

APPROVED:

Cindy McTee, Major Professor
Jon Christopher Nelson, Minor Professor
Andrew May, Committee Member
Joseph Klein, Chair, Division of

Composition Studies
Graham H. Phipps, Director of Graduate

Studies
James C. Scott, Dean of the College of

Music
Michael Monticino, Dean of the Robert B.

Toulouse School of Graduate
Studies

GRANCLOUD: A REAL-TIME GRANULAR SYNTHESIS APPLICATION AND ITS

IMPLEMENTATION IN THE INTERACTIVE COMPOSITION CREO

Terry Alan Lee, B.M.

Thesis Prepared for the Degree of

MASTER OF MUSIC

UNIVERSITY OF NORTH TEXAS

December 2009

Lee, Terry Alan. GranCloud: A real-time granular synthesis application

and its implementation in the interactive composition Creo

GranCloud is new application for the generation of real-time granular

synthesis in the SuperCollider programming environment. Although the software

was initially programmed for use in the interactive composition Creo, it was

implemented as an independent program for use in any computer music project.

GranCloud consists of a set of SuperCollider classes representing granular

clouds and parameter objects defining control data for the synthesis. The

software is very flexible, allowing users to create their own grain synthesis

definitions and control parameters. Cloud objects encapsulate all of the control

data and methods necessary to render virtually any type of granular synthesis.

Parameter objects provide several simple methods for mapping grain parameters

to complex changing data sets or to external data sources. GranCloud simplifies

the complex task of generating granular synthesis, allowing composers to focus

less on technological issues and more on musical considerations during the

compositional process.

. Master of Music

(Composition), December 2009, 127 pp., 9 tables, 22 illustrations, references, 18

titles.

 ii

Copyright 2009

by

Terry Alan Lee

iii

TABLE OF CONTENTS

 Page

LIST OF TABLES... iv

LIST OF FIGURES ... v

PART I: CRITICAL ANALYSIS OF GRANCLOUD..1

 1. Introduction ...2

 2. GranCloud: Design and Purpose ..17

 3. GranCloud: Class Structure ..44

 4. Application of GranCloud in Creo..76

 5. Conclusion ..92

 Reference List...93

PART II: CREO SCORE ...95

 Title Page..96

 Program Notes..97

 Performance Notes ...98

 Score ..99

iv

LIST OF TABLES

Table 1. GranCloud Instance Variables Used for the Control Data Repository...26

Table 2. Parameter Object Classes Included with GranCloud30

Table 3. Cloud Class Inheritance and Descriptions ..45

Table 4. Instance Variables of the GranCloudSimple Class46

Table 5. Methods and Parameter Descriptions of the GranCloudSimple Class..50

Table 6. Instance Variables of the GranCloud2 Class ..53

Table 7. Methods and Parameter Descriptions of the GranCloud2 Class...........54

Table 8. Parameter Class Inheritance and Descriptions56

Table 9. Methods Common to all Parameter Object Classes59

v

LIST OF FIGURES

Fig. 1. Examples of grain waveforms: a) sine wave, b) audio sample...................6

Fig. 2. Examples of grain envelope shapes: a) quasi-gaussian,7

Fig. 3. The SuperCollider client-server architecture ..11

Fig. 4. Typical SuperCollider client-server application logic14

Fig. 5. GranCloud architectural design..21

Fig. 6. Code example showing the creation of a SynthDef named sine_grain24

Fig. 7. Grain waveforms generated using the sine_grain SynthDef25

Fig. 8. Parameter object access and mutation using the at and put methods.....33

Fig. 9. GranCloud synthesis scheduling engine flowchart...................................36

Fig. 10. GranCloud prepareGrain method flowchart ...39

Fig. 11. Code examples of GCValue object instantiation62

Fig. 12. Code examples of the instantiation of GCMinMax64

Fig. 13. Code examples of the instantiation GCCenterDev objects66

Fig. 14. Code example of a GCControlMap ..68

Fig. 15. Code example of instantiating a GCTrajectoryMap................................70

Fig. 16. Code example of the instantiation of a GCBusMap object71

Fig. 17. Code example of the instantiation of a GCMidiMap object.....................72

Fig. 18. Example of harmonization in Creo using GranCloud77

Fig. 19. Sine grain SynthDef used in Creo for low rumble82

Fig. 20. Blip grain SynthDef used in Creo for tinkling sound83

vi

Fig. 21. Buffer grain SynthDef used in Creo for breaking glass sounds..............85

Fig. 22. GranCloud code example of water sound transformation86

1

PART I

CRITICAL ANALYSIS OF GRANCLOUD

AND ITS APPLICATION TO CREO

2

Chapter 1

Introduction

GranCloud and Creo

GranCloud is a new application for the generation of real-time granular

synthesis in the SuperCollider1 programming environment. It was designed to be

highly flexible, extendable, and efficient, so it could generate virtually any type of

granular synthesis. I programmed the software in response to several specific

needs encountered during the composition of Creo, an interactive work for a

small group of chamber instruments and computer.

Creo was written for flute, violin, French horn, piano, and live interactive

electronics. Thematic elements of the composition are closely related to the

interpretation of its Latin title—meaning, “to create, make, or produce.”2 The

composition uses the transformation of sonic textures to metaphorically portray

scientific and religious theories related to creation.

Many of these changing textures are created in the computer music using

granular synthesis. By changing various parameters of the synthesis over time,

1 SuperCollider is an open source synthesis environment and programming language for real-
time audio synthesis and algorithmic composition. More information about the environment can
be found at the SuperCollider project website. “SuperCollider: real-time audio synthesis and
algorithmic composition,” [resource on-line]; available from http://supercollider.sourceforge.net;
Internet; accessed 1 October 2009.

2 The Pocket Oxford Latin Dictionary (Latin-English), 1994 ed., s.v. “creo.”

3

chaotic clouds of sound are morphed into ordered textures and recognizable

sounds. These subtle transformations require the use of a highly flexible granular

synthesis application.

The core apparatus used by Creo is a computer running a SuperCollider

program called a controller script that governs all aspects of the computer music.

The controller analyzes microphone signals from each instrument to track the

progression of the performance through the score and to cue the generation of

computer music events at appropriate times. The controller interacts directly with

the granular synthesis application to define, generate, and control granular

clouds used in the composition.

Since the progression of time through the composition is dependent on

human interpretation which may vary in different performances, the computer

music must be able to adjust elements of the synthesis in real-time to ensure

proper coordination. This added a real-time requirement to the granular synthesis

application. It needed to be efficient enough to generate sound in a live setting

and flexible enough to adapt immediately to live performance cues.

Creo utilizes custom-built spatialization software that defines localization

parameters as trajectories on a three-dimensional spatial grid. The software pans

signals to different channels based on these trajectories and a configurable

object representing the speaker layout. The software allows the composition to

be rendered properly on different speaker configurations by changing only a

simple configuration object. The use of the software demanded a granular

4

synthesis application extendable enough to use the panning objects internally

and to map panning parameters to the defined trajectories.

Generating granular synthesis in any setting can be a tedious and

cumbersome task. There is a tremendous amount of control data to manage. The

work involved in tracking the data, making grain specific calculations, scheduling

grains, and setting grain parameters can slow down the compositional process

significantly. Duplication of code can also become an issue as common code is

copied and pasted from application to application in order to perform similar

tasks. Considering these management difficulties along with the requirements

discussed above, it became very clear to me that I would need a very powerful

and flexible application for granular synthesis. Otherwise, the composition code

would quickly become unmanageable.

Many good applications and tools have been developed to simplify the

process of generating granular synthesis. Each has its own approach, strengths,

and limitations. Most are focused on one or two specific types of granular

synthesis. Many handle those synthesis methods very well, but I found none that

fully met my requirements for Creo. Therefore, I decided to program my own

application, GranCloud.

GranCloud allows users to define and render virtually any paradigm of

granular synthesis within the limitations of the hardware being used. Grain

synthesis definitions and control parameters are fully user-definable to maximize

flexibility. All control data and methods needed to render granular clouds are

5

encapsulated within instances of GranCloud objects that simplify both the

definition and generation of granular synthesis. The application abstracts the

repetitive generational tasks from the composition code, allowing users to focus

on more important compositional details.

Granular Synthesis

A basic understanding of granular synthesis is important to fully appreciate

the capabilities of GranCloud and how it is useful to compositions such as Creo.

Granular synthesis is based on the theory that any sound can be broken down

into miniscule sonic events, that when added together, reproduce the whole3.

Using granular synthesis, composers organize and place numerous tiny bits of

sound in time and space to generate a complex composite sound.

Typically these grains of sound are extremely short in duration, often

measured in milliseconds. They may occur at rates of thousands per second. A

group of several grains organized in time sequentially form a composite sound

that is often referred to as a cloud. Depending on the application, the grains may

be organized synchronously, according to a specified pattern, or asynchronously

with respect to time and space. They may be arranged in succession, or they

may overlap. Changing the shape, duration, sonic content, delivery rate,

synchronicity, and spatial position of the individual grains changes characteristics

of the resultant sound. The possible sonic variations are nearly endless.

3 Curtis Roads, Microsound. (Cambridge, Massachusetts: The MIT Press, 2001), 57-58.

6

The Composition of a Grain

In practice, any small bit of sound may function as a grain. When speaking

of granular synthesis, however, most composers define a grain as a fragment of

a waveform shaped by an amplitude envelope4. Figure 1 shows two examples of

grains waveforms. The first is based on a sine wave enveloped within a quasi-

Gaussian envelope. The second is a fragment of an audio sample enveloped in

the same manner.

 a) b)

Fig. 1. Examples of grain waveforms: a) sine wave, b) audio sample.

Grain waveforms may be derived from any audio source. They may be

synthetically generated, taken from a buffered audio sample, or taken from a live

audio signal. A new signal may be synthesized specifically for each grain, or the

grains may use fragments of an external signal.

The waveform is typically windowed within an amplitude envelope. The

envelope provides shaping and suppresses clicks and high frequency noise

4 Ibid., 86-87.

7

generated by waveform beginnings and endings that do not occur at zero-

crossings. Many applications that generate granular synthesis use only a single

envelope shape, typically quasi-Gaussian, that may not be altered from grain to

grain. Composers often, however, prefer to utilize more than one envelope

shape, or to transform the shape over time, in order to alter sonic characteristics

of the cloud. Figure 2 shows several examples of grain envelope shapes

commonly used in granular synthesis applications.

 a) b) c) d)

Fig. 2. Examples of grain envelope shapes: a) quasi-gaussian,

b) triangle, c) exponential, d) percussive.

Effects processing is often performed on or within grains while generating

granular synthesis. Processing may be applied to the source waveform, the

enveloped grain, or the cloud as a whole. While grain-by-grain effects processing

can be used to create some interesting sounds, it comes at a high cost in terms

of CPU cycles, so most composers apply effects to the cloud as a whole.

Clouds and Streams

Several individual grains sounding successively form a composite sound

often referred to as a cloud or a stream. Sequences of grains organized in time

stochastically are typically referred to as clouds, while synchronous sequences

8

may be termed either clouds or streams. Frequently, composers create textures

of even greater complexity by overlapping multiple clouds.

The sonic character of a cloud is dependent on how individual grains are

organized in time and space and on how the internal characteristics of grains

change over time. These characteristics are usually controlled through the use of

synthesis parameters that can receive different values for each grain. By

changing the values from grain to grain, composers can shape the clouds into

complex shifting textures or gestures. Typical grain parameters include grain rate

or density, grain duration, waveform frequency or buffer read-rate, envelope

shape, envelope amplitude, and pan position. It is also very common, however,

to specify additional parameters to control various aspects of the synthesis or

effects processing on the grain.

Control Data

It takes an enormous amount of control data to specify discrete values for

every parameter of every grain. This is especially true in clouds with grain

densities measured in hundreds or thousands of grains per second. Since it is

usually impractical to explicitly define parameter values, they are typically

generated algorithmically. Control data is then required only to define and control

parameters of the algorithm.

The values generated may remain static from grain-to-grain, change

continuously over time, or follow a specified pattern or distribution. It may be

desirable for pattern or range of the distribution to change over time. Sometimes

9

grain parameters are dependent on the values of other parameters. These

control methods can all be handled algorithmically, but allowing the

implementation of all of them requires a highly flexibly granular application.

A Diversity of Granular Forms

There are many forms of granular synthesis with different characteristics,

purposes, and implementations. Examples include matrices and screens on the

time-frequency plane, pitch-synchronous overlapping streams, synchronous and

quasi-synchronous streams, asynchronous clouds, physical or abstract models,

and granulation of sampled sound5. Granular synthesis may be used to generate

textures and gestures, change pitch or duration of a sampled sound, perform

effects processing, for decorrelation and spatialization effects, and various of

other purposes.

GranCloud is intended to be generic enough to handle any form of

granular synthesis. This requires the user to do a little extra work to define the

grain structure and the parameters used, but the trade off in flexibility and ease of

use is typically well worth the added effort. Since Creo uses many different forms

of granular synthesis, the flexibility inherent in GranCloud was an important

feature of the design.

5 Ibid., 92-98.

10

SuperCollider 3

A general knowledge of the architecture of the SuperCollider programming

environment is important to fully understand the technical details discussed in

later sections of this document. SuperCollider is both a programming language

and software environment for the generation of real-time audio synthesis and

algorithmic composition.6 SuperCollider version 3 utilizes a client-server

architecture consisting of two applications that work together to interpret control

data and generate audio signals. Figure 3 shows a graphical representation of

the SuperCollider architecture.

The Server Application

All audio processing is performed on the SuperCollider server application.

Synthesis nodes are placed on an ordered execution tree on the server in

response to messages from a client application. The server performs the

calculations defined on the tree in order to generate and process audio signals. A

synthesis node consists of a group of unit generators7 that have been chained

together and compiled into a reusable graph8 structure. When a node is needed,

6 “SuperCollider: real-time audio synthesis and algorithmic composition,” [resource on-line];
available from http://supercollider.sourceforge.net; Internet; accessed 1 October 2009.

7 Unit generators are highly optimized algorithms for producing audio or control signals on the
SuperCollider server.

8 A graph is a computer-science term for an abstract data structure consisting of a set of ordered
node pairs. Compiling groups of calculation instructions into graph structures optimizes the
initialization of nodes improving efficiency of the application.

11

the pre-compiled graph is duplicated and placed on the tree to perform the

needed calculations in the proper order-of-execution9 defined by the client

application.

Fig. 3. The SuperCollider client-server architecture.

The server receives several types of instructions from the client. First, it

receives SynthDef creation messages instructing the server how to connect unit

generators for a specific type of synthesis node. Then, it receives node creation

9 Order-of-execution refers the order in which synthesis node calculations are performed. If the
inputs of a synthesis node are dependant on the output of other synthesis nodes then the
controlling nodes must be placed on the execution tree before the dependant node.

12

messages via OSC10 messaging. These messages include initial parameter

values to use for the synthesis node by parameter name. The server also

receives various types of control messages from the client via OSC. These

messages control how synthesis nodes are chained or ordered and how values

on busses should be routed and mapped to node parameters.

The Client Application

The SuperCollider client application consists of a programming language

and interpreter. Composers write text-based computer code, called controller

scripts, using the programming language. Then, they execute the scripts using

the language interpreter. The interpreter reads the script, compiles it into

machine language, and executes the machine code to generate the server

messages at the appropriate times to control synthesis events.

The client programming language is a modern object-oriented11 computer

language closely related to Smalltalk with syntax similar to the C family of

languages.12 It has an extensive class library with various objects representing

unit generators, synthesis nodes, busses, buffers, and other objects that are

10 Open Sound Control is a standard messaging format for the transfer of audio and synthesis
related information between software and electronic devices over a computer network.

11 I use the term object-oriented in a computer science context, meaning a programming
paradigm focused on data structures that include both data fields and methods. This is not to be
confused with the process of graphically connecting objects with virtual patch cords as in
Max/MSP or Pure Data.

12 “SuperCollider,” [resource on-line]; available from http://supercollider.sourceforge.net; Internet;
accessed 1 October 2009.

13

used on the server. The class library also defines many object types representing

different kinds of data structures to assist with the management and generation

of control data as well as the timing and scheduling of events.

One of the strengths of the SuperCollider environment is that the client

class library is easily extendable. Users may create and add their own classes to

the library to expand the language and customize it to their own needs and

desires. Users can extend the library simply by placing class definition files in the

appropriate application directory.

Client-server Application Logic

Application logic for client-server interaction typically follows the standard

pattern outlined in figure 4. At the top of the controller script, programmers define

a Server object that represents the SuperCollider server application. The Server

object contains the network address of the server so the client knows

14

Fig. 4. Typical SuperCollider client-server application logic.

where to send messages. This object can be instructed to boot a server

application at this address if it has not already been initialized.

Next, the controller script instantiates a set of SynthDef objects that act as

templates for synthesis nodes that will be executed on the server. SynthDef

objects contain a unique name and a unit generator graph function that defines

how the synthesis should be performed. The function defines a set of input

15

parameters for the synthesis node as well as a description of how unit generators

will be connected together to generate audio or control signals. The parameters

allow composers to alter values used in the synthesis calculations.

Following the instantiation of SynthDef objects, the client application

sends them to the server. The server compiles them into graphs that are retained

in memory. Once they are compiled, they are ready to be used by the server as

templates to create synthesis nodes when instructed by the client.

When it is time to execute a synthesis node for audio generation, the client

sends a node creation message to the server. This message contains an

execution time, the SynthDef name, parameters controlling order-of-execution,

and a group of initial parameter values for the synthesis node. The client can also

send messages to set values on control busses and map control busses to

parameter inputs. When messages are received on the server, they are placed in

a queue and executed at the scheduled time. The SuperCollider language

includes a number of different objects to simplify the generation of the various

types of server messages.

Once a synthesis node is no longer needed for signal generation it can be

removed from the server either by an explicit message from the client or by an

internal unit generator capable of removing the node once a trigger indicating

node completion has been detected.

