

Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF_3

W. T. Carnall Chemistry Division Argonne National Laboratory

Hannah Crosswhite and H. M. Crosswhite Department of Physics The Johns Hopkins University

> NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, no awn of their employees, no aray of their contractors, rabcontractors, or their employees, makes any warranty, serves or umplied, or assume any kepil liability or responsibility for the accuracy, completeness or usefulness of any information, appartia, product or process diaclosed, or represents that is use would not infinge privately owned rights.

DISTBIBUTION OF THIS DOCUMENT IS UNLIMITED

BLANK PAGE

CONTENTS

-	Tura	. ان مدر ا	un h d a m	i ay
1.	In	troal	liction	2
II.	Physical and Crystallographic Properties of LaF ₃			5
	Fig	g. 1.	. LaF ₃ Structure Viewed Down the C-axis	6
III.	Tre	eatme	ent of Experimental Data	8
	Fig	g. 2.	Crystal-field Parameters for Ln^{3+} :LaCl $_3$ and Ln^{3+} :LaF $_3$	13
Ι٧.	Ene	ergy	Level Correlations - Survey of Experimental Data	14
	1.	f ² ((f ¹²)	14
	2.	f ³ (f ¹¹)	14
	3.	f ⁴ (f ¹⁰)	16
	4.	f ⁵ (f ⁹)	16
	5.	f ⁶ (f ⁸)	17
	6.	f ⁷		17
۷.	The	oret	ical Interpretation of Excited State Relaxation	19
	A.	The	oretical Treatment of Absorption Spectra	19
		1.	General Concepts	19
		2.	Induced Electric-Dipole Transitions	21
		3.	Magnetic Dipole Transitions	23
		4.	Comparison of Calculated and Observed Transition Probabilities	24
	B.	Re 1	axation of Excited States	24
		1.	General Considerations	24
		2.	Radiative Relaxation	25
			Fig. 3. Energy-level diagrams of Ln ³⁺ :LaCl ₃	27
		3.	Non-radiative Relaxation	28
		4.	Comparison of Computed Excited State Lifetimes with Those Observed Experimentally	30
		5.	Comments on the Use of the Tables	31
Acknow	led	gemer	nts	33
References 34				

Page

.

APPENDIX I

Fig. 1. Variation of the Slater Parameter F^k with Lanthanide Atomic Number.

Fig. 2. Variation of the Spin-Orbit Constant with Lanthanide Atomic Number.

Table 1. Parameters for Ln^{3+} : LaCl₂.

Table 2. Relativistic Hartree-Fock Integrals for 4f^N(IV).

APPENDIX II

Table 1. Atomic Parameters for $Ln^{3+}:LaF_3$. Table 2. Crystal-Field Parameters for $Ln^{3+}:LaF_3$.

APPENDIX III

Table 1. Experimental and Calculated Energy Levels for Pr^{3+} :LaF₃.

Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f²-transitions.

APPENDIX IV

Table 1. Experimental and Calculated Energy Levels for Nd^{3+} :LaF₂.

Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f³-transitions.

Figs. 1-21. The Absorption Spectrum of $Nd^{3+}:LaF_3$ in the Region $\sim 4000-50000 \text{ cm}^{-1}$ recorded at ~ 4 K.

APPENDIX V

Table 1. Computed Energy Levels for $Pm^{3+}:LaF_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f⁴-transitions. APPENDIX VI

Table 1. Experimental and Calculated Energy Levels for $\text{Sm}^{3+}:\text{LaF}_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f⁵-transitions. APPENDIX VII

Table 1. Computed Energy Levels for $Eu^{3+}:LaF_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f⁶-transitions. Table 1. Experimental and Calculated Energy Levels for $\text{Gd}^{3+}:\text{LaF}_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f⁷-transitions. APPENDIX IX

Table 1. Experimental and Calculated Energy Levels for $\text{Tb}^{3+}:\text{LaF}_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f⁸-transitions. APPENDIX X

Table 1. Experimental and Calculated Energy Levels for Dy³⁺:LaF₃. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f⁹-transitions. APPENDIX XI

Table 1. Experimental and Calculated Energy Levels for $Ho^{3+}:LaF_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f¹⁰-transitions. APPENDIX XII

Table 1. Experimental and Calculated Energy Levels for $\text{Er}^{3+}:\text{LaF}_3$. Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f¹¹-transitions. APPENDIX XIII

Table 1. Experimental and Calculated Energy Levels for $\text{Tm}^{3+}:\text{LaF}_3$ Table 2. Matrix Elements of $[U^{(\lambda)}]^2$ for Selected 4f¹²-transitions. APPENDIX XIV

Table 1. Calculated Values of Ω_{λ} for Ln³⁺:LaF₃.

Table 2. Observed and Calculated Excited State Lifetimes for Ln³⁺:LaF₂

Table 3. Partial Lifetimes and Branching Ratios in the Relaxation of Excited States in ${\rm Tb}^{3+}:{\rm LaF}_3$.

FOREWORD

The spectroscopic investigations of lanthanide doped LaF_3 crystals and their theoretical interpretation reported here are the result of an extensive joint effort of the Argonne National Laboratory and The Johns Hopkins University over the last decade. It had its roots in similar studies at both laboratories of other crystal hosts, particularly LaCl₃, for which a summary is also given in an appendix to this report. This work was supported at Argonne by the United States Atomic Energy Commission and the United States Energy Research and Development Administration, and at Hopkins by the United States Army Research Office and the National Science Foundation. An identical report is being issued under separate cover by each institution.

I. Introduction

The low-temperature absorption spectra of trivalent lanthanide compounds reveal the sharp-line structure characteristic of transitions between states within the $4f^{N}$ -configuration, induced by the ionic environment. These transitions can be directly represented as upper-state energy levels. In some cases, notably ions in LaCl₃ host crystals, the empirical levels have been interpreted in terms of a model which exhibits in detail the structure of the $4f^{N}$ electronic configuration itself. The atomic parameters derived from these studies vary slowly and systematically across the lanthanide series and in fact are depressed from corresponding values derived from atomic and ionic vapor spectra.

G. H. Dieke has given a definitive review of the spectra of lanthanides in crystals including a comprehensive summary of the data in LaCl₃ host crystals, Dieke (1968). The early interpretive papers concentrated on analysis of the crystal-field parameters. More recently, the emphasis has been on developing models which include structural details of the $4f^N$ configurations themselves with simultaneous diagonalization of the complete Hamiltonian rather than a perturbation-theory treatment. The most recent analyses have been given in a series of papers, Crosswhite et al. (1976), Carnall et al. (1976), Crosswhite et al. (1977). These include effective two-body and three-body operators approximating the electrostatic effects of configuration-mixing interactions, plus two-body double-vector effective operators which allow for the variation of spin-orbit interactions with spectroscopic term and for the spin-other-orbit corrections for relativistic effects. The present analysis of spectroscopic data for the lanthanides in single-crystal LaF₃ employs the most recent model.

-2--

As a crystal matrix in which to study the absorption spectra of lanthanide ions, LaF_3 has several advantageous features. In addition to being a transparent host over a wide region of the spectrum, it is chemically inert so that the crystals can be handled in air. Thus even though the site symmetry of the metal ion is low, the commercial availability of the crystals in a wide range of dopings has encouraged extensive experimental studies.

We report here two types of correlation with experimental results. For even-f-electron systems we have computed a center of gravity based on the energies of the observed states, and calculated optimized sets of atomic energy level parameters. For odd-electron systems we have performed complete crystalfield calculations in which the parameters of both the atomic and crystalfield parts of the interaction have been adjusted to experimental data. Trends in the free-ion parameters over the series have been examined and in some cases further restrictions on their values are set, based on observed parametric regularities across the periodic series. The crystal field parameters for the odd-f-electron ions have also been compared and regularities over the series are noted. The end result of this effort is a set of eigenvectors for all of the ionic states in each configuration. We then turn to the interpretation of intensities of absorption bands and develop the basis for computing transition probabilities using a semi-empirical theory of induced electric dipole transitions. Finally, we apply the results of the analysis of absorption spectra at room temperature to the related process of excited state relaxation, and provide the basis for computing the radiative lifetime for any given state in any member of the series.

Spectroscopic results for all lanthanides doped into LaF_3 ($Ln^{3+}:LaF_3$) except Pm^{3+} and Eu^{3+} are reported. Since the crystals were obtained from commercial sources, the fact that the only isotope of Pm available in macro

-3-

amounts is ¹⁴⁷Pm which is β^- -unstable with a relatively short half-life, excluded it from consideration. The tendency of EuF₃ to reduce to EuF₂ at high temperatures even in the presence of F₂ vapors, and the very strong broad band structure associated with Eu²⁺ in the visible and ultraviolet range due to $4f^7 + 4f^65d$ transitions, made it impossible to obtain the requisite experimental data for the Eu-system. The energy level schemes for Pm³⁺:LaF₃ and Eu³⁺:LaF₃ were therefore calculated using parameters obtained by interpolation.

Some of the experimental results utilized in the analyses represent as yet unpublished work done over a period of years in the Chemistry Division of Argonne National Laboratory with the help of senior thesis students and guest scientists. These results were obtained using several different instruments. Spectra in the range $\sim 4000-15000 \text{ cm}^{-1}$ were recorded using a Cary Model 14R (crystal-grating - 0.5 meter) recording spectrophotometer. In the region 15000-50000 cm⁻¹, both a 1-meter Hilger-Engis Model 1000 spectrograph equipped with an EMI 9558 Q photomultiplier, and the Argonne 30' Paschen-Runge spectrograph (in second order) were used. Observations were made at ~ 298 , 77, and 4 K. Crystals of LaF₃ doped with selected lanthanides in various concentrations were obtained from Optovac Inc., North Brookfield, Mass. 01535.

There continues to be a wide interest in lanthanide-doped crystals and glasses as laser materials. In some cases quantitative intensity calculations have been carried out and related to the fluorescing properties in a given host. The most extensive calculations have been limited to the $f^2(f^{12})$ and $f^3(f^{11})$ members of the series since the matrix elements of the tensor operators connecting the states of interest required in the intensity analysis for more complex systems have not been published. We report here a consistent set of the matrix elements for all $4f^{N}$ -configurations based on the systematic atomic parameters generated in this work.

「たいたい」というない

-4-

II. Physical and Crystallographic Properties of LaF3

There have been conflicting reports suggesting both C_{2V} , Oftedal (1929, 1931) and D_{3h} , Schlyter (1953), site symmetries of the La³⁺ ions in LaF₃. More recent studies, Mansmann (1964, 1965), Zalkin et al. (1966), Lowndes et al. (1969), indicate that the nine nearest-neighbor F⁻ ions present a sufficiently distorted environment so that the symmetry is D_{3d}^4 (P3cl) with a C_2 site symmetry, Fig. 1. A recent powder neutron-diffraction study of LaF₃ and CeF₃, Cheetham et al. (1976), provided additional confirmation of the latter structure. Isostructural members of the series are LaF₃, CeF₃, PrF₃, and NdF₃; SmF₃ and the heavier trifluorides are dimorphic. They also crystallize in the orthorhombic YF₃ lattice where each Y³⁺ has 8-F⁻ at 2.3 Å and one at 2.6 Å, Zalkin and Templeton (1953).

The crystallographic evidence for a low site symmetry in LaF_3 is consistent with the results of an early spectroscopic study of PrF_3 in which Sayre and Freed (1955) pointed out that the number of lines observed at low temperature for electronic transitions associated with several excited states excluded a site symmetry higher than C_{2V} . The Raman spectrum of LaF_3 has been interpreted in terms of a C_2 site symmetry of the La^{3+} , but these results also emphasize that the deviation of the symmetry from more symmetric models is very small indeed, Bauman and Porto (1967). Spectroscopic evidence for hidden selection rules in the polarized spectrum of Nd³⁺:LaF₃ is also suggestive of an approach to a symmetry higher than C_2 , Wong et al. (1963b), Kumar et al. (1976).

A recent investigation of the normal and vacuum ultraviolet absorption bands of trivalent lanthanides doped into LaF_3 has provided evidence that LaF_3 is transparent down to the normal ultraviolet limit of ~ 2000 Å, Heaps et al. (1976).

Fig. 1

LOF3 STRUCTURE VIEWED DOWN THE C-AXIS

Refractive index (n) measurements using films of LaF₃, CeF₃, and NdF₃, Haas et al. (1959), provided the following values in the 0.25-2.0 μ range:

<u>λ(μ)</u>	<u>n</u>	<u>λ(μ)</u>	<u>n</u>
2.0	1.57	0.45	1.60
1.2	1.575	0.40	1.61
0.8	1.58	0.30	1.625
0.6	1.585	0.27	1.65

For single-crystal LaF_3 , the expression obtained for the variation of the refractive index (ordinary ray) with wavelength in the visible-near ultraviolet, Wirich (1966), was

n	=	1.57376	+	<u> </u>	
"0				λ(Å) - 686.2	

<u>λ (Å)</u>	n _o (obs)	n _o (calc)
2536.5	1.65587	1.65652
3131.5	-	1.63639
3663.3	-	1.62520
4046.5	1.61797	1.61933
4358.3	1.61664	1.61546
5460.7	1.60597	1.60583

.

The M.P. of LaF₃ is 1493°C and its density is 5.94 gm/cm³, Brown (1958).

.

III. Treatment of Experimental Data

In recent years there have been numerous reports of the spectroscopic properties of different lanthanides in host LaF_3 , and many of these investigations have included low-temperature spectra. Consequently, the energies of the crystal-field components associated with many of the free-ion states have been recorded. The extensive data available led us to begin a systematic theoretical analysis of the 4f^N energy level structures over the series.

Part of the motivation to undertake a systematic analysis of the data stemmed from the results described in two papers by Onopko (1968a,b) in which he pointed out that the energies of crystal-field components of several of the lowest-lying free-ion states in Nd³⁺:LaF₃ and Er³⁺:LaF₃ could be computed in reasonably good agreement with experiment by assuming that the site symmetry approaches D_{3h} . The approximation also appeared to be justified in treating the crystal-field levels in Gd³⁺:LaF₃, Schwiesow and Crosswhite (1969). We had already developed computer programs that allow a complete diagonalization of the atomic and crystal-field Hamiltonian for the 4f³(4f¹¹) case in D_{3h} symmetry. We had also determined the atomic parameters for both Nd³⁺:NdF₃ and Er³⁺:LaF₃. We therefore extended the analysis using Onopko's crystalfield parameters. The initial results confirmed the validity of Onopko's analysis by providing a computed set of crystal-field levels that were in reasonably good agreement with experiment throughout the spectral range to ~50,000 cm⁻¹:

The analysis was extended by assigning the experimentally observed energy to those crystal-field states identified by the initial computation. This permitted a least-squares adjustment of the original crystal-field parameters. Additional assignments were made based entirely on the correlation

-8-

between the optimized crystal-field parameter calculations and observed levels. We then proceeded to perform a similar crystal-field calculation for other lanthanides using the optimized values for Nd^{3+} and Er^{3+} as the basis for beginning the analysis.

For odd-electron systems the crystal field will split a level into J + 1/2 separate components in all site symmetries except cubic and octahedral. The number of possible components therefore is the same for C_2 and D_{3h} , and because D_{3h} appears to be a good approximation to the actual one, it is not difficult to correlate the experimental and computed levels.

On the contrary, in even-electron systems such as $Pr^{3+}(4f^2)$, crystalfield calculations based on D_{3h} symmetry do not remove the degeneracy of the $\mu = \pm 1$, ± 2 states. It has been pointed out that the number of lines observed in the spectrum of $Pr^{3+}:LaF_3$ implies a low site symmetry consistent with the complete removal of symmetry-related degeneracy in the indicated levels. Sayre and Freed (1955), Carnall et al. (1969). This leads to ambiguities in making the necessary crystal-field correlations. We have therefore attempted complete crystal-field analyses only for odd-electron systems. For the even-electron cases we have made the approximation of fitting the <u>centers</u> of the crystal groups to the free-ion Hamiltonian only.

