

 APPROVED:

Jung Huan Oh, Major Professor
Bill Buckles, Committee Member and Associate

Dean of the College of Engineering
Yuan Xiaohui, Committee Member
Krishna M. Kavi, Chair of the Department of

Computer Science and Engineering
Costas Tsatsoulis, Dean of the College of

Engineering
Michael Monticino, Dean of the Robert B.

Toulouse School of Graduate Studies

END OF INSERTION DETECTION IN COLONOSCOPY VIDEOS

Avnish Rajbal Malik

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2009

Malik, Avnish Rajbal. End of Insertion Detection in Colonoscopy Videos.

Colorectal cancer is the second leading cause of cancer-related deaths behind lung

cancer in the United States. Colonoscopy is the preferred screening method for detection

of diseases like Colorectal Cancer. In the year 2006, American Society for

Gastrointestinal Endoscopy (ASGE) and American College of Gastroenterology (ACG)

issued guidelines for quality colonoscopy. The guidelines suggest that on average the

withdrawal phase during a screening colonoscopy should last a minimum of 6 minutes.

 Master

of Science (Computer Science), August 2009, 59 pp., 10 tables, 20 figures, references, 27

titles.

My aim is to classify the colonoscopy video into insertion and withdrawal phase.

The problem is that currently existing shot detection techniques cannot be applied

because colonoscopy is a single camera shot from start to end. An algorithm to detect

phase boundary has already been developed by the MIGLAB team. Existing method has

acceptable levels of accuracy but the main issue is dependency on MPEG (Moving

Pictures Expert Group) 1/2. I implemented exhaustive search for motion estimation to

reduce the execution time and improve the accuracy. I took advantages of the C/C++

programming languages with multithreading which helped us get even better

performances in terms of execution time. I propose a method for improving the current

method of colonoscopy video analysis and also an extension for the same to make it

usable for real time videos. The real time version we implemented is capable of handling

streams coming directly from the camera in the form of uncompressed bitmap frames.

Existing implementation could not be applied to real time scenario because of its

dependency on MPEG 1/2. Future direction of this research includes improved motion

search and GPU parallel computing techniques.

 ii

Copyright 2009

by

Avnish Rajbal Malik

iii

ACKNOWLEDGEMENTS

I would sincerely like to thank Dr. JungHwan Oh for letting me have this

opportunity to learn about various image and video processing methodologies in the field

of medical videos. His timely advice and suggestions with his experience were of a great

importance to help me complete this project.

Also, I would like to thank other members of my lab, Praveen Karri, M.J. Kumara

and Ruwan Navarathna for their advice in logic and product development. I would

especially like to thank M.J. Kumara for his wonderful work in development of the affine

model, one of the key modules of this product.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS…………………………………………………… iii

LIST OF TABLES…………………………………………………………….. vi

LIST OF ILLUSTRATIONS………………………………………………….. vii

Chapters

1. INTRODUCTION……………..….……………………………..…….. 1

2. EXISTING IMPLEMENTATION …...…….…………………………. 4

3. MOTION VECTOR ESTIMATION.…………….……………………. 6

3.1 Preprocessing Step…. ……………………………………………... 8

3.2 Motion Search…..…………………………………………………. 10

3.3 Selection of Best Candidate.....……………………………….…… 13

 4. SKIPPING OF BLACK BLOCKS…………………………………….. 15

 5. THE AFFINE MODEL...…... 18

 6. DCM VALUE GRAPH AND END OF INSERTION…….………...… 24

 7. MULTITHREADING FOR THE POST PROCESSING….…..…..….. 26

 8. OTHER METHODS INVESTIGATED…………..…………………… 28

 8.1 Variations in Search Area…………………...………………… 28

 8.2 Frame Skipping…………………………………………….…. 31

v

 9. REAL TIME END OF INSERTION DETECTION……….….…..…… 34

 9.1 Multithreading for Real Time End of Insertion…….…………. 38

 10. EXPERIMENTAL RESULTS………………………………………… 41

 11. FUTURE ENHANCEMENTS………….....………………………….. 53

REFERENCES ….………………..……………..…………………………….. 55

vi

LIST OF TABLES

 Page

Table 8.1.1 Comparison of the search patterns……………………………………. 30

Table 9.1 Error rates in real time end of insertion…………….…….…………….. 35

Table 10.1 Comparison of execution times…………………………...……..…….. 42

Table 10.2 Accuracy comparison……………………………………..……..…….. 44

Table 10.3 Real Time End of Insertion……….…………………….……………... 45

Table 10.4 Computer configuration comparison……………………...…………… 48

Table 10.5 Multithreading execution time comparison…………….……...………. 49

Table 10.6 Comparison of different frame rates…………………………..………. 50

Table 10.7 Computer 1: Core 2 Duo 3.0 GHz………………………………..……. 50

 3 GB RAM 500 GB eSATA

Table 10.8 Computer 2: Intel Xeon Quad Core (2 CPU’s)…………….……..…… 51

 3.0 GHz, 3GB RAM, 160 GB RAID Drive.

vii

 LIST OF ILLUSTRATIONS

 Page

Figure 1.1Various parts of the colon……………………………………….…....... 1

Figure 1.2 Colonoscope…….………………………………….………………….. 2

Figure 2.1 Current implementation……………………………………………....... 4

Figure 2.2 Improved module………. ……………………………………………... 5

Figure 3.1 Current and reference blocks………….………………………………. 6

Figure 3.1.1 Search method and output………………………………………….... 9

Figure 3.2.1 Motion search……………………...……………….………………… 10

Figure 4.1 Skipped border and black blocks……………………….……………… 15

Figure 4.2 Different endoscopes…………….……………………………………. 16

Figure 5.1.1 Camera motions………………………………..……………………. 18

Figure 5.1.2 Affine model…………………………….…………………………… 21

Figure 6.1 DCM value graph………………………...…..………………………… 24

Figure 6.2 Appendix………………………………….…………………………… 25

Figure 7.1 Multithreading of motion vector search……………………………….. 26

Figure 8.1.1 48X48 Pixels search area…………………..………………………… 28

Figure 8.1.2 Straight path search…………………………………………………... 29

Figure 8.2.1 Frame skip test with 48X48 searches………………………………… 32

viii

Figure 9.1 Real Time End of Insertion……………………...…………………….. 34

Figure 9.1.1 CPU Multithreading for the real time……………….………..…….. 40

Figure 11.1 Sample of GPU implementation…………………………………..….. 54

1

CHAPTER 1

INTRODUCTION

 Colorectal cancer is the second leading cause of cancer-related deaths behind lung

cancer in the United States [1]. As the name implies, colorectal cancers are malignant

tumors that develop in the colon and rectum. The survival rate is higher if the cancer is

found and treated early before metastasis to lymph nodes or other organs occur [5]. A

brief overview of the colonoscopy can be understood as follows. Colon consists of 6

parts.

1 - cecum, 2 - ascending colon, 3 - transverse colon, 4- descending colon, 5 - sigmoid, 6 -

rectum.

Figure 1.1Various parts of the colon.

2

 Colonoscopy is done with the help of a flexible colonoscope which is a cable with a

camera attached at its tip as seen in Figure 1.2.

Figure 1.2 Colonoscope.

 The cable is inserted through the anus into a patient’s body. A typical

colonoscopy procedure consists of two phases namely insertion phase and withdrawal

phase. Doctors analyze the condition of the patient in the withdrawal phase usually.

According to the set standards the minimum withdrawal time should be at least 6 minutes

for a colonoscopy procedure to be classified as a good one. The typical automated

procedure for insertion and withdrawal time estimation is based on the idea described in

Figure 1.1 Here a video taken by an endoscope which can be in either MPEG (Moving

Picture Experts Group) 1/2 [7][8] format is used for preprocessing. Here unwanted parts

from the start and the end of the video which are irrelevant to the procedure are removed.

