes both operational and behavioral causes of the bullwhip effect. Lee 

et al. (1999) recommended solutions to the bullwhip effect from operational causes:  lead-time 

reduction, effective demand forecasting, and information sharing and coordination among chain 

members. Gino et al. (2007) and prior research recommend that behavioral aspects of the 
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bullwhip effect be addressed since “decision makers systematically deviate from optimality in 

their inventory ordering choices” (p. 23). Suboptimal performance has been shown to result from 

misperceptions of feedback (Diehl & Sterman, 1995; Sterman, 1989). More recently, Croson et 

al. (2003, 2004, and 2006) illustrated that the persistence of the bullwhip effect, resulting from 

suboptimal decision making, may be due to cognitive limitation. In the same vein, Nienhaus et 

al. (2006) argued that the role that human behavior plays in causing the bullwhip effect is still 

underestimated. If the behavioral causes of the bullwhip effect are at least as important as the 

operational causes, then the current strategies or techniques focusing on reducing the operational 

causes are at best incomplete solutions. 

This literature review indicates that the role of human behavior in affecting bullwhip is 

not as well addressed in literature as the role of operational causes. The system dynamics of a 

supply chain cause members to deviate from optimal decisions. Sterman (1989) argued that the 

key to improved supply chain performance depends on the policy that individuals use to manage 

the system, not on the external environment. Thus, awareness of the behavioral aspects of the 

bullwhip effect would assist managers in making proper decisions to improve supply chain 

performance. Whether strategies can be effective in mitigating the bullwhip effect resulting from 

human behavior is beyond the scope of this dissertation. The problem of interest in this 

dissertation is the impact of possible suboptimal decision-making regarding forecasting method 

selection and information sharing on supply chain performance. In the previous research 

mentioned above, most analytical and simulation models in this area would suggest the optimal 

forecasting models based on forecast accuracy. That is, under different demand patterns, suitable 

or optimal forecasting methods are established. Then the entire supply chain performance is 

evaluated.  
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A criticism of this approach is that these models ignore the impact of human behavior on 

supply chain performance. Sterman (1989, p. 336) states that “even a perfect forecast will not 

prevent a manager who ignores the supply line from over ordering.”  Another criticism of this 

approach is that practitioners might ignore the nature of the demand pattern and choose basic 

traditional forecasting methods to forecast demand simply because they are comfortable with 

them. In addition, little research has addressed the impact of subjective forecasting method 

selection by practitioners in terms of cost in a supply chain. In this study, a series of traditional 

and advanced forecasting models are investigated across a variety of demand patterns to examine 

the impact of suboptimal forecasting method selection on supply chain performance, thus filling 

a gap in the supply chain literature. This study provides useful insights for managers and 

practitioners on the importance of improving supply chain performance by using effective 

demand forecasting. 

 

The Impact of Forecasting Method on Supply Chain Performance 

SCM is “driven by demand” (Stadtler, 2005, p. 580). Demand forecasting is important to 

inventory, production, and capacity planning for firms in a supply chain. It is no wonder that 

industry and academia have given much attention to demand forecasting and modeling. If 

properly used, forecast modeling is an effective tool in taming the bullwhip effect. Paik (2003) 

identified demand forecasting as a significant variable in controlling the bullwhip effect. 

Miyaoka & Hausman (2004) confirmed that improved forecasting models might reduce 

fluctuations in manufacturing production level. Zhao et al. (2002) demonstrated that forecasting 

methods, coupled with information sharing, can help achieve greater savings for the supply chain 

under certain conditions.  
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Chen et al. (2000a) presented seminal work in quantifying the impact of demand 

forecasting on the bullwhip effect in a two-stage serial supply chain, in which downstream 

retailers used a moving average model to forecast demand. They considered an AR (1) demand 

process and analytically derived a simple lower bound on the bullwhip effect. Chen et al. 

(2000b) extended their work to a multistage supply chain under a more complex demand pattern 

with trend and correlated demand, in which retailers employed exponential smoothing to predict 

future demand. The authors demonstrated that order variation was always higher than demand 

variation, and they provided a lower bound on the variance of the orders. Moreover, they 

reported that improperly applied forecast modeling causes the bullwhip effect. Reinforcing this 

conclusion, Dejonckheere et al. (2003) demonstrated that the bullwhip effect is always there in 

order-up-to systems when forecasting is necessary. However, in general, the smoother the 

demand forecast, the smaller the bullwhip effect.  

A summary of the major findings of Chen et al. (2000a, 2000b) are as follows: 

• The nature of the demand process and forecasting technique determines the 

magnitude of the bullwhip effect. The authors demonstrated that under both 

moving average and exponential smoothing, forecasting a demand process with a 

linear trend would result in more variable orders than forecasting an i.i.d. demand 

process. 

• Lead-time also plays an important role in affecting the magnitude of the bullwhip 

effect. Longer lead-time induces greater order variability for the upstream chain 

members. In other words, short lead-time helps reduce the bullwhip effect. Given 

longer lead-time, a retailer has to use more demand data in order to reduce the 

bullwhip effect.   
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• Centralized customer demand information can significantly reduce the bullwhip 

effect, but it cannot eliminate it. 

Despite all these interesting findings, it is not clear whether the results obtained are still 

valid if retailers use other forecasting methods to forecast customer demand. For example, Chen 

et al. (2000b) stated that “the exponential smoothing may not be the ‘optimal’ forecasting tool 

for the demand process considered in this paper.” Thus, future research should consider different 

forecasting methods and demand patterns. Furthermore, Chen et al. (2000b) did not consider the 

cost structure such as inventory cost, ordering cost, and production setup cost in the supply 

chain. Researchers must investigate the cost impact of the bullwhip effect so that practitioners 

can obtain insights from a financial perspective. 

Kim & Ryan (2003) presented a supply chain model similar to that considered in Chen et 

al. (2000a, 2000b) and quantified the impact of suboptimal forecasting methods and limited 

demand information on the expected inventory costs in the supply chain. Kim & Ryan (2003) 

concluded that choosing the optimal value of the smoothing constant alpha can significantly 

reduce the expected cost experienced by a retailer who uses an exponential smoothing model 

under an AR (1) demand process. However, when alpha is not chosen optimally, the expected 

costs experienced by a retailer may show strange and unexpected patterns. In addition, they 

demonstrated that manufacturers could benefit from the demand information shared by the 

retailer. However, the benefits of shared demand data are limited when a manufacturer can use a 

large number of previous orders placed by the retailer to forecast demand.  

Kim & Ryan (2003) made a significant contribution in evaluating the impact of 

suboptimal forecasting methods on inventory costs in a simple supply chain. Kim & Ryan (2003, 

p. 400) reported that “these observations are contrary to our standard expectations, which are 



 

29 

derived under the assumptions that the retailers know the exact demand and use the optimal 

inventory policy for the given demand process.”  In reality, many supply chain members do not 

operate optimally due to a variety of factors such as demand uncertainty or a myopic view of the 

supply chain. Thus, understanding the role of suboptimal decision making by supply chain 

members in influencing the supply chain performance is important. This kind of research 

provides practical suggestions to the practitioners regarding how to efficiently reduce supply 

chain costs and improve system performance.  

The study examined by Kim & Ryan (2003) has limitations. Areas for further research 

regarding their study are as follows:  

•  This supply chain model is a simple chain consisting of one retailer and one 

supplier which has unlimited capacity. It can be extended to a supply chain model 

with one capacitated supplier and multiple retailers. It would be interesting to see 

whether the conclusions obtained are still valid for the extended model. 

• This study investigated two commonly used time series forecasting models under 

an AR (1) demand pattern. However, the impact of these two forecasting models 

on supply chain performance under other demand patterns is not clear. 

• This study only examined the sharing of demand information. Additional types of 

information sharing, such as the sharing of demand forecast and inventory policy, 

should be explored further. 

Zhao et al. (2002) extended the work by Chen et al. (2000b) to a supply chain consisting 

of one capacitated supplier and multiple retailers in a simulation study. These authors 

investigated the effects of demand forecasting, order decisions by the retailers, and production 

decisions by the supplier under different demand patterns and capacity tightness. They 



 

30 

demonstrated that forecasting model selection, information sharing policy, demand patterns 

faced by the retailers, and capacity constraints faced by the supplier significantly influence the 

overall supply chain performance. In particular, they focused on the effect of forecasting method 

selection on the value of information sharing. Their study showed that the value of information 

sharing increases considerably as forecast accuracy increases, and greater improvement in supply 

chain performance can be achieved via information sharing under certain demand patterns and at 

the level of medium capacity tightness. However, they also demonstrated that the total cost and 

service might worsen under certain demand patterns and a low level of capacity tightness.  

The study examined by Zhao et al. (2002) provided considerable insights into a variety of 

factors affecting system performance. The contributions of this study are as follows:  

• Unlike prior research, they incorporated the cost structures into the study to 

quantify the cost impact of the bullwhip effect in a dynamic business environment 

in which different demand patterns and capacity tightness levels were considered. 

The findings provide valuable insights for supply chain managers and 

practitioners in selecting proper forecasting methods and information sharing 

policies to improve system performance in terms of cost and service level. 

• Unlike prior research, their study focused on the sharing of forecast-driven 

demand data such as net requirements and planned orders from the retailers to the 

supplier. Previous research concentrated on the effects of sharing of demand data 

between supplier and retailers on supply chain performance. However, retailers 

usually do not know the demand in advance. They make their order decisions 

based on demand forecasts, as is the usual practice in the real world. Since 

demand forecasting is one of the important drivers for production and inventory 



 

31 

planning decisions, their study has important implications for supply chain 

managers in selecting proper forecasting methods to reduce supply chain cost and 

improve customer service level. 

• The authors systematically studied several traditional forecasting methods under 

different demand patterns including trend and seasonality. They found that 

forecasting method selection alone might not bring significant benefits to the 

supply chain. However, accurate demand forecasting, coupled with information 

sharing, can greatly improve performance for the entire supply chain. Moreover, 

they demonstrate that environmental factors such as demand patterns and capacity 

tightness significantly affect supply chain performance through the operational 

factors mentioned above. Therefore, it is of great practical value for practitioners 

to understand the importance of the effects of forecasting method selection on 

supply chain performance under other operational factors. 

• These authors not only examined several forecasting methods but also 

investigated the interaction effect among operational factors. More importantly, 

they illustrated that supply chain performance depends on the complex interaction 

of critical factors such as forecasting method and information sharing. In essence, 

they evaluated the effectiveness of forecasting methods in a more realistic and 

broad context while similar research in this area concentrated exclusively on 

forecasting accuracy. 

Although Zhao et al. (2002) made significant contributions toward understanding the role 

that forecasting method selection plays in reducing the bullwhip effect and supply chain cost, 
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their study has limitations. Possible extensions and future research directions for their study are 

as follows:   

• Would their results be generalizable to a demand process which exhibits time-

varying volatility? Although this study provided useful insights regarding 

forecasting method selection and its impact on supply chain performance under 

relatively stable demand processes, it is not clear whether the results hold for the 

case of unstable demand processes.  

• Is it worth the effort to promote advanced forecasting methods in SCM?  How do 

advanced methods affect supply chain performance? It is clear that traditional 

forecasting methods lack the ability to capture nonlinear behavior in demand 

processes exhibiting time-varying volatility. Recent research shows that advanced 

forecasting methods such as neural network models and GARCH models can 

overcome the limitations of traditional forecasting to generate accurate forecasts. 

However, few studies have addressed how these advanced forecasting methods 

affect the supply chain performance in a broad, realistic context. 

• What are the effects of simple forecasting methods on supply chain performance?  

Previous studies suggested that forecasting method selection should depend on the 

demand pattern. Under certain demand processes, improper forecasting methods 

might exacerbate the bullwhip effect. Consequently, inaccurate forecasts might 

add unnecessary costs to the supply chain. For example, if a demand process 

exhibits trend and does not exhibit heteroscedastic behavior, then exponential 

smoothing might be the appropriate method to forecast demand. When the 

demand process exhibits both trend and seasonality, Winters’ three parameter 
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model is often recommended. However, sophisticated forecasting methods require 

expertise in order to use them properly. In practice, managers and practitioners 

might choose the forecasting methods with which they feel comfortable to 

forecast demand. Indeed,  Makridakis et al. (1998) reports that users are less 

familiar and less satisfied with sophisticated methods such as Box-Jenkins, but 

they are most familiar and most satisfied with simple forecasting models such as 

moving average, exponential smoothing, and regression. Under these 

circumstances, practitioners might select suboptimal forecasting models to 

forecast demand. Clearly, previous research has seldom addressed the impact of 

the “misspecified” forecasting models on supply chain performance.   

In an effort to extend previous contributions, Wright & Yuan (2008) modified Sterman’s 

(1989) model to investigate how different ordering policies and forecasting techniques can be 

used to reduce the bullwhip effect. Using Sterman’s (1989) ordering heuristics rule, by selecting 

different smoothing constants α and β to simulate the effect of different ordering policy space, 

they identified a range of ordering policies for which the bullwhip effect can be alleviated by 

using either Holt’s or Brown’s forecasting method. They found that the bullwhip effect could be 

substantially reduced, by up to 55%, by selecting an appropriate ordering policy and forecasting 

method. In particular, they showed the potential benefit of the sophisticated forecasting methods 

such as Holt’s or Brown’s forecasting method. However, they emphasized that these forecasting 

methods must be used in conjunction with an appropriate ordering policy in order to achieve 

improved system performance. In particular, they claimed that the supply chain could be 

stabilized by using Holt’s or Brown’s forecasting technique coupled with appropriate ordering 
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policy. Compared to the moving average and exponential smoothing methods, Holt’s and 

Brown’s forecasting methods are more effective in taming the bullwhip effect. 

Wright & Yuan (2008) demonstrated that sophisticated forecasting methods, along with 

proper ordering policies, significantly reduce the bullwhip effect in a modified beer game model. 

They simulated the ordering policy space based on Sterman’s (1989) ordering heuristics rule. It 

is unclear whether ordering policies used in practice coupled with proper forecasting techniques 

will generate the same results. Thus, a fruitful area for future research is investigating the impact 

of more sophisticated models along with commonly used ordering policies on system 

performance in a capacitated supply chain. 

 Sohn & Lim (2008) studied the impact of forecasting method selection and information 

sharing on system performance in a two-echelon supply chain, in which a supplier provides two 

generations of a high-tech product to the market. They demonstrated that the proper selection of 

the information sharing policy and forecasting model significantly influences the supply chain 

performance. Furthermore, they found the optimal combination of the information sharing policy 

and forecasting method, which can maximize the profits and service level for the supply chain. 

Consistent with what Zhao et al. (2002) concluded, they argued that a forecasting method alone 

does not necessarily account for the improved supply chain performance. However, the proper 

selection of the information sharing policy along with the proper forecasting method under 

certain market conditions will greatly improve supply chain performance.  

Sohn & Lim (2008) made significant contributions in demonstrating the impact of 

forecasting model selection along with information sharing in a two-echelon supply chain, in 

which one supplier produces two generations of one high- tech product and distributes them to 

four retailers. They pointed out those traditional forecasting methods such as the exponential 
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smoothing, Holt’s model, and ARIMA methods have been frequently used in SCM. However, 

these methods do not yield satisfactory results for a product whose demand is extremely volatile. 

Thus, they used three models— Winters’ model, Norton and Bass’s model, and Speece and 

Maclachlan’s model—to forecast future demand for the high-tech product. They investigated the 

effect of these forecasting methods under different levels of information sharing and different 

market conditions. They inferred that  absolutely shared information sharing does not always 

produce the best performance in a supply chain and concluded that forecasting method selection 

and information sharing should be used together to produce the best supply chain performance. 

The studies by Sohn & Lim (2008) and Zhao et al. (2002) have some important 

differences. Although these two studies investigated the effect of forecasting method selection 

and information sharing in a supply chain having a single capacitated supplier and four retailers, 

these two studies have significant differences, which are as follows: 

• Zhao et al. (2002) systematically studied traditional time series forecasting 

methods under different demand patterns (relatively stable demands). However, 

Sohn & Lim (2008) focused on the impact of forecasting method and information 

sharing under volatile demand pattern for a high-tech product. In the case of high 

volatile demand, traditional forecasting methods may fail to produce satisfactory 

results. Thus, it is reasonable to use sophisticated forecasting models to forecast 

demand under this circumstance. 