The basic theory used to interpret the structure observed experimentally in lanthanide crystal spectra has been considerably refined in recent years. A semi-empirical approach has been employed in which the attempt is made to identify those effective interactions operating within the f^{N} -configuration that reproduce the observed structure. Judd (1963), Wybourne (1965), Judd et al. (1968), Crosswhite et al. (1968). Based on this method of interpretation, the total Hamiltonian of the system can be written:

-9-

「「「「「「「「」」」」

-10-

 $E = E_F + E_{CF}$

where ${\bf E}_{\bf F}$ is the atomic part of the interaction:

$$E_{F} = \sum_{k=0,2,4,6} F^{k}(nf,nf)f_{k} + \zeta_{4f}A_{S0} + \alpha L(L+1) + \beta G(G_{2}) + \gamma F(R_{7})$$
$$+ \sum_{i=2,3,4,6,7,8} T^{i}t_{i} + \sum_{k=0,2,4} M^{k}m_{k} + \sum_{k=2,4,6} P^{k}p_{k}$$

The F^k , ζ_{4f} , α , β , γ , T^i , M^k and P^k are parameters and their associated terms are the corresponding operators. E_{CF} represents the crystal-field interaction. Following Onopko (1968a,b) we assumed that the symmetry of the lanthanide site in LaF₃ was approximately hexagonal (D_{3h}), that is, that the hexagonal terms in the crystal-field expansion are dominant.

$$E_{CF} = \sum_{k,q} B_q^k C_{q}^{(k)} = B_0^2 C_0^{(2)} + B_0^4 C_0^{(4)} + B_0^6 C_0^{(6)} + B_6^6 [C_6^{(6)} + C_{-6}^{(6)}]$$

The above interactions which constitute the model used in this investigation are discussed in detail in Appendix I with reference to the similar treatment of the more extensive data for $Ln^{3+}:LaCl_3$.

For odd-f-electron systems the total Hamiltonian can be separated into three submatrices and all three of them diagonalized simultaneously. The methods of truncating the very large matrices that occur for ions in the middle of the series have been discussed previously, Carnall et al. (1976). The results of the diagonalizations--which eventually included variation of most of the parameters in the systems, are given in Appendix II.

Onopko (1968a,b) quoted his original results in the Stevens operator (β_{kg}) normalization and subsequently extended the analysis to $\mathrm{Er}^{3+}:\mathrm{LaF}_3$,

Onopko (1969). The corresponding crystal-field parameters in the tensor operator normalization (B_q^k) used in the present study, Wybourne (1965), are given below:

Nd ³⁺	:LaF3	Er ³⁺ :LaF ₃		
$\beta_{20} = 138 \text{ cm}^{-1}$	$B_0^2 = 276 \text{ cm}^{-1}$	$\beta_{20} = 141 \text{ cm}^{-1}$	$B_0^2 = 282 \text{ cm}^{-1}$	
^β 40 = 176	$B_0^4 = 1408$	β ₄₀ = 145	$B_0^4 = 1160$	
$^{\beta}60 = 100$	$B_0^6 = 1600$	^β 60 ^{= 48.3}	$B_0^6 = 773$	
$^{\beta}66 = 645$	$B_{6}^{6} = 679$	β ₆₆ = 430	$B_6^6 = 453$	

The crystal-field parameters obtained from the $Nd^{3+}:LaF_3$ data in this investigation are compared with those for $Nd^{3+}:LaCl_3$, Crosswhite et al. (1976), where the symmetry is hexagonal, below:

Nd ³⁺ :LaC1 ₃
(C _{3h} Symmetry)
$B_0^2 = 163 \text{ cm}^{-1}$
$B_0^4 = -336$
$B_0^6 = -713$
$B_{6}^{6} = 462$
$\sigma = 8.1 \text{ cm}^{-1}$
101 levels fitted

It has been demonstrated that ab initio calculations of crystal-field parameters based on an ionic model are not able to reproduce the values obtained semi-empirically. However, serious efforts are being made to develop suitable models for the LaF_3 crystal, Newman and Curtis (1969), Stedman and Newman (1971), and attempts have also been made to treat the low-symmetry LaF_3 lattice case by actually using the appropriate number of terms in the potential, Matthies and Welsch (1975).

-11-

Żs

a the first of the second of

The experimental results of the present efforts should provide a useful testing ground for further theoretical treatments. Systematic trends in the values of the crystal field parameters for $Ln^{3+}:LaF_3$ are compared with those for $Ln^{3+}:LaCl_3$ which are much better established experimentally, in Fig. 2.

-12-

, Mer

i

IV. Energy Level Correlations - Survey of Experimental Data

1. $4f^2(f^{12})$

The energy level structure in Pr^{3+} :LaF₃ has been examined experimentally in moderate to high resolution by several groups. Wong et al. (1963a), Yen et al. (1964), Caspers et al. (1965a), Carnall et al. (1969). Free-ion level energies are recorded in Appendix III together with the corresponding computed levels using parameters given in Appendix II. The weak point in the theoretical analysis is the assumption of a center of gravity for the ${}^{1}I_{6}$ and for the ${}^{3}P_{1}$ transitions.

Most of the possible crystal-field components in the spectrum of $\text{Tm}^{3+}:\text{LaF}_3$ have been observed, Carnall et al. (1970), and the centers of gravity of these groups are compared to the calculated free-ion levels in Appendix XIII.

2. $4f^{3}(f^{11})$

There are extensive published reports, Wong et al. (1963b), Caspers et al. (1965b), of the structure observed in the low-temperature absorption and fluorescence spectra of $Nd^{3+}:LaF_3$. These data have been extended by previously unpublished work at ANL to provide as complete a set of crystal-field components as possible. Of the 182 levels in the f^3 configurations, 139 have been assigned. The results are included in Appendix IV, and can be compared to those obtained in the recent extensive investigation of the spectrum of $Nd^{3+}:LaCl_3$, Crosswhite et al. (1976). Kumar et al. (1976) have examined the absorption and fluorescence spectra of $Nd^{3+}:LaF_3$ at 77 K, the latter excited using the 3371 Å line of a N₂-laser. They reported several transitions not observed in previous investigations. Some of these are consistent with band energies observed in the present study but there are discrepancies. In general, there is a small shift in energy between observations at 77 K and those

-14-

 \mathcal{A}

reported here which refer to 4 K. The assignments made to the fluorescence spectrum serve to further establish the energies of the lower-lying states which had been reported earlier. The components of the ${}^{4}I_{15/2}$ state reported by Voron'ko et al. (1973) from observations made at 77 K are in good agreement with the unpublished results recorded in Table 1, Appendix IV.

The present theory of intensities of f + f transitions treats the composite free-ion states rather than transitions between individual crystal-field components (see Section V). A number of investigators are presently concerned with extending the theory to the crystal-field case. In order to provide a basis for testing the results of such calculations we include in Figs. 3-22, Appendix IV, a set of absorption spectra of Nd³⁺:LaF₃ taken at ~4 K covering most of the levels observed in the f³-configuration. No attempt was made to preserve a constant resolution since two different instruments were used, and several different crystals of varying concentrations and path lengths were employed. However, in any one group, the relative intensities of the components are clearly evident.

The absorption and fluorescence spectra of $\mathrm{Er}^{3+}:\mathrm{LaF}_3$ measured at 77 K and including levels up to $\sim 39500 \ \mathrm{cm}^{-1}$ were reported by Krupke and Gruber (1963, 1964, 1965). Several higher-energy transitions were also tentatively identified. A subsequent investigation, Carnall et al. (1972), included measurements at ~ 4 K in the range 6000-50000 cm⁻¹. Additional spectroscopic measurements at low temperature have been made, so that the levels recorded in Appendix XII represent a composite and in a number of cases a reevaluation of results appearing in the literature. In addition to a discrepancy in the calibration standards applied to a number of groups originally reported by Carnall et al. (1972), the comparison of experimental energies with those computed based on

-15-

the crystal-field interpretation used here suggested a possible vibronic origin for some of the states previously identified as crystal-field components.

3. $4f^{4}(f^{10})$

The absorption spectrum of $Pm^{3+}:LaF_3$ has not been reported, but an extensive investigation of the absorption and fluorescence spectra of $Pm^{3+}:LaCl_3$ has been published, Carnail et al. (1976). We have therefore used the regularities in the energy level parameters for $Ln^{3+}:LaF_3$ as the basis for interpolation and assignment of approximate parameters for $Pm^{3+}:LaF_3$. The corresponding computed free-ion levels are given in Appendix V. The chemical shifts observed on comparing free-ion levels in $Nd^{3+}:LaF_3$ and $Nd^{3+}:LaCl_3$ are similar to those found in comparing the computed results for $Pm^{3+}:LaF_3$ with the experimental states of $Pm^{3+}:LaCl_3$.

An extensive investigation of the absorption and fluorescence spectra of $Ho^{3+}:LaF_3$ has been reported by Caspers et al. (1970). Additional experiments have been conducted at ANL, but only minor additions or modifications of the published data were indicated. In many cases, the number of observed components of free-ion groups is less than allowed theoretically based on C₂ site symmetry, but the centers of gravity of these levels appear to provide the basis for calculation of a consistent set of energy level parameters, as recorded in Appendix XI.

4. $4f^{5}(f^{9})$

The observation and analysis of the absorption and fluorescence spectra of $\text{Sm}^{3+}:\text{LaF}_3$ in the range 0-11000 cm⁻¹ was reported by Rast et al. (1967), and the line list was extended to ~ 32000 cm⁻¹ in a tabulation given in Dieke (1968). The number of observed lines was further extended in the present investigation, and a composite tabulation based primarily on recent work at ANL is given in Appendix VI.

Absorption and fluorescence spectra of $Dy^{3+}:LaF_3$ including levels up to $\sim 32000 \text{ cm}^{-1}$ have been reported in the literature by Fry et al. (1968). A number of new levels including groups at higher energies were recorded in the course of the present investigation. The results are presented in Appendix X.

5. $4f^{6}(f^{8})$

Crystals of LaF₃ doped with EuF₃ are found to contain some Eu²⁺ which makes it difficult to observe the Eu³⁺ transitions in absorption in the nearultraviolet. Weber (1967a) observed fluorescence in Eu³⁺:LaF₃ from the excited states ${}^{5}D_{0}$, ${}^{5}D_{1}$, ${}^{5}D_{2}$, and ${}^{5}D_{3}$ using pulsed selective excitation. The energy level scheme for the low-lying ${}^{5}D$ and ${}^{7}F$ states that can be deduced from these measurements shows the expected red shift with respect to the corresponding levels observed in Eu³⁺:LaCl₃, Dieke (1968), and is consistent with the results given in Appendix VII. The latter were computed based on energy level parameters deduced from systematic trends over the series.

The energy levels of Tb^{3+} in single-crystal TbF_3 have been studied in absorption and fluorescence by Krupka and Guggenheim (1960). From this data the centers of gravity of the ${}^5\text{D}_4$ and the ground term ${}^7\text{F}$ multiplet components could be determined. The results are in agreement with the moderately extensive study of the low-temperature absorption spectrum of $\text{Tb}^{3+}:\text{LaF}_3$ which was part of the present investigation. The free-ion levels of $\text{Tb}^{3+}:\text{LaF}_3$ are given in Appendix IX.

6. $4f^{7}$

a start with a line and

.

The energy levels of the ${}^{6}P$ and ${}^{6}I$ groups in Gd³⁺:LaF₃ were reported by Schwiesow and Crosswhite (1969) who also performed a crystal-field analysis assuming an approximate hexagonal site symmetry. The experimental results were subsequently extended to include the ${}^{6}D$ states in the 40000-50,000 cm⁻¹ range,

-17-

Carnall et al. (1971). The data recorded in Appendix VIII are a composite of the indicated published results.

-18-

ì

it

BLANK PAGE

V. Theoretical Interpretation of Excited State Relaxation

A. Theoretical Treatment of Absorption Spectra

1. General Concepts

The quantitative treatment of the intensities of trivalent lanthanide absorption bands relates an experimentally determined quantity, a normalized band envelope, P_{EXPT}, to a theoretical model based on the mechanisms by which radiation can be absorbed. ine terms oscillator strength or transition probability are applied interchangeably to the symbol P. There is some magnetic dipole character in a few transitions $(P_{M,D_{\star}})$, but an induced electric-dipole mechanism ($P_{F,D}$) must be invoked to account for the intensities of most lanthanide absorption bands. The term induced or forced electric dipole is used to emphasize that true electric dipole transitions require the initial and final states to be of different parity, whereas no parity change is involved in transitions within a configuration. In contrast, magnetic dipole transitions within a configuration are (parity) allowed. The weak intra-f^N transitions are accounted for by assuming that a small amount of the character of higher-lying oppositeparity configurations is mixed into the f^N states via the odd terms in the potential due to the ligand field, Wybourne (1965). We neglect higher multipole mechanisms, (electric quadrupole, etc.), and write:

$$P_{EXPT} = P_{E.D.} + P_{M.D.}$$

In expressing $P_{E.D.}$ in terms of a theoretical model, Judd (1962) and Ofelt (1962) summed over the intensities of the individual crystal-field components of a given state. As a consequence, the model applies to spectra observed at room temperature or above since it is assumed that all of the crystal-field

ないというという

-19-

components of the ground state are equally populated. Some attempts have been made to avoid this summation and thus treat the intensities of transitions between the lowest crystal-field level of the ground state and excited crystal-field states, Axe (1963). However, the intensity calculations reported in the present summary deal only with composite levels. Thus the appropriate expression for P_{EXPT} , which represents the number of classical oscillators in one ion, more commonly referred to as the probability for absorption of radiant energy, Hoogschagen (1946), is:

$$P_{\text{EXPT}} = \frac{2303 \text{ mc}^2}{N\pi e^2} f_{\varepsilon_i}(\sigma) d\sigma = 4.32 \times 10^{-9} f_{\varepsilon_i}(\sigma) d\sigma$$

where ε_i is the molar absorptivity of a band at the energy σ_i (cm⁻¹), and the other symbols have their usual meaning. P is here a dimensionless quantity. The molar absorptivity at a given energy is computed from the Beer-Lambert law:

$$\varepsilon = \frac{1}{c\ell} \log I_0 / I \tag{1}$$

where c is the concentration of the lanthanide ion in moles/1000 cm³, ℓ is the light path in the crystal (cm), and log I_o/I is the absorptivity or optical density. The expression for P_{EXPT} is identical to that for f defined by Krupke (1966) in his treatment of lanthanide spectra in LaF₃.

In view of our interest in both absorption and fluorescence processes, there is an advantage in pointing out the basic role of the Einstein coefficient in expressing the transition probability due to dipole radiation:

$$A(i,f) = \frac{64\pi^{4}\sigma^{3}}{3h} |\langle i|D|f \rangle|^{2}$$
(2)

where i and f signify the initial and final states, A is the (spontaneous) transition probability per unit time, $\sigma(cm^{-1})$ is the energy difference between

the states, and D is the dipole operator, Condon and Shortley (1957).

In addressing the problem of the absorption of energy, Broer et al. (1945) expressed eq. (2) in terms of oscillator strength using the relationship $P = Amc/8\pi^2\sigma^2e^2$. The factor 2J + 1 was added since the matrix elements of <u>D</u> are summed over all components of the initial state i. A refractive index correction x was also included giving:

$$P = \frac{8\pi^2 m_{CO}}{3he^2(2J+1)} [\chi \overline{F}^2 + n \overline{M}^2]$$
(3)

where \overline{F}^2 and \overline{M}^2 represent the matrix elements of the electric dipole and magnetic dipole operators, respectively, joining an initial state J to the final state J', $\chi = \frac{(n^2 + 2)^2}{9n}$, and n is the refractive index of the medium.

2. Induced Electric-Dipole Transitions

Judd (1962) and Ofelt (1962) independently derived expressions for the oscillator strength of induced electric dipole transitions within the f^{N} configuration. Since their results are similar, and were published simultaneously, the basic theory has become known as the Judd-Ofelt theory. However, Judd's expression, eq. (4), was cast in a form that could be directly related to oscillator strengths derived from lanthanide absorption spectra taken at 25°C or above:

$$P_{E.D.} = \sum_{\lambda=2,4,6} T_{\lambda} v(\psi J | | U^{(\lambda)} | | \psi' J')^2$$
(4)

where $v(\sec^{-1})$ is the mean frequency of the transition $\psi J \rightarrow \psi' J'$, $U^{(\lambda)}$ is a unit tensor operator of rank λ , the sum running over the three values $\lambda = 2,4,6$, and the T_{λ} are three parameters which can be evaluated from experimental data. These parameters involve the radial parts of the 4f^N wave functions, the wave functions of perturbing configurations such as 4f^{N-1}5d, and the interaction

-21-

between the central ion and the immediate environment.

÷

Typically, several excited states are encompassed by a single complex absorption envelope, and the matrix elements of $\underline{v}^{(\lambda)}$ are summed over these states. The energy in this case becomes that of the center of gravity of the envelope. Those investigators who have studied lanthanide intensities in crystals have followed an alternate parametrization, Axe (1963), Krupke (1966), which has clear advantages in describing both the absorption and fluorescence processes in terms of a single set of adjustable parameters.

