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ABSTRACT 

It is shown that large classes of plasma equilibria can 

have identical drift orbits and associated transport. Such 

equilibria are named isomorphic. In particular, the 

neoclassical transport coefficients are given for all 

equilibria in which the magnetic field strength depends on 

one helicity. 
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I. INTRODUCTION 

Plasmas in different magnetic equilibria can have identical drift 

orbits and associated transport. In some sense, these equilibria have the 

same structure and we will call them isomorphic. An example of a set of 

isomorphic equilibria is the symmetric torus, the straight helix, and the 

straight elliptical cylinder. Generally, the isomorphism between two 

equilibria is apparent only in magnetic coordinates. Indeed, It Is the lack 

of uniqueness of the magnetic coordinates coupled with the fact that drift 

motion is essentially determined by the magnetic field strength-1 which makes 

isomorphic equilibria possible. In this paper a method of demonstrating 

isomorphisms in systems with two periodic coordinates is developed. A 

symaetric coordinate, like the 2 symmetry of a cylinder, can be viewed as a 

periodic coordinate. A general treatment of drift orbits and transport in 

the long mean free path limit is also given for equilibria in which the 

magnetic field strength depends on only two variables. 

II. ISOMORPHIC '.'TRANSFORMATION 

The magnetic field associated with a general scalar pressure 

equilibrium can be written 

* - 7i|i « 79 'D 
o 

The plasma equilibrium is assumed to have two periodicities. Topologically, 

this is a torus. If we let 2iri)j be the magnetic flux enclosed by a pressure 

surface, the toroidal flu>:, then poloidal and loroif'sl anglas 6 and $ csn be 
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defined2 so 

X - g(ip)4> + K*)9 , C3) 

9 - e + *(*)• • <4) 
o 

It can be shown that cg/2 is the poloidal current outside and el/2 the 

toroidal current inside a constant pressure surface. The rotational 

transform of the field lines Is r. 

The most important quantity for determining particle drift orbits is 

the magnetic field strength. In addition, the field strength is central to 

the spaclal Jacobian for 

(fy * fo )-'?x " B 2 , (5) 

In showing two systems are isomorphic, the most important feature is showing 

that the magnetic field strength is in some sense the same function of the 

magnetic coordinates. 

Due to the periodicities, one can write^ 

I=- - -L- [1 + I S cos(n<fr - m3 + X ) ] , (?) 
B B n, ni 

o 

with B { , and \ f unc t ions of A and the prime on the sura iraolying the n o* nni nm 

* 0, m » 0 t e r n i s e l im ina t ed . Suppose 1/B con ta ined only two 

h e l i c l l i e s . Let 
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9 » mS - n$ , (8) 

$ =• N* - M6 . (9) 

Then with only two helicities, 1/B2 can be written 

h m "T t1 " 2 I [*^ " s ( ^ + x^ + «i C 0 < W + Ai)ll B B J*0 ] J J J 

o 

- -L. [1 - 2eC*) p(i|r, I) - 26(,(,) PC*, ?)] , (10) 

with p(*, I) and P(i(/, J) periodic functions with a period 2it 

in 9 and $. The field strength in Eq. (10) looks like that, in a tokamak 

with one toroidal ripple. To show that all two helicity fields are 

reducible to this form, ue mist show that one tan find 

a I, 5 , Up (, g, I, and I-such that Eqa. (1) through (A) are satisfied in 

the bar variables. It is easily verified that Eqs. (1) through (4) are 

satisfied by 

did _ H - *M - , ffiN - Mn 
difi " mN " Mn o N - -rM 9 o 

- mN - Mn 
B * ,V - .rM 8 

8 " mN - Mn mN - Mn 

( l O 
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The field strength written in terms of the bared variables will be called 

the standard form. Since all two helicity fields can be written in one 

standard form, they are all potentially isomorphic. With three or more 

helicities, any two helicities can be reduced to the standard form, but not 

all poloidal and toroidal mode numbers can be eliminated. Consequently, 

isomorphisms become rare in systems with more than two helicitles. 

Two special cases of the isomorphic transformations, Eq. (LI), are the 

identity transformation (N » 1, M » 0, r, » C, m • 1) and the trans format ion 

which switches toroidal and poloidal quantities (N - 0, M » -1, n • -1, m » 

0). 

III. ONE-HELICITT SYSTEMS 

To demonstrate the power of the concept of isomorphisms, we will study 

systems with one helicity. Systems wich one helicity include the torus, the 

elliptical cylinder, and the helix. The field strength for all one-helicity 

systems can be written as 

\ - ~ [1 + 2ep(8)] , (12i 
B 2 ^ 

with 9 • m9 - nc|>. We assume p(9) i s normal ized so 

l2J p 2 ( 8 ) dB - n . (13) 

The ip dapendence has been suppressed since it will be found to play more the 

role of a parameter than a variable. Since we have only one helicity, the 

transformation equatiors can be simplified by letting N - 1, M = D; 
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so * - <(>. I t i s assumed m * 0. If m were z e r o , the p o l o i d a l and t o r o i d a l 

coo rd ina t e s must be switched f i r s t . The t rans format ion . , - - _ > . i s s impl i fy 

to 

ill - •* 8 - me 
T m o o 

X " X S » m6 

g = g + ; i I - » 

*• • #m - n (14) 

To simplify the notation, bars will be dropped with the assumption the field 

has been transformed to the standard form. 