• Both studies investigated the value of information sharing under different 

forecasting methods. However, the types of information sharing are quite 

different. In Sohn & Lim (2008)’s model, the retailers share their net sales with 

the suppliers, and with these data, the suppliers forecast their future sales and 
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make production decisions. While Zhao et al. (2002) let retailers forecast 

customer demand, the retailers pass either their net requirements or planned 

orders to the supplier which uses these data to make its production decisions.  

• Although both studies investigated the impact of capacity tightness on supply 

chain performance, the implementation of the capacity constraints is quite 

different in the two studies. Zhao et al. (2002) implemented the single-item 

capacitated lot-sizing algorithm (Chung & Lin, 1988) to figure out production 

quantity and production periods to minimize the total cost for the supplier 

according to the cost structure. However, Sohn & Lim (2008) did not use the lot-

sizing rule to determine the production plan for the supplier despite the fact that 

they assumed fixed capacity for the supplier using the same capacity tightness 

parameters as used in Zhao et al. (2002). 

Despite the differences between the Zhao et al. (2002) and Sohn & Lim (2008) studies, 

they arrived at similar conclusions. In particular, forecasting method selection alone might not 

account for most of the cost reduction achieved in a supply chain. However, proper forecasting 

method selection, along with information sharing, significantly influences the entire supply chain 

performance. Although the results provide useful insights for supply chain managers into the 

proper use of forecasting methods, several limitations exist, and several issues need to be 

explored further, including those that follow: 

• The quick changing of customer demand requires nontraditional forecasting 

methods for demand forecasting in a supply chain, especially when demand 

patterns become more volatile. So far, little research has been done to investigate 

the impact of advanced forecasting methods such as the GARCH model on the 
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overall supply chain performance in a dynamic business environment despite the 

fact that the GARCH model is an effective tool for forecast financial time series 

data. 

• Investigating whether nontraditional forecasting methods outperform traditional 

forecasting methods in terms of supply chain cost (rather than in terms of forecast 

accuracy) is worthwhile. 

• Interaction effects between nontraditional forecasting methods and other 

operational factors such as information sharing and inventory policy need to be 

addressed in future research. 

To explore the effectiveness of advanced forecasting methods for SCM, Aburto & Weber 

(2007) developed a hybrid-intelligent-system, which combines ARIMA models and neural 

network models for demand forecasting and was used in a proposed replenishment system for a 

Chilean supermarket. The authors demonstrated that improvement in forecasting accuracy by 

using hybrid demand forecasting leads to few sales failures and low inventory levels when 

compared with the previous solution. 

Datta et al. (2007) proposed modifications of the GARCH model and its applications to 

SCM to forecast demand from a theoretical point of view. GARCH models have been widely 

used in forecasting financial data to capture the volatility of the financial time series. However, 

few papers have considered the potential of GARCH models in forecasting demand in SCM.  

Datta el al. (2007) theoretically showed that a GARCH model could be used to model the 

volatility (bullwhip effect) associated with a supply chain. They argued that a GARCH model 

could generate accurate forecasts to reduce operational inefficiencies in SCM.  

Charbonneau et al. (2008) emphasized the value of forecasting techniques for firms that 
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usually do not have full information regarding other members’ demands in a supply chain. They 

investigated the impact of both traditional and nontraditional forecasting methods on the 

performance of the supply chain by using simulated data and real data (Canadian Foundries 

orders). They demonstrated that sophisticated methods such as neural network, recurrent neural 

networks, and support vector machines outperform the traditional forecasting methods such as 

moving average and exponential smoothing in term of forecasting accuracy. Advanced 

forecasting methods do well in forecasting demand because of their ability to capture the 

nonlinear activities in a demand process. However, the circumstances under which advanced 

forecasts significantly improve supply chain performance are not clear.  

This literature review indicates that most studies have concentrated on traditional 

forecasting techniques such as moving average and exponential smoothing. While these studies 

offer a number of useful implications for supply chain practitioners, they do not provide all the 

information required as none of these studies considered heteroscedasticity in their models. 

Traditional techniques “rely on the historical data and assume the validity of the past demand 

patterns for the near future” (Bayrajtar et al., 2008, p. 195). Moreover, they assume a linear 

relationship between the dependent and independent variables. As customer demand becomes 

more complex and volatile, these assumptions may not hold anymore, and traditional forecasting 

methods might become inappropriate. Thus, the search for new forecasting methods and 

applications of nonlinear models associated with demand forecasting is under intense 

investigation. Recent research (Aburto & Weber, 2007; Carbonneau et al., 2008; Au et al., 2008) 

demonstrated that nonlinear machine learning techniques outperform the traditional forecasting 

methods under certain demand processes which exhibit significant levels of nonlinearity. 

Therefore, it is reasonable to investigate the effectiveness of the advanced methods in a broad 
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and realistic supply chain setting to see whether these forecasting techniques can significantly 

improve supply chain performance in terms of cost. 

Moreover, although research in SCM has made significant contributions towards 

understanding the role of forecasting method selection in reducing the bullwhip effect and in 

improving performance, none of the studies examined the effect of the coupling of suboptimal 

forecasting methods and information sharing on supply chain performance. In the area of 

forecasting, an “optimal” forecast model is often referred to as that forecast model which can 

generate the minimum mean square forecast errors. In reality, practitioners might not use the 

optimal forecasting methods because the implementation of the optimal forecasting model is 

more difficult than that of the simple smoothing methods when parameters are not known 

(Alwan, Liu, & Yao, 2008). In fact, moving averages and exponential smoothing are widely used 

in supply chain forecasting due to their simplicity and ease of implementation. However, under 

certain demand patterns or certain parameters, these simple forecasting methods become 

suboptimal forecasting methods. However, the impact of using suboptimal forecasting methods 

on supply chain performance is seldom studied. In addition, research focusing on the behavioral 

aspect of the bullwhip effect shows that supply chain members might deviate from optimal 

decision-making because of supply chain dynamics, which provides support for the relevance of 

this study. Thus, this dissertation investigates the impact of both optimal forecasting methods 

and suboptimal forecasting methods coupled with information sharing on supply chain 

performance. The ramifications of using suboptimal forecasting methods with regard to supply 

chain performance are reported in this dissertation, and these findings fill a gap in the literature.  
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The Impact of Information Sharing on Supply Chain Performance 

Information sharing is another research stream that is closely related to the questions 

addressed in this dissertation.  A literature review indicates that information sharing is one of the 

key approaches for taming the bullwhip effect. In fact, information sharing has been a 

cornerstone of recent initiatives such as Vendor Managed Inventory (VMI) and Quick Response 

(QR) in SCM. Although information sharing can help improve supply chain performance in most 

cases, it may not generate the desired results under certain circumstances. Thus, substantial 

research has investigated the value of information sharing under various conditions. This section 

provides a review of the literature on information sharing related to this study. 

Lee et al. (1997) is the seminal work demonstrating that the sharing of end-consumer 

demand within a supply chain reduces the bullwhip effect and improves supply chain 

performance. That is, the sharing of demand information improves a supplier’s ordering 

decisions and thus results in inventory reduction and cost savings. The authors specifically 

studied the impact of lead times and underlying demand processes on the bullwhip effect and 

reported that information sharing may reduce supply chain costs by about 23% on average. 

Gavirneni, Kapuscinski, & Tayur (1999) studied the value of information sharing for a 

finite capacity supplier facing demand from a single retailer, in which the retailer uses an (s, S) 

model and the supplier employs a modified (s, S) inventory model. They demonstrated the 

benefits of sharing a retailer’s ordering policy with a supplier and found that information sharing 

is most valuable when capacity is not constrained and when the supply chain system is flexible 

enough to respond to the information. However, they also reported that when a supply chain 

faces capacity constraints, the value of information and information sharing tends to decrease. 

Gavirneni et al. (1999) is one of the few studies which investigated the value of information 
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sharing in a capacitated supply chain setting. Their study provided valuable insights for supply 

chain managers in selecting the type of information to be shared and the proper information 

sharing policy for real world applications since most manufacturing systems have limited 

capacity. 

  Cachon & Fisher (2000) investigated the value of sharing demand and inventory data in 

a supply chain consisting of one supplier and multiple (N) identical retailers under an (R, nQ) 

inventory policy and stationary stochastic demand. They stated that firms are able to share 

demand and inventory data quickly and less expensively due to the development of information 

technology and demonstrated that both lead time and batch size reductions lead to substantial 

savings for the supply chain. However, they were not able to demonstrate significant benefits to 

the sharing of demand information in their models. They further rationalized that the value of 

sharing demand data was not significant because the retailer’s orders provided a substantial 

portion of the information that the supplier needed in making its replenishment and allocation 

decisions. 

  Cachon & Fisher (2000) contributed to the literature by demonstrating that solely 

sharing demand and inventory data among supply chain members is not sufficient for cost 

reduction. In their models, great cost savings for the supply chain are mainly due to the 

implementation of information technology, which significantly influences supply chain 

performance by smoothing and accelerating the physical flow of goods, not to the sharing of 

demand data. That is, the implementation of information technology helps reduce lead-time and 

batch size and, consequently, achieves reduction in the bullwhip effect and supply chain costs. 

 Additional research is needed to assess information sharing with non-identical retailers. 

Most supply chain models assume identical suppliers and retailers for modeling simplicity. 
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Better procedures need to be introduced to tackle the “non-identical” case. Different retailers 

may face different demand patterns and distribute in different regions. Under these conditions, 

results obtained from previous studies based on multiple identical retailers may not hold. 

Therefore, a need exists for future research to assess the value of information sharing with non-

identical retailers. In addition, the effects of different types of information sharing, such as the 

sharing of inventory status and production yield, and the effect of the extent of information 

sharing need to be explored further. 

Lee et al. (2000) investigated the value of information sharing within a two-stage supply 

chain consisting of a retailer and a manufacturer. The authors quantified the benefits of 

information sharing to the supply chain, and they argued that the characteristics of the demand 

process and the replenishment lead-time significantly affect the benefits of information sharing 

for the manufacturer. Finally, they concluded that information sharing leads to significant 

inventory reduction and cost savings for the manufacturer and, in particular, that information 

sharing achieves larger cost reduction to the manufacturer when the demand process is highly 

correlated over time, when it is highly volatile, or when the lead-time is long, whereas the 

retailer primarily benefits from lead-time reduction. However, they also reported that the value 

of information sharing decreases if the manufacturer uses historical order information to forecast 

demand. Consistent with this finding, Raghunathan (2001) demonstrated that the value of 

information sharing decreases and converges to zero over time under a negatively autocorrelated 

AR(1) demand process. 

Although this research provides useful insights for chain members when evaluating an 

information sharing program, certain issues remain. Further issues requiring exploration include 

the following. 
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• Most prior studies demonstrate that information sharing can help firms carry 

appropriate inventory and operate at the right level of capacity to meet customer 

demand more efficiently, which results in cost reduction and performance 

improvement for a supply chain. Some other studies state that the value of 

information sharing decreases in some cases. However, none of these studies 

demonstrate the circumstances under which the different types of information 

sharing programs are not necessary. Future research should explore this area 

further. 

• The sharing of additional types of information, such as demand forecasts and 

inventory status, should be explored to determine whether different types of 

information sharing affect supply chain performance differently.  

Chen et al. (2000) modeled a serial supply chain in which firms at each stage use the 

same forecasting method and the same inventory policy (order-up-to policy) under an 

autocorrelated demand process. Then the impacts of demand forecasting on the bullwhip effect 

under information sharing (centralized demand information) and non-information sharing were 

compared. The authors concluded that both forecasting method and demand patterns determine 

the magnitude of the bullwhip effect. They also demonstrated that centralized demand 

significantly reduces the bullwhip effect. More importantly, their study provided the foundation 

for later research such as Zhao et al. (2001, 2002) to further investigate the impact of forecasting 

method selection and information sharing on supply chain performance in a realistic context.    

Zhao et al. (2001) demonstrated that information sharing and order coordinating among 

chain members help improve system performance through simulation study. Retailers were 

assumed to use the moving average method to forecast demand. Based on the demand forecast, 
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retailers could share their net-requirements or planned orders with the supplier in addition to the 

orders placed. They argued that information sharing significantly affects the supply chain 

performance. In particular, sharing future order information with the supplier is more beneficial 

than sharing only the future demand information. More importantly, earlier order commitment 

usually improves the system performance. However, it is not clear whether benefits gained 

through information sharing still hold under other forecasting methods and demand patterns. 

 Zhao et al. (2002) further evaluated the value of information sharing under a variety of 

traditional forecasting methods and demand patterns. They implemented the same information 

sharing scheme as in Zhao et al. (2001). The authors showed that demand pattern, forecasting 

method selection, and capacity tightness significantly influence the value of information sharing 

and system performance. The authors also demonstrated that accurate forecasts alone might not 

help improve supply chain performance if the retailers choose not to share information with the 

supplier. However, when information sharing is shared, the accurate demand forecast usually 

increases the value of information sharing. In particular, greater improvements in system 

performance can be achieved by sharing information with the supplier when retailers face 

identical demands with trends and/or with medium capacity tightness, resulting in total supply 

chain cost reduction as high as 60% under some conditions.  

Although the findings from Zhao et al. (2002) provided useful insights to practitioners 

about forecasting method selection and the value of information sharing, limitations exist. 

Several research issues that need further examination include the following:  

• Their study demonstrated the value of sharing demand forecast information 

between chain members under relatively stable demand patterns. However, it is 
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unclear whether the results obtained still hold under highly volatile customer 

demand. Thus, future research needs to explore this area further. 

•  A few traditional forecasting models were used to generate the demand forecast 

under different demand patterns on a rolling forecasting horizon in this study. 

Whether the sharing of demand forecast produced by advanced forecasting 

methods such as neural network models or GARCH models can significantly 

improve supply chain performance is another research venue that needs to be 

investigated.  

• Their study focused on the impact of forecasting method selection and 

information sharing on supply chain performance. However, they did not 

investigate the impact of the suboptimal forecasting method selection on system 

performance. Further research needs to determine whether suboptimal techniques 

and polices perform well or poorly relative to the optimal techniques and policies. 

Thus, practitioners would be better able to manage a supply chain based on the 

practical suggestions recommended by this type of study. In addition, research 

focusing on the behavioral aspects of the bullwhip effect provides support for the 

need to take account of the suboptimal decision-making in evaluating supply 

chain performance.  

•  Most research has focused on the impact of information sharing on system 

performance in a two-stage make-to-stock supply chain. Further research is 

needed to determine whether previous research results can be generalized to a 

scenario involving a multiple echelon supply chain in a make-to-order 

environment.  
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• Their study did not investigate the case in which the supplier used its own 

forecasts to plan a production schedule when no information was shared. The 

results of their study considered only the case in which the supplier only used the 

current orders from the retailers when no information was shared.  

Sahin & Robinson (2005) demonstrated that a distinct difference exists between make-to-

stock and make-to-order supply chains. The authors  analyzed the manufacturer’s ordering 

policies, transportation activities, and the vendor’s manufacturing and order fulfilment processes 

under five alternative integration strategies in a make-to-order supply chain. In their models, the 

value of  sharing MRP generated orders and net requirements between vendor and manufacturer 

was investigated. They reported that  information sharing helps reduce supply chain costs to 

some extent, but it does not account for the large percentage of cost savings achieved in the 

supply chain. They concluded that coordinated decision-making generates main economic gains 

rather than information sharing. Moreover, they demonstrated that the benefits from information 

sharing and coordination are not equally distributed among supply chain members. 

Although Sahin & Robinson  (2005)  made significant contributions in investigating the 

impact of information sharing and system coordination in a make-to-order supply chain, some 

limitations exist. Futher research issues include those which follow.  