16

SuperCollider Applied in Creo

Although there are several synthesis frameworks suitable for interactive

music, I chose SuperCollider for the composition of Creo for several reasons. It is

a very efficient environment well suited for real-time audio applications. It is

easily expandable, allowing users to program and incorporate their own tools into

the environment itself. As an experienced programmer, I preferred text-based

programming environments to graphical ones and object-oriented languages to

procedural languages.

SuperCollider inherently provided all the basic building blocks I needed to

handle the various digital signal analysis and sound synthesis tasks required by

Creo; however, as I began developing the actual controller script for the

composition, I soon realized that while these building blocks were very powerful,

they were also very basic. I found myself programming a large amount of

repetitive code to perform many common but complex tasks, such as the

generation of granular synthesis. I recognized the need for additional tools to

improve the manageability of my compositional process.

17

Chapter 2

GranCloud: Design and Purpose

GranCloud is a group of interrelated SuperCollider classes that I

developed to simplify the process of generating granular synthesis. The present

version of GranCloud is actually a second-generation rewrite of a previous

project by the same name. Both versions share the same original concept,

purpose, and design goals. I developed the current version as part of the Creo

project in order to improve processing performance, add support for additional

types of control objects needed by Creo, and to improve the flexibility and ease

of use of the software.

The core of the GranCloud project is a cloud class named

GranCloudSimple. It contains the granular synthesis engine and stores a group

of helper objects used to manage grain parameter control data. When a

GranCloudSimple object is properly instantiated, populated with parameter

objects, and paired with a grain SynthDef object, it contains everything necessary

to control the generation of a granular cloud on the SuperCollider server. The

parameter objects provide several different methods of defining and controlling

how grain parameter values change over time. Once plugged into a cloud object,

the synthesis engine uses them to calculate the actual parameter values for each

grain node executed on the server.

18

A secondary layer of the project includes the GranCloud213,

GranCloudGroup, and GranCloud2Interface classes. The GranCloud2 class is a

direct subclass of GranCloudSimple cloud class. It extends the functionality of

the parent class to support several features, including the naming of cloud

objects, the ability for multiple cloud objects to interact synchronously, the ability

to save and retrieve cloud objects to and from external text files for reuse, and

support features for graphical interfaces. The GranCloudGroup object allows

multiple cloud instances to be grouped together and treated as a singular object

for the execution of playback commands. The GranCloud2Interface class

provides a graphical interface to build cloud objects and simplify the input and

management of control data within them.

GranCloud Design

I designed GranCloud to be both simple to use and flexible enough to

handle virtually any type of granular synthesis. Since there are many different

granular synthesis paradigms and many ways that grains may be structured and

organized in time and space, simple methods to maximize flexibility and

extendibility were important to the design.

Early in the project I compiled a list of design requirements for the finished

project. These requirements defined development goals and shaped structural

13 The class was named GranCloud2 instead of GranCloud to maintain backwards compatibility
with the first version of the software. This saves users who have compositions utilizing the first
version from needing to convert the composition code in order to install and use the new version
for other compositions.

19

decisions related to the project as a whole. Accomplishing these objectives

required careful design and planning to ensure the final product would be fully

functional and remain easy to use.

The design requirements included:

1. The finished product should be able to generate virtually any type of
granular synthesis in real-time within the processing limitations of the
hardware.

2. Clouds should be able to morph seamlessly from one state to another,
even changing synthesis paradigms in the middle of the process.

3. Any sound source should be able to be used as the base sound for the
granulation, including live audio signals, samples, or synthesized sound.

4. The grain envelope shape should be completely customizable and should
be modifiable on a grain-by-grain basis.

5. Any type of signal processing should be performable on individual grains,
and parameters controlling that processing should potentially be variable
from grain to grain.

6. Redundant code for grain parameter calculation and grain scheduling
should be abstracted by placing it within an internal synthesis engine.

7. All node creation, node destruction, and bus routing required by the
synthesis should be handled within the synthesis engine.

8. Grain synthesis templates and parameter names should be fully
customizable.

9. The synthesis engine and all control data for grain parameters should be
encapsulated within a single object.

10. Users should be able to add as many grain parameters as their synthesis
model requires.

11. Parameter values should be able to be interrelated, using the values of
one or more parameters in the calculation of others.

20

12. Several methods of specifying and managing control data for grain
parameters should be provided in order to use several different calculation
paradigms for the generation of control data.

These design objectives required an application that is very customizable.

This high level of design flexibility can become problematic within an application

development process, because the programmer must anticipate the desires of

users and provide methods for satisfying all possible needs. Through careful

analysis and practical experimentation I was able to separate features requiring

customization from routine tasks common to all types of granular synthesis. This

allowed certain features to be left completely open-ended while it abstracting the

busy work out of sight within the GranCloud objects.

I divided the synthesis model into three core components: a fully

customizable grain SynthDef object acting as a grain synthesis template, a

control data repository storing objects defining how grain parameter values

change over time, and a scheduling engine that creates grain synthesis nodes on

the server using parameter values retrieved from the repository. Figure 5 is an

illustration of the basic GranCloud architectural design. It shows how the various

components work together on the SuperCollider client application to produce

granular synthesis on the server.

Following this architectural model, the grain SynthDef is defined and sent

to the server application external to the cloud object. This allows it to be fully

customized to the needs of the synthesis and desires of the composer. The

control data repository is stored within the GranCloud object to improve code

21

Fig. 5. GranCloud architectural design.

manageability and to provide easy access to the data by the scheduling engine.

The parameter objects in the repository abstract the calculation details from the

composition code. The synthesis scheduling engine is contained within the object

methods of the cloud class improving the manageability of the controller code.

22

The Grain SynthDef

Each type of grain rendered on the server requires a SynthDef object

acting as a template to define the synthesis and processing required for the

generation of the grain. Designing SynthDefs is a common task performed by

SuperCollider programmers. The SuperCollider client application provides a

simple interface for creating SynthDefs and sending them to the server in

preparation for audio generation. Once a grain SynthDef object has been defined

in the client and sent to the server, the server is prepared to generate grains of

that type on demand.

When considering the design requirements of the project, I decided to let

users design their own grain SynthDefs and send them to the server themselves.

There were multiple reasons for this decision. First, allowing users to define their

own SynthDefs gives them the flexibility to work with any granular synthesis

structure they choose. They may name their own parameters and add as many

parameters as the grain synthesis requires. They may use any sound source for

the granulation, apply any envelope, and perform any type of signal processing

on a grain-by-grain basis according to their own desires and specific needs.

Another important reason for leaving SynthDef management outside of the

cloud objects is that sending a SynthDef to the server and compiling it into a

graph is a processor intensive task. It is best handled before the composition

actually begins, reserving precious CPU cycles during performance for audio

23

processing. Since users typically send a large group non-granular SynthDefs to

the server before any sound generation is performed, it made sense to allow

them to send the grain SynthDefs at the same time. If SynthDef management

had been incorporated within the cloud objects, then users would be required to

either pre-define all of their clouds at the very beginning of the controller script, or

else they would have to allow grain SynthDefs to be compiled on the server

asynchronously while composition audio is being processed. The first option

would use up a great deal of extra memory, while the second could potentially

cause glitches in audio production when the CPU us heavily burdened.

SynthDef graph functions define named parameters that allow numeric

data to be passed into synthesis nodes when they are created. The parameter

values can be used to control various characteristics of the grain, such as

frequency, duration, amplitude, sound source, envelope shape, and other control

variables needed for the implementation. Users may define as many parameters

as they need. They may also choose their own names for them, as long as they

use the same names when parameter objects set in the control data repository.

The only absolute requirement GranCloud asserts for grain SynthDef

design is that grain synthesis nodes must be able to remove themselves from the

server once audio processing for the grain is complete. While this may seem like

a serious limitation, it was a design decision that improved the processing

efficiency of the application considerably. Enforcement of the requirement allows

the synthesis scheduler to focus exclusively on event generation, saving

24

considerable computation, scheduling, and messaging that would be required to

perform explicit node destruction as well. Since several methods for synthesis

node self-destruction are built into many commonly used unit generators, I did

not consider the requirement an unreasonable assertion.

An example of controller code defining a simple grain SynthDef object is

displayed in figure 6. This example was used in Creo to define a simple grain

based on an enveloped sine wave.

SynthDef(\sine_grain, { arg out=0, dur=0.1, amp=0.2,
freq=440,envAttack=0.5, pan=0;

var env, audio;
env = EnvGen.ar(

Env([0,1,0], [envAttack, 1-envAttack], \sine),
1, amp, 0, dur, doneAction: 2

);
audio = SinOsc.ar(freq, 0, amp) * env;
audio = Pan2.ar(audio, pan);
Out.ar(out, audio);

});

Fig. 6. Code example showing the creation of a SynthDef named sine_grain.

The example code defines a SynthDef named sine_grain that uses six

parameters to control various characteristics of the grain. Default values are

provided for the parameters in case they are not specified in the cloud object

controlling the grains. A quasi-Gaussian envelope object with a variable peak

location is converted into a signal using an EnvGen unit generator. The EnvGen

doneAction parameter is set to 2, instructing it to free the synthesis node from the

25

server once the end of the envelope has been reached. A sine oscillator is used

as a sound source and the envelope applied to the sine wave. The resulting

sound is processed using a panning unit generator and the resulting audio signal

written to adjacent audio busses indicated by the value of the out parameter.

Three plots of grain audio signals generated by the sine_grain example are

shown in figure 7. The differing shapes were created using the same SynthDef

by changing the values of the freq and envAttack parameters.

Fig. 7. Grain waveforms generated using the sine_grain SynthDef.

The Control Data Repository

The control data repository is a central storage area within GranCloud

objects where all of the control data necessary to generate a granular cloud is

kept. The repository is not a single entity, but rather a set of instance variables

within cloud objects that store data objects representing specific types of control

freq = 440

envAttack = 0.5

freq = 330

envAttack = 0.1

freq = 880

envAttack = 0.9

26

data. The cloud objects provide a set of convenience methods to assist in the

management of data within the repository.

The repository contains variables to store three basic types of information:

configuration variables identifying the server, grain SynthDef name, cloud

playback duration, and a possible delay to playback initialization; routing

variables controlling node order-of-execution and audio signal bussing; and an

array of grain parameter objects defining how grain parameter values change

over time.

Table 1 contains a list of names of the GranCloud instance variables used

to store repository information. The list also indicates the type of data object

stored in each variable and a brief description.

Table 1. GranCloud Instance Variables Used for the Control Data Repository

Instance
Variable

Object
Type

Description

server Server Identifies location of SuperCollider Server to use.

def Symbol
or String

Stores the grain SynthDef name or a function or
stream that generates SynthDef names for
individual grains.

duration Number
or inf

Indicates a period of time in seconds defining how
long playback will render before automatically
stopping. A value of inf (infinity) will cause audio
generation to continue indefinitely until manually
stopped.

27

Instance
Variable

Object
Type

Description

delay Number Indicates a period in seconds that sound generation
will delay after the play method has been initiated.
This is useful when clouds that start at different
times are synchronized in groups.

dur Integer An integer indicating the audio bus to which grain
audio signals will be routed.

out Integer An integer indicating the starting audio bus channel
to which the audio signal will be written.

out2 Integer An integer indicating a second audio bus to which
grain audio signals will be routed. If null, no
secondary copy will be routed.

target Node Indicates a target synthesis node for playback to
which the addAction refers for controlling order-of-
execution.

addAction Symbol Standard SuperCollider addAction indicating where
the grain nodes should be placed in order of
execution relative to the target node.

stopAction Function A function to execute once playback has
completely stopped.

params Array An array of parameter objects defining grain
parameter values and how they change over time.

paramNames Array An array of parameter names matching index
numbers of parameter objects in the params
variable.

The most significant repository variable for the grain synthesis is the

params variable. The params variable stores an array of GranCloud parameter

objects, each representing one of the grain parameters. Each object contains

Table 1. (continued)

28

control data defining the values of a parameter change over the life of the cloud.

The parameter names corresponding to each object are stored in a parallel array

in the paramNames instance variable.

I created several different types of parameter objects in order to represent

many different methods of defining and generating the values. Some parameter

objects use algorithms to convert control data to discrete values. Others map

parameter values to different types of internal or external control sources.

All parameter objects implement a common interface to request discrete

values at any given point in time over the existence of the cloud. Each object is a

subclass of the SuperCollider Stream class, which serves as the base model for

the interface. Stream objects represent a continuous sequence of values that

may be retrieved one at a time by calling the next method multiple times on the

object. Each time the next method is called, the next value in the sequence is

returned.

Since many parameter objects are time dependent, the next method is

passed a time parameter to retrieve values specific to that time within the

existence of the cloud. The time value used represents the time that has elapsed

since the start of the cloud measured in seconds. The next method may also be

passed a parameter named grainArgs that contains a Dictionary of all parameter

values for a grain that have already been retrieved for the current grain. This

allows parameter calculations to be based on the values of other grain

parameters if desired.

29

Some parameters do not rely on discrete calculated values. Instead, they

are mapped directly to specific internal or external control sources. Parameter

objects representing these will return a null value for the next method, but

implement a map method that returns the control bus map message needed to

connect the parameter input to the appropriate bus.

Some parameter objects define a graph function for a synthesis node.

These nodes generate control signals that are mapped to the parameter input

represented by the object. Objects of this sort implement a controlMsg method in

addition to the map message. The controlMsg method returns a synthesis node

creation message to send to the server with the first grain of the cloud.

Table 2 contains a list of the different parameter object classes currently

provided with GranCloud. This list does not contain all of the ways that control

data may be represented and generated for granular synthesis, but contains the

most commonly used methods. Since parameter objects store control data

internally and use a common interface for the retrieval of that data, the synthesis

scheduler does not need to know anything about the object types stored in the

repository. It simply calls the controlMsg, next, and map methods on each object

to retrieve the appropriate values and messages for the next grain. This design

also allows users to custom parameter object classes as long as they implement

the same methods for data retrieval. A more detailed discussion of how each

parameter object works has been included within the Parameter Object Classes

section later in this document.

30

Table 2. Parameter Object Classes Included with GranCloud

Parameter Class Control Data Description

GCValue A single data object
representing
discrete values.

Discrete values are retrieved from a
single data object. The object may be
a static number, a collection of
numbers, a function that returns
numbers, a stream that returns
numbers, or an Env object
representing values that change over
time.

GCMinMax Two data objects
representing the
min/max bounds of
a distribution, and a
function to
generate values
within the
distribution.

Discrete values are generated by a
distribution function (random or not)
within a range defined by data objects
representing a minimum and
maximum boundary. The same types
of data objects possible for GCValue
objects may be used to define the
minimum and maximum.

GCCenterDev Two objects
representing a
center value +/- a
deviation from the
center, and a
function generating
the deviation.

Generates discrete values by adding a
calculated deviation amount (random
or not) to a center value. The same
types of data objects possible for
GCValue objects may be used to
define the center and deviation.

GCControlMap A graph function
defining a control
synthesis node.

Maps a parameter input directly to the
output of an internally defined control
synthesis node.

GCTrajectoryMap A Trajectory object. Maps x, y, and z input parameters to
the outputs of a Trajectory synthesis
node.

GCBusMap A control bus
object.

Maps a parameter input directly to a
control bus.

GCMidiMap A MIDI channel and
event type

Maps a parameter value to a MIDI
channel and event type.

31

The parameter objects are contained within a standard SuperCollider

Array object in the params instance variable. Array objects store an ordered

collection of objects that are accessible by index numbers. Using an Array object

allows any number of parameter objects to be stored. It allows parameter values

to be calculated in a specific order, which is important if some parameter values

are used in the calculation of others. Array objects are also easy and efficient for

iteration purposes, when a common process needs to be performed on each

object.

Array objects are not, however, the easiest object to manage within code

since programmers must keep in mind what objects are associated with each

index. Since parameter objects are named, using a Dictionary14 object would

make more sense for accessibility. Then users could access specific parameter

objects by name instead of index. This would eliminate the need for the

paramNames array, since the dictionary would already have the names;

however, another method of specifying processing order would be required. In

addition iteration through a Dictionary object is less efficient than Array iteration.

Since every grain in a granular cloud requires iteration through the parameter

objects, and since several hundred grains may be generated each second, I

decided to use the more efficient Array object and provide some Dictionary-like

convenience methods to simplify accessibility.

14 Dictionary objects store an unordered collection of objects that can be reference by name
rather than index.

32

The at method is provided in cloud classes as a convenience method for

accessing parameter objects by name. The method may receive a numeric or

parameter name as a parameter. If the name is passed, the method converts the

name to index internally to retrieve the associated parameter object. If an index is

passed, it retrieves the object from the array directly.

The put method is a mutator method that allows parameter objects to be

added to or replaced in the params array by name. When called, the method is

passed a parameter name and object. If the method finds a parameter object

with the same name, it is replaced in the same position of the array. If a matching

parameter object does not already exist, the parameter object and name are

added to the end of the params and paramNames arrays respectively.

The at and put methods also enable users to utilize built-in syntax

shortcuts in the SuperCollider client language that allow values within a collection

to be accessed or set using a square bracket notation. Using this syntax, users

may access parameter objects by placing the name in square brackets

immediately following the cloud object variable name (e.g. cloud[\rate]).

It is often very convenient to define grain parameters values using a single

static SuperCollider object. Examples include static numbers, functions

generating number, envelope objects, or stream objects. Objects of these types

may be wrapped within GCValue objects in order to be treated as a parameter

object. Since this is such a common method of specifying data, the put method

will detect the object type and wrap raw data objects in a GCValue object

33

automatically. This shortcut saves composers an extra step when defining grain

parameters represented by single data objects. Figure 8 shows code examples

of the at and put methods used with and without syntax shortcuts.

// The cloud variable contains a cloud object.
cloud = GranCloudSimple.new();

// The put method called using full syntax and
// shortcut. Both lines are equivalent.
cloud.put(\rate, GCMinMax(0.005, 0.015));
cloud[\rate] = GCMinMax(0.005, 0.015);

// The put method with GCValue vs. raw data object.
// Both lines are equivalent.
// 440 is converted to GCValue(440) in the second line
cloud[\freq] = GCValue(440);
cloud[\freq] = 440;

// The at method called by name and index with and
// without syntax shortcut. All three lines are
// equivalent if rate is the first param object.
rate = cloud.at(\rate);
rate = cloud[\rate];
rate = cloud.at(0);
rate = cloud[0]

Fig. 8. Parameter object access and mutation using the at and put methods.