The expression for T_{λ} given by Judd in eq. (4) was:

$$T_{\lambda} = \frac{8\pi^2 m}{3h(2J+1)} \left[\frac{(n^2+2)^2}{9n} \right] (2\lambda+1) \sum_{t} (2t+1) B_{t} \Xi^{2}(t,\lambda)$$
(5)

Substituting $v = c\sigma$ and eq. (5) into eq. (4) gives

$$P_{E.D.} = \frac{8\pi^2 mc\sigma}{3h(2J+1)} \left[\frac{(n^2+2)^2}{9n} \right]_{\lambda=2,4,6} \sum_{\lambda=2,4,6} \Omega_{\lambda} (\psi J | | U^{(\lambda)} | | \psi' J')^2$$
(6)

where $\Omega_{\lambda} = (2\lambda+1)\sum_{t} (2t+1)B_{t} \Xi^{2}(t,\lambda)$, Axe (1963), and in terms of \overline{F}^{2} , eq. (3),

$$\overline{F}^{2} = e^{2} \sum_{\lambda=2,4,6} \Omega_{\lambda}(\psi J | | U^{(\lambda)} | | \psi' J')^{2}$$
(7)

The matrix elements of eq. (6) are calculated in the SL basis using the relation:

$$\left(f^{N}_{\alpha}SLJ\right)\left[U^{(\lambda)}\right]\left[f^{N}_{\alpha}'S'L'J'\right] = \delta\left(S,S'\right)\left(-1\right)^{S+L'+J+\lambda}\left[\left(2J+1\right)\left(2J'+1\right)\right]^{1/2} \\ \left\{J_{L'L}J^{\prime\lambda}\right\}\left(f^{N}_{\alpha}SL\right)\left[U^{(\lambda)}\right]\left[f^{N}_{\alpha}'SL'\right]$$

$$\left(8\right)$$

Selection rules imposed by the nature of the mechanism assumed are discussed by Ofalt (1962). The reduced matrix elements on the right side of eq. (8) have been tabulated by Nielson and Koster (1963). The matrix elements as REAL TAXA STRATEGY

computed must be transformed from the SL basis to intermediate coupling before being squared and substituted into eq. (6).

The intermediate-coupling eigenvectors, $|f^N\psi J\rangle$, are expressed in terms of SL basis states, $|f^N\alpha SLJ\rangle$, by:

$$|f^{N}\psi J\rangle = \sum_{\alpha,S,L} c(\alpha,S,L)|f^{N}\alpha SLJ\rangle$$

where $c(\alpha,S,L)$ are the numerical coefficients resulting from the simultaneous diagonalization of the atomic parts of the Hamiltonian. The matrix elements of $\bigcup_{i=1}^{\lambda}$, eq. (8), have been calculated for transitions between various excited states as well as between the ground and excited states of the whole series of lanthanide ions using the energy level parameters given in Appendix II. The results are tabulated in Appendices III-XII.

3. <u>Magnetic Dipole Transitions</u>

Following the results of Condon and Shortly (1957), the magnetic dipole operator is given as $M = -e/2mc \sum_{i} (L_i + 2S_i)$. The matrix elements of the operator \overline{M}^2 in eq. (3) can then be written,

$$\overline{M}^{2} = e^{2}/4m^{2}c^{2}(\psi J | |L+2S| |\psi' J')^{2}$$
(9)

The non-zero matrix elements will be those diagonal in the quantum numbers α , S, and L. The selection rule on J, $\Delta J = 0, \pm 1$, restricts consideration to three cases:

1)
$$J'=J$$
 (α SLJ||L+2S|| α SLJ') = gfi[J(J+1)(2J+1)]^{1/2} (10)
where g = 1 + $\frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$

2) J'=J-1

$$(\alpha SLJ | |L+2S| |\alpha SLJ-1) = \pi \left[\frac{(S+L+J+1)(S+L+1-J)(J+S-L)(J+L-S)}{4J} \right]^{1/2}$$
(11)

-23-

3)
$$J'=J+1$$

(aSLJ||L+2S||aSLJ+1) = $\pi [\frac{(S+L+J+2)(S+J+1-L)(L+J+1-S)(S+L-J)}{4(J+1)}]^{1/2}$ (12)

The matrix elements calculated in eqs. (10)-(12) must be transformed into the intermediate coupling scheme before computation of the magnetic dipole contribution represented by eq. (9).

Values of the quantity P' > 0.015 x 10^{-8} where P_{M.D.} = P'n and n is the refractive index of the medium, have been tabulated for transitions of the trivalent lanthanide ions between the ground states and all excited free-ion states, Carnall et al. (1968a).

4. Comparison of Calculated and Observed Transition Probabilities

A number of authors have determined the Ω_{λ} intensity parameters from a least squares fitting procedure using band envelopes for $\operatorname{Ln}^{3+}:\operatorname{LaF}_3$ observed at ~25°C and available sets of the matrix elements of $U^{(\lambda)}$. Krupke (1966) was the first to show that transition probabilities in good agreement with experiment could be computed for $\operatorname{Pr}^{3+}:\operatorname{LaF}_3$ and $\operatorname{Nd}^{3+}:\operatorname{LaF}_3$. A summary of parameter values, Ω_{λ} , for $\operatorname{Ln}^{3+}:\operatorname{LaF}_3$ is presented in Table 1, Appendix XIV. The parameters for $\operatorname{Sm}^{3+}:\operatorname{LaF}_3$, $\operatorname{Dy}^{3+}:\operatorname{LaF}_3$, and $\operatorname{Tm}^{3+}:\operatorname{LaF}_3$ were checked against results obtained in the present investigation, and those for Dy^{3+} and Tm^{3+} were modified from the values originally reported. While the values of the matrix elements of $U^{(\lambda)2}$ given in Appendices III-XIII differ slightly from those in the literature, these differences are not sufficient to affect the reported values of Ω_{λ} .

B. <u>Relaxation of Excited States</u>

1. General Considerations

A great deal of progress has been made in analyzing the mechanisms of excited state relaxation of lanthanides in crystal hosts. Two modes of

relaxation can be recognized: radiative and non-radiative processes. Axe (1963) addressed the problem of expressing the radiative process in quantitative terms using the Judd-Ofelt theory. Non-radiative relaxation was already being formulated in terms of multiphonon processes in the early 1960's. Barasch and Dieke (1965), Riseberg and Moos (1967,1968). Such processes become less probable as the energy gap between an excited state and the next lower energy state increases.

2. Radiative Relaxation

In treating the fluorescence process, the Einstein coefficient, eq. (2) is used directly to express the rate of relaxation of an excited state (ψ J) to a particular final state (ψ 'J'). Following Axe (1963), the counterpart of eq. (3) becomes

$$A(\psi J, \psi' J') = \frac{64\pi^4 \sigma^3}{3J(2J+1)} [\chi' \overline{F}^2 + n^3 \overline{M}^2]$$
(13)

where $\sigma(cm^{-1})$ represents the energy gap between states (ψ J) and (ψ 'J'), χ ' = $\frac{n(n^2+2)^2}{9}$, and n is the refractive index of the medium. As in the absorption process, there is an implicit assumption that all crystal-field components of the initial state are equally populated. In principal, if fluorescence can be detected, the lifetime of the state is long compared to the rate at which it is populated in the excitation process, so thermal equilibrium at the temperature of the system can be achieved prior to emission.

The matrix elements of the electric and magnetic dipole operators, \overline{F}^2 and \overline{M}^2 , are identical to those in eq. (7) and eq. (9), respectively. However, the form of the refractive index correction in eq. (13) is not the same as for the absorption process, eq. (3). Equation (13) can be evaluated using parameters Ω_{λ} established from measurement of the absorption spectrum of the lanthanide ion in a crystal lattice identical to that studied in fluorescence.

-25-

Since excited state relaxation generally involves transitions to several lower-lying states, we define a total radiative relaxation rate, $A_T(\psi J)$

$$A_{T}(\psi J) = \sum_{\psi' J'} A(\psi J, \psi' J')$$
(14)

where the sum runs over all states lower in energy than the fluorescing state.

It is useful to define in addition the radiative branching ratio, β_R , from the relaxing state (ψ J) to a particular final state (ψ 'J')

$$\beta_{\mathsf{R}}(\psi J, \psi' J') = \frac{A(\psi J, \psi' J')}{A_{\mathsf{T}}(\psi J)}$$
(15)

and the radiative lifetime of a state

$$\tau_{R}(\psi J) = [A_{T}(\psi J)]^{-1}$$
 (16)

The principal fluorescing states of the lanthanides in crystal hosts are indicated in Fig. 3. However, fluorescence from many of these levels is only observed at low temperatures since rapid relaxation of an excited state by nonradiative processes competes strongly with the radiative mode unless the energy gap to the next lower level is large, as discussed in the next section.

Since the parameters Ω_{λ} have been determined for a number of the lanthanides in LaF₃ host, Table 1, Appendix XIV, we can compute the radiative lifetime of any excited state using eqs. 13, 14 and 16. For those states with large energy gaps to the next lower level, the observed and computed radiative lifetimes would be expected to be in approximate agreement. Weber (1967b) has pointed out that such agreement is observed for excited states in $\mathrm{Er}^{3+}:\mathrm{LaF}_3$ where the energy gaps are in excess of 3000 cm⁻¹:

-26-

Transition	^τ R (msec)	Observed Lifetime (msec)
$4_{I_{13/2}} \rightarrow 4_{I_{15/2}}$	10.9	13
⁴ I _{11/2} →	11.6	11
² P _{3/2} →	0.43	0.29

3. Non-radiative Relaxation

Following the excitation of a lanthanide ion in a crystal lattice, the relaxation of excited states may occur by a purely radiative process, or more generally, may occur by the transfer of some energy to lattice vibrations. It was known experimentally for a number of years before any quantitative theory of non-radiative processes was developed that fluorescence was not observed at 25°C from Ln^{3+} :LaCl₃ if the energy gap between the excited state and that next lower in energy was < 1000 cm⁻¹, Barasch and Dieke (1965). In a systematic investigation of multiphonon orbit-lattice relaxation of lanthanide excited states, Riseberg and Moos (1968) have given an explicit expression for the temperature dependent transition rate in LaF3, LaCl3 and LaBr3. The energy-gap dependence of the multiphonon process is treated phenomenologically by assuming that the appropriate phonon energy is that corresponding to the cut-off in the phonon states. For LaF_3 this is $\sim 350 \text{ cm}^{-1}$, while for $LaCl_3$ it is $\sim 260 \text{ cm}^{-1}$. In terms of the $\sim 1000 \text{ cm}^{-1}$ energy gap cited earlier, it is apparent that a 3-4 phonon emission process is a relatively efficient mode of relaxation at 25°C. However, as the gap increases, demanding the simultaneous emission of a large number of phonons, the process rapidly decreases in probability such that radiative decay can efficiently compete as a relaxation mechanism.

Since in the usual case both radiative and non-radiative processes operate to relax an excited state, we can express the total fluorescence lifetime of the

<u>ر</u> ا

-28-

state as

$$(\tau_{T})^{-1} = A_{T}(\psi J) + W_{T}(\psi J)$$
(17)

where A_{T} is the radiative rate and $W_{T}(\psi J)$ is the sum of the rates of the various non-radiative processes.

The dependence of the relaxation rate on energy gap alone, W(o) can be expressed as a simple exponential, Moos (1970),

$$W(o) = Ce^{\alpha \Delta E}$$

where C and α are parameters characteristic of the host material, not of the lanthanide ion. For LaF₃, C = 6.6 x 10⁸ (sec⁻¹) and α = -5.6 x 10⁻³, Riseberg and Weber (1976).

Adding the temperature dependence, Riseberg and Moos (1967,1968), results in the expression

$$W(\psi J) = W(o)^{T} \{ [e^{\hbar \omega} i^{/kT} - 1]^{-1} + 1 \}^{\Delta E/\hbar \omega} i$$

which can be rewritten

h

1.1

$$W(\psi J) = C e^{\alpha \Delta E} [1 - e^{-\hbar \omega} i^{/kT}]^{-\Delta E/\hbar \omega} i$$
(18)

where $\hbar\omega_i$ is the maximum phonon energy, taken as 350 cm⁻¹ for LaF₃, Riseberg and Weber (1976). Since k = 0.695, kT = 207 cm⁻¹ at room temperature and the corresponding expression is:

$$W(\psi J) = Ce^{\alpha \Delta E} (.8155)^{-\Delta E/350}$$

For example, the radiative lifetime of the ${}^{4}I_{9/2}$ state of $Er^{3+}:LaF_{3}$ at $\sim 12000 \text{ cm}^{-1}$ has been computed to be 20.7 msec but observed to be ~ 0.15 msec, Weber (1967b). Since ΔE between ${}^{4}I_{9/2}$ and the next lower ${}^{4}I_{11/2}$ state is

NOV BALL

-29-

2000 cm⁻¹, W(ψ J) = $.10^4$ sec⁻¹. Thus the non-radiative lifetime of .0.1 msec' is rate determining.

4. <u>Comparison of Computed Excited-State Lifetimes with Those Observed</u> Experimentally

Experimental measurements of excited-state lifetimes for a number of lanthanides in LaF₃ have been reported, and in many instances these values have been compared to those computed using eq. (13), (17) and (18). Although the results of the computations were reported, the availability of the relevant matrix elements of $U^{(\lambda)}$ interconnecting the excited states in the various configurations is very limited. The only tabulation that includes all members of the series is restricted to matrix elements that join excited states to the ground state, Carnall et al. (1968b). As a consequence, the results presented in Appendices III-XIII represent the first systematic effort to make interconnecting matrix elements of $U^{(\lambda)}$ available for the whole series and thus enable calculation of a wide range of lifetimes. Some minor corrections to values reported in the earlier tables have also been made. Calculated radiative lifetimes and observed lifetimes for some of the prominent fluorescing states in $Ln^{3+}:LaF_3$ are given in Table 2, Appendix XIV. An example of the complete calculation of the lifetimes associated with the radiative relaxation of two states in Tb^{3+} , showing branching ratios to all lower-lying states, is given in Table 3, Appendix XIV. The strong radiative coupling of the ${}^{5}D_{4}$ to the ${}^{5}D_{3}$ state is clearly indicated. Recently Page et al. (1.76) reported lifetimes in the 100 μsec range for the $^{5}\mathrm{D}_{4}$ state in $\mathrm{Tb}^{3+}:\mathrm{LaF}_{3}$ at 300 K, with little change, as expected, on cooling to 77 K. However, these values are a factor of ten shorter than would have been predicted, see Table 2, Appendix XIV, and must be regarded as questionable. In Tb^{3+} :LaCl₃ at 300 K the lifetimes of the ${}^{5}D_{3}$ states were 570 and 1220 $\mu sec,$ respectively, in good agreement with the calculated values for the LaF, host, Barasch and Dieke (1965).

-30-
5. Comments on the Use of the Tables

(A) Atomic (free-ion) states

As discussed in the introduction, detailed crystal-field calculations were only carried out for odd-f-electron systems. For the even-f-electron systems a center of gravity was computed from the experimentally observed crystal-field components of each state. These "free-ion" states are recorded in the appendices and were used as the basis for computing the energy level parameters. Similar tabulations of the free-ion state energies have been included for the odd-f-electron systems in order to facilitate use of the tables of U(K)*2. In these latter cases the computation was made using the atomic parameter values given in Appendix I with the crystal-field parameters set equal to zero. In all the tabulations of free-ion levels the state designation corresponds to the largest component of the eigenvector.

(B) Tables of $(U^{(K)})^2$

20

The entries in these tables are arranged in order of increasing J-value for the initial state. Entries are not repeated. For example, the matrix element between an initial J = 9/2 and a final J = 3/2 state is identical to the J = 3/2 + J = 9/2 entry. Only the latter is given. If the entry is missing from the table, the matrix elements are zero. The following partial tabulation of matrix elements of U(K)*2 for $Nd^{3+}:LaF_3$ joining the ground $({}^{4}I_{9/2})$ state with several excited states taken from Appendix IV serves as an illustration and may be compared with results given for $Nd^{3+}(aquo)$ in Carnall et al. (1968b).

-31-

<u>E(cm⁻¹)</u> <u>State</u> <u>2J</u> <u>U(2)*2</u> <u>U(4)*2</u> <u>U(6)*2</u> 4I 9 235 ---------41 2114 11 .0194 .1072 1.1639 4I 13 4098 0 .0135 .4549 4I 15 0 6148 0 .0452 3 4F 11621 0 .2283 .0554 4F 5 12660 .0006 .2337 .3983 2H 9 12768

.0095

.0082

.1195

-32-

4,

and the second second

.

Acknowledgements

Several individuals contributed substantially to the experimental investigation and/or interpretation of important segments of the data presented in this report, and their assistance is gratefully acknowledged:

Dr. Katheryn Rajnak, Kalamazoo College, Kalamazoo, Michigan

Prof. R. Sarup, College of the Holy Cross, Worcester, Massachusetts

Dr. H. Kramer (née Lämmermann)

and the following senior thesis students:

E. A. Flom, St. Olaf College, Northfield, Minnesota

D. W. Mehaffy, Coe College, Cedar Rapids, Iowa

J. F. Pophanken, Houston Baptist College, Houston, Texas

G. A. Robbins, Stamford University, Birmingham, Alabama

BLANK PAGE

References

Axe, J. D. Jr. (1963), J. Chem. Phys. <u>39</u>, 1154.