• In this study, the vendor used Wagner-Wihtin (WW) lot- sizing rule to make 

production decisions when information was shared. The WW lot- size rule is not 

applied in industry due to its complexity and computational disadvantage in 

comparison with other rules (Wemmerlov et al., 1984). Therefore, addtional 

research based on different lot-size rules is worthwhile. 
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• Although this study addressed an important managerial issue in information 

sharing and system coordination between a supplier (vendor) and a manufacturer 

and provided insights to help managers in selection of information sharing 

policies and coordination strategies, capacity constraints were not considered in 

the model. Capacity constraints should be included in future research since most 

suppliers and manufacturers face capacity constraints in reality. 

Choi (2008) investigated the impact of information sharing and information errors on 

system performance in a two-stage supply chain. In this study, the author considered both 

upstream and downstream information sharing along the supply chain. Upstream information 

sharing refers to the sharing of inventory data and demand information from the retailer to the 

supplier, while upstream information sharing refers to the sharing of production yield and 

advanced shipping notice from the supplier to the retailer. Choi (2008) demonstrated that 

upstream information sharing is more beneficial when a supplier’s yield variance is high and 

when customer demand fluctuation is low. Downstream information sharing is more valuable 

when demand fluctuation is high or when the supplier’s penalty to holding cost ratio becomes 

higher. In general, the presence of errors in both upstream and downstream information reduces 

the benefits of sharing such information. In particular, the impact of errors becomes greater when 

yield variance is low and demand is relatively stable, and thus it is better not to share information 

under these situations. 

Choi (2008) estimated the benefits of information sharing and provided guidance to 

maximize the benefits under certain supply chain conditions. The author also pointed out that 

sharing erroneous information can nullify the benefits of information sharing. Choi (2008) made 

the first attempt to add an error component to the information sharing process and investigated 
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the impact of information errors on system performance. This study provides useful insights for 

supply chain practitioners about when information sharing could benefit the supply chain and 

when it could hurt system performance. 

Table 2-2  

 Information Sharing in Supply Chain Management 

Information Sharing 
Type  

Supply Chain 
Structure  

Comments and Contributions Authors  

Sharing sales and 
inventory data with the 
supplier  

One supplier – 
one retailer  

Identified causes and counter-
measures of the bullwhip effect 
and claimed that information 
sharing is the key to tame BWE. 
However, supplier’s production 
decisions and cost structures are 
not considered in their model. 

Lee et al. 
(1997) 

Sharing a retailer’s 
ordering policy with 
the  supplier 

One capacitated 
supplier – one 
retailer 

Demonstrated that information 
sharing is most valuable when 
capacity is not constrained and 
when the system is flexible to 
respond to customer demand. 

Gavirneni 
et al. 
(1999) 

Sharing demand and 
inventory data with the 
supplier 

One supplier  –
multiple identical 
retailers  

Demonstrated that the 
implementation of information 
technology (resulting in both lead 
time and batch size reductions) 
leads to substantial savings for 
the supply chain. However, the 
benefits of information sharing 
are not significant. 

Cachon & 
Fisher  
(2000) 

Demand data One supplier – 
one retailer 

Concluded that information 
sharing leads to significant 
inventory reduction and cost 
savings to the manufacturer. 
However, the value of 
information sharing decreases 
under certain demand patterns. 

Lee et al. 
(2000) 

Centralized demand 
data  

One supplier – 
one retailer 
 

Demonstrated that centralized 
demand information could 
significantly help reduce the 
bullwhip effect, but it cannot 
eliminate it. 

Chen et al. 
(2000) 

Sharing demand 
forecast data (such as 
net requirements and 
planned orders) with 
the supplier  

One capacitated 
supplier – four  
retailers 

Information sharing and 
coordinating replenishment and 
production decisions help further 
reduce costs and improve system 
performance. Retailers use 
moving averages to forecast 
future demand.  

Zhao et al. 
(2001) 

(table continues) 
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Table 2-2 (continued). 
 
Information Sharing 
Type  

Supply Chain 
Structure  

Comments and Contributions Authors  

Sharing demand 
forecast data (such as 
net requirements and 
planned orders) with 
the supplier  
 

One capacitated 
supplier – four  
retailers 

Demonstrated that accurate 
forecasts might not help improve 
supply chain performance 
significantly if the retailers 
choose not to share information 
with the supplier. However, under 
information sharing schemes, 
accurate demand forecast 
achieves great cost savings for 
the supply chain. 

Zhao et al. 
(2002) 

Sharing MRP 
generated orders and 
net requirements with 
the supplier 

One supplier – 
one manufacturer 

Demonstrated that information 
sharing helps reduce supply chain 
costs to some extent.  However, it 
does not account for the large 
percentage of cost savings 
achieved in the supply chain. 
Coordinated decision-making 
generates main economic gains. 

Sahin & 
Robinson 
(2005)   

Sharing net sales with 
the supplier in a high-
tech industry where 
two generations of the 
same product coexist 

One capacitated 
supplier – four  
retailers 

The results obtained were 
consistent with Zhao et al. 
(2002). They also pointed out that 
the information sharing degree is 
hard to control in reality. Thus, 
searching for the optimal 
forecasting method with a proper 
capacity to improve system 
performance is necessary. 

Sohn & 
Lim (2008) 

Sharing upstrem 
information 
(production yeild and 
advanced shipping 
notice) with the 
retailer, 
Sharing downstream 
informaiton (inventory 
and demand data) with 
the supplier, 
Information sharing 
with error 

One supplier - 
one retailer 

Demonstrated that sharing either 
upstream or downstream 
information benefits the supply 
chain. However, sharing 
erroneous information can nullify 
the benefits of information 
sharing. 

Choi 
(2008) 

 

It is clear that the extant literature has extensively analyzed the value of information 

sharing on supply chain performance under a variety of conditions and assumptions. A summary 

is provided in Table 2-2. The literature indicates that information sharing helps reduce the 
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bullwhip effect and lower supply chain costs. In particular, information sharing plays an 

important role in coordinating activities between strategic partners in a supply chain. In practice, 

more and more supply chain members have come to rely on strategic alliances and are 

coordinating their efforts on important issues such as demand forecasting, production planning, 

and capacity management in order to manage the supply chain efficiently. 

Despite the fact that information sharing is significant in reducing the bullwhip effect and 

improving supply chain performance under certain circumstances, there are still some 

inconsistent results. Surprisingly, Steckel, Gupta, & Banerji (2004) found that sharing POS 

information is unambiguously beneficial only in Sterman’s step-up demand pattern. When the 

demand pattern was S-shaped (with or without error), POS sharing actually hurts system 

performance. This is in stark contrast to theoretical literature that suggests the reverse (Lee et al., 

2000; Raghunathan, 2001). In addition, Lin (1998) demonstrated that different supply chain 

structures benefit from different types of information sharing, and information sharing actually 

hurts supply chain performance under certain circumstances.  

  Thus, in order to have a better understanding of the value of information sharing in 

SCM, the following issues require further research: 

1)  Previous studies showed that the reported benefits of information sharing differ 

considerably from one study to another. One explanation is that findings obtained 

from one problem environment may not apply to another with dissimilar operational 

characteristics (Cachon & Fisher, 2000). Although there are many supply chain 

settings in reality, a lot of research has focused on the simple serial supply chain, and 

most of it has been done in a simple setting with a single supplier and a single retailer. 

Future research should explore more complex and realistic supply chain settings 
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beyond the dyadic level of analysis between the supplier and the retailer.  

2)  Although different types of information sharing have been investigated in the 

literature, the impact of sharing planning information across a supply chain has not 

been explored extensively. Planning information usually refers to the demand forecast 

and order schedule. The demand forecast contains future demand information while 

the order schedule specifies order quantity of each coming time period in advance. In 

reality, many production managers are overwhelmed with forecast and demand data 

generated by MRP systems and find it difficult to transform this data into 

information. Thus, it is worthwhile to investigate the impact of sharing MRP 

generated data (planning information) with other chain members on system 

performance. In other words, how to make better use of these data to improve overall 

supply chain performance is an important question for future research to answer. 

3) Although great progress has been made in this area, the value of information sharing 

and the impact of production control strategies on supply chain performance have 

been studied separately. Despite the fact that MPS drives the material requirements 

planning (MRP) system and provides the link between the demand forecasting, order 

entry, and production planning activities, research has paid little attention to the value 

of sharing MRP generated orders and net requirements since most research  does not 

consider a manufacturer’s production decision. To our knowledge, Sahin & Robinson 

(2005) is the only work which has investigated the value of sharing the MRP 

generated orders and net requirements in a two-stage make-to-order supply chain.  

Additional research on the value of sharing planned orders and net requirements is 

worthwhile as long as the manufacturer is included in the supply chain, and the 
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research is not limited to a make-to-order supply chain. 

4) Most previous studies consider information sharing from downstream to upstream 

along the supply chain or vice versa and use traditional non-information sharing as 

the base case to gauge the value of information sharing. However, even in the case of 

non-information sharing, a supplier can forecast future orders to improve its own 

performance, which may eventually improve the entire supply chain performance. 

Future research should further investigate the value of information sharing when a 

supplier is assumed to use his own intelligence to forecast future orders from the 

retailers.  
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CHAPTER 3  

RESEARCH DESIGN 

This chapter presents the conceptual model and methodology that were used to address 

the research objectives as defined in Chapter 1. The methodology employs a comprehensive 

experimental design approach using supply chain costs obtained via a simulation study. The 

forecasting models, the types of demand patterns, the supplier’s capacity constraints, and 

information sharing schemes are selected so as to systematically examine their effect on a supply 

chain’s performance.   

 

Conceptual Model 

Supply chain performance not only depends on the proper choice of operational policies, 

such as forecasting methods and information sharing policies, but also relies on the complex 

interactions of operational policies and external factors such as demand patterns and cost 

structures, which cannot be controlled by supply chain managers. This study considers a supply 

chain consisting of one capacitated supplier and four retailers as described in Figure 3-1. This 

model has been used for a series of papers (Zhao et al., 2001; Zhao et al., 2002; Lau et al., 2008; 

Sohn & Lim, 2008).   

 

 

 

 

Figure 3-1. Conceptual model. 
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The purpose of this dissertation is to extend the scope of Zhao et al. (2002). The 

following research issues are investigated as they have not been adequately addressed in prior 

research: 

1. This study includes stable and heteroscedastic demand. Although the demand 

pattern has a significant impact on the predictive accuracy of the selected 

forecasting methods and on the supply chain performance, prior research focused 

on relatively stable demand patterns. None of these prior studies considered 

temporal demand heteroscedasticity in investigating the impact of 

heteroscedasticity on demand forecasting and supply chain performance. This 

study incorporated a heteroscedastic component in the demand generation process 

by using a GARCH (1, 1) pattern to account for conditional variance and simulate 

volatile demand behavior for innovative products or products which exhibit time-

varying demand. More importantly, the impact of forecasting method selection 

coupled with information sharing on supply chain performance was investigated 

under different demand patterns including temporal demand heteroscedasticity. 

2. This study includes traditional and advanced forecasting models. Despite the fact 

that a variety of time series forecasting methods have been used in SCM 

literature, traditional forecasting methods face problems such as volatility 

clustering and overshoot problems, which have occurred in time series prediction 

from time to time. More recent research has investigated the application of 

nontraditional forecasting methods in SCM and shown that nontraditional 

advanced forecasting methods outperform traditional forecasting methods in 

terms of forecast accuracy. However, it is not clear whether advanced forecasting 
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methods such as neural network or GARCH models outperform traditional 

forecasting methods in terms of cost in a realistic supply chain setting with 

demand forecast being done in a rolling time horizon. Thus, this research intends 

to explore the impact of advanced forecasting methods on supply chain 

performance.  

3. This study includes information sharing and capacity constraints for a supplier in 

conjunction with the traditional and advanced forecast models used by retailers. 

The retailers can either place only the current orders with the supplier or share the 

future planned orders with the supplier. If the retailers pass only the current orders 

to the supplier, then the supplier always uses double exponential smoothing to 

forecast future orders. If the planned orders of the retailers are shared with the 

supplier in addition to the current orders, then the supplier uses these values 

instead of its own forecast values to determine its production schedule. The 

supplier’s capacity tightness levels are low, medium, or high.  

4. Finally, this dissertation examines the impact of simple forecasting methods (most 

likely suboptimal forecasting models) on supply chain performance under a 

variety of conditions involving information sharing and capacity constraints. 

 

Research Hypotheses 

Hypothesis I: Forecasting method selection by the retailers will significantly influence 

supply chain performance by interacting with the policy of information sharing. 

Hypothesis II: Demand patterns faced by the retailers will significantly influence the 

supply chain performance.  
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Hypothesis III: Advanced forecasting models will significantly improve a supply chain’s 

performance relative to traditional, simple forecasting methods.  

Hypothesis IV: The supplier’s capacity tightness will significantly influence the impact 

of forecasting method selection and the value of information sharing on supply chain 

performance.  

 

Dependent and Independent Variables of the Experimental Design 

 As discussed in Chapter 1 and Chapter 2, the types of factors that affect the supply chain 

performance can be classified into two categories: operational factors and environmental factors. 

This study focuses on a few critical factors as indicated in the literature review section. The 

independent variables in this simulation experiment include two operational factors (forecasting 

method and information sharing) and two environmental factors (demand patterns and capacity 

tightness). The environmental factors of the supply chain are those factors which cannot be 

controlled by supply chain managers but affect the system performance through operational 

factors. The main effect of each factor and the interaction effects of these factors are the major 

focus of this dissertation. 

 

Dependent Variables 
 
 The performance measures of the supply chain are the dependent variables, and they 

reflect the cost across the supply chain. Three categories of performance measures are 

considered: total cost for the retailer, total cost for the supplier, and total cost for the entire 

supply chain.   

•  The total cost for the supplier (TCS) is the sum of the production setup cost, 
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production backorder cost, production costs per unit item, transportation cost, and 

inventory carrying cost. 

•  The total cost for the retailer (TCR) is the sum of the ordering cost (including 

transportation cost), backorder cost, and inventory carrying cost for the retailer.   

• The total cost for the entire supply chain (TC) is simply the sum of the TCS and 

TCR. 

 

Independent Variables 

The independent variables in this simulation experiment are operational factors and 

environmental factors. The operating conditions of the supply chain system are forecasting 

model (FM) and information sharing policy (IS). Although supply chain managers have control 

over these operational factors, environmental factors cannot be ignored by the supply chain 

managers since they indirectly affect system performance through the operational factors. In this 

study, we consider demand pattern (DP) and capacity tightness (CT) as the environmental 

factors. The independent variables for the experiment are described below. 

• Forecasting methods (FM) 
 

A variety of time-series demand models have appeared in the literature of SCM. 

Among these methods, moving average, double exponential smoothing, Winters’ three 

parameter, and ARIMA methods are used to forecast demand. Previous research has 

shown that these methods work well under relatively stable demand. However, none of 

the prior studies investigates how these time series models perform under more volatile 

demand patterns including temporal demand heteroscedasticity. Furthermore, when 

demand exhibits time-varying behavior, the predicative accuracy of traditional 
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forecasting methods might deteriorate considerably. Thus, advanced forecast models such 

as the GARCH model and neural networks, which can overcome those limitations, are 

investigated to see how these models perform and how they affect supply chain 

performance. The forecasting methods used in this study are listed below. 

• Moving average:  The moving average forecasting method works well when 

demand is stable over time. The only parameter required for the moving 

average forecasting model is the number of past periods used to average the 

demand, and this is determined by minimizing the mean absolute deviation 

(MAD) of the forecasting errors.  In this study, the moving average model 

averages the historical demand of the most recent 7 time periods. This number 

coincides with the cycle length selected in the simulation study. Other 

numbers were experimentally used for this parameter but did not materially 

reduce the forecast error. As one of the most simple and popular forecasting 

models in practice, the moving average model has proved to perform well 

when forecasting error is used as the measurement of the model performance 

(Zhao, Xie, & Zhang, 2002).    

• Double exponential smoothing: Exponential smoothing has proven to be very 

useful in many forecasting situations such as inventory control and production 

planning. In 1957, Charles C. Holt first developed this model and used it for 

non-seasonal time series showing no trend. He then later developed a 

procedure (1958) that does handle trend, which is double exponential 

smoothing. This model is good at forecasting the trend component but not the 

seasonality components in a time series. Therefore, if a time series contains 



 

59 

seasonality components, systematic error will exist. SAS ETS 9.2 

recommends using an ARIMA(0,2,2) model as an approximation for an 

optimal double exponential smoothing model. This ARIMA model was used 

in the simulation study as a proxy for the double exponential smoothing 

model.  