The Synthesis Scheduling Engine

The GranCloud synthesis scheduling engine is contained within the

prepare, play, and stop methods of the cloud classes. It is responsible for

preparing, instantiating, and controlling all of the synthesis required to generate

the granular cloud. It retrieves discrete parameter values and server messages

34

for each grain from the control data repository and generates all of the OSC

messaging needed to create and control the grain nodes on the server.

The prepare method must be called prior to sound generation to prepare

the server for the synthesis. The method first validates required bussing and

routing parameters and applies common defaults to any unset values. It then

creates a group node on the server that will contain all of the grain synthesis

nodes for the cloud. The group node is placed in a position on the node tree

defined by the target and addAction variables of control data repository to ensure

proper order-of-execution of the grain nodes. Finally, the method executes the

prepare method of each grain parameter object. Many of the parameter objects

do not require preparation and contain empty prepare methods that do nothing.

Other parameter objects use the prepare method to send custom SynthDefs to

the server for synthesis nodes that generate control signals. Those control

signals are later mapped directly to the grain parameter inputs represented by

the parameter object.

If GCControlMap or GCTrajectoryMap parameter objects are used in a

cloud, the play method should not be called immediately following the prepare

method. These objects send control SynthDefs to the server. Compiling a

SynthDef to a graph is an asynchronous process. If the graphs have not been

compiled before the first grain nodes execute, the corresponding synthesis

control node cannot be created and grain parameters will be mapped to empty

busses. Allowing one second between execution of the prepare and play

35

methods is usually a sufficient delay to allow the graphs to compile. As a failsafe,

the play method will execute the prepare method automatically if it detects it has

not been called. This allows users to omit explicitly calling the prepare method if

they do not use GCControlMap or GCTrajectoryMap parameter objects.

The actual grain scheduling logic is contained within the play method. A

flowchart showing the basic logic of the scheduler is displayed in figure 9. The

play method may be passed a single parameter indicating an initial start time.

The start time parameter allows users to start the cloud playing in the middle of

the cloud with respect to time. It defaults to zero and defines the number of

seconds within normal playback that the cloud should begin execution.

The play method first validates parameters in the repository. Suitable

defaults are set for many of the routing and configuration variables if explicit

values are not provided.

The project design purposefully left SynthDef design and parameter

names fully customizable; however, the scheduling engine must know the grain

rate and duration parameters in order to initiate grains and remove synthesis

control nodes at the proper times. The scheduler requires a parameter object

named rate defining the rate at which grains are initiated. The value for the rate

parameter specifically defines the time in seconds between the start of each

subsequent grain. The grain duration must be specified in a parameter named

dur. This allows the scheduler to track when the last grain has completed

execution so it can know when to release control synthesis nodes.

36

Fig. 9. GranCloud synthesis scheduling engine flowchart.

37

Once parameters have been validated, the play method initializes a set if

internal variables used to track the timing and playback status of the cloud while

it is being rendered. The scheduler uses an internal system clock as a timing

reference and four time-related instance variables to track time for scheduling.

The clock has a method named seconds that can be used to obtain the

application time—a number indicating the time in seconds since the application

was booted.

When the play method is called, a snapshot of the application time is

taken and stored in the startTime instance variable. All subsequent timing is then

calculated relative to the startTime. A playTime variable represents how long the

cloud has been playing. During playback this variable is updated each time it is

needed by subtracting the current application time from the startTime. A third

time parameter, endTime, represents the time after which the cloud should stop

playing. This value is calculated by adding the cloud duration to the startTime. It

is calculated and stored ahead of time to minimize redundant processing within

the grain loop. A fourth time parameter, nextGrainTime, represents the playTime

at which the next grain node should begin execution on the server. It is derived

from the grain rate parameter value for each grain and adjusted slightly to correct

a time drift created by the CPU processing required to make grain parameter

calculations and traverse the grain loop.

After the timing variables are initialized for the first time, the scheduler sets

the playback status variables. These variables are named isPlaying, isPaused,

38

and isStopped. They contain Boolean values indicating whether the cloud is

playing, paused, and/or stopped respectively. One might question why both an

isPlaying and isStopped Boolean is required when they seem to be directly

exclusive of each other. Both are necessary because a short time may exist

when the rendering engine is no longer set to be playing, but synthesis has not

completely stopped due to previously scheduled grains that are completing

execution on the server. When the scheduled grains have completed, the

isStopped variable is set to true.

Once the timing and status variables are set, the scheduler calls an

internal method named prepareGrain to build a bundle of server messages

required to generate the first grain. This method handles all interaction with the

parameter objects necessary to retrieve control node creation messages, explicit

grain parameter values, and bus mappings for each grain. Each time the method

is called, it is passed the nextGrainTime value and a Boolean flag indicating

whether this is the first grain or not. If it is the first grain, the message bundle

returned will include any control synthesis node creation messages needed by

the cloud. The nextGrainTime parameter is passed on to the parameter objects

when methods are called to retrieve server messages and parameter values for

that particular point in time. The flowchart in figure 10 shows the core logic used

within the prepareGrain method.

39

Fig. 10. GranCloud prepareGrain method flowchart.

40

When the prepareGrain method is called, if the isFirstGrain Boolean is

true, then the method calls the controMsg method on each grain parameter to

gather any server messages required by parameter objects for control synthesis

nodes that will be mapped to parameter inputs. The control messages are

grouped together in a bundle that will be scheduled to execute synchronously

with the first grain node.

Next, the method prepares an Array object to contain the values required

to build the grain node creation message. The array is initialized with the

SynthDef name to use for the grain and various routing parameters controlling

the order of execution. The SynthDef name is retrieved from the def variable of

the control data repository. This variable may contain either a single SynthDef

name, or an object that generates SynthDef names when the next or value

method is called on the object.

The prepareGrain method then adds name/value pairs to the message

array for grain parameters. First, a parameter named out is added with the value

stored in the out instance variable of the cloud object. If the out2 instance

variable has been populated, it is added as an out2 parameter. These

parameters specify the audio bus numbers to which the grain audio will be

routed.

Next, the method iterates through the parameter objects stored in the

params instance variable to calculate grain parameter values and bus mappings.

For each parameter object, the map method is first called to see if any bus

41

mapping messages are needed for the parameter. If bus-mapping messages are

returned, they are collected in an array to be added to the message bundle. If no

messages are returned, then the next method is called on the parameter object

to calculate and return an explicit value to use for the grain parameter. These

values are collected and added to the grain node creation message as a

name/value pair. The next method receives the nextGrainTime and a Dictionary

object containing the values of all previously calculated parameters in case those

values are needed for the algorithm calculating the value.

Once the parameter iteration is complete, the synthesis node creation

message and collected bus mapping messages are added to the server

message bundle. The prepareGrain method is finished and execution returns to

the play method.

Another feature of the prepareGrain method is its ability to detect if a

parameter object returns an explicit null value. Stream objects return an explicit

null value when the end of the stream of values has been reached. Users who

program with the Pattern and Stream event interface in SuperCollider are used a

null value stopping execution of events. To remain consistent with this behavior,

the prepareGrain method executes the cloud stop method if any parameter

object returns an explicit null value.

Once the first grain has been prepared, the play method enters the

synthesis scheduling loop. The code within the scheduling loop first checks if the

cloud has been stopped or paused by checking the value of the isPlaying

42

variable. If the Boolean is false, execution exists the scheduling loop. If it is true,

execution sends the prepared message bundle generated by the prepareGrain

method to the server.

The scheduler then calculates the nextGrainTime, stores the completion

time of the last sounding grain that has been scheduled in a temporary variable,

and calls the prepareGrain method with a false isFirstGrain parameter to

generate the message bundle for the next grain. At the end of the loop, the play

method checks the playTime to ensure it is not past the endTime of the cloud. If it

is past the endTime, the stop method is called. If the endTime is not past, the

grain loop pauses execution until the scheduled time for the next grain execution

and repeats the scheduling loop.

The stop method may be called explicitly on the cloud object or internally

by the synthesis engine. The stop method sets the isPlaying method to false so

the scheduler will exit the scheduling loop on the next pass. Then, it waits until

the last sounding grain that has been scheduled finishes execution and frees the

group node and control synthesis nodes from the server. Once the nodes have

been removed, the isStopped Boolean is set to true and an optional stopAction

function executed if one has been defined for the cloud. The stopAction function

can be used to trigger external tasks in a composition that are dependent on a

cloud finishing execution.

All of this scheduling logic is abstracted within the cloud objects, so none

of it needs to be included within composition controller scripts using them. The

43

controllers simply instantiate the cloud objects, populate them with control data,

and call the playback methods at the appropriate times to execute the synthesis.

This abstraction removed a tremendous amount of redundant code from the

controller script used by Creo making the code much cleaner and easier to

manage.

44

CHAPTER 3

GranCloud: Class Structure

The classes in the GranCloud project are structured in an object-oriented

hierarchy designed to minimize the need for redundant code to perform tasks

common to multiple objects. Some classes are abstract parent classes that are

not meant to be instantiated directly. They provide singular locations to define

code common to multiple subclasses of the parent to avoid the need for code

duplication in each child class. Other classes are non-abstract classes that are

intended to be used to instantiate actual objects. In some cases, classes

subclass non-abstract classes to extend the functionality of the parent.

Cloud Object Classes

The cloud classes are the main controller classes of the GranCloud

project. Each object instance of a cloud class represents a specific granular

cloud. Cloud objects contain all the control data necessary to define the

characteristics of the clouds they represent as well as all of the methods needed

to schedule the synthesis on the server.

Class Hierarchy

The GranCloud project includes two cloud classes: GranCloudSimple, and

GranCloud2. The GranCloudSimple class is a cloud class that contains all the

instance variables and methods needed to generate the synthesis. It is a simple

class that focuses exclusively on the requirements of sound generation. It may

45

be instantiated and used directly if the extended functionality of the GranCloud2

object is not required. It contains the control data repository and synthesis

scheduling engines, making it the central core of the entire project.

The GranCloud2 class is a subclass of the GranCloudSimple class. As a

subclass, it contains all of the features of the parent class and adds additional

functionality. The GranCloud2 class adds support to allow clouds to be executed

together in synchronous groups. It also adds support for various features used in

graphical interfaces that may be used to visualize and manipulate cloud

parameter data. In addition, it allows grain SynthDefs to be defined within the

object either as a GrainBuilder object or a unit generator graph function. In either

case the GranCloud2 object will automatically build the SynthDef object from the

stored objects and send it to the server when the prepare method is called. Table

3 contains a summary of the class inheritance hierarchy of the cloud objects.

Table 3. Cloud Class Inheritance and Descriptions

Class Name Parent Object Description

GranCloudSimple Object A simple cloud class encapsulating
only the basic functionality needed for
the generation of granular synthesis.

 GranCloud2 GranCloudSimple A cloud class with added functionality
used by graphical interfaces and
external control classes.

46

GranCloudSimple

The GranCloudSimple object contains the control data repository and

synthesis scheduling engine. It provides all the core functionality needed for the

sound generation. Table 4 lists the instance variables contained within the object

and summarizes the purpose of each. Table 5 shows descriptions of the methods

that may be called on the object.

Table 4. Instance Variables of the GranCloudSimple Class

Instance Variable Data Type Description

<>server Server An SC Server object identifying the
server to use for synthesis. Defaults to
the default server set for the client
application if not set.

<>def String, Symbol, or
Function

The grain SynthDef name as a String or
Symbol, or a function that returns grain
SynthDef names when evaluated for
each grain.

<>duration Number The duration of the cloud in seconds.
May use inf for infinite duration. Defaults
to inf.

<>delay Number Delays the start of playback by this
number of seconds after the play
method is executed. Defaults to 0.

<>out Integer The primary output audio bus index sent
to grains in the out parameter. Defaults
to 0.

<>out2 Integer A secondary output audio bus index
sent to grains in the out2 parameter if a
value is set.

47

Instance Variable Data Type Description

<>target Node A target Group, Synth, or Server object
to reference for setting up the order-of-
execution for the grain nodes.

<>addAction Symbol Specifies where grain nodes should be
placed in order-of-execution on the
node tree relative to the target node.
Possible values are: \addToHead,
\addToTail, \addBefore, \addAfter, or
\addReplace.

<>stopAction Function A function that will be executed when
the cloud has stopped playing either
due to the stop method being called or
exceeding the duration of the cloud.

<params Array An array of parameter objects defining
grain parameter control data. All grain
parameters not using a default value
should have a parameter object in this
array representing how parameter
values should change over time.
Parameter values are calculated in the
order they appear in this array.

<paramNames Array A parallel array to the params array
containing the parameter names that
parameter objects represent.

<>timeStretch Integer A time multiplier that can be used to
stretch or compress the passage of time
relative to the parameter control data.
For example, setting to 2 will move
through the data twice as slow. Setting
to 0.5 will move through the data twice
as fast.

Table 4. (continued)

48

Instance Variable Data Type Description

<>scrub Boolean A Boolean that turns on scrub
functionality allowing time within the
cloud to be controlled by an external
source, rather than by the internal clock.
This allows an external source to
“scrub” through the playback of the
cloud by controlling the playTime
variable directly.

<isPlaying Boolean Indicates if the cloud is actively playing
or not.

<isPaused Boolean Indicates if the cloud is currently paused
or not.

<isStopped Boolean Indicates if the cloud is currently
stopped (not playing, and no grains
from previous playback are still
sounding).

<isPrepared Boolean Indicates if the prepare method has
been called or not.

<>playTime Number A number indicating how many seconds
into playback time has progressed.
Under normal playback this will indicate
how long the cloud has been playing,
but variables that adjust time
(timeStretch and scrub) will change that.

<>startTime Number Stores the System time
(SystemClock.seconds) when playback
started.

endTime Number Indicates the System time at which the
last sounding grain currently scheduled
will complete execution.

nextGrainTime Number Indicates the start time for the next grain
to be scheduled. Should match the sum
of each previously scheduled grain’s
rate parameter values.

Table 4. (continued)

49

Instance Variable Data Type Description

<grainArgs IdentityDictionary A Dictionary object containing the most
recently calculated grain parameter
values keyed by parameter name.

<mapMsg Array A private variable used by the scheduler
for collecting bus mappings for grains.

<group Group A private variable storing a Group object
representing the group node on the
server where all grains are placed on
the node tree.

<bundle Array A private variable storing an array for
collecting groups of server messages
that should be executed simultaneously
as a bundle for grain execution.

Note: In all instance variable tables, a less-than sign (<) before the instance variable name
indicates the variable has a getter method defined that allows users to access the variable from
outside of the object. A greater-than sign (>) before the instance variable name indicates the
variable has a setter method that allows users to change the value of the variable. Both signs
may be present to indicate the object supports both a getter and setter for the variable.

Table 4. (continued)

50

 Table 5. Methods and Parameter Descriptions of the GranCloudSimple Class

Method Name Method Description

Param. Name Parameter Description

*new Instantiates a new GranCloudSimple object.

server
def
duration
delay
out
out2
target
addAction
stopAction
params
timeStretch
scrub

These parameters may be used to initialize
instance variables of the same name. See
Table 4 for a description of each.

init Private method called by *new method to initialize variables and
defaults.

at Gets a parameter by index or name.

index Either a numeric index into the params array or
the name of a parameter object to return.

put Set a parameter object in the params array by name. If an
object already exists by that name, the object will be replaced.
Otherwise the object will be added to the end of the array.

name

value

The name of the parameter object to place.

A parameter object, or a single raw data object
(number, envelope, stream, etc…) to be
wrapped in a GCValue object and placed in the
params array.

51

Method Name Method Description

Param. Name Parameter Description

add Adds a parameter object to the end of the params array.

name

value

The name of the parameter object to add.

The parameter object to add.

removeAt Removes an object from the params array by name or index.

index A numeric index or name of a parameter object
to remove from the cloud.

reset Sets the playTime of the cloud to the specified time and resets
all parameter objects to be able to be rendered again.

time The new time to which the playTime variable
will be set, specified in seconds. Defaults to 0.

prepare Prepares a cloud for playback, setting defaults for any unset
configuration variables and creating the grain group node on
the server.

play Starts playback of the scheduling engine at the specified time in
the cloud.

time Specifies the playTime within the cloud control
data to begin playback. Defaults to 0.

pause Used to pause a playing cloud or restart playback of a paused
cloud.

stop Stops playback of the scheduling engine.

prepareGrain Private method for calculating the parameters for the next grain
at the specified time.

time The playTime within the cloud that should be
used for the parameter calculations.

firstGrain A Boolean indicating whether this is the first
grain of the cloud or not

Table 5. (continued)

52

Method Name Method Description

Param. Name Parameter Description

free A synonym for the stop method.

writeArchive Writes the cloud and all control data to a text-file archive that
can be read back into memory at a later time using the
*readArchive method.

path A file path specifying the location and filename
to use to store the archive.

*readArchive Reads an archive from a text-file and instantiates the cloud
object based on the archive.

path Specifies the location and filename of the
archive.

server Since Server objects cannot be archived, this is
used to specify Server to use in the cloud.

target Since target node object cannot be archived,
this is used to reset the target of the archived
cloud.

Note: In all Method Description tables, an asterisk in front of the method name
indicates it is a class method called on the class, rather than an instance method
called on an object instance of the class.

GranCloud2

GranCloud2 is a cloud class that is a subclass of the GranCloudSimple

class. GranCloud2 objects include all of the instance variables and methods of

the parent class along with extended the functionality as discussed above. Table

6 lists the additional instance variables used by the GranCloud2 class that are

Table 5. (continued)

53

not a part of the GranCloudSimple class. Table 7 summarizes the additional

methods available that extend the functionality of the GranCloudSimple class.

Table 6. Instance Variables of the GranCloud2 Class Not Inherited from the
GranCloudSimple Class

Instance Variable Data Type Description

<>name String or Symbol Stores a name for the cloud for reference
in groups or in graphical interfaces.