Balasubramanian, G., M. M. Islam and D. J. Newman (1975), J. Phys. B: Atom.

Molec. Phys. <u>8</u>, 2601.

Barasch, G. E. and G. H. Dieke (1965), J. Chem. Phys. 43, 988.

Bauman, R. P. and S. P. S. Porto (1967), Phys. Rev. 161, 842.

Broer, L. J. F., C. J. Gorter and J. Hoogschagen (1945), Physica 11, 231.

Brown, D. (1968), Halides of the Lanthanides and Actinides, Wiley and Sons, London.

Carnall, W. T., P. R. Fields and K. Rajnak (1968a), J. Chem. Phys. 49, 4412.

Carnall, W. T., P. R. Fields and K. Rajnak (1968b), J. Chem. Phys. <u>49</u>, 4424 4443, 4447, 4450.

Carnall, W. T., P. R. Fields and R. Sarup (1969), J. Chem. Phys. 51, 2587.

Carnall, W. T., P. R. Fields, J. Morrison and R. Sarup (1970), J. Chem. Phys. 52, 4054.

Carnall, W. T., P. R. Fields and R. Sarup (1971), J. Chem. Phys. 54, 1476.

Carnall, W. T., P. R. Fields and R. Sarup (1972), J. Chem. Phys. 57, 43.

Carnall, W. T., H. Crosswhite, H. M. Crosswhite and J. G. Conway (1976), J. Chem. Phys. <u>64</u>, 3582.

Caspers, H. H., H. E. Rast and R. A. Buchanan (1965a), J. Chem. Phys. 43, 2124.

Caspers, H. H., H. E. Rast and R. A. Buchanan (1965b), J. Chem. Phys. 42, 3214.

Caspers, H. H., H. E. Rast and J. L. Fry (1970), J. Chem. Phys. 53, 3208.

Cheetham, A. K., B. E. F. Fender, H. Fuess and A. F. Wright (1976), Acta Cryst. B32, 94.

Condon, E. U. and G. H. Shortley (1957), The Theory of Atomic Spectra, Cambridge University Press, London, pp. 91-109.

7. 1. C. A. L. C.

- Cowan, R. D. and D. C. Griffin (1976), J. Opt. Soc. Am. <u>66</u>, 1010.
- Crosswhite, H., H. M. Crosswhite and B. R. Judd (1968), Phys. Rev. 174, 89.
- Crosswhite, H. and B. R. Judd (1970), Atomic Data 1, 329.
- Crosswhite, H. M., H. Crosswhite, F. W. Kaseta and R. Sarup (1976), J. Chem. Phys. <u>64</u>, 1981.
- Crosswhite, H. M. (1977), Proceedings of the C.N.R.S. International Colloquium Spectroscopic des Elements de Transition et des Elements Lourdes dans les Solides, Lyon, France, June 1976, in press.
- Crosswhite, H. M., H. Crosswhite, N. Edelstein and K. Rajnak (1977), J. Chem. Phys. (submitted).
- Crosswhite, H. M. and H. Crosswhite (1977), J. Chem. Phys. (submitted).
- Dieke, G. H. (1968), Spectra and Energy Levels of Rare Earth Ions in Crystals, H. M. Crosswhite and H. Crosswhite, eds., Wiley, New York.
- Fry, J. L., H. H. Caspers, H. E. Rast and S. A. Miller (1968), J. Chem. Phys. 48, 2342.
- Haas, G., T. B. Ramsey and R. Thun (1959), J. Opt. Soc. Am. 49, 116.
- Heaps, W. S., L. R. Elias and W. M. Yen (1976), Phys. Rev. B13, 94.
- Hoogschagen, J. (1946), Physica 11, 513.
- Judd, B. R. (1962), Phys. Rev. 127, 750.
- Judd, B. R. (1963), Operator Techniques in Atomic Spectroscopy, McGraw-Hill, New York.
- Judd, B. R. (1966), Phys. Rev. <u>141</u>, 4.
- Judd, B. R., H. M. Crosswhite and H. Crosswhite (1968), Phys. Rev. 169, 130.
- Judd, B. R. (1972), The Structure of Matter, B. G. Wybourne, ed., University of Canterbury, Christchurch, New Zealand, p. 406.
- Krupka, D. C. and H. J. Guggenheim (1960), J. Chem. Phys. 51, 4006.

Krupke, W. F. and J. B. Gruber (1963), J. Chem. Phys. 39, 1024.

Krupke, W. F. and J. B. Gruber (1964), J. Chem. Phys. <u>41</u>, 1225.

Krupke, W. F. and J. B. Gruber (1965), J. Chem. Phys. <u>42</u>, 1134.

Krupke, W. F. (1966), Phys. Rev. 145, 325.

Krupke, W. F. (1974), Proc. IEEE Region VI Conference, Albuquerque, N. M.

Kumar, U. V., H. Jagannath, D. R. Rao and P. Venkateswarlu (1976), Indian J. Phys. <u>50</u>, 90.

Lowndes, R. P., J. F. Parrish and C. H. Perry (1969), Phys. Rev. 182, 913.

Mansmann, M. (1964), Z. anorg. allgem. Chemie 331, 98.

Mansmann, M. (1965), Z. Krist. <u>122</u>, 375.

Marvin, H. H. (1947), Phys. Rev. 71, 102.

Matthies, S. and D. Welsch (1975), phys. stat. solidi (b)68, 125.

Moos, H. W. (1970), J. Luminescence 1, 106.

Newman, D. J. and M. M. Curtis (1969), J. Phys. Chem. Solids <u>30</u>, 2731.

Newman, D. J. (1971), Adv. Phys. 20, 197.

Newman, D. J. and C. D. Taylor (1971), J. F. B: Atom. Molec. Phys. <u>4</u>, 241.

Newman, D. J. and C. D. Taylor (1972), J. Phys. B: Atom. Molec. Phys. 5, 2332.

Nielson, C. W. and G. F. Koster (1963), Spectroscopic Coefficients for p^n , d^n ,

and fⁿ Configurations, M.I.T. Press, Cambridge.

Ofelt, G. S. (1962), J. Chem. Phys. <u>37</u>, 511.

Oftedahl, I. (1929), Z. physik. Chem. 6, 272.

Oftedahl, I. (1931), Z. physik. Chem. 13, 190.

Onopko, D. E. (1968a), Optics and Spectro., Suppl. 4, USSR Academy of Sciences.

ی . جناب کار ا

Onopko, D. E. (1968b), Optics and Spectro. 24, 301.

Onopko, D. E. (1969), Spectrosk. Tverd. Tela. 22-5 [Chem. Absts. <u>72</u>, 95052s (1970)]. Page, A. G., A. G. I. Dalvi and B. D. Joshi (1976), Indian J. Phys. <u>50</u>, 121.

Pappalardo, R. (1976), J. Luminescence 14, 159.

Racah, G. (1949), Phys. Rev. <u>76</u>, 1352.

Rajnak, K. and B. G. Wybourne (1963), Phys. Rev. 132, 280.

Rajnak, K. and B. G. Wybourne (1964), Phys. Rev. 134, A596.

Rajnak, K. (1965), J. Chem. Phys. 43, 847.

Rast, H. E., J. L. Fry and H. H. Caspers (1967), J. Chem. Phys. <u>46</u>, 1460.

Riseberg, L. A. and H. W. Moos (1967), Phys. Rev. Ltrs. 19, 1423.

Riseberg, L. A. and H. W. Moos (1968), Phys. Rev. 174, 429.

Riseberg, L. A. and M. J. Weber (1976), Prog. in Optics 14, in press.

Sayre, E. V. and S. Freed (1955), J. Chem. Phys. 23, 2066.

Schwiesow, R. L. and H. M. Crosswhite (1969), J. Opt. Soc. Am. 59, 602.

Schlyter, K. (1953), Arkiv Kemi 5, 73.

Stedman, G. E. and D. J. Newman (1971), J. Phys. Chem. Solids 32, 109.

Trees, R. E. (1951), Phys. Rev. 83, 756.

Trees, R. E. (1952), Phys. Rev. 85, 382.

Trees, R. E. (1964), J. Opt. Soc. Am. 54, 651.

Voron'ko, Y. K., V. V. Osiko, N. V. Savost'yanova, V. S. Fedorov and I. A. Shcherbakov (1973), Soviet Phys. Solid State <u>14</u>, 2294.

Weber, M. J. (1967a), in Optical Properties of Ions in Crystals, H. M. Crosswhite

and H. W. Moos, eds., Wiley Interscience, New York, p. 467.

Weber, M. J. (1967b), Phys. Rev. 157, 262.

weber, M. J. (1967c), Final Report to Research and Development Procurement Office, U.S. Army Engineering R&D Laboratories, Ft. Belvoir, Virginia,

117

Contract DA44-009-AMC-1727(E).

をというないの

Weber, M. J. (1968), J. Chem. Phys. <u>48</u>, 4774.

Weber, M. J., B. H. Matsinger, V. L. Donlan and G. T. Surratt (1972), J. Chem. Phys. <u>57</u>, 562.

Wirich, M. P. (1966), Appl. Optics 5, 1966.

,

Wong, E. Y., O. M. Stafsudd and D. R. Johnson (1963a), J. Chem. Phys. 39, 786.

Wong, E. Y., O. M. Stafsudd and D. R. Johnson (1963b), Phys. Rev. <u>131</u>, 990.

Wybourne, B. G. (1965), Spectroscopic Properties of Rare Earths, Wiley, N. Y.

Yen, W. M., W. C. Scott and A. L. Schawlow (1964), Phys. Rev. 136, A271.

Zalkin, A. and D. H. Templeton (1953), J. Am. Chem. Soc. <u>75</u>, 2453.

Zalkin, A., D. H. Templeton and J. E. Hopkins (1966), Inorg. Chem. 5, 1466.

Appendix I

As a result of the correspondence between the energy levels of lanthanides in $LaCl_3$ and LaF_3 , it is convenient to summarize the present status of the theory applied to the host $LaCl_3$ in order to facilitate the LaF_3 discussion. The basic experimental work on trivalent lanthanide spectra in $LaCl_3$ crystals has been described by G. H. Dieke, Dieke (1968), who also gave a comprehensive historical review and a brief discussion of early efforts at theoretical analysis. Most of the subsequent extensions of the latter have been based on the same data, and no attempt will be made to reproduce them here.

The effect of the crystalline neighborhood on the electronic orbitals of the rare earth ion is appreciable, but is nevertheless small compared with the atomic electron interactions, and to a large extent can be treated in terms of a model whose basis states are the free-ion orbitals themselves, without need for specific structural detail of the electronic involvement with ligand ions. Because of the dominance of the atomic forces it is important to have an atomic Hamiltonian which is detailed enough to accurately describe the observed crystal level groupings. In the process we have incidently learned much about the structure of the atomic energy levels themselves.

In a pure $4f^N$ configuration the only interactions to be evaluated would be the four Slater integrals $F^{0,2,4,6}$ and the spin-orbit integral, ζ , plus relativistic correction terms representing spin-other-orbit and spin-spin interactions. Ab initio evaluations for each of these can be carried out; however, the latter values are not quite in agreement with experimental ones. This is not because they are inaccurate in themselves but because there are additional contributions due to ignored inter-configuration interactions which have the

÷

-1-

same angular dependence and are therefore lumped with the former in any empirical fitting. The experimental values are therefore only effective ones, although we conventionally continue to give them the original names. These same interactions will in addition produce completely new effective-Hamiltonian operators, namely: $\alpha L(L+1)$, Trees (1951, 1952, 1964); $\beta G(G_2)$ and $\gamma G(R_7)$, Racah (1949) and Rajnak and Wybourne (1963); $T^i t_i$, the three-body electrostatic effective operators discussed by Rajnak and Wybourne (1963), Rajnak (1965), Judd (1966,1972) and Crosswhite et al. (1968); and $A_i z_i$, the generalized two-body double-vector operators, Judd et al. (1968) and Crosswhite and Judd (1970).

Fortunately, not all of the theoretically possible operators are needed in the analysis, and those that are (including the F^k and ζ corrections) are all either constant or slowly varying functions of the atomic number Z. For instance, of the fourteen possible $T^i t_i$, only those six which have non-zero matrix elements in second-order perturbation theory are retained. Furthermore, these results are in good agreement with ab initio calculations, Newman and Taylor (1971,1972), Balasubramanian et al. (1975). A review of the whole question of crystal energy level parametrization was given by Newman (1971).

There are thirteen generalized two-body double-vector operators, eight having rank one in each of the spin and orbital angular momentum spaces. (An additional one has matrix elements exactly proportional to those of the spin-orbit interaction and can be ignored). Five have rank two in each of the spaces. The principal contribution to the latter comes from the spin-spin interaction and can be estimated by ab initio calculations of the Marvin integrals $M^{0,2,4}$, Marvin (1947). The former appears to be dominated by spin-other-orbit effects, parametrized by the same Marvin integrals, and another effect arising from the fact that there are spin-orbit matrix elements connecting $4f^{N}$

52

 -2-

with configurations of the type $4f^{N-1}n$ 'f. Rajnak and Wybourne (1964) have called these "electrostatically-correlated spin-orbit" effects. Matrix elements have been given by Judd et al. (1968). Their essential role is to allow for effective spin-orbit variations with spectroscopic term and are parametrized by the quantities $P^{2,4,6}$. Ab initio calculations have been given by Newman and Taylor (1972).

A summary of the parameters derived from LaCl₃ crystal studies is given in Table 1, Crosswhite (1977). As a rule of thumb for estimating atomic parameters appropriate for the LaF₃ case, the LaCl₃ F^{K} and ζ values reported in Table 1 should be increased slightly: 1.8% for F^{2} , 1.1% for F^{4} , 0.8% for F^{6} and 0.5% for ζ . More extensive details are given elsewhere; Crosswhite et al. (1976), Carnall et al. (1976), Crosswhite et al. (1977), Crosswhite and Crosswhite (1977). For the major parameters we have found on comparison with ab initio calculations that the required corrections are remarkably uniform. Computations with a Hartree-Fock program containing an approximate relativistic correction, Cowan and Griffin (1976), are given in Table 2, and differences of these and experimental F^{k} and ζ values are shown in Figs. 1 and 2. The twobody electrostatic correction parameters α , β and γ show similar slow variations across the series; the T¹ are essentially constant; and the P^{k} can be taken proportional to ζ . The M^k(spin-other-orbit) are shown in Fig. 2.

The crystalline environment can in principle make contributions to each of these terms in addition to new ones specific to the particular point-group symmetry. However, experimentally we find that there is a great similarly between the parameters for the LaCl₃-doped spectra and those of the few free ion cases for which experimental data are complete enough to permit full parametrization (La II, Ce III and Pr IV $4f^2$ and Pr III $4f^3$). Systematic values can

-3-

بلتين

52

and the second se

and the second second

Jr in the

				<u> </u>	 f					
~	<u>Pr</u>	Nd	Pm	<u></u>		60		Uy	<u>H0</u>	
ave	9928	24180	30805	47190	04542	8/538	68200	55894	48193	35490
2	68368	71866	75808	78125	84399	85200	90012	92750	95466	9 8203
-4	50008	52132	54348	55809	60343	60399	64327	65699	67238	69647
-6	32743	35473	38824	40091	41600	44847	42951	45549	46724	49087
\1pha	22.9	22.1	21.0	21.6	16.8	[19]	17.5	17.2	17.2	15.9
Beta	-674	-650	-645	-724	[-640]	[-643]	[-630]	-622	-621	-632
Gamma	[1520]	1/586	1425	[1700]	[1750]	1644	[1880]	1881	2092	[2017]
r ²		377	302	291	[370]	[315]	[340]	311	300	300
۲ ³		40	45	13	[40]	[44]	[40]	116	37	48
r ⁴		63	34	34	[40]	[40]	[40]	12	98	18
r ⁶		-292	-315	-193	[-330]	[-300]	[-330]	-474	-316	-342
77		358	554	288	[380]	[325]	[330]	413	440	214
r ⁸		354	[400]	330	[370]	[360]	[380]	315	372	449
Zeta	744	880	1022	1168	1331	[1513]	1707	1920	2137	2370
₁ 0 Ь	1.76	1.97	2.1	2.4	[2.38]	[2.82]	[3.00]	2.8	3.0	4.5
,2 c	275	255	319	341	245	495	590	591	523	667
32	107	163	143	186	189	216	185	193	216	216
34	-342	- 336	-395	-270	-287	∽ _72	-291	-328	-284	-271
36	-677	-713	-666	-623	-801	-688	-457	-470	-448	-431
B	466	462	448	470	525	474	302	287	294	272

APPENDIX I - TABLE 1 Parameters for 1-3+1-01 a

ł

^aValues in brackets were not freely varied. ^bOnly M^0 was varied; the ratios $M^2/M^0 \approx 0.56$, $M^4/M^0 = 0.38$ were maintained. ^cOnly P^2 was varied; the ratios $P^4/P^2 \approx 0.75$, $P^6/P^2 = 0.50$ were maintained.