• Winters’ three parameter trend and seasonality model: This model is an 

extension of double exponential smoothing by Winters in 1965. This 

seasonally-adjusted and trend-enhanced exponential smoothing model is 

usually used for data that exhibit both trend and seasonality. Because this 

model can forecast both the trend and seasonality components in a time series, 

systematic errors in the forecast will be very small. The details of the double 

exponential smoothing and Winters’ models can be found in Makridakis et al. 

(1998). SAS ETS 9.2  recommends using ARIMA(0,1,1)x(0,1,1)s as a good 

approximation to an optimal one parameter Winters’ model. For this 

simulation, an ARIMA model was used as a proxy for the Winters’ model.  

• ARIMA model:  ARIMA represents an autoregressive integrated moving 

average and was developed by George Box and Gwilym Jenkins (Box & 

Jenkins, 1976). It can handle a wide variety of time series patterns and has 

proved to be useful in representing both stationary and nonstationary time 

series (Liu, 2006). ARIMA models are often used as the baseline for 

forecasting comparison. When forecasts are generated under a more 

complicated model such as neural network, they are often compared with 

those obtained by an ARIMA model. If the forecasts obtained under an 
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ARIMA model are still more accurate than the forecasts obtained under a 

more complicated model, it often indicates misspecification in the more 

complicated model or the existence of outliers in the series (Liu, 2004).  

• SARIMA model:  Despite the fact that ARIMA models are able to deal with a 

wide variety of time series, they do not include seasonal time series which 

exhibit periodic behavior patterns. In order to handle seasonal time series, 

seasonal components need to be included in the ARIMA model. It was Box 

and Jenkins (1976) who extended the ARIMA model to seasonal ARIMA 

(SARIMA), which greatly increased the flexibility and usefulness of the 

models (Liu, 2004). The components of the ARIMA models are denoted by 

the P, D, and Q values in the notation ARIMA(P, D, Q) s and represent the 

autoregressive, integrated, and moving average components, respectively. The 

“s” at the end of this notation indicates the order of periodicity for seasonality. 

For the simulation study, an ARIMA(7,1,0) was used to fit the generated data 

as this model generally resulted in a good fit when seasonality was present.                      

• Neural network (NN): Neural networks are biologically-inspired semi-

parametric models which have been used to capture complex nonlinear 

relationships between dependent and independent variables. “Neural networks 

have been widely used as a promising method for time series forecasting” 

(Zhang & Qi, 2005, p. 501). NN modeling represents a different paradigm 

compared to the traditional linear paradigm, which assumes a linear 

relationship between input and output variables. Thus, NN forecasting models 

can provide more accurate and robust solutions for problems where traditional 
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methods cannot be applied. In fact, an NN model with proper configuration 

can generate forecasts for data with very challenging and complex 

characteristics. It is often used when the true distribution of the demand is 

unknown, especially when the demand process exhibits nonlinear activities. 

Although neural networks have been used for several decades in different 

areas and disciplines, the complexity of these models has increased 

significantly since their development. Fortunately, with advances in 

computing power, the network training time has been greatly reduced, which 

further increases the attractiveness and applicability of such an advanced 

forecasting technology in demand forecasting. In practice, the performance of 

neural networks depends on the number of hidden layers and the number of 

nodes in each hidden layer. Cybenko (1989) demonstrated that one hidden 

layer with the sigmoid function is sufficient for most neural network learning 

problems. Thus, in this study, two types of feed-forward neural network, each 

with one hidden layer, were configured. The first neural network uses 7 input 

neurons to catch the input patterns, one hidden layer (Multi-Layer Perceptron 

design) with 7 neurons to propagate the intermediate signals, and one output 

layer with 1 neuron to display the computed results. In addition, a hyperbolic 

tangent activation function is applied as the activations in both the hidden 

layer and the output layer. The second neural network is configured the same 

as the first neural network except that the number of input neurons is 12. We 

purposely included the second neural network in the simulation model to 

investigate how the minor change of neural network structure affects its 
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forecasting performance.  

• GARCH model:  The generalized autoregressive conditional 

heteroscedasticity (GARCH) model was designed to deal with the problem of 

volatility clustering in time series and extends the ARCH model by imposing 

an ARMA (autoregressive and moving average) structure on the conditional 

variance of the process error (Bollerslev, 1986).  “GARCH includes past 

variances in the explanation of future variances and allows users to model the 

serial dependence of volatility” (Chang & Tsai, 2008, p. 928). Under a 

demand process which exhibits heteroscedastic behavior, the GARCH model 

is expected to generate more accurate forecasts by minimizing forecast error 

compared to other traditional forecasting methods. Since their development, 

these models have found numerous applications in the finance and economics 

fields and have proved particularly valuable in modeling time series with 

time-varying volatility. However, temporal heteroscedasticity has not been 

incorporated into supply chain demand forecasting, and the application of 

advanced forecasting models such as the GARCH model in SCM has not 

attracted much attention. More importantly, the impact of advanced 

forecasting models on supply chain performance is not clear under temporal 

demand heteroscedasticity. This research purposely included a GARCH 

model to investigate how it would perform under different demand patterns 

including temporal heteroscedasticity.  

• Information Sharing 

Demand forecast plays an important role in production and inventory planning decisions. 



 

63 

The sharing of demand forecast data with the upstream supplier is implemented in this 

simulation study. Two schemes of information sharing are investigated in this study. 

a. No information sharing (NIS): Traditional information policy (non-

information sharing) refers to the process in which retailers make their own 

inventory replenishment decisions based on their demand forecast and place 

orders to the supplier (manufacturer) one at a time. Thus, the supplier has to 

make its production plan based on the retailers’ orders on a lot-for-lot basis. 

Researchers usually use this scheme as the baseline to compare with other 

information sharing schemes to determine the benefits of using information 

sharing. However, in practice, it is reasonable for the supplier to forecast 

future orders using historical order information to make its production 

schedule and better utilize its resources. Raghunathan (2001) demonstrates 

that the supplier is still able to estimate the demand process and the related 

parameters using some forecasting models in the case of non-information 

sharing. In this dissertation, the supplier is allowed to use double exponential 

smoothing to forecast future orders to plan its production before receiving any 

orders. It is noted that the so called “non-information sharing” in this study is 

not the same as the “traditional non-information sharing” in which the 

supplier simply responses to retailers’ orders on a lot-for-lot basis. In this 

study, based on the forecasted order information, the supplier uses a single-

item-capacitated lot-sizing model (Chung and Lin, 1988) to solve the lot-

sizing problem and get an optimal production schedule. This model is 

implemented using the mixed integer programming model in SAS/OR’s proc 
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LP. Only the production schedule in the frozen interval will be executed. 

Other schedules will be subject to change when new orders from retailers 

become available. Figure 3-2 illustrates the case of non-information sharing in 

this study.  

b. Planned order information sharing (OIS): In this case, the retailers share their 

planned orders with the supplier. First, retailers forecast future demand within 

the forecast horizon. After considering the inventory, the retailers apply the 

EOQ policy to calculate the order quantity and their planned orders, and then 

they place current orders to the supplier and inform the supplier of their 

planned orders in the future as well. After the supplier receives these orders, 

he uses planned orders as the gross requirements to solve the lot-sizing 

problem in order to get a feasible production schedule by using an SAS LP 

version of the capacitated lot model. Figure 3-3 illustrates the scenario of 

information sharing in this study.  

 

 

 

 

 

 

 

 

Figure 3-2. No information sharing between the retailers and the supplier. 
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Figure 3-3. The sharing of planned orders between the retailers and the supplier. 

• Demand Pattern (DP) 
 

Demand pattern is an important environmental factor that significantly influences supply 

chain operation and its performance. In this study, temporal demand heteroscedasticity is 

included in the demand generation process. Different types of demand patterns are generated 

using the following formula and are listed in Table 3-1. 

           (1) 

 
Demandt here represents the demand in period t (t=1, 2 … 400). SeasonCycle is chosen to be 7 

for all demand patterns except for the demand pattern with only trend. As to the “noise*error” 

component in the demand generation process, two types of variance for this component are 

considered— one is a constant value for the noise parameter to generate a constant variance, and 

the other is a value for this parameter to generate a heteroscedastic pattern. SAS’s standard 

normal random number generator, snormal(), is used to  generate the normal disturbance for the 

i.i.d. error term. Denoting the term labeled “error” in equation (1) byε , the noise parameter for 

the heteroscedastic pattern is expressed as ht in equation (2) and is  
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which is a function of the lagged error and the lagged noise parameter. Generating this pattern of 

heteroscedasticity will allow a GARCH(1,1) model to fit the generated data.  In addition, the 

parameters (base, slope, season, and noise) that appear in the demand generator equation are 

characteristic parameters for a demand process. Different values of these parameters can be 

chosen to generate demand patterns with different trend, seasonality, and random variation 

components.  

Because there is either a normal variant or a GARCH (1, 1) error component in the 

demand generation process, a negative demand value might conceivably occur. However, when a 

reasonably large base parameter was selected, this possibility did not occur in the simulation. In 

Table 3-1, the value of the slope was selected as 2, the same as in Zhao et al. (2002) for 

increasing trend. Only the increasing trend is considered in this study. Zhao et al. (2002)’s 

simulation results showed that information sharing was not particularly beneficial for retailers 

unless all retailers face demand with trends. For the demand pattern with common error, 80% of 

the “noise*error” component for each retailer was identical for each time period. When noise 

components for the retailers are not identical, it is more likely that some of the positive and 

negative error components will cancel each other out.    

Table 3-1  

Characteristics of Demand Patterns Used in This Study 

DP Base Slope Season Noise 
Trend & Heteroscedasticity 500 2 200 α1 = .33, β1=0.66 , and α0=100  
Trend & Seasonality 500 2 200 100 
Trend 500 2 0 100 
Trend & Common Error 
 

500 2 200 100 
80% of noise component 
identical for all 4 retailers 
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• Cost Structure 

Cost structure is another environmental factor that can significantly affect supply chain 

performance. Table 3-2 describes the cost parameters for the supplier and retailers in this 

simulation study. Similar cost parameters have been used in previous studies (Zhao & Lee, 1993; 

Ebert & Lee, 1995; Zhao, Lee, & Goodale, 1995; Zhao et al., 2002). 

Table 3-2  

Cost Structure for the Supplier and the Retailers -- Source: Zhao et al. (2002) 

Supplier/retailer Supplier Retailer 1 Retailer 2 Retailer 3 Retailer 4 

Ordering 
costs($/order) 

500 (Set-up 
costs) 30.00 30.00 30.00 30.00 

Transportation costs 
($/truck) N/A 450.00 255.00 331.00 553.00 

Production costs per 
unit item .05 N/A N/A N/A N/A 

Backorder costs 
($/unit/period) 0.30 0.40 0.40 0.40 0.40 

Inventory costs 
($/unit/period) 0.03 0.04 0.04 0.04 0.04 

Note: Production costs per unit item is not mentioned in Zhao et al. (2002)but is used for the 
single-item-capacitated lot sizing rule in Chung and Lin (1988).  

 
• Capacity Tightness (CT) 

Capacity constraint on the supplier is another important environmental factor that can 

significantly influence supply chain performance. Although many factors could have been 

selected as affecting the flow of goods in the supply chain, such as a supplier’s yield uncertainty 

or  supply chain disruptions, this study selected constraints on a supplier’s capacity tightness 

because of the importance given to this factor in the literature. By definition, capacity tightness 

(CT) is used to measure the tightness of the supplier’s production capacity relative to the total 

demand (the ratio of the total capacity available to the total demand to be met). Intuitively, as 
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capacity becomes tighter, more backorders will occur for the supplier, which in turn will increase 

the costs for the supplier and decrease the supplier’s service level. Three levels of capacity 

tightness, i.e. low (1.33), medium (1.18), and high (1.05) are used in this study, all of which were 

also used in previous studies (Zhao et al., 2002; Sohn et al., 2008).  

 

Single Item Capacitated Lot Size Problem 

Single item capacitated lot size problem (CLSP) formulation (Chung & Lin, 1988) is as 

follows: 

                                                                 (3) 

 

 

 

 

 

Ct =production capacity in period t, where Ct ≥0. 
xt = production quantity in period t , where 0≤xt≤Ct. 
It = inventory level at the end of period t. 
rt = demand in period t.  
Kt= production setup cost in period t, where Kt≥0. 
pt  = unit cost of production in period t , where pt≥0. 
ht = cost of holding one unit in inventory in period t , where ht≥0. 
T = the periods of forecasting horizon 

 
          This problem is known to be nondeterministic polynomial-time hard (NP-hard), but there 

exist special cases that can be solved in polynomial time. For the CLSP with non-increasing 

setup costs, general holding costs, non-increasing production costs, and non-decreasing 

capacities over time, Chung & Lin (1988) developed an O(T2) algorithm while Heuvel & 
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Wagelmans (2006) proposed a more efficient  O(T2) algorithm to get the optimal solution. 

However, both of the algorithms need to preprocess the demand in order to obtain feasible 

solutions. That is, the demand has to be modified to satisfy the condition that “the sum of the 

demand till period t” is less than or equal to “the sum of the capacity till period t” for every t 

period in the forecasting horizon. If this condition is not satisfied, the demand in period t will be 

reduced, and the backorder will be put into the next period’s demand. Due to this limitation, we 

decided to use SAS/OR’s proc LP procedure to get the optimal solution. This SAS procedure not 

only provides exactly the same result as the programs based on the above algorithms but also 

saves us a lot of time in programming and validating the results of an alternative algorithm.   

 

Simulation Procedures 

The underlying assumptions are that the supply chain operates in a make-to-stock 

environment, the supplier faces capacity constraints and produces a single product for the 

retailers, and one unit of the resource is required to produce exactly one unit of each finished 

product. Production lead time is assumed to be zero, which means that the supplier processes the 

retailers’ orders immediately once it receives orders from the retailers. However, transportation 

lead time is assumed to be one period. Retailers face customer demand and are assumed to be 

using an EOQ policy to replenish their inventories. The replanning periodicity (the number of 

periods between replanning cycles) is set to be one period, and the number of frozen periods in 

the planning horizon is chosen to be 4 for the supplier in this study. During each replanning 

period, the parameters of the forecasting models are re-estimated, and planned schedules within 

the non-frozen interval of the forecasting horizon are revised as more order information becomes 

available. 
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At the beginning of each period, the four retailers use historical demand data to forecast 

demand within the forecasting horizon, which is 20 periods. After the retailers get demand 

forecasts, they calculate their EOQ order quantities and place their current period’s orders to the 

supplier. After submitting their orders to the supplier, the retailers receive the delivery shipped 

by the supplier one period previously. At the end of each period, when customer demand is 

realized, the retailers satisfy their customer’s demand including any backorders using on-hand 

inventory. If on-hand inventory is insufficient, any shortages will become backorders.  

 The orders placed by the retailers become the demand for the supplier, and the supplier 

makes its production schedule using the same planning horizon as the retailers. Based on the 

orders from retailers, the supplier performs local optimization to find feasible production 

schedules using the CLSP formulation in equation (3). The supplier makes its production 

schedule depending on the information sharing scenarios. In the case of non-information sharing, 

the supplier forecasts future orders based on historical order data using the double exponential 

smoothing method because no information is shared between the supplier and the retailers. That 

is, the order forecasts and current orders are the only data that the supplier can get before 

production begins. Then the supplier uses the capacitated lot-sizing rule to determine its 

production plan for the forecasting horizon.  

In the case of information sharing, the retailers not only submit their orders to the 

supplier but also share their planned orders with the supplier. Thus, the supplier can use both the 

placed orders and the planned orders as gross requirements to make its production schedule 

according to the capacitated lot-sizing rule. The first 4 periods of the production schedule within 

the planning horizon are frozen, and other planned production schedules in the unfrozen interval 

will be subject to change when new orders from the retailers arrive. The current period’s 
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production schedule is executed. After the production for the current period is completed, the 

supplier makes shipping decisions from its on-hand inventory. If sufficient on-hand inventories 

are available, the supplier fills the retailers’ orders and any backorders from previous periods. 