<>playEnabled Boolean Indicates whether playback is specifically
enabled for this cloud. This is used within
GranCloudGroup objects to enable or
disable specific clouds in the group.

<>playDisabled Boolean Indicates whether playback is specifically
disabled for this cloud. Also used within
GranCloudGroup objects

<>solo Boolean Indicates whether to cloud is set to be
played exclusive of other clouds in a
group.

<>level Number Indicates a dynamic level adjustment
parameter included in grain creation
messages to scale the overall audio
output. This is used to mix clouds within
groups without needing to change
control data in the clouds.

<>grainBuilder GrainBuilder Allows a GrainBuilder object to be
associated with the cloud. The
GrainBuilder represents the grain
SynthDef, providing support for several
features allowing grain SynthDefs to be
built using a graphical interface. If
included the prepare method will
automatically build and send the
SynthDef represented by the
GrainBuilder settings to the Server.

54

Instance Variable Data Type Description

<ugenGraphFunc Ugen Graph
Function

Stores a graph function defining the
grain SynthDef. If included, the prepare
method will compile it into a SynthDef
and send it to the server automatically.

Table 7. Methods and Parameter Descriptions of the GranCloud2 Class

Not Inherited from the GranCloudSimple Class

Method Name Method Description

Param. Name Parameter Description

prepare The GranCloudSimple prepare method is expanded to send
the grain SynthDef if the grainBuilder or ugenGraphFunc
instance variable is set.

play The play method is expanded to check the playEnabled,
playDisabled, and solo flags to determine whether to actually
generate the cloud or not.

time Specifies the playTime within the cloud
control data to begin playback. Defaults to 0.

pause The pause method is expanded to check the playEnabled,
playDisabled, and solo flags to determine whether to actually
respond to the call or not.

stop The stop method is expanded to check the playEnabled,
playDisabled, and solo flags to determine whether it needs to
stop the cloud or not.

default Sets enough default data within the cloud object to be able to
actually render simple synthesis.

defaultParams Used to create default parameter objects allowing simple
synthesis for a new cloud to be rendered.

Table 6. (continued)

55

Method Name Method Description

Param. Name Parameter Description

defaultSpecs Builds default ControlSpec objects for parameter objects that
do not have them set. This allows clouds that are not fully
filled with control data to be opened within a graphical
interface.

Parameter Object Classes

Parameter objects contain control data that define grain parameter values

and how they change over time. The parameter objects are instantiated and

stored in the params array of the cloud classes. Several types of parameter

objects exist in order to allow composers to specify different calculation

algorithms for grain parameters generation or to map parameters directly to

external controls.

Parameter classes provided in the GranCloud project follow a naming

convention in that they all begin with “GC.” This convention helps distinguish the

parameter objects from other types of objects in the project.

Class Hierarchy

All Parameter objects inherit from the GCBase abstract parent class. The

GCBase class contains logic that is common to all parameter classes and default

declarations of methods that are required by the synthesis engine. Individual

subclasses that require different logic than the default methods will override

those methods in their own class definition. The GCBase class inherits from the

Table 7. (continued)

56

SuperCollider Stream class giving all parameter objects default Stream

functionality.

The GCVaueBase class is an abstract parent for all parameter classes

that return numeric parameter values for each grain. It provides instance

variables and methods common to these classes. The GCMultiParam class is an

abstract parent class for all GCValueBase subclasses that use more than one

value object in their calculation algorithms.

The GCControlBase class is an abstract parent class for all parameter

objects that map grain parameters to an external control source. It contains logic

common to each class that maps parameter inputs to a bus instead of generating

explicit values for each grain.

All other parameter objects are non-abstract classes that may be

instantiated and used directly as parameter objects. Each non-abstract class has

been discussed in its own subsection below. Table 8 shows the class hierarchy

of the parameter objects and provides a basic description of each.

Table 8. Parameter Class Inheritance and Descriptions

Class Name Parent Object Description

GCBase Stream An abstract parent class containing
default methods and code common
to all parameter objects.

57

Class Name Parent Object Description

 GCValueBase GCBase An abstract parent class containing
code common to all parameter
objects that return specific values
for each grain.

 GCValue GCValueBase A parameter class that generates
values from a single raw data
object (number, collection, function,
envelope, or stream).

 GCMultiParam GCValueBase An abstract parent class for objects
calculating values from multiple raw
data objects.

 GCMinMax GCMultiParam A parameter object deriving values
from a random distribution function
bounded by two raw data objects
representing the minimum and
maximum value of the distribution.

 GCCenterDev GCMultiParam A parameter object deriving
random values calculated by
adding or subtracting a random
deviation from a center value. Raw
data objects are stored to define
the center and maximum deviation.

 GCControlBase GCBase An abstract parameter class
containing functionality common to
parameter object that map
parameter values to a control
signal.

 GCControlMap GCControlBase Maps a grain parameter to the
output of a synthesis node
generating a control signal. The
SynthDef is built from a stored
graph function and sent to the
server automatically.

Table 8. (continued)

58

Class Name Parent Object Description

 GCTrajectoryMap GCControlBase Maps a specific set of x, y, and z
parameters to the output of a
Trajectory synthesis node. Stores a
Trajectory object that generates the
control node that is mapped.

 GCBusMap GCControlBase Maps the grain parameter to a
specified control bus.

 GCMidiMap GCControlBase Maps the grain to values coming
from a specific MIDI source,
channel, and event type.

Note: The indention of class names illustrates the hierarchical dependencies of
the classes.

All non-abstract parameter classes implement a standard set of messages

that the cloud object uses to retrieve data needed for grain parameters. Some

additional common methods have been included to all to support key features

needed for graphical interfaces. All parameter classes provide a new class

method to instantiate an object and initialize the control data. Table 9 lists the

methods common to all parameter objects and includes a brief description of

each. Private methods that are never used directly by users are not included in

this list. Users may define their own custom parameter object classes as long as

they subclass the GCBase class and either implement these methods or inherit

them from the parent.

Table 8. (continued)

59

Table 9. Methods Common to all Parameter Object Classes

Method Name Method Description

Param. Name Parameter Description

*new A class method to instantiate a new parameter object.
Parameters matching the instance variables of the method may
be passed in to initialize those variables.

init A private method called by the *new method to initialize instance
variables with defaults if values were not passed in to the new
method.

prepare A method called by the scheduling engine when the cloud object
is prepared to send SynthDefs defined by parameter objects to
the Server.

Server The Server object set in the cloud will be
passed in when this method is called.

Group The object representing the grain Group node
used for controlling order of execution is passed
in when the method is called.

controlMsg Called by the scheduling engine when the first grain parameters
are retrieved. If any synthesis node initializations messages
need to be executed with the first grain, they will be returned.

next Called by the scheduling engine for each grain to retrieve an
explicit value for the parameter for that grain

time Provides the playTime when the grain will be
executed. This allows time-based parameter
objects to return values change depending on
the playTime.

grainArgs A Dictionary of parameter values that have
already been calculated for this grain. This
allows parameter values to be dependant on
the values of other parameters.

map Returns any bus mapping messages required to map the
parameter input to a control bus.

60

Method Name Method Description

Param. Name Parameter Description

name The name of the parameter since it will be
needed to build the mapping message.

free A method called by the scheduling engine when the cloud is
stopped in order to free any control synthesis nodes that were
initialized by grain parameter objects.

reset If the cloud reset method is called to reset the cloud back to its
initial state, this method will be called on each parameter to reset
stream objects to their original state.

defaultSpecs This method is called by the GranCloud2 defaultSpecs method
in order to initialize default ControlSpec objects representing
min/max boundaries for the range of the parameter values.
ControlSpec objects are needed for graphical objects such as
knobs and sliders need discrete min/max boundaries, whether
the parameter object requires them or not.

run A method called by the pause and play methods of the cloud
object in order to pause or resume control nodes. This is done
by setting the run state of control nodes to true or false values.

bool A Boolean value indicating the run state of
control nodes. A true value starts the node
running. A false value pauses the node.

GCValue

The GCValue class defines parameter objects that derive parameter

values from a single raw data object. The next method is used to retrieve the

next value from the data object. The controlMsg and map methods both return

null values since no control nodes or bus mappings are required.

Table 9. (continued)

61

The data object used to represent values is stored in the value instance

variable. The variable may contain an Env object, a Function object, or any type

of SuperCollider object that returns a number when the next method is called.

The most frequently used data objects include static numbers, Array or List

objects containing numbers, a Function that returns numbers when evaluated, an

Env (envelope) object, or a Stream returning discrete numbers when the next

method is called. A second instance variable, named spec, allows users to

assign a ContorolSpec object to the parameter. ControlSpec objects define

minimum, maximum, and warp values for mapping parameter values to GUI

objects such as sliders and knobs.

The GCValue object initializes a private instance variable named

valueMethod that identifies the name of the method to use to request values from

the data object. When a new GCValue object is instantiated, the init method

detects the data object type and updates the valueMethod appropriately. If the

type is a Function, the value method will be called on the data object. If it is an

Env object, the at method will be used. The next method will be used for all other

data types. In SuperCollider, Strings, Symbols, Numbers, and many other

singular object types implement a next method that does nothing but return the

object itself. This allows them to act as infinite streams that always return their

own value.

When the valueMethod is executed on the data object, the nextGrainTime

and grainArgs values are passed in as parameters, allowing the calculations to

62

be dependent on the grain playTime or on the values of previously calculated

parameters. Figure 11 shows several examples of GCValue object instantiation

using different data types.

// Instantiate using a static number.
// Returns an endless stream of 0.001.
obj = GCValue(0.001);

// Instantiate using a Stream Based on a Pattern.
// Returns an endless sequence 1, 2, 3, 1, 2, 3, etc…
obj = GCValue(Pseq([1, 2, 3], inf).asStream);

// Instantiate using an envelope object.
// Returns value of the Env at each grain start time.
obj = GCValue(Env([0, 1, 0.5, 0], [2, 3, 10]));

// Instantiate with a ControlSpec for GUI mapping.
obj = GCValue(10, ControlSpec(1, 20));

Fig. 11. Code examples of GCValue object instantiation using various data types.

GCMinMax

GCMinMax objects represent random distributions between a minimum

and maximum value. Each time the next method is called to return a value, a

distribution function is executed to retrieve a value between the minimum and

maximum values. Users may define their own distribution function in a Function

object that takes the minimum and maximum values as parameters, or they may

specify the name a built-in SuperCollider binary function to use. Distributions may

be random or not, depending on the function specified. If a distribution function is

63

not specified, it defaults to the built-in SuperCollider rrand function. The rrand

function generates equally distributed random values between the minimum and

maximum values.

The minimum, maximum, and distribution function values are stored in the

min, max, and dist instance variables respectively. The min and max variables

may contain the same data types that be used as the value in GCValue objects.

This means they may be represented by static values or by values that change

over time. The dist variable may contain the name of a built-in SuperCollider

binary function, or it may contain a user-defined Function object.

The GCMinMax object also contains instance variables named minSpec,

maxSpec, and spec. The minSpec and maxSpec variables store optional

ControlSpec objects for mapping graphical objects to the min and max variables.

The spec contains an optional ControlSpec object that can be used to constrain

the output of the distribution calculation to the range of the ControlSpec.

When the next method is called on a GCMinMax object, discrete values

are first retrieved from the min and max data objects in the same manner as the

calculation of the value in the GCValue object. The distribution function is then

evaluated passing in the discrete minimum and maximum values that were

retrieved. Finally, if a spec object has been specified, the resulting value is

constrained within the range of the spec object. Figure 12 shows several

examples of the instantiation of GCMinMax objects.

64

// Instantiate object using a static min/max values.
// Returns random values between 10 and 20.
obj = GCMinMax(10, 20);

// Instantiate using a changing min and static max
// value. Returns random values between a min that
// changes from 1 to 10 over 30 seconds time, and a
// max value of 40.
obj = GCMinMax(Env([1, 10], [30]), 40);

// Use a built-in exponential distribution function.
obj = GCMinMax(10, 20, \exprand);

// Use a user-defined distribution function.
func = { arg min, max, time, params;

[min.rrand(max), min.rrand(max), min.rrand(max)].sum / 3
};
obj = GCMinMax(1, 10, func);

Fig. 12. Code examples of the instantiation of GCMinMax using various objects.

GCCenterDev

GCCenterDev objects are very similar to GCMinMax objects. They both

generate distributions; however, GCCenterDev objects define the distribution as

a center value plus or minus a deviation from the center, rather than values

within a specified minimum or maximum. The same types of data objects that

GCValue objects accept may be used to define the center and maximum

deviation values. A unary distribution function that takes the maximum deviation

as a parameter value is used to generate actual deviation values that are applied

to the center value to calculate the return value for the parameter. Like the

GCMinMax object the distribution function may be a user-defined function or a

65

reference to a SuperCollider built-in function; however, this in GCCenterDev

objects the function should be a unary function.

The center, dev, and dist instance variables store the center, maximum

deviation, and distribution function values respectively. The object also contains

instance variables named centerSpec, devSpec, and spec for containing optional

ControlSpecs that may be mapped to graphic objects or constrain the resulting

calculation in the same manner as the GCMinMax object.

When the next method is called on a GCCenterDev function, discrete

center and maximum deviation values are first retrieved from the center and dev

objects. Then the distribution function is executed using the maximum deviation

value as a parameter to get the actual deviation for the grain. Similar to the

GCMinMax object, user-defined functions are also passed the grain start time

and a Dictionary of previously calculated parameters in case they need to be

used in the calculation of the deviation. The actual calculated deviation is then

added to the discrete center value and returned to the caller.

If a spec object has been specified, the return value will be constrained to

the range of the ControlSpec. Figure 13 shows examples of the use of

GCCenterDev objects.

66

// Instantiate using a center value that is scaled by
// a previously calculated \rate parameter with a
// static maximum dev value.
func = { arg dev, time, params; params[\rate] * 2 };
obj = GCCenterDev(func, 25);

// Instantiate using a built-in distribution function
obj = GCCenterDev(100, 30, \sum3rand);

// Instantiate using a user-defined function and
// ControlSpecs.
devSpec = ControlSpec(0, 100, \linear);
centerSpec = ControlSpec(20, 20000, \exp);
spec = ControlSpec(20, 20000, \exp);
func = { arg dev, time, params; dev.rand2 * params[\rate] / time };
obj = GCCenterDev(

Env([100, 3000], [30], \exponential),
100,
func,
centerSpec,
devSpec,
spec

);

Fig. 13. Code examples of the instantiation GCCenterDev

objects using various data types.

GCControlMap

A GCControlMap object patches the grain parameter input directly to the

output of a control synthesis node via a control bus. This allows a grain

parameter input to be controlled by a server generated signal such as a sine

wave. The object contains either a unit generator graph function defining the

control node or the name of an externally defined SynthDef to use as the control

node. It also contains an optional array of argument name/value pairs to be

included in the control node creation message.

67

If a unit generator graph function is specified, it is stored in the

ugenGraphFunc instance variable. If that variable is not set, then it is expected

that the synthName instance variable should contain the name of an external

SynthDef that has already been sent to the server. The args instance variable

contains the optional array of control node parameter values.

The GCControlMap object overrides the empty GCBase prepare method

in order to build the ugenGraphFunc into a SynthDef, send it to the server, and

allocate a control bus for the patch. The prepare method also builds the control

node creation message that is returned when the controlMsg method is called by

the scheduling engine.

The scheduling engine calls the controlMsg method and sends the node

creation message to the server synchronously with the start of the first grain. The

engine will then call the map method for each grain to retrieve the bus-mapping

message needed to map the parameter input to the control signal. The next

method will return a null value since the parameter is mapped to a bus instead of

a discrete value.

The GCControlMap object also supports run and free methods to set the

synthesis node play status in response to the pause and play methods and to

free the node from the server once the cloud is stopped. Figure 14 shows how a

GCControlMap object can be used to map a parameter input to a sine wave.

68

// Define a ugenGraphFunc and instantiate GCControlMap
// object.
graphFunc = {

arg out=0, freq=20, phase=0, amp=1, add=0;
Out.kr(out, SinOsc.kr(freq, phase, amp, add))

};
obj = GCControlMap(graphFunc, [\freq, 30, \amp, 60]);

// Same as above but using an external SynthDef.
SynthDef(\sine, {

arg out=0, freq=20, phase=0, amp=1, add=0;
Out.kr(out, SinOsc.kr(freq, phase, amp, add))

}).send(server);
obj = GCControlMap(nil, [\freq, 30, \amp, 60], \sine);

Fig. 14. Code example of a GCControlMap used to patch

a parameter Input to a sine wave.

GCTrajectoryMap

Trajectory objects are a custom class of object I developed in order to

define three-dimensional trajectories through space and time on an x, y, and z

grid. Trajectory objects possess methods enabling them to function within a unit

generator graph function to convert the defined trajectories into actual control

signals for each axis.

The GCTrajectoryMap class allows composers to define a Trajectory

object and map x, y, and z control signals from it to corresponding x, y, and z

grain parameters. The GCTrajectoryMap is different than other parameter objects

in that a single parameter object is used to supply values to three grain

parameters. The object maps three related grain parameters to signals on a

three-channel control bus. The grain parameter names used in the server

69

messaging will be derived from the parameter name concatenated with X, Y, or

Z. For example, if the parameter is named pan in the control data repository, the

GCTrajectoryMap will map the Trajectory signals from the control node to the

panX, panY, and panZ grain parameter inputs.

The GCTrajectoryMap object stores the Trajectory object used to generate

the signals in the traj instance variable. The object also contains instance

variables named specX, specY, and specZ that may contain ControlSpec objects

for use by graphical objects mapped to each axis.

The prepare method is important to the GCTrajectoryMap object in order

to build the control node creation message returned by the controlMsg method.

The map method returns the bus-mapping message that connects the grain input

parameters to the trajectory signals outputs via a control bus. The next, run, and

free methods are used in the same manner as in the GCControlMap object.