3

Next part is to find the motion vectors in this video for every block in a frame. There

might be irrelevant motion vectors which might play a misleading role when calculating

forward and backward direction of the camera, such vector information is removed. After

this is done the affine model equation is applied to the data available by motion vector

estimation to estimate the dolling (forward or backward) camera motion. The metrics

include insertion time, withdrawal time, speed of camera etc. [12][13]. These metrics are

important to analyze how well the doctor studied the patient.

 In this thesis I propose a method for the motion vector estimation which saves the

execution time of the entire procedure and also makes the system independent of any

encoding of video. This is because the system is capable of handling the uncompressed

data in the form of bitmap images. The remainder of this thesis discusses the

methodology used and the experimental results.

4

CHAPTER 2

EXISTING IMPLEMENTATION

 For the purpose of finding the end of insertion in colonoscopy videos, the research

team had previously developed a working version. Even though the implementation

consists of various other complex parts, I concentrated on the end of insertion module.

The previous implementation for end of insertion detection can be understood from the

figure below.

 Figure 2.1 Current implementation.

 The current implementation relies completely on the motion vector information

already present in the MPEG (Moving Picture Experts Group) stream; a library written in

JAVA provides the functionality of decoding these motion vectors. A filtering step

removes any unreliable motion vectors; this filtered data of motion vectors is then passed

on to the affine model for the dolling camera motion values. These values are then plotted

cumulatively against the frame numbers and the maximum point of this value is selected

as the end of insertion. My improvement is in the module of motion vector extraction,

where the aim is to develop a new search technique to reliably calculate the motion

vectors and remove the dependency on MPEG 1/2.

5

 Figure 2.2 Improved modules.

 As seen in Figure 2.2 I consider the module of motion vector extraction for

improvement. This was chosen for two reasons, the first being the scope for improvement

in this and the second being the time taken by this part. As compared to the other

modules, the motion vector extraction part takes the largest amount of time. I intended to

improve this method in terms of execution time while keeping the accuracy same. As per

our experiments which are covered in later sections, I found that the accuracy can still be

improved further in time less than even for reading the motion vectors from the file. Also

as mentioned before, this eliminated the dependency on MPEG standard, so that this

module could even be applied to the real time scenario. Also as will be explained in later

sections, I also applied methods like multithreading to increase the accuracy even further.

However the multithreading aspect depends purely upon the number of CPU cores

available for use, but considering the fact that most of the processors today are at least

dual core, I expect at least 2 threads to run on a given system.

6

CHAPTER 3

MOTION VECTOR ESTIMATION

 Typically the type of algorithm chosen for MPEG (Moving Picture Experts

Group) encoding is manufacturer dependent [7-8], but always there is a tradeoff between

the quality and the file size of the video. The main aim behind this is to compress the

video while maintaining acceptable quality. My method takes frames at a rate of 2

Frames per second rate, actually two frames are chosen at a time, in which one is the

reference frame and the second is the current frame, thus I can say four. This ratio or rate

was chosen as a result of the experiments I conducted for finding the best tradeoff ratio.

These experiments can be studied in the experimental results section. I divide the entire

image into a number of blocks of 16X16 pixels. The reference image is divided according

to the search area I wish to use; currently it is set to 32X32 pixels. A search area of

48X48 pixels was chosen initially for the sake of improved accuracy by it took almost

50% more time as compared to the 32X32 version. However the improvement in

accuracy was not more than 20%.

 Figure 3.1 Current and reference blocks.

7

 I store the current and reference image in the form of two dimensional arrays. I

search for the current block by sliding it in a window of 32X32 pixels. Every pixel

consists of 3 values, namely Red, Green and Blue, here I initially took an average of

these value and used it for comparison. But later on I found that using all the 3 values

lead to better accuracy with no significant change in execution time. I start the

comparison from the upper left corner; the result of this comparison is the sum of

differences of all 256 pixels. This number is stored as an integer and I move the current

block one pixel to the right, I again follow the same procedure. This process continues for

all rows and columns with a displacement of 1 pixel each time because of the exhaustive

nature of the search. So now for every block of 16X16 pixels there will be 256 X 3

comparisons. So totally there can be 16X16 locations where this current block can be

searched, because as can be seen in Figure 3.1 the block can be shifted 8 pixels in any

direction. For all such comparisons the minimum value is chosen as the candidate for best

match. Here unlike MPEG which selects the best candidate only if it is below a certain

threshold value [7], I am bound to find the best match. This is because I do not intend to

compress this frame but I want to get a direction of the movement of the current block.

Even though the exact extent of movement may be outside the search area, I can still get

a clue of its direction. To reduce this kind of direction guess I choose the reference and

current frame to be only 1 frame distant. The window size of 32X32 pixels is chosen after

much experimentation for determining best tradeoff policy between accuracy and speed

of execution.

8

3.1 Preprocessing Step

 Before I can actually start to conduct motion vector search, there is an important

module for video preprocessing, here I actually make use of libraries available from the

MPEG standards [8]. This library generates an exe called getframes.exe which can be

adjusted according to our requirements. Here the code sample below shows exactly how

this library is being used.

1. strcpy(tmp3,".\\getframes.exe ");

2. strcat(tmp3,tr);

3. strcat(tmp3," -start 1 -frameskip 30 -format bmp -out ");

4. strcat(tmp3,tmp2);

 5. system(tmp3);

 Here as can be seen in the first line the location of this library exe is stored

followed by appending of the destination folder where the images will be stored. After

this comes the important part of skipping of frames (Line 3), which is currently 30,

followed by the output format of .bmp images, as I want to get uncompressed images for

easy and fast processing. On line 5 the system call is issued after setting all the

requirements. The output of this is a bitmap image with naming done as per frame ID; the

output images generated are 24 bit in color depth with a resolution of 720X480 pixels.

This process is repeated twice so as to get the reference frame as well. Here the only

difference will be in line number 3, where instead of 1 I have a 0. So now the output will

be images 0, 1, 30, 31, 60, 61……., Thus I have a pair of images for processing which is

1 frame distant. Followed by this is the code for sorting these images based on their

9

frame ID’s, so that the data can be prepared in the form of pointer queue for processing.

The next part is a bit tricky, the images obtained even though uncompressed, but contain

hexadecimal values, I need to convert them to integers so that they can be handled using

integer variables in C. Every image that is read is sent for conversion and after

conversion of their R, G & B values to integers, they are stored in a 720X480 array. One

more important thing is that the older versions of C for example the Borland C/C++ does

not allow this big size for an array, hence I made use of the Visual Studio platform. Thus

finally I have 2 arrays of 720X480 pixels, one for the current block and another for the

reference block.

 Figure 3.1.1 Search method and output.

10

3.2 Motion Search.

 As can be seen in Figure 3.1.1 the two frames, current and reference frame are

divided into a number of blocks of 16X16 pixels each [6][9]. Every block is then

searched in its corresponding search area in the reference frame; the output of this is

stored in a text file in the format depicted in Figure 3.1.1. As noted earlier the search area

is currently set to 32X32 pixels which provide best results for our purpose. The code in

figure 3.2.1 shown below is responsible for this part in the actual implementation.

 Figure 3.2.1 Motion search.