4

I

142

APP	ENDIX	T	-	TABLE	2

-5-

where we have a second se

記録業業主

ł

Relativistic Hartree-Fock Integrals for 4f^N IV.

		F ²	F ⁴	F ⁶	ζ	MO	м ²	м ⁴
4f ¹	Ce IV	-	-	-	696.41	-	_	-
$4f^2$	Pr IV	98723	61937	44564	820.22	1.991	1.110	0.752
4f ³	Nd IV	102720	64462	46386	950.51	2.237	1.248	0.846
4f ⁴	Pm IV	106520	66856	48111	1091.46	2.492	1.391	0.943
4f ⁵	Sm IV	110157	69143	49758	1243.60	2.756	1.540	1.044
4f ⁶	Eu IV	113663	71373	51342	1407.71	3.031	1.694	1.149
4f ⁷	Gd IV	117058	73470	52873	1584.45	3.318	1.855	1.258
4f ⁸	Th IV	120366	75541	54361	1774.46	3.615	2.022	1.372
4f ⁹	Dy IV	123592	77558	55810	1998.44	3.924	2.195	1.490
4f ¹⁰	Ho IV	126751	79530	57227	2197.06	4.246	2.376	1.612
4f ¹¹	Er IV	129850	81462	58615	2431.00	4.580	2.563	1.739
4f ¹²	Tm IV	132897	83361	59978	2680.97	4.928	2.758	1.072
4f ¹³	YE IV	-	-	-	2947.69	-	-	-

2

6

3 .4

9

;8

'2

30

12

39 72

Fig. 1. Variation of the differences between the pseudo relativistic Hartree-Fock (HFR) values of the Slater integrals i^{k} and those determined experimentally, $F^{k}(HFR)-F^{k}(EXP) = \Delta F^{k}$, with lanthanide atomic number.

二、 ないたまた

Q

be found for the Tⁱ and a_i (or alternately M^k and P^k) which satisfy all known spectra, whether free ion or crystal, in terms of only a few constants. It follows therefore that the same model can be used for preliminary estimates for other spectra such as LaF₃-doped crystals.

As to the parametrization of the crystal-field itself, the general specification that the number of possible two-particle operators is equal to the number of available independent cells in the Hamiltonian requires 366 additional ones besides the ten single-particle ones (of which only four are formally used). Fortunately, the single-particle model, Judd (1963), Wybourne (1965), Dieke (1968), works very well, although we must recognize that these parameters represent much more complicated effects than the simple Coulomb model visualized by the early theories. Newman and Taylor (1971) give a discussion of the physical significance of these parameters.

113

-. Af

. . .

. . .

- 4

APPENDIX II

.

· .

•

. .

BLANK PAGE

	Pr	Nd	Pm	<u>Sm</u>	Eu	Gd	Tb	Dy	Ho	<u>Er</u>	Tm
AV	10163.	24490.	(37272)	47760.	(64263)	87847.	68608.	56492.	48453.	35915.	18000.
2	69305.	73036	(77000)	79915	(84000)	85587	91220	94877	97025	100274	102459
4	50675.	52624	(55000)	57256	(60000)	61361	65 79 8	67470	68885	70555	72424
6	32813	35793	(37500)	40424	(42500)	45055	43661	45745	47744	49900	51380
	(21)	21.28	(21.00)	20.07	(20.)	(20.)	19.81	17.64	18.98	17.88	(17.)
	-842	-583.	(-560)	-563	(-570)	(-590)	(-600.)	-608	-579	-599	-737
	1625	1443	(1400.)	1436	(1450)	(1450)	(1400)	1498	1570	1719	(170 0
	750.8	884 .9	(1022.)	1177.2	(1327)	1503,5	1702	1912	2144	2381	2540
2	-	306	(330.)	288	(330)	(330)	(+330)	+423	(+330)	+441	
3	-	41	(41.5)	36	(41.5)	(+41.5)	(+41.5)	+50	(+41.5)	+42	
4	-	5 9	(62.)	56	(62)	(+62)	(+62)	+117	(+62)	+64	
б	-	-283	(-295.)	-283	(-295)	-(295)	-(295)	-334 [.]	-(295)	-314	
7	-	326	(360)	333	(360)	(+360)	(+360)	+432	(+360)	+387	
8	-	2 9 8	(310)	342	(310)	(+310)	(+310)	+353	(+310)	+363	
D(P)	(1.99)	(2.237)	(2.49)	(2.76)	(3.03)	(3.32)	(3.61)	(3.92)	(4.25)	(4.58)	(4.93
2(b)	(1.11)	(1.248)	(1.39)	(1.54)	(1.69)	(1.85)	(2.02)	(2.19)	(2.38)	(2.56)	(2.72
4(b)	(0.75)	(0.84)	(0.94)	(1.04)	(1.15)	(1.26)	(1.37)	(1.49)	(1.61)	(1.74)	(1.37
2(c)	(200)	213	(440)	344	(300)	611	583	771	843	852	729.6
4(c)	(150)	160	(330)	258	(200)	458	437	578	632	639	547
6(c)	(100)	106,5	(220)	172	(150)	306	291	386	421	426	364
o. of evels	fit ¹¹	139	-	180	-	64	(26) ^d	201	(27)d	117	(12) ^d
	41	16.6	-	16.7		9	36	22	32	12.1	76

APPENDIX II - TABLE 1 Atomic Parameters for 1, 3+.1.25

^aValues in parenthesis were not freely varied. ^bRelativistic Hartree-Fock values were assumed. ^cOnly P^2 was varied, the ratios $P_4/P_2 = 0.75$, $P_6/P_2 = 0.5$ were maintained. ^dFree-ion Hamiltonian only