Figure 15 shows an example of a Trajectory object being mapped to the

grain parameters controlling a three dimensional panning object used within the

grain synthesis node. While only the pan parameter is specified in the cloud

object, the GCTrajectoryMap object maps the Trajectory to the panX, panY, and

panZ grain parameters.

70

// create a Trajectory and trajectory map object
traj = EnvTrajectory(

Env([0, 10], [10], 'sine'), // x-axis
Env([-10, 20], [10], 'sine'), // y-axis
Env([0, 10], [10], 'sine') // z-axis

);
obj = GCTrajectoryMap(traj);

Fig. 15. Code example of instantiating a GCTrajectoryMap used to map

a trajectory signal to three parameter inputs.

GCBusMap

A GCBusMap object maps a grain parameter input to a control bus. It

differs from the GCControlMap object in that the signal on the bus is not defined

or controlled by the parameter object in any way. The signal on the bus could

come from any source external to the cloud and parameter objects, as long as

the synthesis node writing to the bus appears on the order-of-execution tree prior

to the grain group node.

The only instance variable used by the GCBusMap object is the bus

variable. The bus variable contains a SuperCollider Bus object representing the

control bus to which the parameter input is mapped. The controlMsg method

returns nothing, since the control node is handled externally. The map method

returns the bus-mapping message that maps the parameter input to the specified

control bus. Figure 16 shows an example of the use of the GCBusMap object.

71

// create a Bus object and map it
bus = Bus.control(server, 1);
obj = GCBusMap(bus);

Fig. 16. Code example of the instantiation of a GCBusMap object.

GCMidiMap

The GCMidiMap object maps a grain parameter input to values received

from a MIDI controller. The object operates by setting up a MIDI responder in the

client that sets the MIDI value on a control bus each time a message matching

certain object criteria is received. The grain parameter input is then mapped to

the control bus.

Values can be retrieved from noteOn, noteOff, control, velocity, bend, and

touch MIDI event messages received from a specified MIDI source and channel.

The event type, MIDI source, MIDI channel, and for certain event types a MIDI

control value, can be set in instance variables within GCMidiMap messages

named type, src, channel, and value respectively.

The noteOn and nodeOff event types map MIDI note values from a

keyboard to the parameter input for noteOn or noteOff MIDI messages. The

control event type maps the grain parameter to MIDI values of the controller

number specified in the value parameter of the object. The velocity type maps

the key velocity of a MIDI key specified in the value parameter to the parameter

input. The bend and touch event types map MIDI pitch bend message and after-

72

touch values to parameters. Only the control and velocity type need a value set

to identify the controller number or MIDI key number tracked.

The object also contains mul and add instance variables specifying a

values will be multiplied and added to the MIDI value in order to scale and

transpose the limited 0 to 127 MIDI value range to a range suitable for the

parameter input. A func instance variable is available for advance users who may

want to define their own custom MIDIResponder function used to capture values

from MIDI event messages. If the func variable is not set, an appropriate

responder function is used depending the type value.

The prepare method is important to the GCMidiMap object in order to build

and set-up the MIDI responder that will parse the MIDI messages and to allocate

a control bus to use. No value is returned to calls to the controlMsg or next

methods. The map method will return the bus-mapping message needed for

each grain. Figure 17 shows an example of the GCMidiMap object mapping a

MIDI control number to a parameter input.

// instantiate object
obj = GCMidiMap(\control, // MIDI Message type

1, // MIDI Source Index
 1, // MIDI Channel Number

7, // Control Number
100, 20 // multiplier and add values

);

Fig. 17. Code example of the instantiation of a GCMidiMap object

based on a MIDI controller number 7 for channel number 1.

73

Extended GranCloud Objects

The objects discussed so far represent the core functionality of the

GranCloud project. There are other related classes that I will not define in detail

in this document, but are worth mentioning for the extended functionality they

provide.

GranCloudGroup

It is common for a sound to be generated by overlapping multiple clouds

with different characteristics. The GranCloudGroup object allows multiple cloud

objects to be treated together as a synchronized group. The group object is

instantiated, and multiple cloud objects are added to it. The group object then

provides synchronous prepare, play, pause, and stop methods allowing users to

call each method once on the group object rather than iterating through each

cloud object to call the method manually on each.

The GranCloudGroup class also provides additional support for archiving

objects to text files. The writeArchive and readArchive methods may be called on

the object to save the group and all associated clouds to an archive using a

single method call.

The group object has the ability to associate specific sound files with

clouds and includes a method to automatically load the sound files into server

buffers in preparation for granulation. This functionality was added to the group

class rather than to individual cloud classes, so samples used by more than one

74

cloud only need to be loaded once into a shared buffer, rather than wasting

memory by being loaded several times into individual buffers.

GranCloud2Interface

The GranCloud2Interface is a robust graphical interface for the building

and editing of GranCloud2 and GranCloudGroup objects from a graphical user

interface. The graphical interface allows the grain SynthDef and speaker

configuration to be defined using a set of menu options. Control parameters may

be added, and control data may be viewed and manipulated for each parameter

in several different ways depending on the choice of parameter object type. A full

discussion of the interface and its capabilities are beyond the scope of this

document, so detailed information will not be included.

The interface is useful for composers to be able to easily visualize and

manipulate the control data in parameter objects. Parameter data object values

may be manipulated using sliders, envelope views, table views, or text. Users

may modify data while playback is executing in order to set parameters based on

aural cues instead of numeric or visual ones. The interface also has the ability to

render synthesis to audio files for use in other applications, and it can read and

write archives of the cloud data.

I used the interface in the composition of Creo to quickly set and

manipulate cloud data based on aural feedback. Once the cloud or group objects

were created and control data set, I archived the objects to text-files. The

composition controller script could then read the archived objects to instantiate

75

them in memory as needed during the composition. Once instantiated, the

speaker configuration and server parameters were set, and the clouds were

ready for playback within the composition. Very little actual code was required in

the composition controller to execute the synthesis, since all the control data was

stored in the external archive. This cleaned up the code significantly, and it

allowed large complex datasets for control data to be quickly and easily set,

speeding up the compositional process significantly.

76

Chapter 4

Application of GranCloud in Creo

Granular synthesis was used in several different ways in Creo to generate

sounds and effects, to create sounds and textures that seamlessly transform

from one state to another, and to harmonize instrumental audio feeds. In this

section I have illustrated specific examples of the use of GranCloud to generate

granular synthesis in Creo.

Harmonization

Once common use for granular synthesis is altering the pitch level of an

audio feed to harmonize live instruments. Using this technique, audio signals are

written to a looping buffer that is used as the audio source for the grains. Since

the buffer can be read at various speeds, the grain nodes can read the buffer

faster or slower than the sample rate, resulting in a higher or lower sound. Many

of these grains overlapping can create a continuous tone based on the original

source timbre but transposed to a different pitch level.

If grain parameters are set correctly, granular harmonization is one of the

better sounding methods of harmonization. It is, however, a very processor

intensive method and may be unrealistic for harmonization in compositions that

are already highly taxing the CPU.

Creo used harmonization in several places with varying degrees of CPU

processing intensity. Granular harmonization with GranCloud was used in parts

77

of the composition where the CPU usage was low enough to accommodate it. In

places where CPU usage was already high, harmonization was done using a

built-in SuperCollider pitch shifting unit generator.

Figure 18 shows an example of GranCloud harmonization as used in

Creo. In this application, a Phasor signal is used to coordinate the write position

of the buffer with the read position of the grains, so that grains do not read over

the write position. The buffer read position is calculated by subtracting the

product of the grain duration, sample rate, and buffer read rate from the write

phasor position. The grain duration is set to be dependant on the grain rate. The

buffer read rate changes the pitch of the harmonization. A slight deviation is

added to the grain rate to break up unnatural sounding periodicities created by

perfectly synchronous grains.

Fig. 18. Example of harmonization in Creo using GranCloud (continues).

// Send grain SynthDef to server
SynthDef.new(\gc_harm_grain, {

arg out, buf, dur, phasorBus, bufRate, amp, pan;
var sound, bufPos;

// Base buffer position on delayed Phasor signal
bufPos = In.ar(phasorBus) -

(dur * BufSampleRate.kr(buf) * bufRate);

// Read sound from buffer
sound = PlayBuf.ar(1, buf, bufRate, 1.0, bufPos,

loop: 1);

// Apply grain envelope
sound = sound * EnvGen.kr(Env.sine(dur, amp),

doneAction: 2);

78

// Pan the output
sound = Pan2.ar(sound, pan);

// Write sound out to audio bus
Out.ar(out, sound);

}).send(server);

// Define an audio rate bus for the Phasor
phasorBus = Bus.audio(server, 1);

// Allocate a buffer for the source sound
buffer = Buffer.alloc(server, 44100, 1);

// Instantiate GranCloud object and set parameters
cloud = GranCloud2(server, \gc_harm_grain);
cloud[\rate] = GCMinMax(0.01, 0.012);
cloud[\dur] = GCValue({ arg time, g; g[\rate] * 5 });
cloud[\phasorBus] = GCValue(phasorBus.index);
cloud[\bufRate] = GCValue(1.5);
cloud[\amp] = GCValue(1);
cloud[\pan] = GCMinMax(-0.1, 0.1);
cloud[\buf] = GCValue(buffer.bufnum);

// Start Phasor and record synth to write live signal
// to the buffer. Include the possibility of a delay.
delay = 0;
synth = { var phasor, sound;

// Read sound from audio interface input bus
sound = AudioIn.ar(1, 1);

// Delay input sound if the delay is set
if(delay > 0, {

sound = DelayN.ar(sound, delay, delay);
});

(Fig. 18 continues)

79

// Create phasor signal to control record position
phasor = Phasor.ar(

0,
BufRateScale.kr(buffer.bufnum),
0,
BufFrames.kr(buffer.bufnum)

);

// Write audio signal to buffer at phasor position
RecordBuf.ar(

sound,
buffer.bufnum,
BufSampleRate.kr(buffer.bufnum)

);

// Write phasor signal to audio bus to be read by
// grain synths
Out.ar(phasorBus.index, phasor);

}.play(server);

// Prepare and Play the cloud
cloud.prepare;
cloud.play;

(Fig. 18 continued)

Generation of an Explosive Sound

About two minutes into Creo, there is an explosive sound symbolically

representing the Big Bang and other concepts related to creation. I created the

sound by mixing several granular clouds that are initially very dense and

decrease in density over time. Low frequency clouds are derived from

synthesized sine waves to create a deep rumble. I created higher frequency

tinkling sounds by using a percussive envelope and a Blip unit generator. The

Blip generator creates an audio signal that is the sum of a configurable number

80

of harmonic sine partials. The number of harmonics is randomized using a grain

parameter to create a cloud derived from differing, but related, timbres. Eight

clouds are also added to the mix that granulate various samples of breaking

glass and ceramic items to create intense high frequency sounds.

I created all of these clouds using the GranCloud2Interface class. The

clouds were created using the graphical interface and archived to text files that

were stored with the composition controller. A few seconds before the clouds are

needed in the composition, the controller reads the archives to instantiate the

cloud objects in memory. It reads the sound files used into buffers, replaces the

Server and SpeakerConfig objects in the cloud objects, calls the prepare method

on the clouds. The play method is then executed at the appropriate time to

generate the synthesis for the explosive sound.

The control data was defined in the cloud objects using GCValue objects

containing static values or envelope objects depending on the parameter. The

envelopes were mapped to graphical envelope or table views in the interface for

easy manipulation based on visual and aural feedback. Every detail of the control

data is too detailed to cover in depth in the scope of this paper. The grain

SynthDefs and parameters that were used have been included in the figures

below to demonstrate the structure of the synthesis.

Low Rumble Cloud

The grain SynthDef used for the low rumble is shown in figure 19. The pan

position is controlled by a three-dimensional trajectory. Random motion is added

81

to each trajectory axis by adding random noise generators to each. The panX,

panY, and panZ parameters are mapped to the Trajectory object using a

GCTrajectoryMap to define the center position of the cloud as it moves through

space. The motion parameter controls how fast the grains move on each axis,

and the diffusion parameter controls how far from the cloud center grains are

allowed to deviate on each axis.

A SinOsc unit generator creates the source sine wave. The frequency and

amplitude of the oscillator is controlled by the freq and amp grain parameters. An

Env object defines the grain envelope that is applied to the sine wave. It has a

configurable curvature and peak location that are controlled by the envCurve and

envAttack parameters. An EnvGen unit generator converts the Env to a signal of

length dur that is applied to the sine wave. The EnvGen has a doneAction

parameter equal to 2 indicating that the synthesis node should be freed from the

server when the end of the envelope has been reached.

Finally the sound is mixed out between two audio busses with levels

dependent on the value of the mix parameter. The out parameter indicates the

audio bus to which the dry sound is written, and the out2 parameter indicates an

audio bus connected to a reverb processor.

82

SynthDef(\sine_grain, {
arg out=0, out2=2, mix=0.4, rate=0.05, dur=0.1,

amp=0.2, freq=440, envCurve=0, envAttack=0.01,
panX=0, panY=1, panZ=0, motion=100,
diffusion=25;

var sound, panTraj;

// Pan position comes from trajectory control node.
// Random motion is applied to each axis.
panTraj = Trajectory(panX, panY, panZ);

panTraj = panTraj + Trajectory(
LFNoise1.kr(motion, diffusion),
LFNoise1.kr(motion, diffusion),
LFNoise1.kr(motion, diffusion)

);

// Sound created from sine wave with variable
// percussive envelope.
sound = SinOsc.ar(freq, 0, amp);
sound = sound * EnvGen.ar(

Env.perc(envAttack, 1 - envAttack, 1, envCurve),
1, amp, 0, dur, doneAction: 2

);

// Apply 3D pan based on speaker configuration.
sound = ~config.panT(sound, panTraj);

// Mix output to dry audio out and reverb busses.
MixOut.ar(out, out2, sound, mix);

});

Fig. 19. Sine grain SynthDef used in Creo for low rumble.

83

Tinkling Blip Cloud

The grain SynthDef used for the cloud generating the tinkling sound is

shown in figure 20. It is very similar to the Sine Grain example just given, except

that the source sound is generated from a Blip unit generator. A numHarmonics

parameter has been added to control the number of harmonic sine partials that

Blip unit generator will sum to generate the source sound.

SynthDef(\blip_grain, {
arg out=0, out2=2, mix=0.4, rate=0.05, dur=0.1,

amp=0.2, numHarmonics=10, freq=440, envCurve=0,
envAttack=0.01, panX=0, panY=1, panZ=0,
motion=100, diffusion=25;

var sound, panTraj;

// Pan position comes from trajectory control node.
panTraj = Trajectory(panX, panY, panZ);

 panTraj = panTraj + Trajectory(
LFNoise1.kr(motion, diffusion),
LFNoise1.kr(motion, diffusion),
LFNoise1.kr(motion, diffusion)

);

// Sound is created from Blip ugen and a variable env
 sound = Blip.ar(freq, numHarmonics, amp);
 sound = sound * EnvGen.ar(

Env.perc(envAttack, 1 - envAttack, 1, envCurve),
1, amp, 0, dur, doneAction: 2

);

// Apply 3D pan based on speaker configuration.
sound = ~config.panT(sound, panTraj);
MixOut.ar(out, out2, sound, mix);

});

Fig. 20. Blip grain SynthDef used in Creo for tinkling sound.

84

Breaking Glass Clouds

The SynthDef used for the granulation of glass and ceramic sounds is

shown in figure 21. Like the other examples, a Trajectory object controls the pan

position; however, the grains defined by this SynthDef are not placed in random

motion or diffused about the center position defined by the trajectory. All grains

follow the trajectory path directly. This is in part because the grains for these

clouds sound successively and are much longer than typical grains used in

granular synthesis. The time delay between grains places each in a new location

on the trajectory. In addition, the trajectories for each grain were carefully defined

to completely surround the audience such that timing variations in the grain rate

already create the effect of random motion throughout the entire performance

space.

The sound sources for the breaking sounds are read from buffers using

the PlayBuf unit generator. The bufReadRate parameter controls the perceived

pitch of each grain by configuring how fast the signal is read from the buffer. The

bufPos parameter controls where in the buffer the PlayBuf begins reading. The

grain envelope has a configurable attack position, release position, and curvature

controlled by the envAttack, envRelease, and envCurve parameters respectively.

85

SynthDef(\buf_grain, {
arg out=0, out2=2, mix=0.4, rate=0.05, dur=0.1,

amp=0.2, bufnum=0, bufReadPos=0.5,
bufReadRate=1, envCurve=0, envRelease=0.2,
envAttack=0.2, panX=0, panY=1, panZ=0;

 var sound, panTraj;

// Pan controlled by a Trajectory without additional
 // random motion.

panTraj = Trajectory(panX, panY, panZ);

// The source sound is read from a buffer.
 sound = PlayBuf.ar(1, bufnum,

bufReadRate * BufRateScale.kr(bufnum), 1,
bufReadPos * BufFrames.kr(bufnum)

);

// The sound is enveloped by an Env with
// configurable attack, release, and curvature.

 sound = sound * EnvGen.ar(
Env([0, 1, 1, 0], [envAttack,

1 - envAttack - envRelease, envRelease],
envCurve

), 1, amp, 0, dur, doneAction: 2);

// Apply 3D pan based on trajectory and
 // speaker configuration.

sound = ~config.panT(sound, panTraj);

// Mix output to dry audio out and reverb busses.
MixOut.ar(out, out2, sound, mix);

}

Fig. 21. Buffer grain SynthDef used in Creo for breaking glass sounds.

GranCloud Efficiency

GranCloud was efficient enough to process all ten of these granular

clouds simultaneously on a 2.0 GHz Dual CPU Macintosh G5 without issues or

audio glitches. This is in addition to running the controller script logic, performing

86

frequency and amplitude analysis on four input signals, and running synthesis

nodes for instrumental amplification and reverb processing.

Transformation of Water Sounds

The middle formal section of Creo involves a 190 second continuous

transformation of water based sound generated by GranCloud. The computer

music transforms a cloud from a chaotic mass of granular sound bits into realistic

sounding ocean waves. The section represents the movement from chaos to

order as random elements are gathered and organized in creative processes.