1. for(starty = mb;starty < height - mb;starty = starty + mb + mb)

2. for(startx = mb;startx < width - mb;startx = startx + mb

+ mb)

 {

 flg = 0;

 rctr=0;

 //loop to consider black blocks

3. while(curr_r[starty][startx]_r < 10 && curr[starty][startx]_g <

10 && curr[starty][startx]_g < 10 && curr_r[starty+mb-

1][startx+mb-1] < 10 && curr_g[starty+mb-1][startx+mb-1] < 10 &&

curr_b[starty+mb-1][startx+mb-1] < 10)

 {

 startx = startx + mb + mb;

 if(startx >= width - mb)

11

 {

 flg = 1;

 break;

 }

 }

//if the block is black skip this block and go to the next block

 if(flg == 1)

 break;

 4.for(y = starty - sa;y < starty + sa;y++)

 5.for(x = startx - sa;x<startx + sa;x++)

 {

 ans = 0;

 R1 = 0;

 G1 = 0;

 B1 = 0;

 R2 = 0;

 G2 = 0;

 B2 = 0;

 6. for(u=y,offy = 0;u < y + mb;u++,offy++)

 7. for(v = x,offx = 0;v < x +

12

mb;v++,offx++)

 {

 R1 = R1+curr_r[starty+offy][startx+offx];

 G1 = G1+curr_g[starty+offy][startx+offx];

 B1 = B1+curr_b[starty+offy][startx+offx];

 R2 = R2+reff_r[u][v];

 G2 = G2+reff_g[u][v];

 B2 = B2+reff_b[u][v];

//finding Euclidean distance to compare two pixel values in current

and reference frame

ans = ans + sqrt((R2-R1)*(R2-R1)+(G2-G1)*(G2-G1)+(B2-B1)*(B2-B1));

 }

 res[rctr].ans = ans;

 res[rctr].x = x;

 res[rctr].y = y;

 rctr++;

 }

 writeresult(startx,starty,file);

 Here as can be seen, the first loop (lines 1, 2) takes care of the current frame

which is stored in a two dimensional array called “curr_r, curr_g & curr_b”, it decides the

number of skips to make. Here I do not consider all the blocks for motion estimation, the

reason for which will be explained in the later sections. The next while loop (line 3) takes

13

care of the blocks which don’t need to be considered as they are black, the significance of

this will also be explained in the later sections. The next important part is the loop at lines

4 & 5 this actually decides the search area in the reference frame. This is decided by a

variable called “sa” which is set to 32 while the macro block size is decided by “mb”

variable which is set to 16. After this the next loops at 6 & 7 are responsible for the actual

comparison. After loops 6 & 7 are done loops 4 & 5 shift the search area by 1 pixel to

right and later down. Later loops 1 & 2 repeat the entire procedure for the next block in

the current frame. The results for all the matches are stored in an array called “res” which

is later passed to another function for deciding the best candidate. Here the lowest value

is chosen and the results are written to a text file in proper format as depicted in Figure

3.1.1.

3.3 Selection of Best Candidate

 Best candidate is selected by selecting the minimum value; there is an issue

however which needs to be resolved, that is what if there is more than one best candidate

which has the same value. Here in this case a match that is closer to the original current

block is selected as the best candidate. This is also helpful when the area of search is

entirely of the same color as that of the block. Here choosing a displacement of zero is

advisable so that it does not mislead the later part of the project in determining the

camera motion. This is done by the following code snippet in the project. In the actual

implementation I found that for most of the cases the reference and current block have

same color properties entirely. So to save time I directly compare the result obtained from

14

first loop which selects the minimum difference with the centre of the search area where

it all began, if that is true the center is decided as final position of match. This saves some

iteration and also is based on actual colonoscopy video observations [13].

 for(i=0;i<rctr;i++)

{

 if(res[i].ans < f)

 {

 f = res[i].ans; x2 = res[i].x;

 y2 = res[i].y;

 }

}

if(f == res[rctr/2].ans)

{

 f = res[rctr/2].ans;

 x2 = x;

 y2 = y;

}

15

CHAPTER 4

SKIPPING OF BLACK BLOCKS

Figure 4.1 Skipped border or black blocks.

 I also noted that in some videos made by different manufacturers there was a

black area around the video, the video is played in a window in this black area. This

black area is at different locations in videos from different endoscope manufacturers. The

problem was to avoid searching this black area because if a current black block is

searched in the reference area which is also entirely black, then every match becomes a

good match. The question is to select one from them, if I choose the displacement of 0, 0

i.e. the same location as that of the current block, the results were accurate but it took

more time. This can be understood from Figure 4.1. I placed a threshold value to decide

to begin searching, if the value of R, G and B was less than 10 independently; I ignore

this block thus saving time. I place a neutral motion vector for this particular block, so

16

that it does not contribute to the DCM value calculation. The earlier implementation

relied on the motion vector information of P-Frames in the MPEG (Moving Picture

Experts Group) video which failed to identify this feature. I deal with only dolling

(Backward or Forward) camera motion. All the values like the size of block, size of

search area, skipping of blocks, threshold value for considering a block as black etc. are

kept variable for easy fine tuning of the project. Also there was an additional step

performed in the preprocessing module in the older version of this system which included

conversion of MPEG2 to MPEG1 [12] [13]. This was because the code was dependent on

motion vectors from MPEG1 videos. This step was removed in the new version to save

time further. This also improved the current version. More details about how actually the

two candidate endoscopes generate the video can be seen in Figure 4.2.

 Figure 4.2 Different endoscopes.

17

while(curr_r[starty][startx]_r < 10 && curr[starty][startx]_g < 10 &&

curr[starty][startx]_g < 10 && curr_r[starty+mb-1][startx+mb-1] < 10

&& curr_g[starty+mb-1][startx+mb-1] < 10 && curr_b[starty+mb-

1][startx+mb-1] < 10)

 {

 startx = startx + mb + mb;

 if(startx >= width - mb)

 {

 flg = 1;

 break;

 }

 }

 The part of the code which takes care of this is shown above. Here I do not search

the entire block for common pixel value, instead I choose two opposite corners of a

block. If they both are same and the value is less than the threshold of 10 I break the

process and start with the next block. After this is done for the entire frame next frame in

the processing queue is served. When all the frames are analyzed for motion estimation, I

get a text file MV.TXT which stores all the information of motion data. This file is next

given to the affine model which in contrast to the previous version which had a

MATLAB exe is implemented in C\C++.

18

CHAPTER 5

THE AFFINE MODEL

 As noted in section 4, for the real time end of insertion affine model was made in

C, the basics of the affine model [13] [16] can be understood from the Figure 7.1.1. I just

deal with the dolling camera motion for our purpose because only this can detect the

extent to which camera goes. Also for the end of insertion detection other camera

motions are irrelevant. The actual implementation of the affine model is based on the

equation as follows. The forward or backward camera motion is on the Z axis.

 Figure 5.1.1 Camera Motions.

19

The standard equation for the camera motions can be defined as in (1).

(u, v) is the motion vector of a macro block located at position (x, y) of each frame, z is

the depth of the real world. Scalar coefficients concerned with camera motions are as

follows,

Endoscope cameras do not have zoom-in and zoom-out functions, Thus our equation is

reduced to,

Let,

)1(
0

01

2

1

22

11




















+

















+







+


















−
=








boom

track

dolly

dolly

tilt

pan

zoomroll

rollzoom

d
c

y

x

a

a
zd

c
y

x

ab

ba
v

u

zooma1
rollb1

rollb2
zooma2

panc tiltd dollya1
dollya2

trackc boomd

,01 =zooma 02 =zooma

(2)
2

2

1
1



















+

+
+


























−

=








z
d

d

z
c

c

y
x

z
a

b

b
z

a

v
u

boom
tilt

track
pan

dolly
roll

roll
dolly

z
a

a
dolly
2

6 =

20

 Dolling Camera Motion (DCM),

 Rolling Camera Motion (RCM),

 Horizontal Camera Motion (HCM=Panning + Tracking)

Vertical Camera Motion (VCM=Tilting + Booming)

 As I can see that this kind of implementation is computationally expensive, so in

order to speed up, the earlier implementation of MATLAB was converted to C in this

implementation. The difference in the Real time version and the Post processing version