	Nd	Sm	Gd	Dy	Er
8 ² 0	216	209	(210)	218	229
в <mark>4</mark> С	1225	1042	(1050)	1099	965
80 B0	1506	1415	(1250)	1129	909
86 6	770	659	(600)	553	484

~~~~~

| APPEND        | IX II - TA | BLE 2                |        |
|---------------|------------|----------------------|--------|
| Crystal-field | Parameters | for Ln <sup>3-</sup> | +:LaF, |

-2-

117

13

٠,

...

# APPENDIX III

ß 13

Ń 

B 15

-----

: 6

1

в 15

. . . . . . . . . . .

:

# APPENDIX III

|           | TABLE  | 1    |              |
|-----------|--------|------|--------------|
| PR+3:LAF3 | CENTER | S OF | GRAVITY      |
| OBSERVED  | CALC   | 0-C  | STATE        |
| 200       | 191    | 9    | 3H4          |
|           | 2303   |      | 3H 5         |
| 4487      | 4495   | -7   | 3H 6         |
| 5215      | 5196   | 19   | 3F 2         |
| 6568      | 6595   | -26  | 3F3          |
| 7031      | 7009   | 22   | 3 <b>f</b> 4 |
| 10001     | 10012  | - 10 | 1G 4         |
| 17047     | 17052  | -4   | 1D2          |
| 20927     | 20935  | -7   | 3P0          |
| 21514     | 21555  | -40  | 3P 1         |
|           | 21743  |      | 116          |
| 22746     | 22690  | 56   | 3P 2         |
| 46986     | 46986  | 0    | 1S0          |

ŧ

. \_

# PAGE 2 Appendix III

.

and the second second

, 1 7

Y

Ľ

4

~ .

*.* .

...

٠

÷.,

61

# TABLE 2 U(K)\*2 FOR PR+3

| J1  | LEVEL 1 | J 2    | LEVEL 2       | (02) *2 | (U4) *2 | (06) *2  |
|-----|---------|--------|---------------|---------|---------|----------|
| 0   | 20931   | 2      | 5194<br>1705# | 0.2954  | 0.0     | 0.0      |
| ŏ   | 20931   | 2      | 189           | 0.0     | 0.1729  | 0.0      |
| ŏ   | 20931   | 4      | 7008          | 0.0     | 0.1079  | 0.0      |
| ō   | 20931   | 6      | 4499          | 0.0     | 0.0     | 0.0726   |
|     |         |        | -             |         |         |          |
| 1   | 21552   | 1      | 21552         | 0.1607  | 0.0     | 0.0      |
| 1   | 21552   | 2      | 5194          | 0.2685  | 0.0     | 0.0      |
| 1   | 21552   | 2      | 17054         | 0.0799  | 0.0     | 0.0      |
| 1   | 21552   | 3      | 6595          | 0.5/14  | 0.1964  | 0.0      |
| 1   | 21552   | 4      | 7009          | 0.0     | 0.1702  | 0.0      |
| 1   | 21552   | 5      | 2305          | 0.0     | 0.2857  | 0.0892   |
| 1   | 21552   | 6      | <u>и</u> ц 99 | 0.0     | 0.0     | 0.1246   |
| •   | 21352   | Ŭ      | 4499          | 0.0     | 010     | 00 12 40 |
| 2   | 5194    | 2      | 5194          | 0.0618  | 0.0065  | 0.0      |
| 2   | 5194    | 2      | 17054         | 0.0140  | 0.0866  | 0.0      |
| 2   | 5194    | 3      | 6595          | 0.0209  | 0.0509  | 0.0      |
| 2   | 5194    | 4      | 189           | 0.5090  | 0.4030  | 0.1173   |
| 2   | 5194    | 4      | 7008          | 0.0014  | 0.0012  | 0.0905   |
| 2   | 5194    | 2      | 2305          | 0.0     | 0.2977  | 0.0590   |
| Z   | 5194    | 0      | 4433          | 0.0     | 0.0104  | 0.3030   |
| 2   | 17054   | 2      | 17054         | 0.3745  | 0.3295  | 0.0      |
| 2   | 17054   | 3      | 6595          | 0.0319  | 0.0177  | 0.0      |
| 2   | 17054   | 4      | 189           | 0.0027  | 0.0174  | 0.0534   |
| 2   | 17054   | 4      | 7008          | 0.6015  | 0.0000  | 0.0201   |
| 2   | 17054   | 5      | 2305          | 0.0     | 0.0019  | 0.0004   |
| 2   | 17054   | 6      | 4499          | 0.0     | 0.0686  | 0.0066   |
| 3   | 6595    | 3      | 6595          | 0.0625  | 0.0030  | 0.0625   |
| 3   | 6595    | 4      | 189           | 0.0653  | 0.3465  | 0.6982   |
| 3   | 6595    | 4      | 7008          | 0.0252  | 0.0731  | 0.0054   |
| 3   | 6595    | 5      | 2305          | 0.6285  | 0.3467  | 0.0      |
| 3   | 6595    | 6      | 4499          | 0.0     | 0.3182  | 0.8459   |
| h   | 190     | 11     | 190           | 0 7792  | 0       | 0 2642   |
| 4   | 189     | а<br>Д | 7008          | 0.0189  | 0.0503  | 0.2842   |
| u u | 189     | 5      | 2305          | 0.1095  | 0.2012  | 0.6115   |
| 4   | 189     | 6      | 4499          | 0.0000  | 0.0333  | 0.1392   |
|     |         |        |               |         |         |          |
| 4   | 7008    | 4      | 7008          | 0.0146  | 0.2427  | 0.0358   |
| 4   | 7008    | 5      | 2305          | 0.0296  | 0.3116  | 0.4407   |
| 4   | 7008    | 6      | 4499          | 0.5668  | 0.6095  | 0.4623   |
| 5   | 2305    | 5      | 2305          | 0.9192  | 0.3668  | 0.1214   |
| 5   | 2305    | 6      | 4499          | 0.1080  | 0.2327  | 0.6420   |
| _   |         | _      |               |         |         |          |
| 6   | 4499    | 6      | 4499          | 1.2383  | 0.7108  | 0.7878   |

67

- 10 - 10 - 10

~

÷.



### APPENDIX IV

#### TABLE 1 ND+3:LAF3

| OBSERVED                                                             | CALC                                                                 | 0-C                                           | STATI                                                    | e j                                                         | MJ                                                     |
|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| 0                                                                    | 3                                                                    | -2                                            | 41                                                       | 9/2                                                         | -9/2                                                   |
| 45                                                                   | 38                                                                   | 7                                             | 41                                                       | 9/2                                                         | 5/2                                                    |
| 136                                                                  | 142                                                                  | -5                                            | 41                                                       | 9/2                                                         | 3/2                                                    |
| 296                                                                  | 294                                                                  | 2                                             | 41                                                       | 9/2                                                         | 1/2                                                    |
| 500                                                                  | 500                                                                  | 0                                             | 41                                                       | 9/2                                                         | -7/2                                                   |
| 1978<br>2037<br>2068<br>2091<br>2187<br>2223                         | 1963<br>2041<br>2075<br>2098<br>2203<br>2227                         | 15<br>-4<br>-6<br>-15<br>-3                   | 4I<br>4I<br>4I<br>4I<br>4I<br>4I                         | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2        | - 11/2<br>5/2<br>3/2<br>1/2<br>-7/2<br>-9/2            |
| 3918<br>3978<br>4038<br>4076<br>4118<br>4208<br>4278                 | 3901<br>3983<br>4043<br>4102<br>4126<br>4205<br>4275                 | 17<br>-4<br>-25<br>-7<br>3<br>3               | 41<br>41<br>41<br>41<br>41<br>41<br>41                   | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2        | 13/2<br>5/2<br>3/2<br>1/2<br>-7/2<br>-9/2<br>-11/2     |
| 5816                                                                 | 5820                                                                 | -3                                            | 41                                                       | 15/2                                                        | 15/2                                                   |
| 5874                                                                 | 5838                                                                 | 36                                            | 41                                                       | 15/2                                                        | -7/2                                                   |
| 5986                                                                 | 5997                                                                 | -10                                           | 41                                                       | 15/2                                                        | -9/2                                                   |
| 6141                                                                 | 6171                                                                 | -29                                           | 41                                                       | 15/2                                                        | 5/2                                                    |
| 6167                                                                 | 6187                                                                 | -19                                           | 41                                                       | 15/2                                                        | 1/2                                                    |
| 6323                                                                 | 6293                                                                 | 30                                            | 41                                                       | 15/2                                                        | 3/2                                                    |
| 6454                                                                 | 6420                                                                 | 34                                            | 41                                                       | 15/2                                                        | -11/2                                                  |
| 6556                                                                 | 6545                                                                 | 11                                            | 41                                                       | 15/2                                                        | 13/2                                                   |
| 11592                                                                | 11596                                                                | -3                                            | 4 F                                                      | 3/2                                                         | 1/2                                                    |
| 11634                                                                | 11626                                                                | 8                                             | 4F                                                       | 3/2                                                         | 3/2                                                    |
| 12596<br>12614<br>12622<br>12676<br>12694<br>12754<br>13843<br>12902 | 12585<br>12589<br>12630<br>12678<br>12704<br>12763<br>12854<br>12873 | 11<br>25<br>-7<br>-1<br>-9<br>-8<br>-10<br>29 | 2H 2<br>4F<br>4F<br>4F<br>4F<br>2H2<br>2H2<br>2H2<br>2H2 | 9/2<br>5/2<br>5/2<br>5/2<br>5/2<br>9/2<br>9/2<br>9/2<br>9/2 | -7/2<br>3/2<br>1/2<br>5/2<br>1/2<br>3/2<br>-9/2<br>5/2 |
| 13514                                                                | 13514                                                                | 0                                             | 4F                                                       | 7/2                                                         | 3/2                                                    |
| 13590                                                                | 13583                                                                | 7                                             | 4F                                                       | 7/2                                                         | -7/2                                                   |
| 13671                                                                | 13673                                                                | -1                                            | 4S                                                       | 7/2                                                         | 1/2                                                    |
| 13676                                                                | 13693                                                                | -16                                           | 4S                                                       | 3/2                                                         | 1/2                                                    |
| 13711                                                                | 13695                                                                | 16                                            | 4S                                                       | 3/2                                                         | 3/2                                                    |
| 13715                                                                | 13695                                                                | 4                                             | 4F                                                       | 7/2                                                         | 5/2                                                    |

Ľ ÷ ¥ 1 AND A TO AND AT والمنافع والمتركين سالم المنافع المحاصر المنافع المسلمان 

52

 $({\mathbb C}^{n})^{*}$ 

ńγ N

17

1

,

.

.\*

9 7 2

,.

.

, . . . .

### APPENDIX IV

#### TABLE 1 ND+3:LAF3

| OBSERVE        | D CALC         | 0-C       | STATE        | E J        | MJ         |
|----------------|----------------|-----------|--------------|------------|------------|
| 14834<br>14861 | 14847<br>14861 | - 12<br>0 | 4 F<br>4 F   | 9/2<br>9/2 | 1/2        |
| 14892          | 14886          | 6         | 45           | 9/2        | 3/2        |
| 14926          | 14924          | ž         | 47<br>4 F    | 9/2        | 5/2        |
| 14959          | 14957          | 2         | 4 F          | 9/2        | -7/2       |
| 15997          | 16028          | - 30      | 2H 2         | 11/2       | 5/2        |
| 16033          | 16046          | - 12      | 2H2          | 11/2       | -11/2      |
| 160 00         | 16059          |           | 2112         | 11/2       | 3/2        |
| 16100          | 16000          | - 13      | 282          | 11/2       | 1/2        |
| 16165          | 16140          | 25        | 2H2          | 11/2       | -9/2       |
| 17316          | 17308          | 8         | 4G           | 5/2        | 3/2        |
| 17306          | 17311          | -4        | 4G           | 5/2        | 1/2        |
| 17363          | 17360          | 3         | 4G           | 5/2        | 5/2        |
| 1/510          | 17491          | 19        | 4G           | 1/2        | 5/2        |
| 17520          | 17500          | 15        | 2G 1         | 5/2        | 5/2        |
| 17605          | 17611          | -5        | 4G           | 5/2        | 1/2        |
| 19147          | 19139          | 8         | 4G           | 7/2        | 5/2        |
| 19235          | 19245          | -9        | 4G           | 7/2        | 1/2        |
| 19252          | 19271          | - 18      | 4G           | 7/2        | 3/2        |
| 19324          | 19324          | 0         | 4G           | 7/2        | -7/2       |
| 19567          | 19567          | 0         | 2K           | 13/2       | 13/2       |
| 196 15         | 19632          | - 16      | 4G           | 9/2        | 5/2        |
| 19651          | 19645          | 6         | 2K           | 13/2       | 1/2        |
| 19704          | 19687          | 17        | 4G           | 9/2        | -7/2       |
| 19686          | 19693          | -6        | 4G           | 9/2        | -9/2       |
| 10761          | 19/3/          | • • •     | 2K           | 13/2       | -11/2      |
| 19741          | 19730          | د<br>۵    | 46           | 13/2       | 3/2        |
| 19835          | 19845          | -9        | 2R<br>4G     | 9/2        | 1/2        |
|                | 19917          |           | 2K           | 13/2       | 5/2        |
|                | 19927          |           | 2.K          | 13/2       | -9/2       |
| 19960          | 19971          | - 10      | 2K           | 13/2       | -7/2       |
| 21155          | 21150          | 5         | 2G1          | 9/2        | -7/2       |
| 21176          | 21183          | -6        | 2G 1         | 9/2        | 3/2        |
| 21198          | 21199          | 0         | 2G 1         | 9/2        | -7/2       |
| 21252          | 21235          | +2        | 261          | 9/2        | -0.72      |
| 61232          | 21201          | - 14      | 201          | 7/2        | -9/2       |
| 21338<br>21353 | 21339<br>21352 | 0<br>1    | 2D 1<br>2D 1 | 3/2<br>3/2 | 3/2<br>1/2 |

73

;

~ (<sup>-</sup>

- -- --

# APPENDIX IV

#### TABLE 1 ND+3:LAF3

| OBSERVE       | D CALC        | 0-C   | STAT         | EJ   | MJ    |
|---------------|---------------|-------|--------------|------|-------|
| •••           | 21535         | • • • | 4G           | 11/2 | -7/2  |
| •••           | 21620         | •••   | 2K           | 15/2 | 15/2  |
| 21633         | 21621         | 12    | 4G           | 11/2 | 5/2   |
| 21/18         | 21/31         | - 12  | 4G           | 11/2 | -9/2  |
| • • •         | 21//4         |       | 4G<br>26     | 11/2 | -11/2 |
| • • •         | 21790         | • • • | 2K<br>4G     | 11/2 | -9/2  |
| •••           | 21824         |       | 28           | 15/2 | 1/2   |
|               | 21827         | •••   | 2 K          | 15/2 | 5/2   |
| 21846         | 21857         | -10   | 2K           | 15/2 | 3/2   |
| • • •         | 21901         |       | 2K           | 15/2 | -11/2 |
| • • •         | 21931         | • • • | 2K           | 15/2 | -9/2  |
| •••           | 21946         | •••   | 2K           | 15/2 | -7/2  |
| 21992         | 21995         | -2    | 4G           | 11/2 | 1/2   |
| 23473         | 23455         | 18    | 2P           | 1/2  | 1/2   |
| • • •         | 23996         |       | 2D 1         | 5/2  | 3/2   |
| 23991         | 23999         | -7    | 2D1          | 5/2  | 1/2   |
| 24080         | 24057         | 23    | 2 <b>d 1</b> | 5/2  | 5/2   |
| 26378         | 26394         | - 15  | 2P           | 3/2  | 1/2   |
| 26426         | 26416         | 10    | 2P           | 3/2  | 3/2   |