The transformation utilizes a single cloud object that granulates a 27

second stereo sample of ocean waves. The cloud object was built in the

composition controller and control data assigned entirely using code, rather than

using the GranCloud2Interface class to generate and manipulate the control data

graphically. Figure 22 shows the code defining the cloud object and control data.

Fig. 22. GranCloud code example of water sound transformation (continues).

// SEND SYNTHDEF TO SERVER
SynthDef(\buf_grain, {

arg out=0, out2=0, mix=0.5, dur=0.1, amp=0.2,
bufReadRate=1, bufnum=0, bufReadPos=0.5,
envAttack=0.5, panX=0, panY=1, panZ=0,
diffusion=0, contour=1, bufReadRateScalar=1,
ampScalar=1;

 var sound, traj;

// Pan controlled by trajectory with random value
// added to each axis depending on diffusion param.

 panX = panX + Rand(diffusion * -1, diffusion);
 panY = panY + Rand(diffusion * -1, diffusion);
 panZ = panZ + Rand(diffusion * -1, diffusion);

87

 traj = Trajectory.new(panX, panY, panZ);

// Source sound reads from specified buffer at
// bufReadRate and bufReadPos controlling the pitch
// and starting position within the buffer.

 sound = PlayBuf.ar(1, bufnum, (bufReadRate +
(bufReadRateScalar * contour)) *
BufRateScale.kr(bufnum), 1,
bufReadPos * BufFrames.kr(bufnum)

);

// Quasi-Gaussian envelope with adjustable
// peak position applied to source.

 sound = sound * EnvGen.ar(
Env([0, 1, 0],[envAttack, 1 - envAttack],\sine),
1, amp + (ampScalar * contour), 0, dur,
doneAction: 2

);

// 3D panner based on trajectory and
// speaker configuration.

 sound = config.panT(sound, traj);

// Mix output to direct out and reverb busses
 MixOut.ar(out, out2, sound, mix);
}).send(server);

// LOAD SOUNDFILES TO BUFFERS ON SERVER.
wave_buf = Buffer.read(server,

path ++ "/sounds/Waves/seawash_calm_exerpt1.aif.L");
wave_buf2 = Buffer.read(server,

path ++ "/sounds/Waves/seawash_calm_exerpt1.aif.R");

// INSTANTIATE THE CLOUD OBJECT.
waves = GranCloud2.new(

server, // server object
\buf_grain, // SynthDef name
190, // cloud duration
0, // playback delay
outBus, // main output audio bus

(Fig. 22 continues)

88

reverbOutBus, // reverb processor in bus
targetGroup, // target group for order-of-exec
\addToTail // order-of-exec relative to target

);

// SET GRAIN PARAMETER VALUES

// Set grain rate (time between grain start times).
waves[\rate] = GCCenterDev(

Env([0.0015, 2.0], [190], \exp), // center
Env([0.001, 0.5], [190], \exp) // deviation

);

// Define amount of grain overlap.
waves[\overlap] = Env.new([4, 8], [190], \exp);

// Set common param adjusting both amplitude and
// bufReadRate simultaneously. Timing scrambled
// to make each rendition each rendition unique.
waves[\contour] = Env.new([-0.2, 0, -0.8, 0.1, -0.6,

0.2, -0.4, 0.3, -0.2, 0.4, 0, 0.5, -1],
[10, 15, 20, 15, 20, 20, 15, 25, 10, 15, 15,
10].scramble, \sine

);

// Set grain duration based on rate and overlap.
waves[\dur] = { arg time, g; g[\rate] * g[\overlap] };

// Set grain amplitude controlled by envelope.
waves[\amp] = GCCenterDev(Env([0.1, 2.5, 1.0, 6.0],

[0.25, 0.5, 190], \linear), 0.2);

// Define how fast buffer is read, changing pitch.
waves[\bufReadRate] = Env([0.25, 3.0, 2.0, 0.35],

[0.25, 0.5, 190], \welch);

// Randomize buffer choice between stereo channels.
waves[\bufnum] = { [wave_buf.bufnum, wave_buf2.bufnum

].choose };

// Define start position for reading the buffer.
waves[\bufReadPos] = GCCenterDev(0.5, 0.4);

(Fig. 22 continues)

89

// Change envelope from percussive to quasi-Gaussian.
waves[\envAttack] = Env([0.1, 0.5], [190], \exp);

// Control pan position by single point trajectory.
waves[\pan] = GCTrajectoryMap(

PointTrajectory.fromArray([[0, 1, 0, 0]])
);

// Control diffusion of grains away from cloud center.
waves[\diffusion] = Env([100, 1], [100], \welch);

// Scalar adjusting how much the contour parameter
// affects the bufReadRate.
waves[\bufReadRateScalar] = 0.5;

// Scalar adjusting how much contour parameter
// affects the grain amplitude.
waves[\ampScalar] = 2.0;

// PREPARE CLOUD, PASSING IN THE SPEAKER CONFIGURATION
waves.prepare(config);

// WAIT A SECOND FOR ASYNCRONOUS TASKS TO COMPLETE
1.0.wait;

// PLAY CLOUD STARTING THE SYNTHESIS ENGINE
cloud.play

(Fig. 22 continued)

The first step of the code example shows the grain SynthDef being

defined and sent to the server. Grain localization is controlled using a Trajectory

object defining the central position of the cloud in space. A random diffusion is

added to each axis for each grain. The maximum limit of the diffusion is

controlled by the diffusion parameter. The actual panning is performed using a

trajectory panning method built into the custom spatialization classes used by

Creo. The sound will be panned to different channels according to the

90

SpeakerConfig object stored in the global config variable. This allows the same

cloud to be rendered on different speaker configurations without changing the

control data.

The source sound is read from a buffer by the PlayBuf unit generator. The

buffer number is configurable by grain, so each grain can read from a different

buffer. The bufReadRate and bufReadPos parameters function in the same

manner as explained in previous examples, except that the bufReadRate is also

be altered by the multiplication of a contour parameter. The contour parameter

allows a single value to affect both the bufReadRate and the amplitude of the

grain simultaneously. The bufReadRateScalar and ampScalar variables are

multiplied to the contour when applied, in order to specify how much the contour

alters each parameter value.

The envelope is quasi-Gaussian in its default shape, but the envAttack

parameter can be adjusted to move the peak forward, creating a more

percussive envelope, or backward, creating a more ramp-like envelope. The

enveloped sound is panned and written out to two audio busses according to the

mix parameter in the same manner as the other examples.

At the start of the transformation, the grains are very tiny and very dense.

An envelope defines a grain rate that starts at 0.0015 seconds between grain

start times and ends at 2.0 seconds between start times. The grain duration is

controlled by a function that is dependent on the grain rate multiplied by a grain

overlap parameter, so as the grain density is decreased or the amount of overlap

91

is increased, so the duration is increased. An envelope controls the overlap

parameter, starting with 4 grains of overlap and ending at 8. This means that the

grain duration at the start of the cloud will be 0.006 seconds, and it will change to

16 seconds by the end of cloud. By slowly changing of the grain rate and

duration the resulting sound transforms from a chaotic wind-like granular sound,

to the recognizable sound of ocean waves surrounding the audience. Toward the

end of the transformation, the grains are so long they are not perceived as

granular anymore.

Once all the parameters are defined, the prepare method is called to send

required control SynthDefs to the server and to create the grain group node that

controls order-of-execution of the grains. Once prepared, the client thread waits

for a second, and executes the play method on the cloud to generate the

granular synthesis.

92

Chapter 5

Conclusion

GranCloud is a powerful application that greatly simplifies the tasks of

defining and generating granular synthesis within SuperCollider. The flexibility,

extendibility, and efficiency of the software were all very important to the

composition of Creo. I needed a flexible application to fully customize the

synthesis of many different types of clouds used by the composition. Extendibility

was important to support the use and control of external software within the grain

synthesis. A very efficient application was required to be able to generate

multiple clouds with high grain densities simultaneously in real-time. The

encapsulation of control data and abstraction of the synthesis engine within

individual cloud objects simplified the construction of the controller script

significantly.

Although it was programmed specifically to support Creo, GranCloud now

stands alone as an elegant solution to many problems common to computer

music using granular synthesis. These solutions allow composers to focus more

on musical decisions and less on technological issues during the compositional

process. It is my hope that this shift of focus will not only improve the musical

quality of my own future works, but will inspire others using GranCloud to achieve

greater musical heights in their own compositions.

93

Reference List

Adler, Samuel. The Study of Orchestration. 2nd ed. New York: W. W. Norton,
1989.

Barron, Frank. "Putting creativity to work." In The Nature of Creativity:
Contemporary Psychological Perspectives, ed. Robert J. Sternberg,
76-98. New York: Cambridge University Press, 1988.

Camurri, Antonio. “Artificial Intelligence Architectures for Composition and
Performance Environments.” In Readings in Music and Artificial
 Intelligence, ed. Eduardo R. Miranda, 163-188. Contemporary Music
 Studies, ed. Peter Nelson and Nigel Osborne. Amsterdam: Harwood
 Academic Publishers, 2000.

The Csound Book: Perspectives in Software Synthesis, Sound Design, Signal
Processing, and Programming, ed. Richard Boulanger. Cambridge,
Massachusetts: The MIT Press, 2000.

Dannenberg, Roger. “Dynamic Programming for Interactive Music Systems.” In
Readings in Music and Artificial Intelligence, ed. Eduardo R. Miranda,
189-206. Contemporary Music Studies, ed. Peter Nelson and Nigel
 Osborne. Amsterdam: Harwood Academic Publishers, 2000: 189-206.

Dean, Roger T. Hyperimprovisation: Computer-interactive Sound Improvisation.
Computer Music and Digital Audio Series, v. 19. Middleton, Wisconson:
A-R Editions, 2003.

Dick, Robert. The Other Flute: A Performance Manual of Contemporary
Techniques. New York: Oxford University Press, 1975.

Forte, Allen. The Structure of Atonal Music, (New Haven and London: Yale
University Press, 1973).

Kramer, Jonathan D. The Time of Music: New Meanings, New Temporalities,
New Listening Strategies. New York: Schirmer Books, 1988.

Lee, Terry A. “GranCloud: A new SuperCollider Class for Real-time Granular
Synthesis.” In Multidimensionality: Proceedings of the International
Computer Music Conference Held in New Orleans 6-11 November 2006,
edited by Suvisoft Oy Ltd., 55-62. San Francisco: The International
Computer Music Association and New Orleans: Tulane University, 2006.

94

Morwood, James, ed. The Pocket Oxford Latin Dictionary (Latin-English). Oxford:
Oxford University Press, 1994.

Roads, Curtis. The Computer Music Tutorial. Cambridge, Massachusetts: The
MIT Press, 1994.

Roads, Curtis. Microsound. Cambridge, Massachusetts: The MIT Press, 2001.

Rowe, Robert. “Interactive Music Systems in Ensemble Performance.” In
Readings in Music and Artificial Intelligence, ed. Eduardo R. Miranda,
145-162. Contemporary Music Studies, ed. Peter Nelson and Nigel
Osborne. Amsterdam: Harwood Academic Publishers, 2000: 145-162.

Rowe, Robert. Interactive Music Systems: Machine Listening and Composing.
Cambridge, Massachusetts: The MIT Press, 1993.

Rowe, Robert. Machine Musicianship. Cambridge, Massachusetts: The MIT
Press, 2001.

Stone, Kurt. Music Notation in the Twentieth Century: A Practical Guidebook.
 1st ed. New York: W. W. Norton, 1980.

Winkler, Todd. Composing Interactive Music: Techniques and Ideas Using Max.
Cambridge, Massachusetts: The MIT Press, 2001.

95

PART II

CREO SCORE

96

creo

for
Flute, Violin, French Horn, Piano,

and
Live Interactive Electronics

by

Terry A. Lee

2009

97

PROGRAM NOTES

Creo is a Latin word meaning: “to create, make.” The composition explores the concept of creation from several
different, and sometimes opposing, viewpoints. The music contains allusions to universal scientific theory, to
religious views on creation, as well as to the individual and collaborative processes people experience when
involved in the act of creating. The listener is invited to ponder how tidbits of information gathered from life
experiences coalesce into ideas that eventually become physical inventions or works of art; how chaotic particulate
matter spewed forth from the Big Bang combines to form stars, planets, and eventually a primordial soup from
which life emerges; how God moves upon the face of the deep, separating the waters, setting the times and
seasons, and creating man in His own image.

 In the beginning… conception …a Big Bang!
 Divide the waters… organization …Primoridal Soup.
 Let the dry land appear… aggregation …Pangaea.
 Let the earth bring forth… assembly …Origin of Species.
 In our own image... refinement …Descent of Man.
 The seventh day… completion …Theory of Everything.

98

PERFORMANCE NOTES

Spatial Notation: Sections that are notated spatially have a meter signature with a digit directly over an X. The digit
indicates how many conductor queues will be given within the measure. The time between the start of
the measure and the next bar line is indicated with a “ca.” and a number above the staff. Notes within
the measure should be played in time according to their relative position within the measure. Notes
should be sustained for the relative duration of the trailing flag attached to the notes. A vertical dash
will indicate notes that should be played simultaneously between two or more parts. Accidentals
within spatially notated sections apply only to the note directly following the accidental and to any
notes directly repeated following a note with an accidental.

Traditional
Notation:

Traditionally notated sections have a normal meter signature and follow all rules of traditional notation.
Accidentals within metered section follow traditional rules and carry over through the bar.

Symbols with an italicized P, downward arrow, and a number indicate trigger notes that the computer
will be listening for to coordinate interaction with the instruments. The P indicates this is a pitch-based
trigger and the number indicates a corresponding trigger number in the software. The computer will
listen for the frequency surrounding the note directly under the arrow before proceeding, so it is
important that these pitches are played clearly and accurately, or the computer may miss the trigger.

Symbols with an italicized T, downward arrow, and two numbers separated by a dash indicate a timed
trigger point. The first number indicates the corresponding trigger number in the software. The
second number indicates the amount of time in seconds that the computer will wait after the previous
trigger was encountered before executing the next triggered event. Since these triggers are executed
automatically, performers need not be concerned with them except to coordinate their own entrances
with sound events executed by these triggers.

&

&

&

&

?

ã

ã

Flute

Violin

Horn in F

Piano

Computer

◊

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ca. 10"

(flute echoes)

inside piano with flesh of finger
ca. 1"

F

(low continuous sound)

°

X
1

X
1

X
1

X
1

X
1

X
1

X
1

In the beginning...
P1

(echoes)
œb

œ
J

œ
¨

ƒ

 

œ

&

ca. 6"

F

P2
(harmonized)

œ
>

Ç

œb
>

Í

œ
>

Í

œ

œb

>

(violin harmonization)

œ
œ

œ

b
b

>
œ

œ œ

œ

n
>
œ

œ

ca. 6"

ñ

P3

œ
-

p

œ œ
-
œ œ

-
œ œ

>

F

œ œ
-
œ œ

.

p

œ

&

ã

creo
Terry A. Lee

(transposed score)

2009

99



&

&

&

&

&

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~


È
Ÿ

◊

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ca. 6"

P4

swishes

4

œb
>

accel.
molto rubato

∏

œb œb œb
>

rit.

p

œb œb
œb
>

accel.

∏

œb œb œb
>

molto rit.

p

œb
- œb

-

œ

>

°

œb
œ œ

>

œ
œb œ

>

œb
œ œ

>

œ
-

œb
-

(flute echoes)

F

inside piano with flesh of finger

P5 P6

œb
-

F

ca. 5"
œ
- œb

œb
>

œn
œn
¨

ƒ

œ

œ#
œ œ#

¨

f

œ

Œ

œb
>

∏

œ

œ

>

œ

 

œ

?

ca. 4"

F

P7

(pitch drop)

œ#

Í

œ

&

creo

100



&

&

&

&

&

ã

ã

4

3

4

3

4

3

4

3

4

3

Fl.

Vln.

Hn.

Pno.

Cmpt.

√

ca. 10"

P8

7

œ
.

p

œ

œ
-

P

œ œ
-
œ œ

.

p

œ

œb
-

accel.

∏

œb
œb œb

rit.

p

œb
œb œb

-

accel.

π

œb
œb œb

molto rit.

P

œb
œb œb

-

accel.

∏

œb
œb

œb

rit.

p

œb
œb œb

-

molto rit.

œb
œb

œ
-

œb
œb œb œb

œb œ
-

œb
œb œb œb

œb œ
-

œb œb
œb

œb
œb œ

-
œb œb

q»§ª

(low pulsating sound)

P1
...the face of the deep.

œb
>

P

œb .œ ˙

∑

∑

J

œb

∏

‰ Œ Œ

J

œb
‰ Œ Œ

creo

101



&

&

&

&

&

ã

ã

4

3

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~


i
Ÿ

~~~~~~~~~~~

   

i
Ÿ

moderate

swishes

9

∑

∑

∑

Œ Œ

œœ
œ
œ

b

b

b
bg

g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

F

Œ Œ œœ
œœ

b

b
b

°

fast

P2

Œ

6

œb

>

p

œ
œ

œb

f

œb

œb

j

œb

¨

P

‰

∑

.˙

F

˙˙
˙
˙

œœ
œ

b

b
b

>
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

f

˙˙
˙˙

œœ
œœ

b

b
b

>

∑

‰

3

≈
œb

F

œb

j

œb

¨

‰ Œ

.˙b

.

.

.

œœ
œ

J

œb ¨
œœ
œ

b
>

ƒ

.

.

.

.

œœ
œœ

‰ œœ
œœ

b

b
b

>

°

P

˙b

>

Í

œb
œ

œb ¨

œ
œ

œb ¨

f

Œ

˙
>

Í

œb

f

˙b

.

.

.
˙˙
˙

.

.

.

.

˙˙
˙˙

f

P3

∑

6

≈

œb œb
œ

œb œb

J

œb

¨

f

‰ Œ

3
œ
-

œb
- œb

- œb

.

.

.
˙˙
˙

.

.

.

.

˙˙
˙˙

M
3

∑

œ
-

p

œ
-

œ
-

˙

p

Œ

.

.

.
˙˙
˙

.

.

.

.

˙˙
˙˙

?

creo

102



&

&

&

&

?

ã

ã

4

3

4

4

4

4

4

4

4

4

4

4

4

3

4

3

4

3

4

3

4

3

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~


i
Ÿ ~~~~~~~~~~~~~~~

i
Ÿ

~~~~~~~~~~

   

i
Ÿ ~~~~~~~~~~~~~~~

   

i
Ÿ

~~~~~~~~~~~~~~


I
Ÿ

~~~~~~~~~~~~~~

   

I
Ÿ

◊

inside piano with flesh of finger

M
3

M
3

M
3

P

°

15

.˙b

>

Í

Œ
˙

>

Í

 

œ

œb
œb

œ

.˙b

>

F

œ
œb .˙

>

F

P4

œb
-

p

‰

3

œb
>

f

œ œb œb

>

ƒ

œn ¨

‰

œ
-

p

Œ
œ
>

ƒ

œ
¨

‰

œ
-

p

œ
-

œ
-

f

œ
-

œ
-

p

œ œ œ

f

œ œ

p

ord.