(3)
4

1

65

32








+















=









a

a

y
x

aa
aa

v
u

,1
2 z

a
a

dolly

= ,13
rollba = ,4 z

d
da

boom
tilt +=

,25
rollba −=

),(
2
1

62 aaDCM += ,1aHCM =

),(
2
1

53 aaRCM −= 4aVCM =

,1 z
c

ca
track

pan += ,1
2 z

a
a

dolly

=
,13

rollba =
,4 z

d
da

boom
tilt +=

,25
rollba −=

z
a

a
dolly
2

6 =

,1 z
c

ca
track

pan +=

21

is that the Affine model was called only once in the post processing version. After all the

files were tested for motion vectors and all the values were stored in a file, an .exe

created for Affine in MATLAB was called. Calling an .exe of MATLAB in C is

computationally very expensive. Thus in the Real Time version where the Affine model

had to be called after every frame of motion detection, this was not feasible. The code

was generated in C and then embedded with the motion detection code in the form of a

function. The sample implementation can be seen in the code below,

 Figure 5.1.2 Affine Model.

double affine(double u,double v,double x,double y){

 double temp[3];

 double a[]={0,0,0};

 double b[]={0,0,0};

 double pan,tilt,div,rot; // motion parameters

 temp[0]=1;

 temp[1]=x;

 temp[2]=y;

 getLeastSquare(temp,u,a); // obtain leastSquare for a

 getLeastSquare(temp,v,b); // obtain leastSquare for b

22

 // calculating motion parameters

 pan=a[0];

 tilt=b[0];

 div=(a[1]+b[2])/2;

 rot=(b[1]-a[2])/2;

 return (div-1); // returning the calculated DCM

}

void getLeastSquare(double numList[3],double scalar, double *result){

 double largestIndex=0;

 double leastSquare[3];

 double b[3];

 double list[3];

 list[0]=numList[0];

 list[1]=numList[1];

 list[2]=numList[2];

 if(list[0]<list[1])

23

 largestIndex=1;

 if(list[1]<list[2])

 largestIndex=2;

 list[0]=1/list[0];

 list[1]=1/list[1];

 list[2]=1/list[2];

 b[largestIndex]=scalar;

 leastSquare[0]=list[0]*b[0];

 leastSquare[1]=list[1]*b[1];

 leastSquare[2]=list[2]*b[2];

 result[0]=leastSquare[0];

 result[1]=leastSquare[1];

 result[2]=leastSquare[2];

}

24

CHAPTER 6

DCM VALUE GRAPH AND END OF INSERTION

 When the affine model is applied I get the DCM (Dolling Camera Motion) values

in the form of floating point numbers which can be plotted as a graph to detect the end of

insertion shown if Figure 6.1.

 Figure 6.1 DCM value graph.

 Typically the end of insertion is reached when the doctor reaches appendix or

terminal ileum which can be seen in Figure 6.2. Usually when this region is reached, the

doctor confirms this by his voice as well. Thus I have another way to prove that the

results obtained in this method comply with those of doctors. Although the results can

never be 100% accurate because even after reaching the appendix, the doctor might want

to study the appendix as well. He might go more forward and then backward in the

25

course of time. This will lead to a change in the peak of the DCM value shown as Figure

6.1. Thus it is normal to have accuracy differ by a few seconds. I detect insertion phase

time, withdrawal phase time and no camera motion time. Other values are speed and

variances of camera motion. By all these metrics an idea about the efforts taken by the

doctor can be estimated [12] [13].

 Figure 6.2 Appendix.

 Also this solves one more conflict, for example if the same video is given to many

doctors and they are asked to tell the end of insertion. It might happen that there is a

difference in opinion of these doctors. To solve these kinds of ambiguities, results from

our experiments can be used. Thus there is a way to distinguish between different

colonoscopy procedures.

26

CHAPTER 7

MULTITHREADING FOR THE POST PROCESSING

 Present desktop computers are equipped with a minimum of dual core processors

nowadays. I made a special version for such machines; a special version was required

because I cannot assume that the system running this project is a multi core CPU. The

post processing version without multithreading is necessary. This is because if I do

multithreading on a single core machine like the Intel Pentium 4 or 3 then instead of

speed up, it will increase the execution time because of many context switches. I made a

version which has 8 threads made specifically for the dual core and the quad core CPU’s

[18-20]. The actual breakup of the input data can be seen in the Figure 7.1.

 Figure 7.1 Multithreading of motion vector search.

27

 Here as can be seen a pair of two frames is given as input to each thread, one is

the current frame and another is the reference frame, the frames were extracted at a rate

of 1 frame per second. Thus next thread takes 30-31 if the thread 1 took 0-1 and so on at

a distance of 30 frames. This specific number of 8 threads was a tradeoff ratio between

performance and context switch times. The comparison of this multithreaded version in

terms of the run time can be seen in the experimental results section. I tested this program

on 2 configurations 1st one was an Intel Core 2 Duo, 3 GHz with 4 GB of RAM while

other one was Intel Xeon Quad core (Dual Processors) with 4 GB of RAM and 250 GB

RAID hard drive. The results were excellent when this program was run on the second

machine. On the first machine it was about twice as faster as compared to the single

thread version. This improvement can be utilized in two ways, first one is to gain more

speed like discussed above and the second option is to keep the speed same while

increase the accuracy. This is by increasing the frame rate from 1 frame to 2 frames or 3

frames per second. When I tested the performance with more frame rate, the accuracy

was increased to about 10% for ever frame increase. Using this power to reduce the

execution time resulted in about 50% improvement, thus the best idea was to increase the

speed instead accuracy. Also if I would have increased the accuracy and the program was

made to run on a single CPU core machine, it would have taken twice the long time as

compared to the previous version.

28

CHAPTER 8

OTHER METHODS INVESTIGATED

 The methods described above were not finalized until I experimented with some

other search techniques and compared the results with the ground truths. For some cases

the accuracy was good but it took very long time for processing, on the other side some

techniques were extremely fast but the accuracy was unacceptable. I discuss some of

these techniques and the reason for them not being used in the following sub sections.

8.1 Variations in Search Area

 The first idea that was used is to have a full exhaustive search of 16X16 pixel

blocks in an area of 48X48 pixels. This provided the most accurate results but it took so

long that even a highly configured system could not do it faster than twice the video

length time [13]. As can be seen in Figure 8.1.1, the total number of comparisons was

1024 for every block.

Figure 8.1.1 48X48 Pixels search area.

29

 The second variation did not make an exhaustive search, but it actually made a 9

block search, as can be seen from Figure 8.1.1, the central current block was searched in

all its adjacent blocks and the nearest match was selected. This method performed most

poorly, with accuracy which was unacceptable. However, this version is so fast that it

could detect end if insertion in a 1 hour video, in just around 5 minutes.

 The third variation was to go to a long extent in only straight paths; this idea can

be understood from the Figure 8.1.2. Here the central current block is searched in a total

of 33 locations; this is somewhere in between the two methods described earlier.

 Figure 8.1.2 Straight path search.

 However the results were good but I wanted something which could do even

better. I also tried a method where all the blocks were considered in Figure 5.3.2, at a

displacement of 1 block or 16 pixels. Finally I implemented the 4 block or 32X32

30

exhaustive searches, which gave very good results and also took less time. So it was like,

I found out the most favorable tradeoff between the time taken for execution and the

accuracy, which can be later seen in the experimental results section.

 The results and the trade off ratios can also be understood from the table 8.1.1. I

also experimented with various block sizes. I started with 4X4 pixels up to 32X32 pixels

with varying accuracies and time. Small block sizes helped in faster execution especially

when the exhaustive search was used, because initially the idea was to have for example

3X3 blocks search area for exhaustive search.