Otherwise, the supplier will fill the retailers’ orders as much as it can, and any orders that are 

unfilled become backorders. Finally, shipments are made from the supplier to the retailers by 

truck, it is assumed that the truck load is sufficient so that a single truck can deliver the orders 

which the retailers have placed. The party to whom the transportation cost will be billed depends 

on whether the retailers place an order to the supplier in the current period or not.  If the retailers 

place an order to the supplier in the current period, then the retailers will pay for the 

transportation fee. Otherwise, if the shipment is used only to deliver backorders to the retailers, 

then the transportation cost will be charged to the supplier. 

Customer demands are generated for 420 periods using demand generation functions with 

different trend, seasonality, and random variation components. Demand for the first 50 periods is 

used to estimate initial parameters for the forecasting methods. During each replanning period, 

the parameters of the forecasting method will be re-estimated when more demand data is 

available. The final performance measures for the retailers, the supplier, and the entire supply 

chain are based on 350 simulation periods. The last 20 periods were used to avoid termination 

effect. In order to avoid possible backorders for the retailers due to transportation lead time at the 

beginning of the simulation, four retailers are assumed to have initial inventory at 1000, 1500, 

1800 and 2000 units respectively. As in Zhao et al. (2001), Zhao and Lee (1996), and others, in 

order to reduce the effect of random variation, five replications are generated using the 

associated values of cost for each combination of the factor levels.    

In summary, the simulation process includes the following: generation of the demand 
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pattern, retailers’ making ordering decisions and the supplier’s making production and delivery 

decisions. The simulation procedure continues until ordering, production, and delivery decisions 

are developed for all 350 periods. At the end of each period, costs for the retailers and the 

supplier are computed by considering the inventory cost, production unit cost, order cost, setup 

cost, backorder cost and transportation cost. Once the simulation is done, the total costs for the 

retailers, the supplier, and the supply chain are computed and used to measure the supply chain 

performance.  

The simulation program was written in SAS since SAS has numerous built-in procedures 

for all forecasting methods investigated in this study. Moreover, SAS/OR’s proc LP procedure 

was used to solve the capacitated lot-size problem. A bottom-up testing approach was used to 

verify and validate the results of the simulation program. That is, as each submodule was 

implemented, testing data sets were used to examine the results. Consistency of results for 

replicated output from the simulation program was analyzed to determine if the output was in an 

acceptable range.   
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CHAPTER 4  

RESULTS OF STATISTICAL ANALYSES 

This simulation study was designed so that a factorial experiment could be used to test 

the influence of the following four factors on a supply chain’s performance: forecasting method 

selection, information sharing, demand pattern, and the supplier’s capacity tightness. To 

investigate the research objectives proposed in Chapter 1 and test the hypotheses presented in 

Chapter 3, an analysis of variance (ANOVA) and Duncan’s multiple range tests were performed 

using the following dependent variables: total cost for the supply chain (TC), total cost for 

supplier (TCS), and total cost for retailer (TCR) on the data set. A natural log transformation was 

used on these dependent variables to meet the assumptions of ANOVA. This chapter presents the 

results of the statistical analysis. 

 Selected ANOVA results, namely the F tests and significance levels, are presented in 

Table 4-1 for a complete factorial model consisting of main effects and two-way, three-way, and 

four-way interactions. The results of this ANOVA table reveal that for TC, all the main effects 

and interaction effects are significant at the 5% level of significance with the exception of the 

three-way interaction between forecasting method, information sharing and capacity tightness. 

For the dependent variables TCS and TCR, all the main and interaction effects are statistically 

significant at the 5% level of significance. That is, all the factors being investigated in this study 

significantly affect the supply chain performance. In particular, the main effect for capacity 

tightness has a dominant effect with F values of 21703.3, 34642.4, and 11185.4 for TC, TCR, 

and TCS, respectively. Such a substantial main effect suggests that the dependent variables are 

readily separable across the three capacity tightness levels for the supplier. This result is 
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consistent with the belief that higher capacity constraints generate higher costs for a supply 

chain.  

The next term in the factorial experiment that has a very large effect is information 

sharing. The values of the F statistic for this main effect are 1896.72 and 3129.19 for TC and 

TCS, respectively. These large values indicate that the type of information sharing policy plays a 

substantial role in increasing or decreasing costs. For TCR, the values of the F statistic, other 

than for capacity tightness, were not very large. The next two large values of the F statistic, 

94.87 and 94.76, were for the effects of the demand pattern and the forecasting model. These 

values indicate that demand patterns and forecasting models significantly affect the retailers’ 

performances. Moreover, the interaction effects between information sharing and the above two 

factors are also statistically significant. Another very large F statistic value is the one for the 

interaction of information sharing and capacity tightness. For TC and TCS, the values of this 

statistic are 526.41and 690.21, respectively. These substantial F statistic values indicate that the 

effect of information sharing is dependent on the level of capacity tightness. The results of this 

study demonstrate that information sharing plays a more important role in affecting the supply 

chain performance as capacity tightness increases.  

Although the F statistic values of the interaction effects are not as prominent as those of 

the main effects mentioned above, the two-way, three-way, and four-way interactions contribute 

to the supply chain’s costs as well. Interpreting the results of this simulation study is particularly 

difficult due to the presence of these interactions. The interpretation of each main effect must be 

explained by examining its effect on the different combinations of levels of the other main 

effects. That is, forecasting methods employed by the retailers, the demand pattern faced by the 

retailers, information sharing policy adopted between the supplier and the retailers, and capacity 



 

75 

tightness faced by the supplier significantly jointly affect the supply chain performance in term 

of cost. In particular, the interaction effects among these factors have important implications for 

supply chain managers. Thus, in order to achieve cost reduction, supply chain managers should 

jointly consider all the critical factors in this study in selecting the appropriate forecasting 

method coupled with other operational factors under different scenarios so as to improve the 

supply chain performance. 

Table 4–1  

Selected ANOVA Results for Factors Affecting Supply Chain Costs, Retailers’ Costs, and 
Supplier’s Costs 
 

Source Dependent variables 
 TC TCS TCR 

 F value Pr >F F value Pr >F F  value Pr >F 

IS 1896.72 0.0001 3129.19 0.0001 5.77 0.0165 
DP 96.14 0.0001 74.28 0.0001 94.87 0.0001 
IS*DP 28.50 0.0001 17.34 0.0001 46.72 0.0001 
FM 123.73 0.0001 110.15 0.0001 94.76 0.0001 
IS*FM 18.19 0.0001 12.40 0.0001 40.61 0.0001 
DP*FM 7.30 0.0001 6.90 0.0001 5.63 0.0001 
IS*DP*FM 6.43 0.0001 6.43 0.0001 5.23 0.0001 
CT 21703.3 0.0001 11185.4 0.0001 34642.4 0.0001 
IS*CT 526.41 0.0001 690.21 0.0001 11.32 0.0001 
DP*CT 13.77 0.0001 8.19 0.0001 22.17 0.0001 
IS*DP*CT 6.73 0.0001 5.85 0.0001 6.68 0.0001 
FM*CT 2.94 0.0005 3.02 0.0004 2.32 0.0066 
IS*FM*CT 1.45 0.1403 2.56 0.0026 2.30 0.0071 
DP*FM*CT 1.96 0.0008 1.67 0.0092 2.21 0.0001 
IS*DP*FM*CT 2.90 0.0001 2.70 0.0001 2.88 0.0001 
 
 
 

The Impact of Forecasting Methods on Supply Chain Performance 

As stated in Chapter 1, the first research objective was to investigate the impact of 

forecasting model selection, coupled with information sharing under different demand patterns 

including temporal demand heteroscedasticity, on supply chain performance in a capacitated 
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supply chain. Examples of the demand patterns investigated in the simulation study are displayed 

in Figures 4-1 through 4-4. By examining these figures, it is easy to determine that the demand 

patterns have reasonably constant error variance about a general trend in all but one graph, in 

which the data with a heteroscedastic term in the error increases in volatility. The demand pattern 

with 80% common error has larger swings. These four patterns represent different types of 

volatility about the same trend line.  

To examine the impact of forecasting methods on the performance of the supply chain, 

Figures 4-5 through 4-11 illustrate the performance of each forecasting model across these 

demand patterns under different levels of information sharing and capacity tightness. 

Examination of these figures shows that higher capacity tightness will result in higher supply 

chain costs. When CT is high, the supplier usually has to use most of its capacity to produce in 

order to meet customer demand, and it seems that forecast accuracy does not matter much since 

the supplier does not have enough resources to respond to customer demand. However, when CT 

is medium or low, supply chain performance improves because the supplier can better utilize its 

capacity based on the demand forecasts.   

According to prior research (Zhao et al, 2002; Sohn & Lim, 2008), when capacity 

tightness is low or medium, information sharing is usually beneficial to the supply chain under 

certain circumstances compared to the traditional non-information sharing case used by most 

previous research. Thus, when capacity tightness is not high and planned order information is 

shared, retailers should select a forecasting model with high forecast accuracy. Results from this 

study differ somewhat from those of the previous research. This difference may be due to the 

assumption that the supplier forecasts future orders based on historical order information when 

no information is shared by retailers. That is, the supplier may obtain forecasts from its historical 
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order information that are at least as beneficial as information being passed on from the retailers 

to the supplier. Another possible explanation is that temporal demand heteroscedasticity was 

included in this study. This demand pattern may make the retailers’ EOQ policies less effective, 

which in turn affects the supply chain performance in a negative way. 

Examination of Figures 4-5 through 4-11 reveals that NIS performs better than OIS under 

most scenarios. The results indicate that information sharing is not always beneficial to the 

supply chain. These results are consistent with the results from some prior studies, but not all. 

Graves (1999) reported that there is no value from information sharing as firms can utilize their 

own business intelligence to forecast demand. Cachon & Fisher (2000) concluded that the value 

of sharing demand data was not significant due to the fact that the retailer’s historical orders 

provide a substantial portion of the information that the supplier needs in making replenishment 

and allocation decisions. In addition, Kim & Ryan (2003) also demonstrated that the benefits of 

shared demand data are limited when a manufacturer can use a large number of previous orders 

placed by the retailer to forecast demand.  

The results of this simulation identified scenarios in which the supply chain can benefit 

from information sharing. In some situations, information sharing lowers the supply chain costs 

when capacity tightness is medium or high under certain demand patterns. It is interesting to 

compare our results with the conclusions of Zhao et al. (2002). Zhao et al. (2002) considered 

three information sharing schemes: non-information sharing, sharing of net requirements, and 

sharing of planned orders. They observed that “sharing future order information with the supplier 

is more beneficial than sharing only future demand information. Total cost savings for the entire 

supply chain are substantial under most conditions” (Zhao et al., 2002, p. 343). This dissertation 

illustrates conditions in which forecasting orders by the supplier without information sharing can 
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achieve significant cost reduction for the entire supply chain. This result has practical 

implications for SCM. In practice, there are some circumstances in which retailers are not willing 

to share their demand and future order information with the supplier due to the fact that 

information sharing usually generates more benefits to the supplier than to the retailer under 

most circumstances. Other issues, such as security and confidentiality of the companies’ data, 

also prevent the retailers from sharing their demand and planned order information with the 

supplier. For instance, “retailers are reluctant to share information with the manufacturer because 

of fear (lower bargaining power, information leakage, etc.)”  (Tang, 2005, p. 477). Thus, it is 

reasonable for the supplier to forecast future orders and plan its production schedule in advance 

so as to improve the entire supply chain performance.  

Figures 4-5 through 4-11 provide a comparison of forecasting model performance across 

demand patterns and under different levels of information sharing and capacity tightness. This 

study does not compare the accuracy of the forecasts of these methods under different demand 

patterns. Instead, performance of the supply chain is compared across scenarios in terms of costs. 

Since there is a strong interaction between capacity tightness and information sharing, the results 

in these figures reveal that as capacity tightness increases, the value of information sharing 

increases relative to the case of non-information sharing.  
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Figure 4-1. Demand data generated using only trend. 

 
 

Figure 4-2. Demand data generated using trend and seasonality. 
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Figure 4-3. Demand data generated with heteroscedasticity – GARCH(1,1) error. 

Figure 4-4. Demand data generated using trend, seasonality and common error.  
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Figure 4-5 shows how the GARCH model performs under different scenarios. Demand 

patterns with common error or with heteroscedastic components are more volatile than the other 

two demand patterns being investigated. Figure 4-5 indicates that the GARCH model generates 

the lowest cost for the supply chain under the temporal demand heteroscedasticity when capacity 

tightness is low and information is not shared, which may be due to the fact that the GARCH 

model was designed to deal with time-varying variance. However, when information is shared, 

the supply chain cost increases dramatically, especially for the demand pattern with 

heteroscedasticity. The GARCH model behaves quite differently between the two information 

sharing cases. When information is shared, this model generates the highest supply chain cost 

among the four demand patterns. This unexpected result may be due to the fact that temporal 

demand heteroscedasticity makes the retailers’ EOQ policies less effective, which indirectly 

influences the supply chain’s performance negatively. As capacity tightness goes up, information 

sharing plays a more important role in affecting the supply chain performance. When capacity 

tightness is medium, the GARCH model with information sharing under two of the demand 

patterns (demand with trend and demand with trend and seasonality) can help the supply chain 

reduce cost to some extent. However, under more volatile demands (demand with common error 

and demand with heteroscedastic component), the supply chain performance is better off without 

information sharing if retailers use the GARCH model to forecast demand. As the capacity 

tightness reaches the highest level under the GARCH model, the difference between supply 

chain performances become smaller. At least, the supply chain’s performance with information 

sharing is as good as that without information sharing when capacity tightness is high. In other 

words, the value of information sharing increases as capacity tightness increases. 
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Figure 4-5.GARCH forecasting model’s effect on supply chain’s costs. 

Figure 4-6 presents the results for the additive Winters’ forecasting model under different 

scenarios. Winters’ model was designed to forecast time series with trend and seasonality. This 

model does best when capacity tightness is low and information is not shared. However, the 

supply chain cost tends to increase slightly under the demand pattern consisting of common 

error. The supply chain cost increases as capacity tightness increases. With capacity tightness 

being high, the difference in the supply chain cost between the two cases of information sharing 

becomes smaller. In general, Winters’ model performs worse under information sharing except 

in a few cases.  
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Figure 4-6. Additive Winters’ forecasting model’s effect on supply chain’s costs.  

Figure 4-7 shows how the neural network model with 7 inputs performs under different 

scenarios. In the case of non-information sharing, the performance of NN7 is not significantly 

different across all the demand patterns with capacity tightness being low, and this model 

generates lower costs across different scenarios. When information is shared, NN7 results in 

higher supply chain costs with low capacity tightness, especially under the demand pattern with 

heteroscedasticity. As the supplier’s capacity becomes tight, the effect of information sharing 

becomes noticeable. For example, with medium capacity tightness, although the supply chain is 

still better off without information sharing, the cost difference of the supply chain becomes 

smaller under the two information sharing cases. The performance of NN7 tends to be worse 

under the demand pattern with heteroscedasticity, with information being shared and capacity 

tightness being high.  
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Figure 4-7. Effect of neural network model with 7 inputs on supply chain’s costs. 

 
Figure 4-8 illustrates how neural network with 12 inputs performs under different 

scenarios. The supply chain costs tend to differ only slightly across the demand patterns for 

NN12. When information is shared, NN12 consistently performs worse compared to the non-

information sharing case. As capacity tightness goes up, supply chain costs increase because of 

setup cost, backorder cost, or stock-out cost occurring more often. However, information sharing 

does not seem to bring any benefit to the supply chain when NN12 is used. Compared with 

Figure 4-10 and Figure 4-11, the performances of the NN12 model under different scenarios are 

similar to those of the moving average and the double exponential smoothing models in most 

cases. The configuration of the NN12 models may be responsible for the poor performance of 

this model.   

 



 

85 

 
 
Figure 4-8.Effect of neural network model with 12 inputs on supply chain’s costs. 
 

