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ABSTRACT

It is shown that large classes of plasma equilibria can
have ideutical drift orbits and associated transport. Such
equilibria are named isomorphic. In partiéular, the
neoclassical transport coefficients are given for all
equilibria in which the magnetic field strength depends on

one helicity.
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I. INTRODUCTION
Plasmas in different magnetic equilibria can have identical drift

' 11 some sense, these equilibria have the

orbits and associated transport.
same structure and we will call them isowmorphic., An exzample of a set of
isomorphic equilibria is the symmetric torus, the straight helix, and the
straight elliptical eylinder. Generally, the isowmorphism between two
equilibria is apparent only in magnetic coordinates. Indeed, it is the lack
of unigneness of the magnetic coordinatesz coupled with the fact that drift
motion is essentially determined by the magnetic field strength3 which makes
isomorphic equilibria possible. In this paper a method of demonstrating
isomorphisms in systems with two periodic coordinates is developed. A
symmetric coordipate, like the Z symmetry of a cylinder, can be viewed as a
pariodic coordinate. A general treatment of drift orbits and transport in

the long mean free path limit is also given for equilibria 1in which the

magnetic field streungth depends on only two variables.

II. TISOMORPHIC ' ANSFORMATION
The wmagnetic field associated with a general scalar pressure

equilibrium can be written3
2 =Ty x Vo 1)
o
= $y + By . (2)
The plasma equilibrium 1s assumed to have two periodicities. Topologically,

this 1is a torus. [f we let 27y be the magneti~ flux enclased by a pressure

surface, the toroidal flux:, then poloidal and toroidal angles 8 and ¢ can be



deEinedz 30
x = glyle + I(ple , (3
9 =80 * x(pde . {4}

It can be shown? that cg/2 1s the poloidal turrent outside and ¢I/2 the
toroidal current inside a &onstant pressure surface. The rotational
transform of the field lines is r.

The most important quantity for determining particle drift orbits is
Lthe magnetic fileld strength. In additiom, the field strength is central to

the spacial Jacobian for

(Fo x B8 )Ty = 82, (5)

2

(V x Bo)eBp = —F—¢

2l ° (6)

In showing two systeme are isomorphic, the most important feature 1s showing
that the magnetic fileld strength is Iin some sense the same fynttion of the
magnetic coordinates.

Due to the periodicities, one caa writez

1 1 - .
— e + -
{1 ] 6 cos(ng = mo +21_ )], (M
with Bo, Snm' and Anm functions of ¢ and the prime on the sum implying the n

= 0, m = 0 term 1is eliminated. Suppose 1/B2 contained only two

helicities. Let
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= md - n¢ , (8)

@]

= Ng - M8 . (9

R

Then with only two helicities, 1/82 can be written

1 1 ~ -
e {1 -2 €, cos(J8 + X ) + 6§, cos(d¢ + 1.)]}
32 ;E jiO [ j ( j] j j l
=35 (1 - 2e(9) plys B) - 26C0) 24, B (10)
By
with p(y, 8) and Py, ;) periodic funetions with a period 2n

in 3 and ¢. The field stremgth in Eg. (10) looks like that In 2 tokamak
with one toroidal ripple. To show that all two helicity fields are
redudible to this form, we mst show that one tan find

av, 3, X, Bs 8, I, and » such that Eqs. (1) through (4) are satisfied in

the bar variables. It is easily verified that Eqs. (1) through (4) are

satisfied by

4y, N - § and -
dav mN Mn o R - M Yo

= _mN - Mn
X X & N-zHB

(1)
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The field strength written in terms of the bared variables will be called
the standard form. Since all two helicity filelds can be written in one
standard form, they are all potentially isomorphic. With three or morte
helicities, any two helicizies can be reduced to the standard form, but not
all poloidal and torecidal mode numbers can be eliminated. Consequently,
isomorphigms become raré in systems with more than two helicities.

Two special &ases of the isomorphic trunsformations, Eq. (ll), are the
identity transformation (N = 1, M = 0, 5 = C, m = 1} and the transformation
which switches toroidal and poloidal quantities (N =0, M= -1, o = -1, m =

0.

IIT. ONE-HELICITY SYSTEMS
To demonstrate the power of the comcept of isomorphisms, we will study
systems with one helicity. Systems with one helicity include the torus, the
elliptical eylinder, and the helix. The field strength for all ome—~helicity

systems can be written as

—12 w01+ 2ep(®)] (12;
2
s 8l

with & = me - n¢. We assume p{8) 1s normalized so

;iw pz(g) dad =17 . (13}
The ¢ dependence has been suppressed since it will be found to play more the
role of a parameter Lhan a variable. Since we have only omne helicitv, the

transformation equatiors can be simplified by letting N = 1, M =



s0 ¢ = E. Ir is assumed m # O. If m were zero, the poloidal and torsidal

coordinates must be switched first. The transformation . ,-_..-.s simplify
to

E - % 50 = mf

X = x B = g

g=g+21 f-é

r=am-n. (1a4)

To simplify the notation, bars will be dropped with the assumption the field
has been transformed to the standard form.