 Table 8.1.1 Comparison of the search patterns.

 48X48

Exhaustive

Search

9 Block

Search

Straight Path

Search

81 Block

Search

32X32

Exhaustive

Search

Total

Searches

1024 9 33 81 256

Speed 4X Slower 25X Faster 8X Faster 3X Faster 1X

Accuracy 95% 55% 74% 80% 90%.

 So this means that if the block size is 16X16 pixels then the search area would

become 48X48, but if 8X8 block is considered the search area is reduced to ¼, that is

31

24X24 pixels. After a lot of experimentation I finalized 16X16 pixels to be the best block

size.

8.2 Frame Skipping

 Another factor which affected the performance was the distance between the

current frame and the reference frame. For example if the frames considered are 0-1, then

0 is the reference frame and 1 is the current frame, it played an important role on how

much distance should be allowed to get better motions estimation. If the distance is 1 as

mentioned above, there is less chance of getting accurate motions if our search area is

small, for example if I use 9 block search then definitely there will be match available but

that might go wrong in predicting the DCM value. So a balance between the search

method and frame distance had to be decided. From experiments I found that the results

were best if the frames were 2 frame distant, but also it required the best search algorithm

that is 48X48 exhaustive search. This is because the chances of finding better true and

accurate motions increase as I go in increasing order of the frame distance. I found out

from the MPEG motion vectors that the maximum extent to which a block in a frame can

move is around 42 [7], but if I had used 42X42 searches, then the time taken is very high.

Also as I had decided the 32X32 exhaustive search methods already to be the best

candidate, I concluded from experiments that the best skip is 1, an example as can be

seen in the Figure 8.2.1. A sample test of 48X48 search area with different frame

distances is shown. Here as can be seen the 2 frame skip is the best for 48X48 search

areas, thus 32X32 for 1 frame distance.

32

 Figure 8.2.1 Frame skip test with 48X48 searches.

 This solved one more problem, typically in MPEG only P and B frames are

encoded using the motion vector approach. If many “I” frames come in between, the

motion for that portion cannot be estimated correctly, this results in reduced accuracy.

Also the previous implementation only reads the motion vector values from the MPEG

stream [13]. Thus it had no way to alter the accuracy by fine tuning, just like what I did in

this implementation. This also made the old implementation more prone to the encoding

standards of the Endoscope camera. In other words this method might give accurate

results for one manufacturer of camera, while less accurate for the other one. Camera

manufacturers decide the encoding standard to be used. The MPEG standard does not

define the coding mechanism, and it accepts a stream as MPEG only if it can be played

using the MPEG standard decoder player [7][8]. The encoding process is left to the

33

manufacturer. The race for more information in less disk space gives rise to competent

algorithms which work very well for the compression domain, but are futile for our

purpose. So in other words, our application is camera manufacturer independent, this can

handle even the streams from the new coding techniques that will be released in future,

for example our target is the “High Definition” cameras which have a huge resolution

starting from 1024X768 pixels.

34

CHAPTER 9

REAL TIME END OF INSERTION DETECTION

 A modification to the current modules makes it usable if the video is streaming or

coming directly from the endoscope. The old version and the new version discussed

earlier cannot handle live streaming videos [12]. The modification is to consider the

stream as a stream of bitmap images and then to consider 1 frame every second, for

example frame 1 becomes the reference frame while frame 2 becomes the current frame,

after this, 30 frames are skipped to make 31 as reference frame and 32 as current frame.

Another difference is that the affine model is called after processing of every frame

followed by the quality metrics module. This is done to detect current end of insertion,

here I maintain a threshold of 1 minute, if the value currently detected as end of insertion

does not change for one minute, and I declare this as time for end of insertion with the

frame ID. The working can be better understood from Figure 9.1 and the typical error

rates from table 9.1.

 Figure 9.1 Real Time End of Insertion.

35

 Table 9.1 Error rates in real time end of insertion.

Video Name Ground Truth

(EOI)

Real time

Version

(EOI)

Total Error

Count.

Camera 1

1.mpg 06:02 04:16 0

2.mpg 05:21 05:34 0

3.mpg 15:25 15:22 0

4.mpg 18:06 20:32 0

5.mpg 31:13 29:28 1

6.mpg 05:14 05:12 0

7.mpg 11:16 12:26 0

8.mpg 03:47 05:24 0

9.mpg 26:01 23:46 2

10.mpg 12:59 15:32 1

Difference 01:23

Camera 2

1.mpg 08:32 06:50 0

2.mpg 08:18 04:30 0

3.mpg 09:06 11:08 1

4.mpg 05:55 07:36 0

5.mpg 08:05 14:46 1

Table continued on next page.

36

Table 9.1 continued.

Video Name Ground Truth

(EOI)

Real time

Version

(EOI)

Total Error

Count.

6.mpg 04:26 04:30 0

7.mpg 07:25 08:56 0

8.mpg 12:05 10:56 1

9.mpg 06:17 07:20 1

10.mpg 01:54 04:00 0

Difference 02:11

 As can be seen in Table 9.1, that if the threshold of 1 minute is used the typical

error generated is 1, that means only once the end of insertion was detected incorrectly,

however as soon as the new correct value is received, the old value is replaced. For our

test purposes the maximum error was 2 for only 1 video.

 In the real time version the Affine model was implemented in C/C++ as compared

to the older version which was in MATLAB. This gave me two advantages, one is the

speedup I get by using C while the other is to embed this code directly in the code for

motion vectors estimation which is also in C. One of the problems which the old version

had was that it had separate exe files for motion and affine model. If I had to make a real

time version from that, it would have taken very long time as after every frame

processing another exe had to be called from the program. This takes a long time as

compared to calling a function in the same program. This process continues until the

37

video is over, however this real time processing comes at the price of reduced accuracy as

I cannot go beyond 1 FPS (Frame Pair per Second). The post processing version is more

accurate as compared to the real time version because of 2 FPS rate, but at the cost of

more execution time. I also implemented a video player which can display the stream of

video from the endoscope and when the earlier discussed program detects the end of

insertion the time starts to flash on the video. Also I noted one more feature which takes

care of number of times the end of insertion is detected falsely. Recall that I declare a

point as end of insertion only when it does not change for 1 minute threshold. If there is

an event that a new point is declared as end of insertion after this one minute threshold, I

increase the error count by 1. Typically the numbers of errors were 0 and 1 for most of

the cases. The algorithm for this can be seen as follows,

 Let CADCM represent the current accumulated DCM value since the beginning of

the procedure. ‘Current DCM’ is the DCM value of the current frame and ‘previous

DCM’ is the DCM value computed before the current DCM value. ‘Max. DCM’ keeps

track of the maximum DCM value seen so far. Initialization of these variables is

performed before the following computation starts. The current time is the timestamp of

the current image given the zero timestamp of the image at the start of the procedure.

Loop until the end of video is detected

1. Compute current DCM

2. CADCM = CADCM + current DCM

3. If CADCM > Max. DCM, then

38

o Max. DCM = CADCM, and

o the temporary End of insertion time = the current time

4. Otherwise,

o Compute a difference between the temporary End of insertion time and the

current time.

o If this difference is greater than a threshold (TE), I take the temporary End of

insertion time as the End of insertion time

5. The previous DCM = the current DCM;

 I use 1 minute for the threshold, TE. If the value currently detected as end of

insertion does not change for one minute, I declare this as time for current end of

insertion with the frame ID.

9.1 Multithreading for the Real Time End of Insertion

 I developed an algorithm for the real time end of insertion. The basic difference

between this algorithm and the one for post processing is that the post processing version

assigns a thread to a pair of frame. At any given time the number of frames being

processed will be equal to the number of threads spawned in the system [18-20]. This is

in turn equal to the number of CPU cores available in the system, for example, single

core, dual core, quad core, dual quad core, etc. The algorithm can be understood as

follows.