The first result we wish to establish is that all systems with one 

helicity have a constant of the motion analogous to P conservation for 

toroidally symmetric systems. It should be noted that although all systems 

with a symmetry direction or axis have only one helicity in the 

representation for 1/B , the converse is not generally valid. 
3 The drift equations in magnetic coordinates are 

d9 3o 36p. 
dr--v(ir-^r) - ( 15 ) 

fr-v-X1 • (16) 

0 
j 36p, 



? 

tll,v&l^l+Dl^lM..lllIi-)) (18) 

wi th p - v /(eB/rac) a periodic function of 9. The quantity B can be 
2 shown to equal 

B - - t * - f e + S * * U9) 

with S^ a p e r i o d i c func t ion of 8. tising Eqs . (3) and (4) one f inds 

3p. „ 3p, 30. 3p. 

3 8 ^ g + *I 38J4> 3x J 9 0 g + * I 36 >$ 

36 I g +• -rl 36 J $ g + .rl 

11} *—.!h] +sL±jll 
3 X

J e g + r l ae J * g + jrl 

So one has 

dp v E 3 0 

ir---i45rf*-8'p,i air. < 2°> 
. , v B 3p 

Consider t h e q u a n t i t y 

* * " *p " » , • ( 2 2 ) 

with t he p o l o i d a l f lux I|I defined by dty /di(i = * . The time d e r i v a t i v e 

of 4^ i s zero us ing Eqs. (20) and (21) f o r 



IT' <•* - « V l t - § dtT • 

Consequently, ^ is a constant of the motion. 

The drift orbits in a one-helicity fluid are given by Eq. (22) plus 

energy E and nagnetic moment u conservation 

E - | mVj + UB + e« , (23) 

with * the electrostatic potential. In the special case g " 0, particles 

remain precisely on a flux surface in the drift approximation. Equilibria 

with this property are called omnigeneous. ' It is easily shown that all 

otnnigeneous toroidal systems, in the sense of Ref. 5, are one helicity 

systems. If g is not zero, the drift orbits are qualitatively similar to 

those of a tokamak.. The passing particle drift orbits are crudely circles 

displaced by the approximate distance e(B /B )p with B„ • lg?Al, 

B • 174 x Vib I , and p - v/u , the gyroradius. The trapped particle p p c 
1/2 orbits are banana shaped of width c (B_/B )p. It should be 

stressed e measures the field strength variation of the surface and is not, 

in general, closely related to the inverse aspect ratio. 

Let us now consider transport in a one-helicity system. It is 

customary to give transport results in term of the average number of 

particles or tht average amount of heat crossing a flux surface per unit 

area. In complex geometries, this convention is cumbersome. Here we will 

%ive the total particle flux r and heat flux q crossing the surface. As 

in toroidal symmetry, the transport coefficients change markedly defending 

r. the ratio of the mean free path v/v and the connection length L. The 
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connection length is the typical distance scale, along a field line, for 

field strength variations. For one-helicity systems, this characteristic 

distance is 

* B o 

which reduces to qR for a tokamak. Por v/v << L, the plasma is sufficiently 

collisional for fluid equations to be valid which is known as 
3/2 

the Pfirsch-Schluter regime. For v/v >> L/e , even trapped par t i c les can 

complete the i r dr i f t o rb i t s . This i s known as the banana regime. The 

intermediate c d l i s i o n a l i t y regime i s known as the plateau. 

The Pfirsch-Schluter transport for the simple Ohm's law 

E +• v x B/c « n - j , ^ a s t»en found for arbi t rary toroidal scalar pressure 

eijui l i b r i a . 2 Writin g 

t di|) 

with P the pressure, one finds for the one-helicity field 

D = 2 * \ / s^fl (S£)2 , (26) 
I B 4 ^ > 

o 

Transport ia the long mean free path limit is a complicated process in 

fully three dimensional geometries. However, in systems with one helicity, 

the problem can be treated analytically- In the analytic theory it is 

customary to assume that e << 1 and that p( 61 = cos 8. Although we will 

make these assumptions for simplicity, a more general form for p(3) can be 

easily included. The drift kinetic equation is 
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3f„ 3f. 

with the distribution function F =• f + f^ with fw a Maxwellian. Using Eq. 
(21) for di^/dt » v«?Y and 

•fa = * —I—f . C28> 
g + «•! 

one f inds 

V , B , r -. 9f 3f. 
hr[S + i6(f-.)arl + ^ i r - « « • C 2 9 > 

The par t ic le flux i s given by 

r r - / „ < & ' ( - ^ r ^ — / v.ccf - f,) dV) 
'+ S-fa 

f Cg + * « / ^f- [ J P, C(f - f g ) d \ ] , (30) 

with the Spitzer distribution 7 function fg the solution of 

" A i r - c l V • ( 3 1 ) 