| 28341         | 2836 <b>1</b> | - 19  | 4D           | 3/2  | 1/2   |
| 28374         | 28369         | 5     | 4 D          | 3/2  | 3/2   |
|               | 28495         |       | 4 D          | 5/2  | 5/2   |
| 28525         | 28528         | -2    | 4D           | 5/2  | 1/2   |
| 20676         | 28634         | -0    | 21           | 11/2 | -11/2 |
| 20070         | 20000         | - 3   | 4D<br>(1)    | 1/2  | 3/2   |
| 20902         | 20950         | 24    | 2T           | 11/2 | -9/2  |
| 29489         | 29475         | 14    | 21           | 11/2 | -7/2  |
| 29568         | 29565         | 3     | 21           | 11/2 | 5/2   |
| 29644         | 29659         | - 14  | 21           | 11/2 | 3/2   |
| <b>2977</b> 3 | 2976 <b>7</b> | 6     | 21           | 11/2 | 1/2   |
| 30275         | 30271         | 4     | 2L           | 15/2 | 13/2  |
| •••           | 30346         | • • • | 2L           | 15/2 | 15/2  |
| •••           | 30411         | • • • | 2L           | 15/2 | 1/2   |
|               | 30451         | • • • | 21           | 15/2 | 3/2   |
| • • •         | 30532         | • • • | 21<br>21     | 15/2 | 572   |
| 30576         | 30602         | - 25  | 4D           | 7/2  | 5/2   |
| •••           | 30615         |       | 2L           | 15/2 | -9/2  |
| 30631         | 30646         | - 14  | 4D           | 7/2  | -7/2  |
| 30682         | 30701         | - 18  | 2L           | 15/2 | -7/2  |
| 30719         | 30712         | 7     | 4 D          | 7/2  | 3/2   |
| 30807         | 30792         | 15    | 4D           | 7/2  | 1/2   |

2

73

~10

10-1-1

ł

experimentally,  $F^{(HFR)}-F^{(EXP)} = \Delta F^{K}$ , with lanthanide atomic number.

.

,

.

ななより

「「「「「「「「」」」

**6** 

#### PAGE 4

# APPENDIX IV

#### TABLE 1 ND+3:LAF3

| OBSERVE                                                | D CALC                                                                        | 0-C                          | STAT                                                               | E J                                                                | MJ                                                                 |
|--------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| 30893<br>30933<br>30994<br>31030<br>31068              | 30850<br>30895<br>30955<br>31002<br>31041<br>31070<br>31079                   | -1<br>-21<br>-7<br>-10<br>-1 | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                 | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2               | -11/2<br>-9/2<br>-7/2<br>13/2<br>5/2<br>3/2<br>1/2                 |
| 31781<br>31859<br><br><br>                             | 31767<br>31836<br>31926<br>31968<br>31990<br>32013<br>32048<br>32093<br>32126 | 14<br>23<br>                 | 2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L                 | 17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2       | 15/2<br>17/2<br>1/2<br>3/2<br>13/2<br>5/2<br>-11/2<br>-9/2<br>-7/2 |
| 33030<br>33107<br>33181<br>33228<br>33255              | 33035<br>33137<br>33168<br>33226<br>33258                                     | -4<br>-29<br>13<br>2<br>-2   | 2H 1<br>2H 1<br>2H 1<br>2H 1<br>2H 1<br>2H 1                       | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                                    | -7/2<br>1/2<br>-9/2<br>5/2<br>3/2                                  |
| 33619<br>33649                                         | 33612<br>33631                                                                | 7<br>18                      | 2D2<br>2D2                                                         | 3/2<br>3/2                                                         | 3/2<br>1/2                                                         |
| 34292<br>34380<br>34419<br>34521<br><br>34678<br>34706 | 34274<br>34374<br>34445<br>34519<br>34551<br>34573<br>34686<br>34709<br>34818 | 18<br>- 25<br>2<br>          | 2H1<br>2H1<br>2D2<br>2H1<br>2H1<br>2H1<br>2H1<br>2H1<br>2D2<br>2H1 | 11/2<br>11/2<br>5/2<br>11/2<br>11/2<br>11/2<br>11/2<br>5/2<br>11/2 | -9/2<br>1/2<br>5/2<br>-7/2<br>1/2<br>3/2<br>-11/2<br>3/2<br>5/2    |
| 38690<br>38735<br>38841                                | 38723<br>38778<br>38815                                                       | 32<br>42<br>26               | 2F 2<br>2F 2<br>2F 2                                               | 5/2<br>5/2<br>5/2                                                  | 5/2<br>1/2<br>3/2                                                  |
| 40103<br>40155<br>40288                                | 40113<br>40126<br>40187<br>40254                                              | -9<br>29<br>34               | 2F2<br>2F2<br>2F2<br>2F2<br>2F2                                    | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                                    | -7/2<br>3/2<br>1/2<br>5/2                                          |

75

ł

1

î

t

5

ł

, s, 7, -

Ves ?

たいないとう

3

÷

ž

ŕ

#### APPENDIX IV

#### TABLE 1 ND+3:LAF3

| OBSERVED | CALC  | 0-C   | STATE | J   | MJ   |
|----------|-------|-------|-------|-----|------|
|          | 47871 |       | 2G 2  | 9/2 | 5/2  |
| 47894    | 47888 | 6     | 2G2   | 9/2 | -9/2 |
| 47937    | 47964 | -26   | 2G2   | 9/2 | 3/2  |
| 47999    | 48006 | -6    | 2G2   | 9/2 | -7/2 |
| 48043    | 48055 | - 11  | 2G2   | 9/2 | 1/2  |
| 48839    | 48861 | -21   | 2G 2  | 7/2 | -7/2 |
| 48908    | 48869 | 39    | 2G2   | 7/2 | 3/2  |
| 48977    | 48979 | -1    | 2G2   | 7/2 | 5/2  |
| 49088    | 49065 | 23    | 2G 2  | 7/2 | 1/2  |
|          | 66548 |       | 2F1   | 7/2 | 5/2  |
|          | 66705 |       | 2F 1  | 7/2 | -7/2 |
|          | 66793 |       | 2F 1  | 7/2 | 3/2  |
| • • •    | 66859 | • • • | 2F1   | 7/2 | 1/2  |
| •••      | 67857 |       | 2F 1  | 5/2 | 5/2  |
|          | 67858 | • • • | 2F 1  | 5/2 | 3/2  |
|          | 68075 |       | 2F1   | 5/2 | 1/2  |

75

ļ

.

. .

#### APPENDIX IV

#### TABLE 1A ND+3:LAF3 CENTERS OF GRAVITY

| CALC CENTER | STATE   |
|-------------|---------|
| 235         | 4I 9/2  |
| 2114        | 4111/2  |
| 4098        | 4113/2  |
| 6148        | 4115/2  |
| 11621       | 4F 3/2  |
| 12660       | 4F 5/2  |
| 12768       | 2H 9/2  |
| 13619       | 4F 7/2  |
| 13691       | 45 3/2  |
| 14899       | 4F 9/2  |
| 16 105      | 2H11/2  |
| 17428       | 4G 5/2  |
| 17469       | 4G 7/2  |
| 19293       | 4G 7/2  |
| 19709       | 4G 9/2  |
| 19785       | 2K13/2  |
| 21425       | 2D 3/2  |
| 21714       | 4G11/2  |
| 21780       | 2K 15/2 |
| 23458       | 2P 1/2  |
| 24004       | 2D 5/2  |
| 26424       | 2P 3/2  |

ر ج بر

#### PAGE 7 Appendix iv

ر ب

٠,

and the second second

. . .

.

·

#### TABLE 2 U(K) \*2 FOR ND+3

| J1                                                                 | LEVEL 1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 LEVEL 2                                                                                                                                                                                                                                                                                                                                                                                         | (U2) *2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (U4) *2                                                                                                                                                           | (06)*2                                                                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2 | 23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458<br>23458 | 3/2       11621         3/2       13691         3/2       21425         3/2       26424         5/2       12660         5/2       17428         5/2       17428         5/2       17428         5/2       13619         7/2       13619         7/2       19293         9/2       235         9/2       12768         9/2       14899         9/2       19709         9/2       19785             | 0.0131<br>0.0175<br>0.0291<br>0.0056<br>0.0101<br>0.0346<br>0.0260<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0200<br>0.0200<br>0.0097<br>0.0026<br>0.0396<br>0.0871<br>0.0033<br>0.0010<br>0.0<br>0.0                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                          |
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11621         221425         226424         12660         17428         224004         17428         1217428         1217428         1217428         1217428         1217428         1217428         1217428         1217469         1217469         121768         121768         121768         121709         121709         12114         1216105         121714         19785         121780 | 0.0612<br>0.0050<br>0.0024<br>0.0773<br>0.4856<br>0.0009<br>0.0063<br>0.0735<br>0.1062<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>0.0<br>0.0533<br>0.0433<br>0.0007<br>0.0800<br>0.0400<br>0.0629<br>0.2283<br>0.0149<br>0.0046<br>0.0570<br>0.1423<br>0.0001<br>0.0015<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                          |
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2 | 13691 3<br>13691 5<br>13691 5<br>13691 7<br>13691 7<br>13691 7<br>13691 9<br>13691 9<br>13691 9<br>13691 9<br>13691 11<br>13691 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>/2 21425 /2 26424 /2 17428 /2 24004 /2 17469 /2 19293 /2 235 /2 12768 /2 14899 /2 19709 /2 2114 /2 16105</pre>                                                                                                                                                                                                                                                                               | 0.0073<br>0.0060<br>0.0007<br>0.0071<br>0.0006<br>0.0021<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>0.1775<br>0.0000<br>0.0731<br>0.2023<br>0.0025<br>0.0044<br>0.0023<br>0.1922<br>0.0000<br>0.0563                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.2347<br>0.0001<br>0.0011<br>0.0009<br>0.2099<br>0.0016 |

7

- 4

#### PAGE 8 Appendix iv

7

, , ,

and the second second

#### TABLE 2 U(K) \*2 FOR ND+3

| J1  | LEVEL 1 J2 | LEVEL 2 | (U2) *2 | (04) *2 | (06) *2 |
|-----|------------|---------|---------|---------|---------|
| 3/2 | 13691 11/2 | 2 21714 | 0.0     | 0.3245  | 0.0004  |
| 3/2 | 13691 13/2 | 2 4098  | 0.0     | 0.0     | 0.3295  |
| 3/2 | 13691 15/2 | 2 6148  | 0.0     | 0.0     | 0.3306  |
| 3/2 | 13031 1372 | 21700   | 0.0     | 0.0     | 0.00.30 |
| 3/2 | 21425 3/2  | 2 21425 | 0.0161  | 0.0     | 0.0     |
| 3/2 | 21425 3/4  | 2 20424 | 0.0052  | 0.0     | 0.0     |
| 3/2 | 21425 5/2  | 2 17428 | 0.0002  | 0.0039  | 0.0     |
| 3/2 | 21425 5/2  | 2 24004 | 0.1744  | 0.0011  | 0.0     |
| 3/2 | 21425 7/2  | 2 13619 | 0.0025  | 0.0001  | 0.0     |
| 3/2 | 21425 7/2  | 2 17469 | 0.0104  | 0.0839  | 0.0     |
| 3/2 | 21425 7/2  | 2 19293 | 0.0206  | 0.0418  | 0.0     |
| 3/2 | 21425 9/2  | 2 235   | 0.0     | 0.0202  | 0.0001  |
| 3/2 | 21425 9/2  | 2 12768 | 0.0     | 0.0259  | 0.0872  |
| 3/2 | 21425 9/2  | 14899   | 0.0     | 0.0003  | 0.0139  |
| 3/2 | 21425 9/2  | 2 19709 | 0.0     | 0.0023  | 0.0325  |
| 3/2 | 21425 11/2 | 2114    | 0.0     | 0.0016  | 0.0320  |
| 3/2 | 21425 1172 | 2171/   | 0.0     | 0.1078  | 0.1007  |
| 3/2 | 21425 17/2 | 21714   | 0.0     | 0.0300  | 0.0860  |
| 3/2 | 21425 15/2 | 6148    | 0.0     | 0.0     | 0.0083  |
| 3/2 | 21425 15/2 | 21780   | 0.0     | 0.0     | 0.3482  |
|     |            |         |         |         |         |
| 3/2 | 26424 3/2  | 26424   | 0.0838  | 0.0     | 0.0     |
| 3/2 |            | 12660   | 0.0022  | 0.0033  | 0.0     |
| 3/2 | 26424 5/2  | 2//0//  | 0.0058  | 0.0000  | 0.0     |
| 3/2 | 26424 372  | 13619   | 0 0003  | 0.0007  | 0.0     |
| 3/2 | 26424 7/2  | 19293   | 0.0063  | 0.0052  | 0.0     |
| 3/2 | 26424 9/2  | 235     | 0.0     | 0.0010  | 0.0005  |
| 3/2 | 26424 9/2  | 12768   | 0.0     | 0.0100  | 0.0813  |
| 3/2 | 26424 9/2  | 14899   | 0.0     | 0.0527  | 0.0578  |
| 3/2 | 26424 9/2  | 19709   | 0.0     | 0.0601  | 0.0647  |
| 3/2 | 26424 11/2 | 2114    | 0.0     | 0.0159  | 0.0005  |
| 3/2 | 26424 11/2 | 16105   | 0.0     | 0.0194  | 0.0136  |
| 3/2 | 26424 11/2 | 21/14   | 0.0     | 0.0043  | 0.0000  |
| 3/2 | 20424 1372 | 10795   | 0.0     | 0.0     | 0.0098  |
| 3/2 | 20424 13/2 | 6148    | 0.0     | 0.0     | 0.2319  |
| 3/2 | 26424 15/2 | 21780   | 0.0     | 0.0     | 0.0076  |
| 5/2 | 12660 572  | 12660   | 0 0462  | 0 0218  | 0 0     |
| 5/2 | 12660 5/2  | 17428   | 0.2671  | 0.1301  | 0.0     |
| 5/2 | 12660 5/2  | 24004   | 0.0005  | 0.0006  | 0.0     |
| 5/2 | 12660 7/2  | 13619   | 0.0655  | 0.0540  | 0.0872  |
| 5/2 | 12660 7/2  | 17469   | 0.2504  | 0.0075  | 0.0750  |
| 5/2 | 12660 7/2  | 19293   | 0.2569  | 0.0009  | 0.1195  |
| 5/2 | 12660 9/2  | 235     | 0.0006  | 0.2337  | 0.3983  |
| 5/2 | 12660 9/2  | 12768   | 0.0062  | 0.0308  | 0.0052  |

78

9

.

.

•

• •

# 

#### PAGE 9 Appendix iv

#### TABLE 2 U(K) \*2 FOR ND+3

| J1                                                                 | LEVEL 1 J2                                                                                                                                                                               | LEVEL 2                                                                                                                                 | (U2) *2                                                                                                                                        | (04) *2                                                                                                                                         | (U6) *2                                                                                                                                         |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2               | 126609/2126609/21266011/21266011/21266013/21266013/21266015/21266015/2                                                                                                                   | 14899<br>19709<br>2114<br>16105<br>21714<br>4098<br>19785<br>6148<br>21780                                                              | 0.0105<br>0.1912<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                       | 0.0508<br>0.0995<br>0.1698<br>0.0030<br>0.0611<br>0.1817<br>0.0026<br>0.0<br>0.0                                                                | 0.1091<br>0.0022<br>0.0369<br>0.0239<br>0.1976<br>0.4010<br>0.0048<br>0.2300<br>0.0051                                                          |
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 174285/2174287/2174287/2174287/2174289/2174289/2174289/2174289/21742811/21742811/21742811/21742811/21742813/21742813/21742813/21742813/21742815/21742815/2                               | 17428<br>24004<br>13619<br>17469<br>19293<br>235<br>12768<br>14899<br>19709<br>2114<br>16105<br>21714<br>4098<br>19785<br>6148<br>21780 | 0.0024<br>0.0014<br>0.0382<br>0.0002<br>0.0000<br>0.8975<br>0.0012<br>0.0026<br>0.0000<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.1883<br>0.0008<br>0.1047<br>0.1321<br>0.2391<br>0.4126<br>0.0134<br>0.0070<br>0.1035<br>0.2867<br>0.0002<br>0.0094<br>0.0342<br>0.0018<br>0.0 | 0.0<br>0.1626<br>0.0845<br>0.0571<br>0.0346<br>0.0018<br>0.1303<br>0.2477<br>0.0961<br>0.0145<br>0.0914<br>0.0485<br>0.0077<br>0.0046<br>0.0051 |
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 24004 5/2<br>24004 7/2<br>24004 7/2<br>24004 7/2<br>24004 9/2<br>24004 9/2<br>24004 9/2<br>24004 9/2<br>24004 11/2<br>24004 11/2<br>24004 11/2<br>24004 13/2<br>24004 13/2<br>24004 15/2 | 24004<br>13619<br>17469<br>19293<br>235<br>12768<br>14899<br>19709<br>2114<br>16105<br>21714<br>4098<br>19785<br>21780                  | 0.2977<br>0.0005<br>0.0064<br>0.0003<br>0.0000<br>0.0078<br>0.0003<br>0.0000<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                    | 0.0045<br>0.0171<br>0.0688<br>0.0481<br>0.0002<br>0.1994<br>0.0110<br>0.0077<br>0.0001<br>0.2523<br>0.0314<br>0.0037<br>0.0033<br>0.0           | 0.0<br>0.0064<br>0.1756<br>0.0558<br>0.0017<br>0.0791<br>0.0132<br>0.0064<br>0.0029<br>0.0184<br>0.0006<br>0.0169<br>0.1828<br>0.4889           |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2        | 136197/2136197/2136197/2136199/2136199/2136199/2136199/2136199/2136199/21361911/2                                                                                                        | 13619<br>17469<br>19293<br>235<br>12768<br>14899<br>19709<br>2114                                                                       | 0.1525<br>0.1267<br>0.1747<br>0.0011<br>0.0056<br>0.0934<br>0.5548<br>0.0009                                                                   | 0.0082<br>0.0589<br>0.0732<br>0.0406<br>0.0344<br>0.0912<br>0.0001<br>0.2335                                                                    | 0 c 1033<br>0 .,0104<br>0 . 0023<br>0 . 4272<br>0 . 0040<br>0 . 0783<br>0 . 0825<br>0 . 3076                                                    |

> • •

.

.

Ľ

•

. ....

9

•

•

٠

-

• •

#### PAGE 10 Appendix iv

ł

,

Ľ

. .

٠.

•••

#### TABLE 2 U(K)\*2 FOR ND+3

| J 1  | LEVEL 1 J2  | LEVEL 2        | (U2) *2 | (U4) *2 | (86) *2 |
|------|-------------|----------------|---------|---------|---------|
| 7/2  | 13619 11/2  | 16 105         | 0.0336  | 0.0154  | 0.1287  |
| 7/2  | 13619 11/2  | 21/14          | 0.1/29  | 0.1023  | 0.1447  |
| 7/2  | 136 19 13/2 | 4098           | 0.0     | 0.3314  | 0.0001  |
| 7/2  | 13610 15/2  | 61/18          | 0.0     | 0.0004  | 0.0003  |
| 7/2  | 13610 15/2  | 21700          | 0.0     | 0.1333  | 0.0100  |
| 17 6 | 13013 1372  | 21700          | 0.0     | 0.0000  | 0.0077  |
| 7/2  | 17469 7/2   | 17469<br>19293 | 0.0111  | 0.0002  | 0.0189  |
| 7/2  | 17469 9/2   | 235            | 0.0707  | 0.1720  | 0.0274  |
| 7/2  | 17469 9/2   | 12768          | 0.0088  | 0.0292  | 0.1989  |
| 7/2  | 17469 9/2   | 14899          | 0.0261  | 0.0504  | 0.2665  |
| 7/2  | 17469 9/2   | 19709          | 0.0730  | 0.1395  | 0.0034  |
| 7/2  | 17469 11/2  | 2114           | 0.3996  | 0.1764  | 0.0522  |
| 7/2  | 17469 11/2  | 16105          | 0.0068  | 0.0000  | 0.3593  |
| 7/2  | 17469 11/2  | 21714          | 0.0119  | 0.1233  | 0.0015  |
| 7/2  | 17469 13/2  | 4098           | 0.0     | 0.0875  | 0.0345  |
| 7/2  | 17469 13/2  | 19785          | 0.0     | 0.7062  | 0.0012  |
| 7/2  | 17469 15/2  | 6148           | 0.0     | 0.0010  | 0.1064  |
| 7/2  | 17469 15/2  | 21780          | 0.0     | 0.0383  | 0.0122  |
| 7/2  | 19293 7/2   | 19293          | 0.0937  | 0.0433  | 0.0772  |
| 7/2  | 19293 9/2   | 235            | 0.0596  | 0.1709  | 0.0566  |
| 7/2  | 19293 9/2   | 12768          | 0.0508  | 0.0543  | 0.3685  |
| 7/2  | 19293 9/2   | 14899          | 0.0006  | 0.0112  | 0.0099  |
| 7/2  | 19293 9/2   | 19709          | 0.0375  | 0.1449  | 0.1417  |
| 7/2  | 19293 11/2  | 2114           | 0.6684  | 0.1075  | 0.0099  |
| 1/2  | 19293 11/2  | 16105          | 0.0011  | 0.019/  | 0.1020  |
| 1/2  | 19293 11/2  | 21714          | 0.0023  | 0.0341  | 0.3811  |
| 7/2  | 19293 13/2  | 4098           | 0.0     | 0.2407  | 0.0613  |