 Assume that I select one pair of frames (i.e., reference frame (fi) and current frame

(fi+1)) to process per second, and there are m number of threads. One frame size is 720 x

39

480 pixels, and it is divided into a number of blocks (16 x 16 pixels). Since I am not

processing the boundary blocks and corner blocks, the total number of blocks (B) to be

processed is 1,200. Our threading algorithm is as follows;

1. Compute a number of blocks (b) to be processed in each thread, b = B / m,

2. Divide the total number of blocks, B, into m numbers of groups, g1, g2, … gm, in

which each group has b numbers of blocks,

3. A reference frame (fi) and g1 of current frame (fi+1) are given as inputs to the first

thread, and a reference frame (fi) and g2 of current frame (fi+1) are given as inputs to

the second thread, and so on, and

4. After all threads generate their outputs, I combine them into one result.

 I have implemented two versions of the phase boundary detection in a real-time

environment, which are with and without this CPU multithreading. I implement the

algorithms using C language [18-20]. Thus I assign all the available threads to only one

frame, to speed up process of finding motion vector for this frame in contrast to speeding

up the whole process which I do in the post processing version. Actually I could have

done this in the Post processing version as well, but this method cannot make use of the

pipelining of CPU processing and disk access. Here the motion extraction part consists of

3 phases, first one being reading current and reference images from the disk, second

being computing motion vectors and finally writing the results back to the disk. Here it

happens that when the disk access is being made, all the CPU threads are idle, but in case

of the post processing, when one thread is busy reading data from the disk, another might

be busy in computing motion vectors. So I have much higher efficiency in the post

40

processing version. In the real time version, the scenario is different, because I just have

one pair of frame for processing, and the next frames are yet to arrive, so to maximize

efficiency I need to assign all the available threads to quickly process this pair of frames.

The details can also be understood from the Figure 9.1.1 below.

Figure 9.1.1 CPU multithreading for the real time.

 Each block here can consist of many 16X16 macro blocks which are processed as

a group by the assigned thread. This is actually grouping the total macro blocks in the

image based on the number of threads available. All the available results are then

collected from each thread and written to the motion vector file, which is later processed

by the affine model and then the end of insertion detection eventually.

41

CHAPTER 10

EXPERIMENTAL RESULTS

 Table 10.1 shows the comparison of execution time of the system with old version

of motion vector estimation with the new version. Here I see an important property, for

the camera 2 which is Olympus endoscope, I was able to get more than twice the

performance because of the border blocks and black block skipping. This is because

Olympus camera generated videos have more black or dead area as compared to the

Fujinon. MPEG based previous implementation [12] [13] could not make use of this

feature, hence it was much slower. For the Fujinon videos I was able to get around 1.8

times speed up on an average. Table 10.2 shows the accuracy comparison as compared to

the ground truth found by doctors for the end of insertion in terms of time. The

candidates are 20 videos from 2 different endoscope camera manufacturers. As can be

seen from table 2 the accuracy has not been changed much but the execution time is

reduced to almost half as a result of this method. If looked carefully at the table 2 it is

seen that for some cases the results are even better as compared to the old program. This

speedup was also possible because of the implementation done in C/C++ as compared to

java in the old version of the same. The table 10.3 shows the end of insertion detection

results for the real time version of the program. Here it can be seen that I have achieved

the speed up at the expense of multithreading. However, important point to be noted is

that the accuracy is still better than the accuracy results for the previous implementation.

So in other words I can summarize the results like Old version (Lowest Accuracy), Real

42

Time Version (Medium Accuracy) and New Version (Highest Accuracy). So in many

ways the new implementation is better than the previous version. The system is not

binding to use only the above two mentioned endoscope camera manufacturers. As the

methods explained before are capable of fixing the search area in any type of video.

 Table 10.1 Comparison of execution times.

Video Name Old Version

(Execution

Time)

New Version

(Execution Time)

Without

Multithreading

Speed Up

(X Times)

Camera 1

1.mpg 45:12 24:57 1.81162325

2.mpg 1:12:10 43:00 1.67674498

3.mpg 1:16:01 46:00 1.65434756

4.mpg 3:53:13 2:11:26 1.77616941

5.mpg 2:12:09 1:25:46 1.54563538

6.mpg 39:40 20:48 1.90705128

7.mpg 1:16:38 43:45 1.75788262

8.mpg 36:08 18:01 2.00555042

9.mpg 2:09:50 1:19:03 1.77324387

Table continued on next page.

43

Table 10.1 continued.

Video Name Old Version

(Execution

Time)

New Version

(Execution Time)

Without

Multithreading

Speed Up

(X Times)

10.mpg 1:14:49 43:44 1.71477901

Camera 2

1.mpg 58:42 24:33 2.3910387

2.mpg 57:56 24:39 2.35023665

3.mpg 1:03:00 30:58 2.06017005

4.mpg 1:11:07 31:44 2.26049618

5.mpg 1:42:09 38:47 2.65375617

6.mpg 40:21 19:18 2.09067358

7.mpg 52:08 22:32 2.31360947

8.mpg 1:09:05 28:57 2.41687084

9.mpg 1:08:08 23:05 2.95357918

10.mpg 23:32 09:36 2.45138889

Average 2.42790512

 One thing to be noted is that the execution time of the Real time End of Insertion

version is same as that of the video length. Here I see that I gain this greater speed up by

implementing multithreading.

44

10.2 Accuracy comparison.

Video

Name

Ground

Truth

Old

Version
Difference

New

Version
Difference

Camera 1

1.mpg 06:02 04:07 01:55 04:16 01:46

2.mpg 05:21 03:45 01:36 05:34 00:13

3.mpg 15:25 07:35 07:50 15:25 00:00

4.mpg 18:06 19:24 01:18 17:58 00:08

5.mpg 31:13 31:51 00:38 30:21 00:52

6.mpg 05:14 04:48 00:26 05:13 00:01

7.mpg 11:16 11:26 00:10 11:27 00:11

8.mpg 03:47 03:49 00:02 03:04 00:43

9.mpg 26:01 09:54 16:07 22:07 03:54

10.mpg 12:59 10:35 02:24 15:02 02:03

Average 03:15 00:59

Camera 2

1.mpg 08:32 10:48 02:16 10:39 02:07

2.mpg 08:18 05:37 02:41 08:50 00:32

3.mpg 09:06 06:33 02:33 11:08 02:02

4.mpg 08:46 08:24 00:22 05:25 03:21

Table continued on next page

45

Table 10.2 continued

Video

Name

Ground

Truth

Old

Version
Difference

New

Version
Difference

5.mpg 08:05 10:09 02:04 10:22 02:17

6.mpg 06:10 06:37 00:27 04:54 01:16

7.mpg 08:50 09:39 00:49 08:57 00:07

8.mpg 12:05 14:57 02:52 10:56 01:09

9.mpg 06:17 07:36 01:19 07:21 01:04

10.mpg 01:54 01:53 00:01 01:48 00:06

Average 01:32 01:24

Table 10.3 Real Time End of Insertion.

Video Name Ground Truth

(EOI)

Real time

Version

(EOI)

Difference

Errors

Camera 1

1.mpg 06:02 01:46 0

2.mpg 05:21 00:13 0

3.mpg 15:25 00:00 0

Table continued on next page.

46

Table 10.3 continued.

Video Name Ground Truth

(EOI)

Real time

Version

(EOI)

Difference

Errors

4.mpg 18:06 00:08 0

5.mpg 31:13 00:52 1

6.mpg 05:14 00:01 0

7.mpg 11:16 00:11 0

8.mpg 03:47 00:43 0

9.mpg 26:01 03:54 2

10.mpg 12:59 02:03 1

Average 00:59

Camera 2

1.mpg 08:32 02:07 0

2.mpg 08:18 00:32 0

3.mpg 09:06 02:02 1

4.mpg 08:46 03:21 0

5.mpg 08:05 02:17 1

6.mpg 06:10 01:16 0

Table continued on next page.