P5

Œ

œ
>

p

œb .œ ˙

Œ
.˙b

p

Ó
œ

>
p

œb .œ œ
œb

Ó ‰

3

œb

>

f

œ
œ

3œb œb

œb œb

¨

∑
&

Í

(pitch drop)

œb

‰ J

œb œ

œ

‰
J

œb œ

˙
œb

Œ

˙
>

Œ
˙
>

°

creo

103



&

&

&

&

&

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

°

M
3

M
3

P6

20
œb
-

ƒ

œb
¨

Œ

6

œb

> œb
œb

œ
>

œb
œb

3

œb

ƒ

œb œb
œb
¨

‰
J

œ
>

œ

3
œb
-

ƒ

œ
-

œb
- œb

œ œ
¨

ƒ

œ œ
¨

ca. 7"

X
1

X
1

X
1

X
1

X
1

P7

J

œ
¨

œb
-

ƒ

œb
-

œb
-

œb
-

œb
-

P

œ
-

ƒ

œ
-

œ
-

œ
-

œ
-

P

œ

F

œ œ#
-

f

œ#
-

œ#
-

œ
-

ƒ

œ
-

œ
-

œ
-

œ
-

P

œœ
œ

-
œœ
œ

-
œœ
œ

-
œœ
œ

-
œœ
œ

-

œ
œœ

b
-

œ
œœ

b
-

œ
œœ

b
-

œ
œœ

b
-

œ
œœ

b
-

creo

104



&

&

&

&

&

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

◊

f

inside piano with fingernail

ƒ

ƒ

ƒ

°

P8

ca. 5"22 œb
-

œ
-

œ
-

œ
-

œ
-

œb
-

œ
-

œ
-

œ
-

œ
-

œ
-

œ
-

œ
-

œ
-

œ
-

œb
>

ƒ

œ
œ
¨

œb

>

œ
œ

¨

 

œ

?

ƒ

Explosion

A big bang...

swishesT1-3.0

ca. 28"

creo

105



&

&

&

&

?

ã

ã

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

Divide the waters from the waters...
ca. 30"

soft water-like trickling
tiny bits of wind sound

tiny bits of water sound

T1-28.0 T2-15.0 T3-5.0

24

creo

106



&

&

&

&

?

ã

ã

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~


I
Ÿ

tiny bits of wind and water sound slowly transform into wind, rain, and waves

P1

Strict Tempo q»§º25

∑

Œ

œb

π

J

œ

‰ Œ

∑

∑

∑

°

Ó ‰
J

œb
.

f

Œ

Œ

3

‰ ‰ ≈ R

œ

F

Ó

∑

5
‰ .

œb

p

œ
Œ Œ ‰

j

œb

P

∑

Œ

3

≈
œb

F

œb
œ̈

Œ ‰

3
œ

p

≈ œ

∑

∑

j

œb

‰ Œ Ó

Œ Œ ˙

π

Œ Œ ‰ ≈
œb

p

œ
œ
>

Í
3

Œ
J

œb

F

3
œ

‰
œb

œb

>

f

œ
.

p

Œ

Œ œb

p

J

œ ‰ Œ

Ó Œ
œ#

f

œ

P

Ó Œ ≈

.

J

œb

p

œ

‰ ‰ Ó

∑

‰
J

œb
.

F

Œ Ó

Ó Œ ‰ . r

œb

P

∑

3
œb

P

œb œ
‰ ‰ ≈ R

œb
¨

f

Ó

3

Œ
J

œb

P

J

œ

‰ ‰ r

œ

p

≈

3

œ
. ‰

œ
-

‰ ≈

r

œ

P

œ œb ‰ Ó

Ó

5
‰ .

œb

P

œ

5

.œ

¨

f

œ

P

‰ J

œb

P

˙
Œ

creo

107

&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~

   

I
Ÿ ~~~~~~~~~~~~~~~~~~~~~~~~

   

I
Ÿ

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(°)

(wind and water sounds)

31
œ

Í

J

œ

‰ Ó

Œ Œ

3

Œ
J

œ

P

Œ

‰ ≈ r

œ

p

j

œ

‰ Œ Œ

Ó Œ

6

œb

P

œb œ

.œ

f

∑

6

≈

œ

P

œb
‰

œb
¨

f

‰
j

œ
-

p

œ
‰ ‰

œ
.

F
3

Œ
J

œb

p

3
œ œ

œb
œb

œ

>
f

œ#

3

œ
œ# ‰

‰

œ

P

œb œ œ
œb
¨

f

Œ

œ

œn

P

Œ Œ

3

j

œb

F

œb

Ó œ

f
œn

3
œ œb œb

T2-32.0

violin delayed harmonizer +6

∑

œ#

p

Œ

3

Œ
J

œ

p

œb

∑

Ó ‰ . r

œ

p

œ

∑

‰ ®

œb
œb œ

˙
>

f

Œ

J

œ

‰ Œ

5

œb œb
œb

œb
œ

œ

>
f

Œ

3

‰ œb
-

p

œ
-

j

œ
‰ ‰ ‰ Œ

Œ ‰ . r

œb

F

˙

f

Ó ‰

.œ

p

creo

108

&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~

   

I
Ÿ

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~ (violin delayed harmonizer)

(wind and water sounds)

35

Œ ‰ ≈
R

œb

p
3

œb œ œ
‰

.œb
>

P

œb

œ#
-

p

œb
-

3

œ
J

œb
œb
-

Œ œb

π

œ

œ

œ

P

œ

Œ

5

.œ

P

œb

j

œ

‰ Œ

Ó

(°)

Œ
œ

p

.œ

flute delayed harmonizer +6

T3-13.0

‰

3

œb œb
œ Œ Ó

3

œ
J

œb

3
œ œ

‰ Œ

3

œ

F

œ#
œ

J

œ ‰ Œ Œ

œ

p

5

œb

P

.œ

6

œb œb œ

.œ
¨

Ó

f

5

‰ .
J

œb œ
.œ

˙

horn delayed harmonizer +6

T4-5.0

˙

f

6

≈
œ

P

œb œb

œb

¨

f

‰ ‰

œ#
-

p

Œ

3

Œ
J

œ

p

œb
-

œ

œ
œ

F

œ œb ‰

3

‰ œ

p

œ œ
œ

œb

p

3
j

œb
œb œ

œ#

F

œ

‰ J

œ
3

œ œb œb
œ ≈

.

J

œ

T5-3.0

piano delayed harmonizer +6

‰ œ

p

œb
Œ

.œb
>

F

œb

6

œ œ œ
œb œ

œ

p3
œ

J

œb
3

œ œ
œb

œ

5

œb œb
œb

œb
œ

œ

>
f

œ#

3

œ
œ#

œn

‰ ≈ r

œ

P

.

j

œ

≈ Ó

.œ
œ œ

Œ ‰ . r

œ

p

˙
Ó

creo

109

&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~

   

I
Ÿ

~~~~~~~~~~

~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(wind and water sounds)

(flute delayed harmonizer)

(violin delayed harmonizer)

(piano delayed harmonizer)
(horn delayed harmonizer)

39

Œ

œ

Í

œ œ

® ≈ Œ

œ#
-

Œ Œ

œ
-

p

‰

œ

p

œb œ œ
œb
¨

F

Œ

˙

5
‰ .

œb

F

œ

5

.œ

œ

‰

(°)

J

œb

π

Ó

5

≈

œ

Œ

6

≈

œ

P

œb œb
œ̈

f

‰
œ
-

p

œ
œb

3
œ

‰ Œ ‰ ‰

3

‰ ‰
J

œ

P

3

œ

p

J

œb

œ

j

œ

‰ Œ

j

œ
œ

j

œb

5

œb .œ

6

œb œb œ

f

‰ .

œ

œ
.œ

5

‰ .
J

œb œ
.œ

T6-11.0

(add violin +2)

3

œb œb œ
œ̈

.œb
>

f

œb 6
œ œ œ

œ œ
œ

p

Œ

œ#
-

œb

p

3

œ

J

œ œ

3

‰ œb
-

P

œ
-

œ
œ
.

f

Ó

5

≈

P

œb œ
œ œ

œb

3

j

œ
œb

˙ ‰ J

œ
3

œ œb œb

creo

110



&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~


I
Ÿ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
Ÿ

~~~~~~~~~~~

   

I
Ÿ

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~

(flute delayed harmonizer)

(violin delayed harmonizer)
(horn delayed harmonizer)

(piano delayed harmonizer)

(wind and water sounds)

42
œ
>

Í

œ œ
œb

œb œ
˙
>

f

3

œ

J

œb

3

œ œ
œb

œ

5

œb œb
œb

œb
œ

œ

>
f

œ#

3

œ
œ#

œn

Œ œ

p

œ

œ

œb œ

œ
œ#

œ

‰ . r

œn

P

œ

œ

(°)

≈

.

J

œb
Ó

6

≈

œ

P

œb œb

œb
¨

f

‰
j

œ

p

œ œn
œb

3
œb œ œ

œb
¨

œ#
-

œb

p

3

œ

J

œ œ

œ
œb
¨

F

Œ

3

œ

p

J

œb

œ

Œ ‰ . r

œ

p

˙

Ó ‰

.œ

T7-14.0
(add flute +2)

(add horn +2)

.œ#

>

f

œ#

6

œ œ# œ#
œ

œb
œ

Œ œ

>

Í

3

œ

J

œb

3

œ œ
œb

œ

5

œb œb
œb

œb
œ

œ

>
f

œ#

3

œ
œ#

œn

œ

œ

F

œ œ œb
.

‰

3

‰ œ

P

œ œ
œ
.

5
‰ .

œb

P

œ

5

.œ

œ

j

œ
œ

j

œb

Œ

5

≈

œ œ

œ
.œ

creo

111



&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~


I
Ÿ ~~~~~~~~~~~~~~~~~

I
Ÿ

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(flute delayed harmonizer)

(violin delayed harmonizer)
(horn delayed harmonizer)

(piano delayed harmonizer)

(wind and water sounds)

45

œ œ œb œb œ
˙
>

f

6

≈

œ
œb œb

œn
¨

f

œ#
-

œb

p

3

œ

J

œ
œb

‰ ≈ r

œ

p

.

j

œ

≈ Œ œb

p

5

œb .œ

6

œb œb œ

.œb

f

5
œ

œ

P

œ
œn œ

5

.œ

(°)

œb œ
.œ

˙

‰
œ

p

œ
œb

3

œb œ œ
œ̈

.œb
>

f

œb

3

œ

J

œ

3

œ œ
œb

œ

5

œb œb
œb

œb
œ

œ

>
f

œ#

3

œ
œ#

œn

œ

œ

œb œ œ
œb
¨

F

Œ

œb

p

3
j

œb
œb œ

F

œ#
œ

œ
œ

3
œ œb œb

œ œ
.œ

T8-11.0

(add piano +2)

6
œ œ œ

œb œb
œ Œ

œ
>

Í

œ œ
œb

œb œ

œ#
-

‰
J

œb

p

3

œ

J

œ œ

3

œ

p

J

œb

œ œ

œ

F

œb œ œ
.

‰

.œ
œ

p

œ œ .œ œ

˙
Ó

creo

112



&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I
Ÿ ~~~~~~~~~~~~~~~~~~~~~~~

I
Ÿ

Ÿ~~~~~~~~~~~~~

~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(wind and water sounds)

(flute delayed harmonizer)

(violin delayed harmonizer)
(horn delayed harmonizer)

(piano delayed harmonizer)

48
˙
>

f

6

≈

œ

P

œb œb

œb
¨

f

‰
j

œ

p

3

œb œ
œb

œ

5

œb œb
œb

œb
œ

œ

>
f

≈ Ó

3

‰ œb

P

œ œ
œ
.

‰ ≈ r

œ

p

.

j

œ

≈

˙

5

.œ œb

P

œ

5

.œ

œ

‰

(°)

J

œb ˙

5

R

œ
œ

T9-7.0

(add violin +10)