Figure 4-9 shows how seasonal ARIMA performs under different scenarios. SARIMA 

was designed to deal with time series consisting of seasonality. Without information sharing, 

SARIMA helps reduce the costs for the supply chain significantly across all the demand patterns 

when capacity tightness is low. However, when information is shared, the supply chain cost 

dramatically increases, especially under the demand pattern with heteroscedasticity. As capacity 

tightness increases, the value of information sharing increases. That is, the difference between 

supply chain costs under the two information sharing schemes becomes smaller as capacity 

tightness becomes tight. The supply chain cost is lower under information sharing than that 

under non-information sharing in most cases when capacity tightness is high. 
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 Figure 4-9 .SARIMA forecasting model’s effect on supply chain’s costs. 

 
Figure 4-10 describes how the moving average method performs under different 

scenarios. The results demonstrate that the moving average method performs best under a trend 

demand pattern with non-information sharing and low capacity tightness. As the demand pattern 

becomes more volatile, the cost of the supply chain increases for low capacity tightness with no 

information sharing and for medium capacity tightness with information sharing. It is also 

noticeable that the moving average method always exacerbates the supply chain costs under 

information sharing. Therefore, the moving average method should be avoided when information 

sharing policy is implemented. As mentioned previously, capacity tightness also plays an 

important role in affecting the supply chain cost. As capacity tightness increases, the differences 
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of supply chain costs under both information sharing schemes become smaller because the 

supply chain does not have enough capacity to respond to retailers’ orders. 

 
 

Figure 4-10. Moving average forecasting model’s effect on supply chain’s costs.  
 

Figure 4-11 shows how the double exponential smoothing method performs under 

different scenarios. Double exponential smoothing results in lower costs under the trend demand 

pattern. However, it was not designed to handle seasonality. Systematic error exists when double 

exponential smoothing is used to forecast data consisting of seasonality. Supply chain costs 

dramatically increase under demand patterns showing seasonality. Double exponential 

smoothing performs even worse when information is shared. For demand patterns other than the 

trend demand pattern, the double exponential smoothing method is misspecified. The supply 

chain costs are higher when the planned orders are shared with the supplier. Thus, it can be 
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concluded that double exponential smoothing should be avoided, especially for the case of 

information sharing and when seasonality is present. 

 
Figure 4-11.Double exponential smoothing forecasting model’s effect on supply chain costs.  

 

The Interaction Effect of Information Sharing, Capacity Tightness, and  
Forecasting Method on Supply Chain Performance 

 
As stated in Chapter 2, the second research objective is to investigate how operational 

and environmental factors interact with forecast model selection to influence a supply chain’s 

performance. The ANOVA results from Table 4-1 clearly show that all interaction effects are 

statistically significant at the 0.05 level of significance except for the interaction effect among 

information sharing, forecasting method, and capacity tightness for the supply chain (TC). To 

illustrate which combinations of forecasting method and information sharing policy significantly 

affect a supply chain’s performance, an analysis of these methods is presented under each level 
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of the environmental factors, capacity tightness and demand patterns, because of their significant 

interactions. Duncan’s multiple range tests were used to display the combinations of the 

operational factors which significantly differed. Tables 4-2 through 4-13 present the results.   

As demonstrated in Table 4-2,when the demand pattern consists of trend, seasonal, and 

heterogeneous components with low capacity tightness, the total costs for the supply chain, the 

supplier, and the retailers (TC, TCS, and TCR) are significantly lower for models with non- 

information sharing as compared to models with order information sharing. This result is due to 

the fact that the supplier uses exponential smoothing on historical orders to forecast future orders 

and plan its production schedules to avoid possible backorders or more production setups.  

Table 4-2  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend, Seasonality, and Heteroscedasticity with CT= Low 
 

  
TC 

Mean Scenario   
TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.279 OLD A 13.974 OLD A 12.930 OLD 
B 14.065 OLM A, B 13.826 OLS B 12.528 OLN12 
B 14.063 OLN12 A, B 13.824 OLM B 12.522 OLM 
B 14.062 OLS A, B 13.820 OLN7 B, C 12.511 OLG 
B 14.057 OLN7 A, B 13.820 OLN12 B, C 12.509 NLD 
B 14.050 OLG B 13.811 OLW B, C, D 12.498 OLS 
B 14.047 OLW B 13.808 OLG B, C, D 12.497 OLN7 
C 13.788 NLD C 13.457 NLD B, C, D, E 12.487 OLW 
D 13.569 NLM D 13.186 NLM C, D, E 12.420 NLW 
D, E 13.517 NLN12 D, E 13.114 NLN12 C, D, E 12.419 NLM 
D, E  13.475 NLG D, E 13.054 NLG D, E 12.407 NLN12 
E 13.450 NLW E 13.006 NLW D, E 12.406 NLS 
E 13.435 NLS E 12.989 NLS D, E 12.406 NLN7 
E 13.428 NLN7 E 12.977 NLN7 E 12.400 NLG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 
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Advanced forecasting methods such as neural network models, GARCH, and seasonal ARIMA 

appear in the group that is not significantly different from the scenario with the lowest cost. With 

information sharing, the forecasting models are not significantly different with the exception of 

double exponential smoothing. The double exponential smoothing model with information 

sharing performs significantly worse than all the other models for TC and TCR. As mentioned 

previously, the cost to the supplier may be lower with non-information sharing because the 

supplier’s own forecasts are for all four retailers’ aggregated historical orders, and these 

smoothed values may be more useful for future planning than the retailers’ individual forecasts. 

Zhao et al. (2002) revealed that information sharing generally yielded better supply chain 

performance. In particular, more substantial cost savings can be achieved when the retailers 

share future orders with the supplier than in the cases in which the retailers share demand 

forecasts. Moreover, Zhao et al. (2002) showed that the supply chain performances were better in 

the case of both information sharing schemes than that in the case of non-information sharing. As 

a caveat, Zhao et al. (2002) did not use the same version of non-information sharing as used in 

this study. The result of this dissertation shows that the supplier’s using its own forecasts is more 

efficient than the sharing of planned order information, especially when demand becomes more 

volatile. To some extent, our results are consistent with those of the previous study (Huang, Lau, 

Wang, & Humphreys, 2008, p. 47), which states that “sharing information may not necessarily 

improve supply chain performance in a turbulent market manifested in the seasonal demand 

pattern.” In the case of a demand pattern with heteroscedasticity, as specified in this simulation 

study, information sharing is not of much benefit to the supply chain and in fact may yield worse 

supply chain performance.    
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As shown in Table 4-3, when the demand pattern consists of trend and seasonal 

components with low capacity tightness, the total costs for the supply chain and the supplier are 

significantly lower for models without information sharing as compared to models with order 

information sharing, except for the double exponential smoothing model. Similar to the results 

for the demand pattern with trend, seasonal components, and heterogeneity, low capacity 

tightness makes information sharing less important than when capacity tightness is higher, 

particularly for TC and TCS. With information sharing, the two best forecasting models for TC, 

TCS, and TCR consist of the neural networks model with 7 inputs and the GARCH models. 

These two models are not significantly different. For TC and TCS, the double exponential 

smoothing model with non-information sharing is not significantly different from these two 

models. 

Table 4-3  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend and Seasonality with CT= Low 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.222 OLD A 13.960 OLD A 12.750 OLD 
B 14.095 OLN12 A, B 13.844 OLN12 B 12.586 OLN12 
B 14.067 OLM B 13.823 OLM B 12.582 NLD 
B 14.062 OLS B 13.818 OLS B, C 12.538 OLM 
B 14.048 OLW B 13.805 OLW B, C 12.531 OLS 
C 13.905 NLD C 13.651 OLN7 B, C, D 12.514 OLW 
C 13.887 OLN7 C 13.595 NLD C, D, E 12.481 NLM 
C 13.808 OLG C 13.560 OLG D, E 12.437 NLN12 
D 13.571 NLM D 13.154 NLM D, E 12.437 NLS 
D 13.533 NLN12 D 13.123 NLN12 E 12.428 NLW 
D 13.523 NLG D 13.119 NLG E 12.421 NLG 
D, E 13.499 NLW D 13.084 NLN7 E 12.411 NLN7 
D, E 13.499 NLN7 D 13.076 NLW F 12.326 OLN7 
E 13.412 NLS E 12.938 NLS F 12.293 OLG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
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for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 
For TCR, information sharing is beneficial as the neural network model with 7 inputs and 

the GARCH models are significantly better than the other models. The double exponential 

smoothing model with information sharing performs significantly worse than all other models 

under most scenarios. Double exponential smoothing often does not perform well in the presence 

of seasonality. For the retailers, not all of the models without information sharing are 

significantly better than the models with information sharing as they are for the supplier or the 

overall supply chain. This study shows that retailers benefit directly from information sharing 

when advanced forecasting models, namely, the neural network model with 7 inputs and the 

GARCH model, are used, resulting in significant cost savings for the retailers. 

As demonstrated in Table 4-4, when the demand pattern exhibits trend with capacity 

tightness being low, the overall cost of the supply chain (TC) is significantly lower for models 

with non-information sharing as compared to models with order information sharing. This may 

be due to the fact that the supplier uses its own forecasting intelligence to forecast future orders 

and plan its production schedule ahead of time. The supply chain performance under non-

information sharing scenarios is significantly different from that under information sharing 

scenarios for TC and TCS. For the non-information sharing scenarios, the simple traditional 

forecasting methods, namely, the moving average and double exponential smoothing models 

perform well although they are not significantly different from several of the other models. The 

reasonably good performance of the simple forecasting methods may be due to the fact that the 

demand pattern is relatively stable and that the forecasts from these models work well with the 

supplier’s own forecasts when information is not shared. Despite the fact that information 

sharing does not appear to bring much benefit to the supplier and the supply chain, it is clear that 
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the retailers benefit directly from information sharing since the GARCH model coupled with 

information sharing generates the lowest costs for the retailers. When planned order information 

is shared, the simple forecasting models (moving average and double exponential smoothing) 

and NN 12 perform significantly worse while the GARCH, Winters’, and seasonal ARIMA 

models outperform the other forecasting models from the perspective of the retailers. Therefore, 

it can be concluded that advanced forecasting methods such as the GARCH model are the most 

beneficial for the retailers to use in order to reduce their costs if an information sharing policy is 

implemented and if capacity tightness is low. However, simple forecasting methods with non-

information sharing policy are beneficial to the supplier and the entire supply chain.  

Table 4-4  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend with CT= Low 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.093 OLN12 A 13.845 OLN12 A 12.575 OLN12 
A 14.041 OLM A 13.803 OLM B 12.499 OLD 
A 14.023 OLD A, B 13.777 OLD C, B 12.491 OLM 
B  13.885 OLN7 B, C 13.651 OLN7 C, D 12.455 NLN12 
B 13.822 OLS C 13.579 OLS D, E 12.422 NLG 
B 13.815 OLG C 13.573 OLG E 12.405 NLW 
B 13.814 OLW C 13.569 OLW E 12.403 NLN7 
C 13.591 NLN12 D 13.200 NLN12 E 12.403 NLS 
C, D 13.531 NLW D, E 13.136 NLW E 12.400 NLM 
C, D 13.523 NLG D, E 13.114 NLG E 12.391 NLD 
D, E 13.475 NLS E, F 13.055 NLS F 12.323 OLN7 
D, E 13.469 NLN7 E, F 13.048 NLD F, G 12.290 OLW 
D, E 13.467 NLD F 13.045 NLN7 F,G 12.289 OLS 
E 13.513 NLM F 12.950 NLM G 12.277 OLG 
         

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 
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As demonstrated in Table 4-5, when the demand pattern exhibits trend and seasonality 

with 80% of the error term being common across retailers and with capacity tightness being low, 

the overall cost of the supply chain (TC) is again significantly lower with non-information 

sharing than it is with order information sharing. For TC and TCS, the best models are the neural 

network models with 7 and 12 inputs, Winters’ model, and seasonal ARIMA with non-

information sharing. This demand pattern is clearly more volatile than the demand data with 

trend. 

Table 4-5  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend and Seasonality with 80% Common Error and with CT = Low 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.274 OLD A 13.990 OLD A 12.876 OLD 
B 14.106 OLN12 A,B 13.852 OLN12 B 12.610 OLN12 
B 14.085 OLM B 13.832 OLM C, B 12.586 OLM 
B 14.051 OLW B 13.811 OLW C, D 12.508 OLW 
C 13.881 OLN7 C 13.639 OLN7 C, D 12.506 NLM 
C 13.834 OLS C,D 13.591 OLS D, E 12.497 NLG 
C,D 13.804 OLG C,D 13.554 OLG D, E 12.495 NLW 
C,D 13.762 NLD D,E 13.462 NLD D, E 12.460 NLS 
D 13.699 NLM E 13.335 NLM D, E 12.458 NLN12 
D 13.691 NLG E 13.329 NLG E , F 12.414 NLN7 
E 13.572 NLW F 13.154 NLW E , F 12.409 NLD 
E 13.524 NLS F 13.105 NLN7 F , G 12.342 OLN7 
E 13.518 NLN12 F 13.097 NLS G 12.300 OLS 
E 13.513 NLN7 F 13.094 NLN12 G 12.293 OLG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 
 Thus, it is evident that the advanced models consisting of the neural network model with 

7 inputs, the seasonal ARIMA model, and the GARCH model significantly outperform other 

models with information sharing. When planned order information is shared, the double 
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exponential smoothing model performs significantly worse. An interesting observation across the 

different demand patterns is that the GARCH model is consistently in the top performing models 

when information is shared. For the low capacity tightness level, the results reveal that advanced 

forecasting models such as GARCH, neural networks, and seasonal ARIMA play an important 

role in reducing supply chain costs under certain demand patterns.  

As shown in Table 4-6, when the demand pattern consists of trend, seasonal, and 

heterogeneous components with medium capacity tightness, the overall cost of the supply chain 

increases as compared to the cases with low capacity tightness since more backorder and setup 

costs occur when capacity becomes relatively tight. Under this demand pattern, the supply chain 

is better off without information sharing under most of the forecasting methods. For example, the 

GARCH model and the NN7 model without information sharing lower the costs for the supply 

chain significantly due to their ability to capture the non-linear activities in the demand process. 

Surprisingly, these advanced forecasting methods coupled with information sharing might not 

yield significant cost savings for the retailers, supplier, or the entire supply chain.  

Table 4-6  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend, Seasonality, and Heteroscedasticity with CT = Medium 
 

  
TC 

Mean Scenario   
TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.633 OMD A 14.233 OMD A 13.523 OMD 
B 14.423 OMN12 B 14.072 OMN12 B 13.257 NMD 
B 14.422 OMN7 B, C 14.069 OMN7 B, C 13.211 OMN7 
B 14.398 OMM B, C 14.046 OMM B, C 13.205 OMN12 
B 14.391 OMG B, C 14.044 OMS B, C 13.193 NMN12 
B 14.389 OMS B, C 14.042 OMG B, C, D 13.183 OMM 
B 14.385 OMW B, C 14.038 OMW B, C, D 13.167 OMG 
B 14.353 NMD C  13.945 NMD B, C ,D 13.155 OMW 
C 14.200 NMN12 D 13.745 NMN12 B, C, D 13.153 OMS 
C 14.151 NMS D, E 13.717 NMM B, C, D 13.139 NMS 
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C  14.138 NMW D, E 13.697 NMS B, C, D 13.138 NMW 
C 14.134 NMM D, E 13.678 NMW B, C, D 13.099 NMN7 
C 14.082 NMN7 D, E 13.660 NMG C, D 13.056 NMM 
C 14.081 NMG E 13.612 NMN7 D 13.009 NMG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

This result is not consistent with Zhao et al. (2002), which concluded that forecasting 

methods with improved accuracy will help the supply chain achieve great cost savings when the 

planned order information is shared under relatively stable demand. A possible explanation for 

this inconsistency is that the temporal demand heteroscedasticity makes the retailers’ EOQ 

policies less efficient. Thus, the costs for the supply chain increase. 