The first result we wish to establish 1s that all systems with one
helicity have a constant of the metion analogous to E¢ conservation for
toroidally symmetric systems. It should be noted that although all systems
with a symmetry directien or axls bave ounly one hellecity iIn the
representation for I/BZ, the converse is not generally valid.

The drift equations in magnetic coordinates are3

cleo aol _369. .
= By - X ) 1
30
dv . —r
T T Tl (16
v}
3Bp
8y o, np ot 17
3 JEB \I 390 ' (17)
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dp 3p (] s
L L £ 38 _ 1 38
de VIB[BX * pl(aeo 3y 9y o8 1 (18)

with C vn/(eB/mc) a periodic function of 8.

2

shown® to equal

1
s--%¢-9—e+s,,

3 (19}
with g, a periodic function of 8. Using Eqs. (3) and (4) one finds
El 3
P B By ey
a8 g + »I 3679 x ‘8 g+ 3 ‘¢
o ¥ i °
38} . __88*) S
36 < g + xL 26 /4 g + 1
28 . -+ al”
By w1y +E A
axeo g+ xL 30 ‘¢ g+l
So one has
do, M 30,
T TCEEm ) w o (20
B ap
dov o 1 1
Eria A (213
Consider the quantity .
Ve ¥, "8 (22)

with the poleoidal flux npp defined by dwp/dq,u =r. The time derivative

of ¢y, is zero using Egs. (20) and (21) for

The quantity B <an be
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d‘p* dp
Ay — gy S
at r-g o) 8sq -

Consequently, y, is a constant of the motion.
The drift orbits in a one-helicity fluid are given by Eq. (22) plus

energy E and magnetic moment p conservation

E-%mvf+u3+ee, (23)
with ¢ the electrostatic potential. In the special case g = 0, particles
remaln precisely on a flux surfage in the drift approximation. Equilibria

4,5 1p is easily shown that all

with this property are called ownigeneous.
smnigeneous toroldal systems, in the sense of Ref. 5, are one helicity
systems. If g 1s not zero, the drift orbits are qualitatively similar to
those of a tokamak. The passing particle drift orbits are crudely circles
displaced by the approximate distance e(BT/Bp)p with By = leVel,
BP = |9 x prpl, and p = v/mc, the gyroradius. The trapped particle
orbits are banana shaped of width 21/2 (BT/Bp)p. It should be
stressed £ measures the field strength varifation of the surface and is not,
in general, closely related to the inverse aspect ratio.

Let us now conslider transport in a one-helicity system. It is
customary to glve tramsport results in term of the average number of
particles or thez average amount of heat crossing a flux surface per unit
area. In complex geometries, this conventicn 1ls cumberscme. Here we will
zive the total particle flux 1"t and heat flux q, crossing the gsurface. As

in toroidal symwetry, the transport coefficients change markedly depending

n the ratic of the mean free path v/v and the comnection lemgth L. The
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connection length is the typical distance scale, along a field line, for
field strangth variations. For one-helicity systems, this characteristic

distance is

L33l (24)

which reduces to gR for a tokamak. TFor v/v << L, the plagma is gufficiently
collisional for fluid equations to be valid which is known as
the Pfirsch-Schluter regime. For v/v »> /e 2, even trapped particles can
complete their drift orbits. This is known as the banana regime. The
iv_ ermediate collisionality regime is known as the plateau.

The Pfirsch—sch].;te: transpert for the simple thm's law

E v x E/c - .T;'-j., has been found for arbitrary torcidal scalar pregsure
ez;uil.i.bx:j.a.2 writing
P.= 0= (25)

dy '

with P the pressure, one finds for the one-helicity field

2 2g + aT ~
D = 2r°n ¢ SEA (ER) (26)
8 34 x
=}

Transpeort irn the long mean free path limit is a2 complicated process in
fully three dimensicnal geometries. However, in systems with one helicity,
the problem can be treated analytically. In the analytic theory it is
customary to agsume that € << 1 and that p(8) = cos 8. Although we will
make these assumptions for simplicity, a more general form for p(3) can be

easily inclm:lecl-1 The drift kinetic eguation is
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af

af
S S | M.
Vlﬁn‘ﬁe -a—B + V--ﬁ\p a'lb + e vﬂgi 3E C(f) R (27)

with the distributiom function F = { + fH with fM a Maxwellian.