œ œ
œb

3

œb œ œ
œ̈

.œb
>

f

œb 6
œ œ œ

œ œ
œ

3

‰
œ

œ#

œb

p

3

œ

J

œ œ

Œ œ

P

œ

œ

œb œ

j

œ
œ

j

œb

5

œb .œ

6

œb œb œ

.œ

f

œ

œ
.œ

5

.œ œb œ
.œ

Œ

œ
>

Í

œ œ
œb

œb œ

œ#

>

f

3

œ

‰ 3‰ ‰

œ# œ

5

œb œ
œ

œ
œ#

œ
>

f

œ#

3

œ#
œ

œ

œ
œb
¨

f

Œ

3

œ

P

J

œb

œ

5
œ

œb

P

œ
œ œ

œb

p

3
j

œ
œb

˙ œ
œ

3
œ œb œb

creo

113



&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~


I
Ÿ ~~~~~~~~~~~~~~~~~~

I
Ÿ

~~~~~

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T10-10.0 T11-1.0

(add horn +10)
(add piano +10)

(wind and water sounds)

(violin delayed harmonizer)

(flute delayed harmonizer)

51

œ

6

≈

œb

F

œ œb
œ̈

ƒ

‰
œ

F

œn
œb

œ
-

œb

P

3

œ
J

œb

œb

œ

œ

P

œ œ œb
.

‰

3

‰ œ

F

œ œ
œ
.

œ
œ#

œ .œ
œn

P

œ

œ

(°)

œ
.œ ˙

T12-4.0
(add flute +10)

3
œb œb œ

œ̈

.œb
>

ƒ

œ

3

œ œ œb
œn

œ Œ

3

œ

J

œb

3

œ œ
œb

œ

5

œb œb
œb

œb
œ

œ

>

ƒ

œ#

3

œ
œ#

œn

‰ ≈ r

œ

P

.

j

œ

≈ Œ œb

P

œ .œ œb ˙

Ó ‰

.œb

T13-1.0

rain storm sounds

œ
>

Í

œ œ
œb

œb œ
˙
>

ƒ

œ#
-

œb

F

3

œ

J

œb œ

œ

œ

œb œ œ
œb
¨

f

Œ

5

.œ œb œ

5

.œ

œ

f

j

œ
œ

j

œb

œ

5

R

œ
œ œ

œ
.œ

creo

114

&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~

   

I
Ÿ

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(wind, rain, and waves)

(flute, violin, horn, and piano delayed harmonizers)

54

6

≈

œ

f

œb œb

œb
¨

ƒ

‰
j

œ

F

œ œn
œb

3
œb œ œ

œ̈

3

œ

J

œb

3

œ œ
œb

œ

5

œb œb
œb

œb
œ

œ

>

ƒ

œ#

3

œ
œ#

œn

3

œ

F

J

œb

œ œ

œ

f

œb œ œ
.

‰

5

œb .œ

6

œb œb œ

.œb

ƒ

5
œ

œ

F

œ
œn œ

5

.œ

(°)

œb œ
.œ

˙

.œb
>

ƒ

œb 6œ œ œ
œb œb

œ Œ

œ
>

f

œ#
-

œb

F

3

œ

J

œ#

3

œ
œ

œ

3

‰ œb

F

œ œ
œ
.

‰ ≈ r

œ

P

.

j

œ

≈

œb

3
j

œb
œb œ

f

œ#
œ

œ
œ

3
œ œb œb

œ œ
.œ

œ œ# œ œ œ

p

Ó

˙

p

Ó

∑

.œ
œ œ

p

Ó

˙
Ó

creo

115

&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

X
1

X
1

X
1

X
1

X
1

X
1

X
1

ca. 30"

(°)

(flute, violin, horn, and piano delayed harmonizers)

57

creo

116



&

&

&

&

?

ã

ã

Fl.

Vln.

Hn.

Pno.

Cmpt.

X
3

X
3

X
3

X
3

X
3

X
3

X
3

ca. 9"
Let the dry land appear...

P1

P2

P3

crash sounds

bouncing sounds

rockslide

58 œ
¨

ƒ

œ# ¨

f

œ
¨

F

?

ca. 12"

X
2

X
2

X
2

X
2

X
2

X
2

X
2

accel. rit.

swishes

P4

œb

>
œb

œ

œ
œ œ

œb œ
œ œb œ

œ
œ
>

œb
œn

œ
-

œb
œn

œb
- œ

œn
œb
- œ

œn

&

?

œ

œ

>
°

F

œ

p

œ
œ œ

œb
œb

>

f

œb
œb

œb
-

œb
œb

œb
- œb

œb
œb
- œb

œb

P

&

?

creo

117



&

&

&

?

?

ã

ã

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

ca. 8"

X
3

X
3

X
3

X
3

X
3

X
3

X
3

P5

P6

60

J

œ# ¨

P

J

œ̈

J

œ̈

J

œ̈

J

œ̈

J

œ̈
œ
>

œ
œn œ# œ#

œ

f

œ#

>

p

œ
œ# œ#

œ#

f

œ#
œ#

P

œn

¨

œ#

P

œ
œ# œ#

œ

¨

f

J

œ
¨

P

J

œ
¨

J

œ
¨

J

œ
¨

f

œœ
œ

#

-

p

œœ
œ

œb

P

œ
œœ

&

œ

œ
-

œ

œ

œb

°

œb
œb œ

&

ca. 7"

 

 

 

 

 

 

 

 

 

X
2

X
2

X
2

X
2

X
2

X
2

X
2

T7-4.5

low continuous sound

œ

p

œ
?

œb
œb ?

creo

118



&

&

&

?

?

ã

ã

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

Let the Earth bring forth...  q»¡™º

T1-5.062

∑

∑

w

p

∑

∑

wind and leaves

T2-2.0

∑

∑

˙ œ

Œ

Œ

π

˙

˙#

œ
œ

p

˙

˙

°

˙

˙

∑

∑

∑

œ
œ Œ Œ Ó

œ

œ

Œ Œ Ó

∑

∑

Ó Œ

˙#

p

∑

∑

∑

∑

w

Œ

p

˙

˙#

œ
œ

˙

˙

°

˙

˙

whales

T3-10.0

∑

∑

˙ ˙

>
P

œ
œ

˙

˙#

P

Œ

.

.

˙

˙

Œ

∑

∑

∑

Ó Œ Œ
œ
œ

P

Ó Œ

˙

˙

°

cresc. poco a poco

T4-4.0

∑

∑

Œ

œ

P

˙

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

sim.

∑

∑

œ œ# œ
œ

œ#

F

œn

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

∑

∑

˙ .˙

œ
œ

˙
˙

# ˙˙n#

˙

˙

.

.

˙

˙

T5-6.25

∑

∑

j

œ .œ#

>

S

j

œ

‰ Œ

‰

.

.
œ
œ

n

J

œ
œ

.

.
œ
œ

˙

˙

˙

˙

creo

119



&

&

&

?

?

ã

ã

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


(harmonize +6)

violin harmonizer

T6-2.2573

∑

Œ
.˙

π

Ó ‰
œ#

P

œ#
œ#

œ
œ

˙
˙

œ
œ

˙

˙

˙

˙

∑

œ
Œ Ó

œ
>

f

œ#

œ

˙n

>

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

T7-4.5

∑

Ó
.˙#

p

˙

p

Ó Œ

œ
œ

œ

œ

˙

˙

˙
˙

.

.

œ

œ

j

œ

œ

.

.

˙

˙

(start recording piano)

T8-3.0

∑

w

œ#

F

œ#

œ# œ#
œ#

œ

Œ

F

˙

˙#

œ
œ

˙

˙

˙

˙

cresc. poco a poco

∑

˙ ˙

>

P

Œ

˙

Ó

œ

P

œ

œ
œ

.

.
˙
˙

œ
œ

n

.

.

˙

˙

˙

˙

T9-3.5

∑

Œ .˙

P

3

œ# œ# œ

3

œ œ# œ
œ

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

T10-2.0

∑

œ œ# œ
œ

œ#

F

˙n

3

œ#
>

f

œ#
œ#

˙
-

Œ œ

>

œ
œ

.

.

˙

˙#

œ
œ

.

.

˙

˙

˙

˙

creo

120

&

&

&

?

?

ã

ã

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(harmonize +2/+8)

add flute harmonization

80

w

p

w

œ ‰
œ#

œ

˙

>

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

˙ Ó

j

œ .œ#

>

S

œ
Œ

w

J

œ
œ

.

.
œ
œ

#

J

œ
œ

.

.
œœ#

˙

˙

˙

˙

  

T11-6.5

Œ w

P

Ó Œ ‰

J

œ

P

œ#
œ#

œ

p

Œ Ó

œœ
.

.
˙
˙

œ
œ

.

.

˙

˙

˙

˙

(harmonize +2/+5/+7/+10/+12)

add horn harmonization

T12-2.0

.˙ œb

>

F

œ

f

œ#

œ

˙

.˙#

>

F

Œ

œ
œ

f

˙
˙

#
œ
œ

b

˙

˙

˙

˙

œ Œ Ó
œb

P

˙

p

Ó Œ

Ó
œ#

œ#

œ
¨

f

Ó

œ
œ

˙

˙#

n ˙
˙

˙

˙

.

.

˙

˙

?

T13-4.5

.˙ œ œb

œ#

f

œ#

œ œ#
œ

œ

œ#
œ#

œ
¨

f

œ
œ

œ
¨

Ó

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

Œ

π

˙

˙#

œ

œ

˙

˙

˙

˙

œb
œ

f

œn .˙

˙
Ó œ

f

œ#

œ
¨

F

Œ Œ œ
¨

Œ

œ
œ

.

.
˙
˙

# œ
œ

n

.

.

˙

˙

˙

˙

œ

œ
.
.
˙
˙

œ
œ

n

.

.

˙

˙

˙

˙

creo

121



&

&

&

?

?

ã

?

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

Fl.

Vln.

Hn.

Pno.

Cmpt.

√

87

˙

J

œ .œ
>

S

3

œ œ# œ

3

œ œ# œ œ#

R

œ
>

. .œb

f p

œ
Œ

œ
œ

˙

˙#

œ
œ

˙

˙

˙

˙

œ
œ

˙

˙#

œ

œ

˙

˙

˙

˙

œ Œ Œ ‰ J

œ

f

œ
œ

3

œ#
>

ƒ

œ
œ#

˙
>

Œ
œ
>

Œ
œ#
>

f

œ#

3

œ
>

œ
œ

˙n

œ
œ

.

.

˙

˙#

œ
œ

.

.

˙

˙

˙

˙

œ

œ

.

.

˙

˙#

œ

œ

.

.

˙

˙

˙

˙

œ#
>

ƒ

œ
œ#

˙
>

œ
‰ œ

œ

˙

>

Œ œ
¨

f

œ
¨

‰ ‰ œ
¨

‰

œ
œ

˙

˙#

π

Œ
&

˙

˙

Ó

œ

œ

f

˙

˙#

œ

œ

˙

˙

˙

˙

w

w

R

œ
>

ƒ

. .œ

p

˙

wb
>

ƒ

wb
>

j

œ

œ
.
.
œ
œ

#

j

œ
œ

.

.
œœ#

˙

˙

˙

˙

 

œ

ƒ

œ
œ œ

œn

˙#

œ#

ƒ

œ#

œ œ#
œ

˙

∑

œ œ œb
œb

œ

˙n

œ œ œb
œb

œ

˙n

œœ
.

.
˙
˙

œ
œ

.

.

˙

˙

˙

˙

œ Œ Œ
œ#

f

œ

œ
Œ Œ œ

f

œ#

∑

˙

J

œ
.œ

>

˙

J

œ
.œ

>

œ
œ

˙
˙

#
œ

œ

b

˙

˙

˙

˙

3
œ œ œ#

3

œ# œ# œ#
œ

3
œ œ# œ

3

œ œ# œ œ#

Ó Œ

œ

P

œ

œ

Œ ‰
œ œ

œ

œ

Œ ‰
œ œ

œ
&

œ

œ

˙

˙

n

b
œ

œn

˙

˙

˙

˙

creo

122



&

&

&

&

&

ã

?

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

Fl.

Vln.

Hn.

Pno.

Cmpt.

√
(√)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

94

3

œ
>

ƒ

œ
œ

˙#
>

Œ

œb
>

3

œ#
>

ƒ

œ
œ#

˙
>

Œ
œ
>

3

œ# œ# œ

3

œ œ# œ
œ

3

œ#
>

ƒ

œ#
œ

œ#
>

ƒ

œ
œ#

.˙
>

œ#
>

œ
œ#

.˙

>

œ

œ

Œ ˙

˙#

œ

œ

œ

œ
˙

˙

˙

˙

J

œ

‰

œn
œb

.˙n

>

J

œ
‰ œ

œ

.˙

>

˙
-

Œ œ

>

J

œ ‰

.˙ œ
> œ

œ

.˙ œ

>

œ

œ

œ

œ
.
.
˙
˙

œ
œ

n

.

.

˙

˙

˙

˙

P1

w

w

œ#
œ

.˙

>

œ
> œn

.˙#

œ

>

œn
.˙#

œ
œ

˙

˙#

œ

œ

˙

˙

˙

˙

accel.

.˙ œ

P

Œ

.˙ œ

P

Œ

.˙ œ

P

Œ

.˙ œ Œ

.˙ œ

Œ
?

œ

œ

.

.

˙

˙#

œ

œ

.

.

˙

˙

˙

˙

(harmonize +2/+7/+12)

(harmonize -5/+5/+10)

(harmonize -12/+5/+12)

(harmonize -12/+5/+12)

add piano harmonization

...in Our own image q»¡£™

P2

Œ

œ#
œ#

œ# ¨

ƒ

Ó

Œ
œ#

œ#

œ#
¨

ƒ

Ó

Œ œ#
œ#

œ#
¨

ƒ

Ó

Œ
œ#

œ#

œ#
¨

ƒ

Ó

Œ
œ#

œ#

œ#
¨

ƒ

Ó

œ

œ

˙

˙#

œ

œ

˙

˙#

#

˙

˙

œ#
œ#

œ# ¨

œ
œ

œ
¨

Ó

œ#
œ#

œ#
¨

œ
œ

œ

¨

Ó

œ#
œ#

œ#
¨

œ
œ

œ# ¨

Ó

œ#
œ#

œ#
¨

œ
œ

œ
¨

Ó

œ#
œ#

œ#
¨

œ
œ

œ̈

Ó

j

œ

œ
.
.œœ

#
#

j

œ
œ

.

.œœ#

˙

˙#

#

˙

˙

creo

123

&

&

&

&

?

ã

?

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

100
œ̈

f

Œ Œ

œ̈

Œ

œ

¨

f

Œ Œ œ

¨

Œ

œ
¨

f

Œ Œ
œ
¨

Œ

œ̈

f

Œ Œ

œ̈

Œ

œ
¨

Œ Œ
œ
¨

Œ

œœ
.
.
˙
˙#

œ
œ

.

.

˙

˙#

#

˙

˙

R

œ̈

ƒ

. .œb
>

p

œ

Œ

ƒ

r

œ

¨

ƒ

. .œb

>

p

œ Œ

ƒ

R

œ
¨

ƒ

. .œ
>

p

œ
Œ

ƒ

R

œ̈

ƒ

. .œb
>

œ

Œ

R

œ
¨ . .œb

>
œ

Œ

œ
œ

f

˙
˙

#
œ

œ#

˙

˙#

#

˙

˙

Œ

œ#
>

ƒ

œ#

3

œ#
>

œ
œ#

˙n
>

Œ
œ#
>

ƒ

œ#

3

œ#

>

œ
œ#

˙n

>

Œ

œ#
>

ƒ

œ#

3

œ#
>

œ#
œ#

˙n

>

Œ

œ#
>

ƒ

œ#

3

œ#
>

œ
œ#

˙n
>

Œ

œ#
>

œ#

3

œ#
>

œ
œ#

˙n

>

œ

œ

˙

˙

#

b
˙

˙n

˙

˙#

#
.

.

˙

˙

3

‰

œ

f

œ#

3

œ# œ œ

3

‰

œ
œ#

œn
>

3

‰
œ

f

œ#

3

œ# œ œ

3

‰ œ
œ#

œn

>

3

‰ œ

f

œ#

3

œ# œ œ#

3

‰
œ

œ#
œn
>

3

‰
œ

f

œ#

3

œ# œ œ

3

‰

œ
œ#

œn
>

3

‰
œ œ#

3

œ# œ œ

3

‰
œ

œ#
œn
>

Œ ˙

˙#

# œ

œ

˙

˙#

#

˙

˙

‰

œ̈

‰ Œ ‰

œ̈

‰

‰ œ
¨

‰ Œ ‰ œ
¨

‰

‰

œ
¨

‰ Œ ‰

œ
¨

‰

‰

œ
¨

‰ Œ ‰

œ
¨

‰

‰

œ
¨

‰ Œ ‰

œ
¨

‰

œ

œ
.
.˙˙

œ
œ

n

.

.

˙

˙

˙

˙

accel.

(harmonize -12)

P3

R

œ̈

ƒ

. .œb
>

p

˙

ƒ

R

œ
¨

ƒ

. .œb
>

p

˙

ƒ

R

œ
¨

ƒ

. .œb
>

p

˙

ƒ

R

œ
¨

ƒ

. .œb
>

Œ

œ

œ

R

œ
¨ . .œb

>

˙

˙

°

œ
œ

˙

˙#

# œ

œ

˙

˙#

#

˙

˙

creo

124



&

&

&

&

?

ã

?

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

4

5

4

5

4

5

4

5

4

5

4

4

4

4

4

4

4

4

4

4

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

sim.

T1-2.5106

Ó Œ

6

œ#

f

œ#
œ# œ#

œ œ#

6

œ# œ œ# œ#
œ œ#

Ó Œ

œ#

f

œ œ#
œ œ# œ#

œ œ#

∑

œ

œ

.

.

˙

˙#

œ

œ

.

.

˙

˙#

#

˙

˙

q»¡¢¢

marcato

marcato

marcato

marcato

(harmonize -5/+1/+7)

(harmonize -7/-5/+5)

(harmonize -7/-5/+5)

Ï

harmonization shift

it was very good...

œ#
¨

Ï

œ
¨

‰ Œ Œ

œ̈ œ̈

‰

œ#
¨

Ï

œ
¨

‰ Œ Œ

œ
¨

œ
¨

‰

œ̈

Ï

œ̈
‰ Œ Œ

œb
¨

œ
¨

‰

œ

œ

œ#
œ# œ

œ

œœ# œ

˙
˙

˙#

#
#

>

˙
˙

˙

n

>

Œ

œ# ¨ œ̈

‰ ‰
J

œ
¨

Œ

Œ

œ#
¨

œ
¨

‰ ‰
J

œ̈
Œ

Œ
œb
¨

œ
¨

‰ ‰
J

œb
¨

Œ

œ

œ
œ#

œ#
œ œ œn

œ

.œ#

J

œ .œ

˙
˙

˙#

#
#

>

˙
˙
˙

n

>

Œ

œ#
>

œ#

3

œ#
>

œ
œ#

‰
œ

f

œ œ# œ œ
œn

Œ
œ#
>

œ#

3

œ#

>

œ
œ#

‰

œ

f

œ œ# œ œ
œn

Œ
œb
>

œb
J

œb
¨

‰ Œ
œ#

f

œ

œ œ#
œ#

3

œ# œ
œ# œ œ#

œ#

œ .˙# œ#

.

.

.

˙
˙

˙#

#
#

>

˙
˙

˙

>

J

œ
¨

ƒ

‰

3

œ#
>

œ
œ

Œ

œb œ

J

œ
¨

ƒ

‰

3

œ#

>

œ
œ

Œ œb œ

J

œ
¨

ƒ

‰
J

œb
>

‰ Œ
œb

œ

œ
˙# œ#

œ
œ ˙#

œ

˙
˙
˙#

#
#

>

˙
˙

˙n

>

creo

125

&

&

&

&

?

ã

?

Fl.

Vln.

Hn.

Pno.

Cmpt.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

111

‰
œ

f

œ# œ# œ#
œ œ œ

¨

ƒ

œ
¨

‰ Œ

‰

œ

f

œ# œ# œ#
œ œ œ̈

ƒ

œ̈
‰ Œ

‰

œ

f

œ#
œ

œ
¨

ƒ

œ
¨

‰ Œ

œ

œ

f

œ

œ#

# œ

œ#

# œ

œ#

#
œ

œ

œ

œ

J

œ

œ

¨

ƒ

‰

œ

œ#

#

>

œ

œ

œ

œ

œ
œ

œ

>

œ

f

œ œ œ# œ#
œ œ œ œ œ# œ#

œ œ
¨

ƒ

œ
¨

‰

œ

f

œ œ œ# œ#
œ œ œ œ œ# œ#

œ œ̈

ƒ

œ̈

‰

‰

f

œ# œ
œ# œ#

œ
œ̈

ƒ

‰

‰

œ

œ

f

œ

œ

œ

œ

œ

œ#

# œ

œ#

#
œ

œ

œ

œ

œ
œ

œ

œ

œ

œ

œ

œ

œ

‰

œ œ
œ#
¨

≈
œ#

f

œ#
œ œ œ œ# œ#

œ œ

‰
œ œ

œ#

¨

≈

œ#

f

œ#
œ œ œ œ# œ#

œ œ

‰
œ œ

J

œ#
¨

‰

3

Œ
œn
>

œ
>

‰

œ

œ#

# œ

œ#

#
œ

œ

>
œ

œ

œ

œ

œ

œ

œ

œ#

#
>

ƒ

œ

œ#

#

>

œ

œ#

# œ

œ

œ
œ

œ

>

P3

œ# œ# œ#
œ œ œ œ# œ#

J

œ#
.œ

>

Ï

œ# œ# œ#
œ œ œ œ# œ#

J

œ# .œ
>

Ï

3

œb

>

œb

>

œb

>

j

œ .œ

>

Ï

œ

œ
œ

œ#

#
œ

œ

œ

œ

œ

œ

œ

œ#

# œ

œ#

# œ

œ

#
>

Ï

œ
œ

œ

œ

œ

œ

œ#

# œ
œ

œ#

#
#

>

‰ œ

ƒ

œ œ# œ#
œ œ œ œ œ# œ#

œ œ œ œ

‰

œ

ƒ

œ œ# œ#
œ œ œ œ œ# œ#

œ œ œ œ

‰

œ#

ƒ

œ# œ œ# œ# œ œ

œ

œ œ

œ

œ

œ#

# œ

œ#

#
œ

œ

œ

œ

œ

œn

n œ

œ

œ
œ

œ

œ
œ

œ#

#
#

œ
œ

œ

œ
œ
œ

n

creo

126



&

&

&

&

?

ã

?

Fl.

Vln.

Hn.

Pno.

Cmpt.

X
1

X
1

X
1

X
1

X
1

X
1

X
1

ca. 60"

extend reverb tail and fade out continuous sounds

Î

Î

Î

Î

And on the seventh day...P1

116

J

œ#
¨

J

œ#
¨

j

œ#

¨

J

œ

œ#

# ¨

j

œ
œ
œ#

#
#

¨

creo

127