47

Table 10.3 continued

Video Name Ground Truth

(EOI)

Real time

Version

(EOI)

Difference

Errors

7.mpg 08:50 00:07 0

8.mpg 12:05 01:09 1

9.mpg 06:17 01:04 1

10.mpg 01:54 00:06 0

Average 01:24

 I also tested the program for difference in the execution time for different

computer configurations as I need to set the minimum system requirements for anyone to

run this project. The comparisons can be seen in Table 10.4. As can be seen the important

factor here is the BUS speed of the motherboard and the processor speed. This is because

in our application the main bottleneck is the data transfer rate between the RAM and the

Disk. The bitmap images are large in size; it is not possible to store many of them at a

time in the processing queue. This testing was done for the post processing version and

not the real time version. So in other words in order to run the real time version Computer

1 configuration is the optimum which is in column 2. The graphics card however does not

play any kind of significant role in this, but may be required for future versions. I am

48

trying to focus into the new generation graphics computing languages which make use of

these cards apart from the gaming.

Table 10.4 Computer configuration comparison.

Video Computer 1

Post Processing.

Computer 2

Post Processing.

Computer 3

Post Processing.

Test1.mpg 13:35 34:56 50:12

Test2.mpg 21:16 1:01:03 1:36:15

Test3.mpg 22:06 1:03:14 1:39:36

Test4.mpg 12:10 29:48 48:18

Test5.mpg 11:20 26:52 47:01

CPU
Intel Pentium Core 2

Duo 3.0 GHz

Intel Pentium Core 2

Duo 1.86 GHz

Intel Pentium D

Processor 3.0 GHz.

RAM 3.00 GB 2.00 GB 2.00 GB

RAM BUS 800 MHz 533 MHz 533 MHz

SYSTEM BUS 1333 MHz 1066 MHz 800 MHz

HARD DRIVE 500 GB 7200 RPM 750 GB 7200 RPM 750 GB 7200 RPM

OS Windows XP SP2 Windows XP SP3 Windows XP SP2

GRAPHICS CARD
NVIDIA 8800GTX, 750

MB
NVIDIA GTX 280, 1 GB

NVIDIA 8800GTX, 750

MB

L2 CACHE 4 MB 2 MB 1 MB

49

 A comparison of different frame rates for this program can be seen in table 10.6,

here I used different frame rates because of the speed up I achieved. The multithreading

performance can be seen in table 10.5. After experimentation I found that the frame rate

can be taken to 2 FPS increasing the accuracy. For the real time version the accuracy

could be increased by taking 1 FPS into consideration, without this I was bound to have

0.5 FPS rate.

Table 10.5 Multithreading execution time comparison (FPS – Frame Pair per Second).

Video 1 FPS Run Time

(Core 2 Duo)
1 FPS Run Time

(Core 2 Quad)
1 FPS Run Time

(Intel Xeon,

Dual Quad

Core)

1.mpg 17:57 11:21 06:35

2.mpg 31:38 22:49 13:18

6.mpg 14:35 09:07 05:52

8.mpg 13:21 09:01 06:47

10.mpg 33:18 22:35 14:32

0103.mpg 16:23 11:32 9:13

0154.mpg 15:45 12:27 8:40

0183.mpg 6:13 4:58 3:37

0118.mpg 19:36 15:01 12:02

0152.mpg 12:24 7:37 5:18

50

Table 10.6 Comparison of different frame rates (FPS – Frame Pair per Second).

Video Ground

Truth

1 FPS

Difference.

2 FPS

Difference.

3 FPS

Difference.

1.mpg 06:02 01:46 01:22 00:00

2.mpg 05:21 00:13 00:04 00:11

6.mpg 05:14 00:01 00:01 00:00

8.mpg 03:47 00:43 00:02 00:09

10.mpg 12:59 00:19 01:46 01:07

0103.mpg 08:32 02:45 01:02 01:43

0154.mpg 08:50 00:07 00:24 00:21

0183.mpg 01:54 00:14 00:04 00:14

0118.mpg 08:46 01:09 00:47 00:32

0152.mpg 06:10 00:24 00:24 00:43

Average Difference 00:46 00:36 00:30

Table 10.7 Computer 1: Core 2 Duo 3.0 GHz, 3 GB RAM, 500 GB eSATA (FPS –

Frame Pair per Second).

Video 1 FPS Run Time 2 FPS Run Time 3 FPS Run Time

1.mpg 17:57 31:22 46:10

Table continued on next page.

51

Table 10.7 continued.

Video 1 FPS Run Time 2 FPS Run Time 3 FPS Run Time

2.mpg 31:38 56:43 1:15:21

6.mpg 14:35 26:56 40:12

0103.mpg 16:23 29:53 51:33

0154.mpg 15:45 28:22 45:54

0183.mpg 06:13 12:18 19:18

0118.mpg 19:36 39:42 1:03:41

0152.mpg 12:24 23:01 35:11

8.mpg 13:21 25:09 31:52

10.mpg 33:18 1:01:18 1:09:52

Table 10.8 Computer 2: Intel Xeon Quad Core (2 CPU’s) 3.0 GHz, 3GB RAM, 160 GB

RAID Drive. (FPS – Frame Pair per Second).

Video 1 FPS Run Time 2 FPS Run Time 3 FPS Run Time

1.mpg 06:35 15:12 21:36

2.mpg 13:18 27:52 42:18

6.mpg 05:52 13:11 19:11

0103.mpg 09:13 17:22 24:38

Table continued on next page

52

Table 10.8 continued.

Video 1 FPS Run Time 2 FPS Run Time 3 FPS Run Time

0154.mpg 08:40 16:01 23:27

0183.mpg 03:37 05:45 08:01

0118.mpg 12:02 21:48 32:01

0152.mpg 05:18 12:00 17:23

8.mpg 06:47 11:30 18:48

10.mpg 14:32 28:23 43:11

 Thus considering table 10.6, 10.7 and 10.8, I decided to choose 2 FPS as ideal for

our application. This was the best trade off ratio between accuracy and execution time.

However as we see in table 10.8, the multithreaded aspect of our application can make

use of the higher end CPU’s better. Thus in future when available computation power

increases I can even think of higher frame rates.

53

CHAPTER 11

FUTURE ENHANCEMENTS

 I am also considering improving the search method technique; the candidates are

3 Step and 2 D Logarithmic search. This is to reduce the execution time taken and also to

achieve the same or better accuracy level. I also considered another fact that the accuracy

is affected if the frames considered for motion estimation consists of blurred images. I

wish to do a preprocessing step where on clear frame are allowed to be examined for

motion vectors. For example if the current pair considered for motion vectors say 10-11

have either 10 or 11 as blurry, I ignore this pair completely. However this will introduce

an additional extra step, but will always generate accurate results.

 The future work in this research is taking a direction where I am trying to make

use of Graphics cards for the processing [23][26][27]. Graphics cards can be seen as

collection of tiny processing elements with less power as compared to the CPU [26]. The

typical memory available to high end graphics cards starts from 512MB which is

dedicated and inbuilt into the graphics card processor. This skips the bottleneck of the

data transfer speeds created by the North Bridge in the motherboard. This implementation

has been started with the new generation GPU language called CUDA (Compute Unified

Device Architecture) [21][22][24][25] developed as open source by NVIDIA

Corporation. The first version of the implementation is done. A sample of normal

speedup obtained by using the graphics card for cumulative addition of a string of

number is shown in Figure 9.1. The GPU card used for this purpose was the NVIDIA

54

8800 GTX, this processor has 128 Processing elements of 600 MHz clock frequency

each, with 750 MB of dedicated DDR3 SDRAM.