Using Eg.
(21) for dy/dt = v-¥y and
2
o= . —B .
B0 = » 2 ¥ =i’ (28)
one finds
v 8B £ of
__1__, ﬁi E_. g o + B 29
e Gt Gedmlte b mun . (2%)
The particle flux is given by6
B x %o 1 3
ro=f d . (=== [ vClf-1f) dv)
t ¥ f.%8 Y 1 S
dad 3
--E g+ | —Bz-i[fp,c(f-fs)av], (39)
with the Spitzer distribution’ function fg the solution of
af
ev & 5 C(fs) . 31

Foellowing the standard neoclassical calculations8 or almost by examining

Egs. (29) and (30), one can show the total particle flux across a surface is

dT dt
- - 2g+al 2 1 dn n n i
r. = =(2n) g° Ve 2Tl + a, T + a2y TR 1

a4 2 B« (32
B 2]

o e
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with 2y ... a4 numerical constants which we will determine by comparing with

the well-known results for the large aspect ratio tokamak, in particular,

those of Rosenbluth, Hazeltine, and Hinton.8 The eleectron gyroradius,

The ion temperature is

collision time, and temperature are Par Tas and Te'

Ti’ n is the demsity, and c is the speed of light. The flux of Rosenbluth

et al., FR’ is related to r: by

re = rt/(an)(an) .

33
with r the local minor radius and R the major radius. One also has
dn _ 1 dnm = RB I =B .(5](3_9) (34)
v~ T g P g = ITNE I
with these substitutions
B 2 ;:2 4aT dT
- (=2 228 dn n_e o _1
Ty (BB) rrlantatrw tar o)
e i
B, &
—a4cfE(Ft)-l . (353)
o 8

- Except faor factors of B¢/B which were set equal to unity, but are important

for the reversed field pinch,9 this Is the flux given by Rosenbluth et al.
with

T
1 e
al = 1.12 (l +T—e), az = "0.43, a3 = -0.19 T—_'

1

= 2.44

ay (38)
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The total electron and i1o6n heat fluxes can be similarly evaluated and are of '

the same form as the particle flux. The parallel current is

8< :e dn n dTe n dTi
JH'GNcq-/E*i:[szﬂ:*&ﬁi-ar*a?.r—ia:p—]. 37)

Reduction t> the large aspect ratio tokamak case give

B eT . aT dT.
3 dn n e n i
rod ) e s m Tty T 38
o 4 e e
with
o = [0.51 =] 11 - 1.95 12
NC ° " ’
e Tl"l'e
(39)
Ti
ag = 2,66 (1 + Ti/Te), 8g = 0.69, a, = -0.42 T: .
To advance the density in time ome uses
an -
T Vt=s, (40)

with 5 the sources of particles. Intngrating this equation over the volume

and using n = n{y) one has

B” r
an Q 9 ( t ) a :
20 4 o =3, (4l1)
. -+ s
at g PR T (2")2
with S the surface averaged source of particles. There is a siamilar

equ-.ion £nr Lhe Lime rate of change of the eleciron and ion Lemperatures.

w&.} b e« e o ;



IV. CONCLUSIONS

Plasmas with different physical shapes can have identical drift orbits
and assoclated transport. Such systems are called isomarphic. The most
important feature of a plasma confinement geometry, for the evaluation of
drift orbits, 1s the wmagnetic field strength expressed in magnetic
coordinates. In plasma systems with closed magnetic surfaces, there are two
periodiéities, Such ss;stems are topologically toroidal. Drift orbits in
topologically toroidal systems depend on three functions of the radial
coordinate, the toroidal flux 2y, in addition to the field strength.
However for good confinement, drift orbits must ba localired
in ¥; so y generally plays the role of a parameter rather than a variable.
The three functioms of § which enter the solution for the drift orbits are g
and I, which are within a factor c/2 the total poloidal cutrert outside and
toroidal current inside a magnetic surface, and & the rotational transform.

Systems with closed wmagnetic :urfaces can be decomposed im a Fouriler
series in the two periodic -oordinates & and 4. A typical term ia this
decomposition depends on n¢ ~ mB. Any other term, .which depends
on r({ng - mb) with r a rational number, is said to be of the sawe
helicity. If the Fourier deccmposition of the field strength contains only
one helicity, ihare is a ¢onstant of the motion, which is canonical momen®um
conservation in toroidal symmetry. In addition, one can evaluate the
transport coefficients in a form that is wvalid for all one-helicity
systems. Tn effect, all one-helicity systems are isomorphic although they
may naturally fall at different places 1in g, I, » parameter spaces,
Examples of one-helicity svstems are the svometric tokamak, the straight
stellavator, and the elliptical cvliinder.

The Fourier decomposition of a field strength with two nelicities can



] Mbmatims. -

-l4=

be reduced to a standard from, Consequently, all two-heliéity systems are
isomorphic 1in the same sense as all one-helicity systems are. Physical
realizations of two-helidity systems are the tokamak with toroidal tipple
and a slmple toroidal stellarator. The drift nrbits and trTacepart ia two=-
helicity f'alds are far more complex and subtle than in one-heliciLy systems
due to the absence of a local constant of the wmotion of the canonical
mompentum type. However, a3 combination of analytic aad nunaricallo work
could give a general treatment of transport in systems with two helicities.
Systems with three or more helicities can not all be reduced to a
standard Ifgrm. In such systems the relative mode numbers of the different

helicities are additlional parameters in & transport theory.
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