Following the standard neoclassical calculations or almost by examining 
Eqs. (29) and (30), one can show the total particle flux across a surface is 

•> j. T i 2 i J dT dT ». - ii > 2 « + tf „ 2 /" o 1 r d n j. n s , n ii 
r t * - ( 2 l ° ^ 2 ~ 8 ^ ~ r [ a i - d T + a 2 f - dF + a 3T7dT-] 

o 

- <2, , 2 a, ^ i l /I | £ - n£ , (32) 
B o 
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with a, . . . a 4 numerical constants which we wil l determine by comparing with 

the well-known resul ts for the large aspect ra t io tokamak, in par t icu lar , 
Q 

those of Rosenbluth, Harelttne, and Hinton. The electron gyroradius, 
collision time, and temperature are p , x , and T . The ion temperature is 

e e e 
T., n is the density, and c is the speed of light. The flux of Rosenbluth 

et al., r D. is related to r by 

r R - rt/(2Ttr)C2irR) , (33) 

with r the local minor radius and R the major radius. One also has 

St- is- f t > • - " • • l'"9> "$&) • 

with these substitutions 

(34) 

2 

^• - ( i f ) / e r t a i d 7 + a 2 ~ d r + a 3 T 7 d r ] 
B, 2 p , dT dT, r e r dn 

1 

,v * a4 c ^ ^ T" • ( 3 5> 

Except for factors of B /B which were set equal to unity, but are important 

for the reversed field pinch, this is the flux given by Rosenbluth et al. 

with 

T. T 
1,̂  = 1 . 1 2 ( 1 + ^ ) , a 2 - -0.4 3, a 3 = - 0 . 1 9 ^ , 

e i 

a, = 2.44 . 
4 

(36) 
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The total electron and ion heat fluxes can be similarly evaluated and are of 

the same form as the particle flux. The parallel current is 

" , dT dT, 

Reduction to the large aspect ratio tokamak case give 

B, cT . dT dT. 
J. " *NC^ -X&TT i>5%+ >ef IT + *7 f - d T ] • <38> 

o 9 e e 

(39) 

<,„<.- [0.51 - j - * - ] " 1 ! ! - 1.95 e 1 / 2J , 
e m e 

a 5 - 2.44 CI + T /Tfi>, a 6 - 0.69, a- - -0.*2 -^ 
e 

To advance the density in time one uses 

|f + ?-r* - s , C40) 

with 5 the sources of particles. Integrating this equation over the volume 

and using n » n(i|p) one has 

fr + ̂ rr-b i-^r) -s , (*i) B r 
st ' g + *i a* 1

( , T ) 2 J ' 

with S the surface averaged source of particles. There is a sisiiiar 

eqir.uion for Lhe Lime rate of change of the electron and ion temperatures. 
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IV. CONCLUSIONS 

Plasmas with different physical shapes can have identical drift orbits 

and associated transport. Such systems are called isotrijrphic. The most 

important feature of a plasma confinement geometry, for the evaluation of 

drift orbits, is the magnetic field strength expressed in magnetic 

coordinates. In plasma systems with closed magnetic surfaces, there are two 

periodicities. Such systems are topologically toroidal. Drift orbits in 

topologically toroidal systems depend on three functions of the radial 

coordinate, the toroidal flux 2ITI|J, in addition to the field strength. 

However for good confinement, drift orbits must be J.ocaliT-ed 

in ifi; so i|i generally plays the role of a parameter rather than a variable. 

The three functions of i|» which enter the solution for the drift orbits are g 

and I. which are within a factor c/2 the total poloidal current; outside and 

toroidal current inside a magnetic surface, and * the rotational transform. 

Systems with closed magnetic surfaces can be decomposed in a Fourier 

series in the two periodic -oordiaates 9 and 4. A typical term in this 

deconposition depends on n$ - m9. Any other term, . which depends 

on r(n$ - m6) with r a rational number, is said to be of the same 

helicity. If the Fourier decomposition of the field strength contains only 

one helicity, ihere is a Constant of the motion, which is canonical raomen'um 

conservation in toroidal symmetry. In addition, one can evaluate the 

transport coefficients in a form that is valid for all one-helicity 

systems. Tn effect, all one-helicity systems are isomorphic although they 

may naturally fall at different places in g, I, * parameter spaces. 

Examples of one-helicity systems are the synmetric t.okamak, the straight 

Stella rstor, and the elliptical cylinder-

The Fourier decomposition of a field strength with two helicit.ies can 
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be reduced to a standard from. Consequently, all two^hellcity systems are 

isomorphic in tile same sense as all one-helicit/ systems are. Physical 

realizations of two-helicity systens are the tokamak with toroidal ripple 

and a simple toroidal stellarator. The drift orbits and transport in two-

heli^ity f «lrls are far more complex and subtle than in one-helicity systems 

d'ue to the absence of a local constant of the motion of the canonical 

momentum type. However, a combination of analytic and numerical work 

could give a general treatment of transport in systems with two helicities. 

Systems with three or more helicities can not all be reduced to a 

standard form. In such systems the relative mode numbers of the different 

hsiicities are additional parameters in a transport theory. 
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