The total costs for the retailers, supplier, and supply chain still show that non-information 

is significantly better than planned order information sharing under most scenarios. In other 

words, the supplier can make better use of his own order forecast than of planned order 

information sharing to achieve cost saving of his own. Moreover, the retailers and the entire 

supply chain benefit from advanced models without information sharing when capacity tightness 

is medium. The double exponential smoothing model coupled with information sharing 

significantly underperforms under temporal demand heteroscedasticity. However, the moving 

average method seems to perform well as compared to double exponential smoothing when 

information is shared. 

As shown in Table 4-7, when the demand pattern consists of trend and seasonal 

components with medium capacity tightness, the cost of the supply chain (TC) is not always 

significantly lower without information sharing as compared to that with order information 

sharing. For example, the GARCH model with information sharing performs equally as well as 

Winters’ model without information sharing for the entire supply chain. The supplier still 
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benefits from its own order forecasts, and the total cost for the supplier is significantly lower 

under Winter’s model without information sharing than under the models with information 

sharing. Among models with information sharing, the GARCH, seasonal ARIMA, and neural 

network with 7 inputs significantly outperform the other models. However, the retailers benefit 

directly from information sharing because GARCH, neural network with 7 inputs, and seasonal 

ARIMA with information sharing significantly outperform the other models in terms of cost, 

with the exception of the Winters’ model with non-information sharing. Thus, it can be 

concluded that information sharing still plays a role in cost savings for the supply chain. 

Table 4-7  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend and Seasonality with CT= Medium 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.581 OMD A 14.215 OMD A 13.401 OMD 
B 14.429 OMN12 B 14.067 OMN12 A, B 13.238 OMN12 
B 14.412 OMM B 14.048 OMM B 13.224 OMM 
B 14.396 OMW B 14.043 OMW B 13.197 NMD 
B 14.341 NMD B, C 13.956 NMD B 13.183 OMW 
C 14.167 OMN7 C, D 13.854 OMN7 B, C 13.160 NMG 
C 14.165 NMG D, E 13.826 OMS B, C 13.141 NMS 
C 14.165 NMM D, E, F 13.755 OMG B, C 13.140 NMM 
C 14.161 OMS E, F, G 13.719 NMM B, C 13.130 NMN12 
C 14.124 NMN12 E, F, G 13.709 NMG B, C 13.079 NMN7 
C 14.107 NMS F, G 13.661 NMN12 C, D 12.992 NMW 
C 14.084 NMN7 F, G 13.627 NMS D, E 12.902 OMS 
C 14.072 OMG F, G 13.625 NMN7 D, E 12.849 OMN7 
C 14.024 NMW G 13.583 NMW E 12.768 OMG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 
The commonly used simple forecasting method, the double exponential smoothing 

method coupled with information sharing, also significantly underperforms other models for TC 
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and TCS. Although the moving average model with information sharing significantly 

outperforms the double exponential model with information sharing, it still significantly 

underperforms most other forecasting methods for TC and TCS. In addition, neural network with 

12 inputs with information sharing is not significantly different from the double exponential 

smoothing and moving average models, and it significantly underperforms the neural network 

model with 7 inputs. This result demonstrates that neural network models require more expertise 

and skills from managers and practitioners to use them properly. If the neural network models 

are not configured properly, the forecasting performance of these models deteriorates 

dramatically. 

As shown in Table 4-8, when the demand pattern consists of trend with medium capacity 

tightness, many scenarios are not significantly different. For example, all but three scenarios are 

not significantly different with respect to TC. The supplier still benefits from its own order 

forecasts. It is clear that the retailers can achieve cost savings by using a number of models with 

information sharing, such as the GARCH and Winters’ models. In addition, all of the 

information sharing models, with the exception of the double exponential smoothing model and 

the neural network with 12 inputs, do not perform significantly differently for the retailers. Thus, 

it can be concluded that information sharing is beneficial to the retailers. Although the supplier 

does not seem to benefit from information sharing due to the superior efficiency of its own 

forecasting and advanced planning, the entire supply chain is able to benefit from information 

sharing under the GARCH and Winter’s models. For the supply chain, the results show that the 

GARCH and Winters’ models with information sharing perform equally as well as the two 

models without information sharing—the neural network model with 7 inputs and the moving 

average model. It can be imagined that the value of information sharing will greatly increase if 



 

99 

the supplier does not do any forecasting and production planning before it receives any orders 

from the retailers. For the trend pattern, many of the traditional forecasting models perform as 

well as the advanced models. The moving average model is not significantly different from the 

model with the lowest costs for TC, TCS, and TCR. For the supply chain, all models under non- 

information sharing are not significantly different from each other with the exception of the 

neural network model with 7 inputs.  

Table 4-8  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend with CT= Medium 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.405 OMN12 A 14.050 OMN12 A 13.195 OMN12 
A 14.365 OMD A 14.018 OMD A 13.180 NMG 
B 14.192 OMN7 B 13.872 OMN7 A 13.144 NMS 
B 14.168 NMG B 13.828 OMM A 13.142 NMN12 
B 14.147 OMM B, C 13.800 OMS A 13.138 OMD 
B 14.140 NMS B, C, D 13.771 OMW A 13.108 NMM 
B 14.130 OMS B, C, D 13.769 OMG A 13.099 NMD 
B 14.127 NMN12 C, D, E 13.702 NMG A, B 13.081 NMW 
B 14.116 NMD D, E 13.677 NMS B, C 12.948 NMN7 
B 14.111 NMW D, E 13.669 NMW C, D 12.895 OMN7 
B, C 14.099 NMM D, E 13.667 NMD C, D 12.860 OMS 
B, C 14.095 OMW D, E, F 13.659 NMN12 C, D 12.850 OMM 
B, C 14.083 OMG E, F 13.632 NMM C,D 12.812 OMW 
C 13.992 NMN7 F 13.556 NMN7 D 12.773 OMG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—-forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 

As shown in Table 4-9, when the demand pattern exhibits trend and seasonality with 80% 

of the error terms being common and when capacity tightness is medium, TC and TCS are 

significantly lower without information sharing as compared to those with order information 

sharing except for the double exponential smoothing model without information sharing. The 
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simulation results from this study do not support a common expectation that sharing order 

information will improve supply chain performance especially in a turbulent market. As 

discussed above, this demand pattern is more volatile compared to other demand patterns such as 

trend. The result shows the opposite. Specifically, the supply chain performance seems to 

deteriorate in a volatile market under information sharing and medium capacity tightness. 

Moreover, the results demonstrate that both advanced forecasting  and traditional forecasting 

methods, except for double exponential smoothing, perform equally well for TC and TCS under 

both information sharing schemes. That is, advanced forecasting methods do not show any 

advantages over traditional forecasting methods except for double exponential smoothing. For 

TCR, it is clear that retailers do not benefit from information sharing as demonstrated in other 

cases, and the moving average model seems to be good enough to help the retailers achieve cost 

savings. Once again, double exponential smoothing with information sharing proves to be the 

worst forecasting model for the retailers in forecasting customer demand. 

Table 4-9 

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend and Seasonality with 80% Common Error and with CT= Medium 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 14.640 OMD A 14.246 OMD A 13.515 OMD 
B 14.474 OMN12 B 14.096 OMN12 B 13.343 NMD 
B 14.469 OMN7 B 14.091 OMW B, C 13.318 OMN12 
B 14.461 OMS B 14.091 OMN7 B, C 13.312 OMN7 
B 14.455 OMW B 14.088 OMS B, C, D 13.295 OMS 
B 14.454 OMG B 14.085 OMG B, C, D 13.278 OMG 
B 14.438 OMM B 14.072 OMM B, C, D 13.268 OMW 
B 14.403 NMD B 13.978 NMD B, C, D 13.255 OMM 
C 14.241 NMN12 C 13.780 NMN12 B, C, D 13.246 NMN12 
C 14.205 NMW C 13.766 NMW B, C, D 13.231 NMN7 
C 14.203 NMN7 C 13.728 NMN7 B, C, D 13.195 NMG 
C 14.185 NMG C 13.725 NMM C, D 13.167 NMW 
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C 14.165 NMM C 13.719 NMG C, D 13.157 NMS 
C 14.148 NMS C 13.682 NMS D 13.133 NMM 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

As shown in Table 4-10, when the demand pattern consists of trend, seasonal, and 

heterogeneous components with high capacity tightness, the overall cost of the supply chain 

increases as compared to the cases under low and medium capacity tightness since more 

backorder and setup costs occur when capacity tightness becomes higher. In the case of non-

information sharing, the neural network model with 7 inputs consistently outperforms other 

forecasting methods and generates the lowest cost for the supply chain due to its ability to 

capture the non-linear activities in the demand process. The GARCH model does not perform as 

well as the NN7 when the supplier’s capacity becomes very tight. However, in the case of 

information sharing, although the supply chain is still better off without information sharing, the 

GARCH model performs well relative to many of the scenarios without information sharing.  

Table 4-10  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend, Seasonality, and Heteroscedasticity with CT= High 
 

  
TC 

Mean Scenario   
TCS 
Mean 

 
Scenario   

TCR 
Mean Scenario 

A 15.362 OHD A 14.772 OHD A 14.555 OHD 
B 15.236 NHD B 14.646 OHM B 14.445 NHD 
B 15.235 OHM B 14.632 OHN7 B, C 14.426 OHM 
B, C 15.210 OHN7 B 14.632 NHD B, C 14.390 NHG 
B, C, D 15.201 OHN12 B 14.623 OHN12 B, C 14.386 OHN7 
B, C,D,E 15.193 OHS B 14.612 OHS B, C 14.378 OHN12 
B, C, D,E 15.185 OHW B 14.609 OHW B, C 14.373 OHS 
B, C, D,E 15.178 OHG B 14.601 OHG B, C 14.360 NHS 
B, C, D,E 15.150 NHG C 14.519 NHG B, C 14.359 OHW 
C, D, E,F 15.124 NHS C, D 14.505 NHM B, C 14.355 OHG 
C, D, E,F 15.121 NHN12 C, D 14.501 NHN12 C 14.349 NHN12 
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D, E, F 15.119 NHM C, D 14.498 NHS C, D 14.340 NHW 
E, F 15.107 NHW C, D 14.483 NHW C, D 14.339 NHM 
F 15.041 NHN7 D 14.427 NHN7 D 14.260 NHN7 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 
Under information sharing, the simple traditional forecasting models are not competitive with the 

better performing models. In particular, double exponential smoothing with information sharing 

performs worst for TC, TCS, and TCR and is not recommended.  

Table 4-11 presents the results for the demand pattern consisting of trend and seasonality 

with high capacity tightness. In the case of non-information sharing, many of the traditional 

models are not significantly different from the advanced models. Seasonal ARIMA under both 

information sharing schemes helps the supplier, the retailers, and the supply chain reduce their 

costs significantly. GARCH and NN7 perform equally as well as seasonal ARIMA when 

information is shared.  

Table 4-11  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend and Seasonality with CT= High 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 15.313 OHD A 14.740 OHD A 14.483 OHD 
B 15.231 OHN12 B 14.646 OHN12 A, B 14.422 NHD 
C,B 15.218 NHD B 14.617 NHD A, B 14.416 OHN12 
C,B,D 15.193 OHM B 14.616 OHM B, C 14.384 NHN12 
C,B,D 15.187 OHW B  14.613 OHW B, C 14.374 NHW 
C,D 15.152 NHW C  14.536 NHW B, C 14.373 NHN7 
D,E 15.143 NHN7 C 14.521 NHN7 B, C 14.368 OHM 
D,E 15.138 NHN12 C 14.513 NHM B, C 14.363 NHG 
D,E, F 15.131 NHG C 14.507 NHG B, C 14.359 OHW 
D,E,F 15.121 NHM C, D 14.501 NHN12 B, C 14.334 NHM 
E,F,G 15.073 OHN7 C, D, E 14.497 OHN7 C, D 14.304 NHS 
F,G 15.061 NHS D, E, F 14.440 OHG D, E 14.248 OHN7 
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G 15.131 OHG E, F 14.436 OHS E 14.183 OHG 
G 15.007 OHS F 14.427 NHS E 14.175 OHS 
Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing . Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

These three models outperform other models when planned order information is shared. More 

importantly, these advanced models coupled with information sharing lower the costs for the 

supply chain. Consistent with previous results in the low and medium capacity tightness levels, 

the double exponential smoothing model underperforms other models consistently under this 

demand pattern with capacity tightness being high.  

As shown in Table 4-12, when the demand pattern consists of trend with high capacity 

tightness, GARCH, Winters’, seasonal ARIMA, and neural network with 7 inputs either with or 

without information sharing significantly improve TC, TCS, and TCR over most other models. 

For the supplier, the double exponential smoothing, NN12, and moving average models with 

information sharing result in significantly higher costs than other models. As discussed before, 

the poor performance of neural network with 12 inputs may be due to its suboptimal 

configuration. The value of information sharing increases because advanced forecasting methods 

with information sharing lower the costs for the supply chain under relatively stable demand. 

Table 4-12  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend with CT= High 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 15.195 OHN12 A 14.615 OHN12 A 14.376 OHN12 
A,B 15.182 OHD A 14.606 OHD A 14.456 OHD 
A,B,C 15.174 OHM A 14.600 OHM A 14.349 NHW 
A,B,C,D 15.121 NHD B 14.503 NHD A 14.347 NHD 
B,C,D,E 15.112 NHW B, C 14.496 OHN7 A 14.345 OHM 
B,C,D,E 15.107 NHM B, C 14.488 NHM A 14.345 NHG 
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B,C,D,E 15.099 NHG B, C 14.485 N HW A, B 14.334 NHM 
C,D,E 15.096 NHN12 B, C 14.475 NHN12 A ,B 14.325 NHN12 
D,E,F 15.076 NHS B, C,D 14.464 NHG A, B 14.308 NHS 
D,E,F,G 15.071 OHN7 B, C,D 14.452 NHS A, B 14.274 NHN7 
E, F,G,H 15.028 NHN7 B, C,D 14.433 OHS B, C 14.243 OHN7 
F,G, H 15.006 OHS C,D 14.422 OHW C 14.176 OHS 
G, H 14.991 OHW D 14.402 OHG C 14.156 OHW 
H 14.976 OHG D 14.392 NHN7 C 14.147 OHG 
Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 
As shown in Table 4-13, when the demand pattern exhibits trend and seasonality with 

80% of the error terms being common and when capacity tightness is high, a large number of 

models are not significantly different, making it difficult to separate the information sharing and 

non-information sharing scenarios.  

Table 4-13  

Performance of Forecasting Models and Information Sharing for Demand Pattern Consisting of 
Trend and Seasonality with 80% Common Error and with CT= High 
 

  
TC 
Mean Scenario   

TCS 
Mean Scenario   

TCR 
Mean Scenario 

A 15.357 OHD A 14.767 OHD A 14.547 OHD 
B 15.233 OHN12 B 14.646 OHN12 B 14.440 NHD 
B 15.228 OHW B 14.645 OHW B 14.422 OHN12 
B 15.225 NHD B 14.630 OHM B 14.411 OHW 
B, C 15.214 OHM B 14.616 NHD B, C 14.397 OHM 
C, D 15.132 NHN12 C 14.519 NHN12 B, C, D 14.358 NHS 
D 15.117 NHS C 14.507 OHN7 B, C, D 14.351 NHN12 
D, E 15.099 NHW C 14.486 NHS B, C, D,E 14.326 NHW 
D, E 15.085 OHN7 C 14.481 OHS C, D, E,F 14.290 NHN7 
D, E 15.066 NHM C 14.479 NHW C, D, E,F 14.285 NHM 
D, E 15.061 NHG C 14.453 NHM C, D, E,F 14.283 NHG 
D, E 15.059 OHS C 14.445 NHG D, E, F 14.260 OHN7 
D, E 15.057 NHN7 C 14.436 OHG E, F 14.236 OHS 
E 15.016 OHG C 14.433 NHN7 F 14.194 OHG 

Note. Means with the same letter are not significantly different. Scenario labels: First Letter—information sharing: 
O for sharing planned orders and N for non-information sharing. Second Letter—capacity tightness: L for Low, M 
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for Medium and H for High. Third Letter—forecast method: G for GARCH model, N for neural network, W for 
Winters, S for seasonal ARIMA, M for moving average. 