 The latest version of graphics card available from NVIDIA is the GTX 280, with

240 Parallel processing elements and 1 GB of DDR3 SDRAM. The approach I made use

of can be described by Figure 11.1. PE stands for processing elements.

 Figure 11.1 Sample of GPU implementation.

55

REFERENCES

[1] American Cancer Society. “Colorectal Cancer Facts & Figures 2008.”

 http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_

 Figures_2008.asp, February 2nd 2009.

[2] Jung Hwan Oh, Malik Avnish Rajbal, Jayantha Kumara Muthukudage,

 Wallapak Tavanapong, Johnny Wong, Piet C. de Groen , “Real-Time

 Phase Boundary Detection in Colonoscopy Videos,” ISPA 2009 (Accepted

 for Publication on June 2009).

[3] A. Pabby, R. E. Schoen, J. L. Weissfeld, R. Burt, J. W. Kikendall, P. Lance,

 E. Lanza, and A. Schatzkin. “Analysis of Colorectal Cancer Occurrence

 During Surveillance Colonoscopy in the Dietary Prevention Trial,”

 Gastrointestinal Endoscopy, vol. 61(3), 2005, p.385 – 391.

[4] D. K. Rex, J. H. Bond, S. Winawer, T. R. Levin, R. W. Burt, and D. A. J. et

 al. “Quality in the Technical Performance of Colonoscopy and the

 Continuous Quality Improvement Process for Colonoscopy:

 Recommendations of the U.S. Multi-Society Task Force on Colorectal

 Cancer,” American Journal Gastroenterol, 97(6): 2002, p.1296 – 1308.

[5] D. K. Rex, J. L. Petrini, T. H. Baron, A. Chak, J. Cohen, S. E. Deal, B.

 Hoffman, B. C. Jacobson, K. Mergener, B. Pertersen, M. A. Safdi, D. O.

http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_
http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_

56

 Faigel, and I. M. Pike. “Quality Indicators for Colonoscopy,”

 Gastrointestinal Endoscopy, vol. 63, 2006, p.S16 – S26.

[6] Morimoto, C.; Burlina, P.; Chellappa, R. “Video Coding Using Hybrid

 Motion Compensation,” Proceedings., of International Conference on

 Image Processing, 1997. Volume 1, 26-29 Oct. 1997 p. 89 – 92.

[7] http://www.mpeg.org/MPEG/video/, February 24th 2009.

[8] http://en.wikipedia.org/wiki/MPEG1/, February 24th 2009.

[9] Yatabe, Y.; Fujimoto, M.; Sodeyama, K.; Komi, H. “An MPEG2/4 dual

 codec with sharing motion estimation,” IEEE Transactions on Consumer

 Electronics, Volume 51, Issue 2, May 2005 p.660 – 664.

[10] R. L. Lagendijk and J. Biemond. “Basic Methods for Image Restoration and

 Identification”, Chapter 3.5, Academic Press, 2000, p. 125 – 139.

[11] J. Caviedes, S. Gurbuz. “No-Reference Sharpness Metric Based on Local

 Edge Kurtosis,” In Proc. IEEE, International Conference on Image

 Processing, 3: June 2002, p. 53 – 56.

[12] J. Oh, S. Hwang, Y. Cao, W. Tavanapong, D. Liu, J. Wong and P. C. de

 Groen. “Measuring Objective Quality of Colonoscopy,” IEEE

http://www.mpeg.org/MPEG/video/
http://en.wikipedia.org/wiki/MPEG1/

57

 Transactions on Biomedical Engineering. (Accepted for publication on

 July 2008).

[13] S. Hwang, J. Oh, J. Lee, P. C. de Groen, Y. Cao, W. Tavanapong, D. Liu,

 and J. Wong. “Automatic Measurement of Quality Metrics for

 Colonoscopy Videos”. Proc. of ACM Multimedia 2005, Singapore

 November 2005, p. 912 – 921.

[14] B. P., G. M., and G. F., “A unified approach to shot change detection and

 camera motion characterization,” in IEEE Trans Circuits and Syst. for

 Video Technol., 1999, p. 1030 – 1044.

[15] X. Cao and P. N. Suganthan, “Video Shot Motion Characterization based on

 Hierarchical Overlapped Growing Neural Gas Networks,” in Multimedia

 Systems, October 2003, p. 378 – 385.

[16] H. Yi, D. Rajan, and L.-T. Chia, “Automatic Extraction of Motion

 Trajectories in Compressed Sports Videos,” in ACM Multimedia 2004,

 New York, NY, October 2004, p. 312 – 315.

[17] B. Furht, J. Greenburg, and R. Westwater. “Motion Estimation Algorithms

 for Video Compression,” Kluwer International Series in Engineering &

 Computer Science, 1996.

58

[18] C. Kyriacou, P. Evripidou, P. Trancoso. “Data-Driven Multithreading Using

 Conventional Microprocessors,” IEEE Transactions on Parallel and

 Distributed Systems, Volume 17, Issue 10, Oct. 2006 p.1176 – 1188.

[19] http://community.edc.intel.com/t5/Multicore-Virtualization-

 Blog/Multithreading-a-Software-Application-for-Performance-on-

 Multi/bc-p/110;jsessionid=BA0B1BC84BCBEDF17ECA882C03EB798C,

 February 16th 2009.

[20] J.G. Holm, S. Parkes, P. Banerjee. “Performance evaluation of a C++ library

 based multithreaded system,” Proceedings of the Thirtieth Hawaii

 International Conference on System Sciences, Volume 1, 7-10 Jan. 1997

 p. 282 – 291.

[21] http://www.nvidia.com/object/cuda_develop.html, March 12th 2009.

[22] Zhiyi Yang, Yating Zhu, Yong Pu. “Parallel Image Processing Based on

 CUDA,” Computer Science and Software Engineering, 2008

 International Conference , Volume 3, 12-14 Dec. 2008, p.198 – 201.

[23] Wei-Nien Chen, Hsueh-Ming Hang. “H.264/AVC motion estimation

 implmentation on Compute Unified Device Architecture (CUDA),”

 Multimedia and Expo, 2008 IEEE International Conference, June 23

 2008-April 26 2008, p.697 – 700.

http://community.edc.intel.com/t5/Multicore-Virtualization-
http://community.edc.intel.com/t5/Multicore-Virtualization-
http://www.nvidia.com/object/cuda_develop.html

59

[24] Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton,

 S., Phillips, E., Yao Zhang, Volkov, V. “Parallel Computing Experiences

 with CUDA,” Micro, IEEE, Volume 28, Issue 4, July-Aug. 2008, p.13–27.

[25] Seung In Park, Ponce, S.P., Jing Huang, Yong Cao, Quek, F. “Low-cost,

 high-speed computer vision using NVIDIA's CUDA architecture,”

 Applied Imagery Pattern Recognition Workshop, 2008, AIPR '08. 37th

 IEEE 15-17 Oct. 2008, p.1 – 7

[26] Buck, Ian “GPU Computing: Programming a Massively Parallel Processor,”

 Code Generation and Optimization, 2007, CGO '07. International

 Symposium on 11-14 March 2007, p.17 – 17.

[27] Qihang Huang, Zhiyi Huang, Werstein, P., Purvis, M. “GPU as a General

 Purpose Computing Resource,” Parallel and Distributed Computing,

 Applications and Technologies, 2008, PDCAT 2008. 9th International

 Conference on 1-4 Dec. 2008, p.151 – 158.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=40
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4626808
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4816041
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4816041
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4145089
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4145089
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4710940
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4710940
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4710940