 
Among the models with information sharing, the GARCH, NN7, and seasonal ARIMA models 

yield significantly lower costs for TC, TCS, and TCR. The supplier and the retailers both benefit 

from information sharing when advanced forecasting methods are used by the retailers. When 

information is not shared, advanced forecasting methods such as GARCH and NN7 yield the 

lowest costs for the supply chain but are not significantly different from other models. However, 

the results under the same demand pattern, but with capacity tightness at the medium level, are 

quite different from the results in this table. Under medium capacity tightness, the value of 

information sharing is not as obvious as the value of information sharing demonstrated here. 

Thus, capacity tightness plays an important role in affecting a supply chain’s performance. Once 

again, the double exponential smoothing model results in significantly higher costs for the supply 

chain. 
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CHAPTER 5  
 

DISCUSSIONS AND CONCLUSIONS 
 

This chapter reports the major findings of this dissertation, discusses implications of 

those findings, and identifies the limitations and possible future extensions of this research. The 

primary objective of this study was to investigate the impact of forecasting method selection and 

information sharing on supply chain performance. Specifically, this study examined the effects 

of traditional and nontraditional forecasting methods coupled with information sharing on supply 

chain performance in terms of cost under different demand patterns and levels of capacity 

tightness.   

 

Support for Hypotheses 

 Conclusions for the hypotheses are derived from the results of a completely randomized 

factorial experiment and a multiple comparison procedure following this analysis. Results from 

Table 4-1 indicate that the forecasting method selection and a number of interactions therewith 

are statistically significant at the 0.05 level of significance. That is, forecasting method selection 

by the retailers significantly affects the costs of each firm and of the entire supply chain by 

interacting with the policy of information sharing and the environmental variables. Examination 

of Figures 4-5 through 4-11 shows that several advanced models, such as the GARCH model 

with information sharing, consistently outperform other models under most scenarios, which 

provides solid support for Hypothesis I.  

Compared to the GARCH model, the performance of the neural network models seems to 

depend more on their configurations. It is noted that NN12 does not perform as well as NN7. The 

reason for the poor performance of NN12 is not clear, although it may be over-fitting the data. 
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Zhang & Qi (2005) argued that neural network forecasting models will result in a high variance 

and poor forecasting accuracy if seasonal or trend patterns are ignored by these models. In 

addition, they concluded that neural networks built with deseasonalized data and detrended data 

could produce significantly more accurate forecasts than those with raw data. The poor 

performance of NN12 may be due to the fact that non-deseasonalized and non-detrended data 

were used in this study. Moreover, Plummer (2000, p. 49) stated that “neural networks are 

sometimes unpredictable, and a change in architecture or parameters may result in dramatic 

changes in performance.” Thus, the proper configuration of the neural network model and 

preprocessing the raw data may improve its performance. In fact, NN7 performs much closer to 

the GARCH model under most scenarios. Thus, it can be concluded that forecasting model 

selection significantly affects supply chain performance by interacting with information sharing.  

Table 4-1 shows that the demand pattern factor and a number of its interactions are 

statistically significant at the 0.05 level of significance. That is, demand patterns significantly 

affect the performance of the forecasting models and the supply chain. In addition, by examining 

Figure 4-5 through Figure 4-11, one can easily tell that trend and trend with seasonality are 

relatively stable, while trend with common error and trend with heteroscedasticity are more 

volatile. In particular, demand patterns with heteroscedasticity are the most volatile. The 

presence of heteroscedasticity does affect the supply chain performance in some cases. For 

example, advanced forecasting models such as the GARCH, NN7, and seasonal ARIMA models 

coupled with information sharing result in higher supply chain costs when capacity tightness is 

low as compared to other demand patterns. However, in other cases, the presence of 

heteroscedasticity does not always result in higher supply chain costs as compared to the other 

demand patterns investigated. However, in general, more volatile demand patterns always result 
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in higher costs for the supply chain. Therefore, we can conclude that Hypothesis II is supported 

by this simulation study. 

This study provides solid evidence to support Hypothesis III, which states that simple 

forecasting methods significantly influence a supply chain’s performance and that the 

misspecified forecasting models will result in worse system performance. Double exponential 

smoothing and moving average are considered to be misspecified models in the presence of 

seasonality and heteroscedasticity. Under most scenarios, the moving average and double 

exponential models underperform most other forecasting models, especially when information is 

shared. 

Table 4-1 also demonstrates that the factor of capacity tightness and a number of its 

interactions are statistically significant at the 0.05 level of significance. Examination of Figures 

4-5 through 4-11 under different forecasting methods shows that higher capacity tightness will 

result in higher supply chain costs. When CT is high, the supplier usually has to use most of its 

capacity to produce in order to meet customer demand. Under this situation, increased setup 

costs and backorder costs may occur. Thus, higher supply chain cost will be incurred. However, 

this study also demonstrates that the value of information sharing increases as capacity tightness 

increases. When CT is medium or low, a supply chain’s performance often can improve more 

from using the supplier’s own demand forecasts than from using information sharing. Thus, 

Hypothesis IV is supported by this study. 

 

Major Findings 

From comprehensive simulation experiments and subsequent analysis of the simulation 

outputs, the important findings are as follows: 
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• A factorial experimental design was used to determine the significance of forecasting 

method, information sharing, capacity tightness, and demand patterns and their 

interactions. Because of the significance of most interactions, the impact of forecasting 

methods and information sharing were analyzed under different levels of capacity 

tightness and demand patterns. The value of information sharing depends on demand 

patterns, capacity tightness, and forecasting method. In some cases, such as when 

capacity tightness is low, the supplier does not benefit from information sharing since the 

supplier uses its own forecasting intelligence to forecast future orders and plan its 

production schedule ahead of time. The effect of forecasting models with information 

sharing appears to play a more significant role in improving the supply chain as the level 

of capacity tightness increases. Under most demand patterns, the advanced models tend 

to group among the models that were the most significant in generating lower costs. 

Noticeable was the cluster of advanced models consisting of GARCH, neural networks 

with 7 inputs, and seasonal ARIMA. These advanced models tended to cluster with the 

better performing models as indicated by Duncan’s multiple range tests with a 

significance level of 5%. It is also observed that the sharing of planned orders is 

beneficial to the supply chain when demand pattern (such as trend) is relatively stable. 

However, under temporal demand heteroscedasticity, advanced forecasting methods such 

as GARCH and NN7 with information sharing usually result in higher supply chain cost. 

This result is in contrast to Zhao et al. (2002), which states that forecasting methods with 

increased accuracy coupled with information sharing can yield great cost savings for the 

supply chain. Our results show the opposite. The difference can be explained by the fact 
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that Zhao et al. (2002) only considers relatively stable demand patterns and also uses a 

different policy for the case of non-information sharing.   

• Results from this study also demonstrate that capacity tightness significantly affects the 

supply chain performance. Based on the capacitated lot-sizing model, the production plan 

was optimized during each replanning cycle. Three levels of capacity tightness were 

investigated in this study. Intuitively, high capacity tightness results in higher supply 

chain cost since the supplier has to use most of its capacity to produce in order to meet 

customer demand regardless of the accuracy of the demand forecast. Simply put, the 

system does not have the flexibility to respond to this useful information, and thus, 

supply chain performance cannot improve much. Gavirneni et al. (1999) demonstrated 

that the value of information was lowered by imposing a constraint on the supplier in 

their model. When capacity tightness is low or medium, the entire supply chain 

performance improves since the system is able to respond to more accurate demand 

forecasts. The study shows that as capacity tightness increases, the supply chain 

performance might not differ significantly under both of the information sharing 

schemes. Under certain scenarios, the supply chain performance is better off with 

information sharing when capacity tightness is medium or high rather than low. 

• Compared to traditional forecasting methods, advanced forecasting models such as the 

GARCH and neural network models (configured properly) can capture nonlinear patterns 

that the traditional forecasting methods cannot and thereby reduce supply chain costs. 

Thus, it is reasonable for retailers to apply advanced forecasting models to forecast 

demand so as to improve their own performances. However, the application of advanced 

forecasting models on the retailers’ side does not necessarily help the supplier and the 
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entire supply chain yield significant cost savings. Thus, it is wise for the supply chain 

managers to select a forecasting method coupled with other critical factors to reduce the 

entire supply chain cost. In contrast to the performance of advanced forecasting models, 

the commonly used simple traditional forecasting methods (moving average and double 

exponential smoothing) usually result in worse system performance. In particular, double 

exponential smoothing with information sharing tends to significantly underperform most 

models under different demand patterns and capacity tightness levels. Of course, patterns 

with seasonality and heteroscedasticity cannot be captured by a double exponentially 

smoothed model. Forecasting models misspecified for a demand pattern result in 

significantly higher supply chain cost. Moreover, this result provides support to prior 

studies, which demonstrated that suboptimal decision making (regarding forecasting 

model selection in this case) usually leads to suboptimal supply chain performance.  

• The simulation results from this study do not support the expectation that the forecasts 

from most models will negatively affect supply chain performance under temporal 

demand heteroscedasticity. However, there are a few cases which show that temporal 

demand heteroscedasticity results in high supply chain costs. Recent work by Zhang 

(2007) demonstrates  that “ignoring temporal heteroscedasticity can increase firm’s 

inventory costs by as much as 30% when demand autocorrelation is highly positive”        

(Zhang, 2007, p. 127). Our study is not able to demonstrate the significant effect of 

temporal demand heteroscedasticity on supply chain performance, perhaps because of the 

heteroscedastic pattern selected. Further experimentation with other types of 

heteroscedastic patterns may prove that temporal demand heteroscedasticity can 

dramatically affect a supply chain’s costs.  
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Implications 

The overall conclusion obtained for this study is that the supply chain will benefit from 

advanced forecasting models, such as the GARCH and neural network models (configured 

properly), which may allow retailers to better manage their inventories and allow the supplier to 

better utilize its capacity efficiently under certain scenarios. This study provides guidance for 

supply chain managers in the following areas:  

• When selecting forecasting methods, supply chain managers should have a better 

understanding of the demand for the product being managed. For example, different 

forecasting models should be applied for high-tech and low-tech products, respectively, 

because these two types of products have different demand distributions. Mismatch 

between forecasting method and demand pattern might result in higher costs for the 

supply chain. Thus, it is important for the supply chain managers to identify the demand 

pattern before they make their decisions about which forecasting method should be used 

to forecast demand. 

• Although traditional models such as moving average and double exponential smoothing 

are widely used in practice due to their simplicity and ease of implementation, supply 

chain managers should realize the costs impact of the simple forecasting models on 

supply chain performance and understand when to avoid using these models to keep 

supply chain cost under control. For instance, double exponential smoothing performs 

well under the demand pattern with trend only in the case of non-information sharing. 

However, when information is shared, this model consistently underperforms all other 

models here investigated.  
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• In today’s SCM, advanced forecasting methods such as the neural network and GARCH 

models should be promoted in SCM in order to better forecast demand and improve 

system performance. With the development of new forecasting models, advances in 

computing power, and  availability of large amounts of data, the application of advanced 

forecasting models in SCM  is necessary and important for firms to gain competitive 

advantages. In addition, supply chain managers should realize that more accurate 

forecasting models alone might not account for the cost savings achieved for the supply 

chain. Accurate forecasting models coupled with other operational factors such as 

information sharing could help improve supply chain performance significantly. 

Furthermore, great care and skill are needed in order to use these advanced forecasting 

models properly and make them yield the expected results. 

• Environmental factors such as capacity tightness should also be considered when 

selecting a forecasting method. When capacity tightness is high, the supplier does not 

have enough capacity to respond to useful information such as accurate demand forecast. 

Thus, higher costs will occur for the supply chain. For example, when a demand pattern 

exhibits trend and seasonality with common error and capacity tightness being medium, 

the results show that advanced forecasting models perform only equally as well as those 

of simple forecasting models. Thus, it will not make much difference if a simple 

forecasting model is used under this situation. 

• Although the effect of information sharing is not obvious for the supplier in a few cases 

in this study, the value of information increases as advanced forecasting methods are used 

by the retailers under stable demand patterns. In practice, it is still reasonable for supply 

chain managers to consider the effect of information sharing on other aspects of the 
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supply chain operations because information sharing and coordination are important 

efforts in improving channel efficiency (Sahin & Robinson, 2005). This study also shows 

that advanced forecasting methods coupled with information sharing result in higher 

costs for the supply chain under temporal demand heteroscedasticity, which is consistent 

with Hung et al. (2008). That is, information sharing is not beneficial to the supply chain 

in a turbulent market as manifested in the seasonal demand pattern. Therefore, 

information sharing policy should be carefully selected.  

 

Limitations and Future Research Extensions 

Although the findings from this simulation study provide important insights about 

forecasting method selection and information sharing in a capacitated supply chain, there are also 

limitations. The limitations of the study and possible issues for future research are listed below. 

• This study considered only a simple supply chain consisting of one capacitated supplier 

and four retailers. However, real supply chains may involve many tiers, each having a 

large number of chain members. Many possible supply chain structures (such as multiple 

suppliers and multiple retailers, and multiple-echelon supply chain structures) are 

available. In order to generalize the results to a more realistic supply chain setting, future 

research could extend the supply chain structure from two echelons to three echelons 

consisting of three types of firms: retailer, distributor, and supplier. 

• In this study, the supplier uses the single item capacitated lot size rule to make his 

production decision while the retailers employ EOQ policy to calculate their order 

quantities in order to replenish their inventories. Other capacitated lot sizing rules in the 

literature should be investigated in future research. It would be useful to check whether 
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the conclusions drawn from this study are still valid when using other lot-sizing rules. 

With regard to retailers, inventory policies other than EOQ should be investigated in 

future research. EOQ was selected because Zhao et al. (2002) used this method in their 

simulation study similar to this one. It is noted that EOQ policy is not the optimal policy 

in this study since some of the demand patterns violate the EOQ assumption, which needs 

demand to be continuous and relatively stable. The more discontinuous and non-uniform 

the demand, the less effective EOQs will be. EOQ also assumes that the ordering and 

inventory holding costs are the only significant ones to consider (Plossl & Orlicky, 1994).  

In fact, several other approaches are available in determining optimal order quantity 

when the demand is stochastic, such as lot-for-lot ordering, Silver-Meal heuristic, 

periodic order quantity, and part-period algorithms (Tersine, 1994). Future research 

focusing on the impact of alternative production and inventory policies on the supply 

chain performance may also be a fruitful area. 

• In this study, we simulated the capacity constraints by using only three different values of 

capacity tightness. In the real world, many firms face not only capacity constraints but 

also production yield uncertainty or even supply chain disruptions. It would be useful to 

investigate how these factors affect supply chain performance in future research.  

• This research focused only on the sharing of planned orders among firms along the 

supply chain. It would be interesting to evaluate the effect of different information 

sharing strategies, such as real-time inventory level information sharing, POS data 

sharing, and production yield information sharing on the performance of a supply chain 

and determine how the choice of forecasting methods affects the costs and service level 

for the entire supply chain. Furthermore, information sharing for the supply chain can be 
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further complicated by privacy and security issues. For example, the members of a supply 

chain may not want to share sensitive information such as unit cost or capacity related 

information with the supplier. Thus, future research should investigate how to efficiently 

manage the supply chain with limited information sharing as well. 

• This study investigated the impact of only a few demand patterns. It would be interesting 

to look at how other demand processes, such as demand with decreasing trend or real 

data, influence the value of information sharing and supply chain performance.  

Furthermore, using a GARCH (1,2)  rather than GARCH(1,1) or other GARCH error 

structures to  investigate the impact of temporal demand heteroscedasticity on the supply 

chain performance would be a good research area. 

• This study did not investigate the case in which the demand pattern is stationary. Simple 

traditional forecasting models such as the double exponential smoothing model and the 

moving average model may be viable competitors to the more advanced models under 

these conditions.  

In conclusion, this dissertation made contributions towards an understanding of the 

impact of the forecasting method selection on system performance in a realistic supply chain 

setting. The findings can help supply chain managers select the proper forecasting method 

coupled with other critical factors such as capacity tightness and information sharing so as to 

improve the entire supply chain performance. Furthermore, this dissertation pointed out several 

fruitful areas for future research. 
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