| 7/2  | 19293 13/2  | 61/10          | 0.0     | 0.5179  | 0.0014  |
| 7/2  | 19293 15/2  | 0140           | 0.0     | 0.0273  | 0.0045  |
| 1/2  | 19293 15/2  | 21780          | 0.0     | 0.0100  | 0.0018  |
| 9/2  | 235 9/2     | 235            | 0.1195  | 0.1727  | 0.6892  |
| 9/2  | 235 9/2     | 12768          | 0.0095  | 0.0082  | 0.1195  |
| 9/2  | 235 9/2     | 14899          | 0.0009  | 0.0092  | 0.0406  |
| 9/2  | 235 9/2     | 19709          | 0.0044  | 0.0584  | 0.0383  |
| 9/2  | 235 11/2    | 2114           | 0.0194  | 0.1072  | 1.1639  |
| 9/2  | 235 11/2    | 16105          | 0.0000  | 0.0027  | 0.0104  |
| 9/2  | 235 11/2    | 21/14          | 0.0000  | 0.0052  | 0.0079  |
| 9/2  | 235 13/2    | 4098           | 0.0000  | 0.0135  | 0.4549  |
| 9/2  | 235 13/2    | 19/85          | 0.00/1  | 0.0002  | 0.0330  |
| 9/2  | 235 15/2    | 0148           | 0.0     | 0.0000  | 0.0452  |
| 9/2  | 235 15/2    | 21780          | 0.0     | 0.0052  | 0.0149  |
| 9/2  | 12768 9/2   | 12768          | 0.1156  | 0.0016  | 0.2728  |
| 9/2  | 12768 9/2   | 14899          | 0.0487  | 0.0029  | 0.0018  |
| 9/2  | 12768 9/2   | 19709          | 0.0390  | 0.0478  | 0.0982  |
| 9/2  | 12768 11/2  | 2114           | 0.0028  | 0.0004  | 0.0254  |

80

**B** 13

.
PAGE 11 Appendix iv

# TABLE 2 U (K) \*2 FOR ND+3

| J 1  | LEVEL 1 J2 | LEVEL 2       | (02) *2            | (84) *2  | (06) *2 |
|------|------------|---------------|--------------------|----------|---------|
| 9/2  | 12768 11/2 | 16105         | 0.0687             | 0.0037   | 0.2755  |
| 9/2  | 12768 11/2 | 21714         | 0.1796             | 0.0001   | 0.0037  |
| 9/2  | 12768 13/2 | 4098          | 0.0389             | 0.0064   | 0.1217  |
| 9/2  | 12768 13/2 | 19785         | 0.1211             | 0.0063   | 1.1292  |
| 9/2  | 12768 15/2 | 6148          | 0.0                | 0.2155   | 0.0775  |
| 9/2  | 12/68 15/2 | 21780         | 0.0                | 0.46/5   | 0.4145  |
| 9/2  | 14899 9/2  | 14899         | 0.1407             | 0.0960   | 0.0003  |
| 9/2  | 14899 9/2  | 19709         | 0.1181             | 0.1593   | 0.0207  |
| 9/2  | 14899 11/2 | 2114          | 0.0001             | 0.0328   | 0.3702  |
| 9/2  | 14899 17/2 | 2171/         | 0.0873             | 0.0239   | 0.0172  |
| 9/2  | 14899 13/2 | 4098          | 0.0029             | 0.2148   | 0.5102  |
| 9/2  | 14899 13/2 | 19785         | 0.0462             | 0.0042   | 0.2931  |
| 9/2  | 14899 15/2 | 6148          | 0.0                | 0.5000   | 0.4628  |
| 9/2  | 14899 15/2 | 21780         | 0.0                | 0.0003   | 0.2037  |
| 9/2  | 19709 9/2  | 19709         | 0.0042             | 0.0063   | 0.0122  |
| 9/2  | 19709 11/2 | 2114          | 0.1403             | 0.3495   | 0.0505  |
| 9/2  | 19709 11/2 | 16105         | 0.0032             | 0.0308   | 0.2310  |
| 9/2  | 19709 11/2 | 21714         | 0.0521             | 0.5102   | 0.1206  |
| 9/2  | 19/09 13/2 | 4098          | 0.9552             | 0.3843   | 0.0157  |
| 9/2  | 19709 13/2 | 6148          | 0.0210             | 0.0440   | 0.1131  |
| /9/2 | 19709 15/2 | 21780         | 0.0                | 0.1408   | 0.0246  |
| ., - |            |               |                    |          |         |
| 11/2 | 2114 11/2  | 2114          | 0.1321             | 0.1159   | 0.0673  |
| 11/2 | 2114 11/2  | 16105         | 0.0043             | 0.0094   | 0.0062  |
| 11/2 | 2114 11/2  | 21714<br>4098 | 0.0256             | 0.1352   | 1.2376  |
| 11/2 | 2114 13/2  | 19785         | 0.0002             | 0.0000   | 0.0168  |
| 11/2 | 2114 15/2  | 6148          | 0.0000             | 0.0109   | 0.4180  |
| 11/2 | 2114 15/2  | 21780         | 0.0020             | 0.0003   | 0.0039  |
| 11/2 | 16105 11/2 | 16105         | 0.0107             | 0.0009   | 0.0284  |
| 11/2 | 16105 11/2 | 21714         | 0.0009             | 0.0809   | 0.0109  |
| 11/2 | 16105 13/2 | 4098          | 0.0043             | 0.0168   | 0.0029  |
| 11/2 | 16105 13/2 | 19785         | 0.0014             | 0.0044   | 0.4795  |
| 11/2 | 16105 15/2 | 6148          | 0.1293             | 0.0687   | 0.0000  |
| 11/2 | 10105 15/2 | 21700         | 0.1556             | 0.0017   | 1. 5224 |
| 11/2 | 21714 11/2 | 21714         | 0.0015             | 0.6344   | 0.1858  |
| 11/2 | 21714 13/2 | 4098          | 0.1283             | 0.3514   | 0.1609  |
| 11/2 | 21714 13/2 | 19785         | 0.0001             | 0.0077   | 0.0233  |
| 11/2 | 21714 15/2 | 21790         | 0.0000             | 0.0915   | 0.1590  |
| 11/2 | 21714 13/2 | 21700         | 0.0000             | 0.0102   | 0.0712  |
| 13/2 | 4098 13/2  | 4098          | 0.1693             | 0.1729   | 0.2331  |
| 13/2 | 4098 13/2  | 19/85         | 0.0032             | 0.0001   | 0.0024  |
| 13/6 | 4070 1374  | 0140          | <b>U 4 U 1 2 J</b> | V. I [0/ | 1. 4344 |

in the second se

; N. S 4.

ないでは

), **1** 

.;

B 13

PAGE 12 APPENDIX IV

# TABLE 2 U(K) \*2 FOR ND+3

| J1                   | LEVEL 1 J2                             | LEVEL 2                | (U2) *2                    | (04) *2                    | (U6) *2                    |
|----------------------|----------------------------------------|------------------------|----------------------------|----------------------------|----------------------------|
| 13/2                 | 4098 15/2                              | 21780                  | 0.0003                     | 0.0003                     | 0.0172                     |
| 13/2<br>13/2<br>13/2 | 19785 13/2<br>19785 15/2<br>19785 15/2 | 19785<br>6148<br>21780 | 1.6237<br>0.0000<br>0.0073 | 0.5238<br>0.0009<br>0.4138 | 0.0228<br>0.0064<br>0.0201 |
| 15/2<br>15/2         | 6148 15/2<br>6148 15/2                 | 6148<br>21780          | 0.2332<br>0.0105           | 0.3717<br>0.0001           | 1.9341<br>0.0231           |
| 15/2                 | 21780 15/2                             | 21780                  | 1.9817                     | 0.4265                     | 0.0142                     |





69

, . , . , . 4

`.;-` , າ ສຸດເຊັ່ງ 1, ອີດ

۰. بر

0 - O'

*ה*;



13676 13693 -16 45 3/2 1/2 13711 13695 16 45 3/2 3/2 13715 13711 4 4F 7/2 5/2 <u>بر</u> ج

2.

W. The Transfer and the

, ... v

\_\_\_\_\_

 21338
 21339
 0
 2D1
 3/2
 3/2

 21353
 21352
 1
 2D1
 3/2
 1/2

· \* 1

**م** 

•

• .



ŵŃ

S.,

73<sup>°</sup>







an





ABSÓRBANCE UNITS

7

4 074.

.465

460



0.418

0.417

0.416

0.415

0.06



5/2 12660 9/2 12768 0.0062 0.0308 0.0052

•, \$:

. . .



Fig. 13. K Group (<sup>2</sup>P<sub>3/2</sub>)



• ;

いたみ 大学学 ふうじゅうどう

r.

1

1, 1, 2, 1, 2, 1

80

¥.



Fig. 14. L Group  $({}^{4}D_{1/2} + {}^{4}D_{5/2} + {}^{4}D_{3/2})$ 

0.336



13/2 4098 13/2 4098 15/2 4098 19785 6148 0.1693 0.0032 0.0195 0.1729 0.0001 0.1187 0.2331 0.0024 1.4522 12/2 13/2

C





۰.

• }

.....





なられ



ii N

1.12

ABSORBANCE UNITS



1

لإ

ABSORBANCE UNITS

1.12

ii e St



#### PAGE 1

#### APPENDIX V

| PM+3:LAF3 | TABLE<br>CENTER: | 1<br>Soff | GRAVITY     |   |
|-----------|------------------|-----------|-------------|---|
| OBSERVED  | CALC             | 0-C       | STATE       |   |
|           | 120              | • • •     | 514         |   |
|           | 1612             |           | 515         |   |
| • • •     | 3239             |           | 516         |   |
| • • •     | 4951             | • • •     | 51 <b>7</b> | _ |
|           | 6714             | • • •     | 518         | • |
|           | 12638            |           | 5F1         |   |
|           | 13080            |           | 5F2         |   |
|           | 13933            |           | 5#3         |   |
|           | 14486            |           | 5s2         |   |
|           | 14887            | • • •     | 5F4         |   |
| • • •     | 16223            | • • •     | 5F5         |   |
|           |                  |           |             |   |
|           | 16939            | • • •     | 3K 6        |   |
|           | 18053            | • • •     | 5G2         |   |
| • • •     | 18075            | • • •     | 3H4         |   |
| • • •     | 18255            | • • •     | 387         |   |
| •••       | 18565            | • • •     | 5G 3        |   |
| • • •     | 19002            | • • •     | 368         |   |
| •••       | 20307            | • • •     | 504         |   |
| •••       | 20004            | • • •     | 303         |   |
| • • •     | 21935            | •••       | 565         |   |
| •••       | 22807            | •••       | 566         |   |
|           | 23140            |           | 302         |   |
|           | 23772            |           | 3L 7        |   |
|           | 24216            |           | 3P1         |   |
|           | 24702            |           | 386         |   |
| • • •     | 24840            | • • •     | 3G 4        |   |
|           | 24907            | • • •     | 3L 8        |   |
|           | 25811            | • • •     | 3P0         |   |
|           | 25895            | • • •     | 3D 3        |   |
| • • •     | 25907            | • • •     | 3L9         |   |

.

,

# **BLANK PAGE**

PAGE 3 Appendix V

.

.

# TABLE 2 U(K) \*2 FOR PM+3

| J 1            | LEVEL 1 | J2  | LEVEL 2 | (U2) *2 | (U4) *2       | (06) *2 |
|----------------|---------|-----|---------|---------|---------------|---------|
| 0              | 25810   | 2   | 23142   | 0.0054  | 0.0           | 0.0     |
| 0              | 25810   | 4   | 14882   | 0.0     | 0.0019        | 0.0     |
| 0              | 25810   | - 4 | 18083   | 0.0     | 0.0142        | 0.0     |
| Õ              | 25810   | 6   | 3247    | 0.0     | 0.0           | 0.0037  |
| Ō              | 25810   | 6   | 16957   | 0.0     | 0.0           | 0.0820  |
| Ő              | 25810   | 6   | 22787   | 0.0     | 0.0           | 0.0168  |
| •              |         | •   |         | ••••    | •••           |         |
| 1              | 12658   | 1   | 12658   | 0.0268  | 0.0           | 0.0     |
| 1              | 12658   | 2   | 13094   | 0.0529  | 0.0           | 0.0     |
| 1              | 12658   | 2   | 18070   | 0.2682  | 0.0           | 0.0     |
| 1              | 12658   | 2   | 23142   | 0.0032  | 0.0           | 0.0     |
| 1              | 12658   | 3   | 13939   | 0.0177  | 0.0641        | 0.0     |
| 1              | 12658   | 3   | 18577   | 0.1965  | 0.0469        | 0.0     |
| 1              | 12658   | 3   | 21946   | 0.0225  | 0.0105        | 0.0     |
| 1              | 12658   | 4   | 161     | 0.0     | 0.1405        | 0.0     |
| 1              | 12658   | 4   | 14882   | 0.0     | 0.0322        | 0.0     |
| 1              | 12658   | 4   | 18083   | 0.0     | 0.0277        | 0.0     |
| 1              | 12658   | 4   | 20565   | 0.0     | 0.0604        | 0.0     |
| 1              | 12658   | 5   | 1639    | 0.0     | 0.1532        | 0.1544  |
| 1              | 12658   | 5   | 16208   | 0.0     | 0.0016        | 0.1303  |
| 1              | 12658   | 5   | 20303   | 0.0     | 0.0090        | 0.0462  |
| 1              | 12658   | 5   | 22476   | 0.0     | 0.0066        | 0.0856  |
| 1              | 12658   | 6   | 3247    | 0.0     | 0.0           | 0.2986  |
| 1              | 12658   | 6   | 22787   | 0.0     | 0.0           | 0.0303  |
| 1              | 12658   | 7   | 4937    | 0.0     | 0.0           | 0.0680  |
| 1              | 12658   | 7   | 18258   | 0.0     | 0.0           | 0.0046  |
| 1              | 12658   | 7   | 23796   | 0.0     | 0.0           | 0.0016  |
| 1              | 24221   | 2   | 13094   | 0.0013  | 0.0           | 0.0     |
| 1              | 24221   | 2   | 18070   | 0.0077  | 0.0           | 0.0     |
| 1              | 24221   | 2   | 23142   | 0.0082  | 0.0           | 0.0     |
| 1              | 24221   | 3   | 18577   | 0.0100  | 0.0101        | 0.0     |
| 1              | 24221   | 3   | 21946   | 0.0539  | 0.0537        | 0.0     |
| 1              | 24221   | 4   | 18083   | 0.0     | 0.0137        | 0.0     |
| 1              | 24221   | 4   | 20565   | 0.0     | 0.0236        | 0.0     |
| 1              | 24221   | 5   | 1639    | 0.0     | 0.0047        | 0.0132  |
| 1              | 24221   | 5   | 20303   | 0.0     | 0.0402        | 0.0121  |
| 1              | 24221   | 5   | 22476   | 0.0     | 0.0340        | 0.0054  |
| 1              | 24221   | 6   | 3247    | 0.0     | 0.0           | 0.0049  |
| 1              | 24221   | 6   | 16957   | 0.0     | 0.0           | 0.0019  |
| 1              | 24221   | 6   | 22787   | 0.0     | 0.0           | 0.0654  |
| 1              | 24221   | 7   | 4937    | 0.0     | 0.0           | 0.0019  |
| 1              | 24221   | 7   | 18258   | 0.0     | 0.0           | 0.2964  |
| 2              | 13094   | 2   | 13094   | 0.0202  | 0.0794        | 0.0     |
| $\overline{2}$ | 13094   | 2   | 18070   | 0.2860  | 0.0722        | 0.0     |
| $\overline{2}$ | 13094   | 2   | 23142   | 0.0001  | 0.0011        | 0.0     |
| $\overline{2}$ | 13094   | 3   | 13939   | 0.0899  | 0.0003        | 0.0     |
| 2              | 13094   | 3   | 18577   | 0.1486  | 0.0370        | 0.0     |
| 2              | 13094   | 3   | 21946   | 0.0339  | 0.0127        | 0.0     |
| _              |         | -   |         |         | · · · · · · · |         |

ç

ے بر بر

``

#### PAGE 4 Appendix V

•

#### TABLE 2 U(K) \*2 FOR PM+3

| J 1 | LEVEL 1 | J 2    | LEVEL 2       | (U2) *2 | (U4) *2 | (U6) *2 |
|-----|---------|--------|---------------|---------|---------|---------|
| 2   | 13094   | 4      | 161           | 0.0016  | 0.2042  | 0.1258  |
| 2   | 13094   | 4      | 14882         | 0.0385  | 0.0705  | 0.0537  |
| 2   | 13094   | 4      | 18083         | 0.0916  | 0.0097  | 0.0174  |
| 2   | 13094   | 4      | 20565         | 0.2071  | 0.0209  | 0.0929  |
| 2   | 13094   | 5      | 1639          | 0.0     | 0.0594  | 0.2878  |
| 2   | 13094   | 5      | 16208         | 0.0     | 0.0172  | 0.1467  |
| 2   | 13094   | 5      | 20303         | 0.0     | 0.0733  | 0.0135  |
| 2   | 13094   | 5      | 22476         | 0.0     | 0.0634  | 0.0125  |
| 2   | 13094   | 6      | 3247          | 0.0     | 0.2200  | 0.0825  |
| 2   | 13094   | 6      | 16957         | 0.0     | 0.0032  | 0.0033  |
| 2   | 13094   | 6      | 22787         | 0.0     | 0.0032  | 0.1147  |
| 2   | 13094   | 1      | 4937          | 0.0     | 0.0     | 0.3057  |
| 2   | 13094   | 8      | 6674          | 0.0     | 0.0     | 0.0743  |
| 2   | 13094   | 8      | 19845         | 0.0     | 0.0     | 0.0130  |
| 2   | 14486   | 2      | 18070         | 0.0030  | 0.1411  | 0.0     |
| 2   | 14486   | 3      | 18577         | 0.0033  | 0.2032  | 0.0     |
| 2   | 14486   | 3      | 21946         | 0.0000  | 0.0308  | 0.0     |
| 2   | 14486   | 4      | 161           | 0.0000  | 0.0011  | 0.2296  |
| 2   | 14486   | 4      | 18083         | 0.0003  | 0.0794  | 0.0003  |
| 2   | 14486   | 4      | 20565         | 0.0007  | 0.2059  | 0.0022  |
| 2   | 14486   | 5      | 1639          | 0.0     | 0.0000  | 0.1908  |
| 2   | 14486   | 5      | 16208         | 0.0     | 0.0035  | P.0004  |
| 2   | 14486   | 5      | 20303         | 0.0     | 0.1422  | 0.0014  |
| 2   | 14486   | 2      | 22476         | 0.0     | 0.1509  | 0.0023  |
| 2   | 14486   | 6      | 3247          | 0.0     | 0.0023  | 0.2394  |
| 2   | 14486   | 5      | 22787         | 0.0     | 0.3099  | 0.003/  |
| 2   | 14486   |        | 4937          | 0.0     | 0.0     | 0.3683  |
| 2   | 14400   | 0      | 00/4          | 0.0     | 0.0     | 0.3463  |
| 2   | 18070   | 2      | 18070         | 0.0011  | 0.0345  | 0.0     |
| 2   | 18070   | 2      | 23142         | 0.0035  | 0.0013  | 0.0     |
| 2   | 18070   | 3      | <b>13</b> 939 | 0.0610  | 0.1119  | 0.0     |
| 2   | 18070   | 3      | 18577         | 0.0013  | 0.2434  | 0.0     |
| 2   | 18070   | 3      | 21946         | 0.0013  | 0.0203  | 0.0     |
| 2   | 18070   | 4      | 161           | 0.7293  | 0.2412  | 0.0049  |
| 2   | 18070   | 4      | 14882         | 0.0024  | 0.0212  | 0.2000  |
| 2   | 18070   | 4      | 18083         | 0.0006  | 0.1209  | 0.0081  |
| 2   | 18070   | 4      | 20565         | 0.0027  | 0.1409  | 0.1133  |
| 2   | 18070   | 5      | 1639          | 0.0     | 0.2702  | 0.0407  |
| 2   | 18070   | 5      | 16208         | 0.0     | 0.0003  | 0.0988  |
| 2   | 13070   | 5      | 20303         | 0.0     | 0.0365  | 0.0802  |
| 2   | 18070   | 5      | 224/6         | 0,0     | 0.0235  | 0.0923  |
| 2   | 18070   | 0      | 3247          | 0.0     | 0.0372  | 0.0/81  |
| 2   | 18070   | 07     | 22181         | 0.0     | 0.0008  | 0.0203  |
| 2   | 18070   | 4      | 4937          | 0.0     | 0.0     | 0.0203  |
| 2   | 18070   | 4      | 10250         | 0.0     | 0.0     | 0.0097  |
| 2   | 10070   | 6      | 23190         | 0.0     | 0.0     |         |
| 2   | 10070   | 0<br>0 | 100/4         | 0.0     | 0.0     | 0.0013  |
| 2   | 100/0   | Q      | 13043         | V.V     | V + U   |         |

.-*-*1

2

,

١,

.

110

11

.

PAGE 5 Appendix V

•

•

5

110

11

.

.

#### TABLE 2 U(K)\*2 FOR PM+3

| J 1 | LEVEL 1 | J 2    | LEVEL 2 | (U2)*2 | (04)*2        | (06) *2 |
|-----|---------|--------|---------|--------|---------------|---------|
|     |         |        |         |        |               |         |
| 2   | 23142   | 2      | 23142   | 0.0521 | 0.0830        | 0.0     |
| 2   | 23142   | 3      | 13939   | 0.0104 | 0.0000        | 0.0     |
| 2   | 23142   | 3      | 18577   | 0.0161 | 0.0078        | 0.0     |
| 2   | 23142   | 3      | 21946   | 0.0002 | 0.0066        | 0.0     |
| 2   | 23142   | 4      | 161     | 0.0044 | 0.0020        | 0.0025  |
| 2   | 23142   | 4      | 14882   | 0.0010 | 0.0045        | 0.0024  |
| 2   | 23142   | 4      | 18083   | 0.0878 | 0.0791        | 0.0127  |
| 2   | 23142   | 4      | 20565   | 0.0067 | 0.0412        | 0.0000  |
| 2   | 23142   | 2      | 1639    | 0.0    | 0.0003        | 0.0342  |
| 2   | 23142   | 5      | 10200   | 0.0    | 0.0003        | 0.0009  |
| 2   | 23142   | 5      | 20303   | 0.0    | 0.0201        | 0.1323  |
| 2   | 23142   | 6      | 32470   | 0.0    | 0.0197        | 0.0184  |
| 2   | 23142   | 6      | 16957   | 0.0    | 0.0081        | 0.0723  |
| 2   | 23142   | 6      | 22787   | 0.0    | 0.0331        | 0.0647  |
| 2   | 23142   | 7      | 18258   | 0.0    | 0.0           | 0.0126  |
| 2   | 23142   | 7      | 23796   | 0.0    | 0.0           | 0.0137  |
| 2   | 23142   | 8      | 19845   | 0.0    | 0.0           | 0.4641  |
| -   |         |        |         |        |               |         |
| 3   | 13939   | 5      | 13939   | 0.0221 | 0.0589        | 0.0409  |
| 3   | 13939   | 3      | 18577   | 0.3740 | 0.0415        | 0.1223  |
| 3   | 13939   | з<br>Ц | 21940   | 0.0001 | 0.1073        | 0.0344  |
| 3   | 13939   | Ц      | 14882   | 0.1295 | 0.0349        | 0.1135  |
| 3   | 13939   | ц<br>Ц | 18083   | 0.0407 | 0.0007        | 0.0040  |
| ž   | 13939   | 4      | 20565   | 0.2248 | 0.0379        | 0.0316  |
| 3   | 13939   | 5      | 1639    | 0.0000 | 0.2429        | 0.0260  |
| 3   | 13939   | 5      | 16208   | 0.0285 | 0.0673        | 0.0810  |
| 3   | 13939   | 5      | 20303   | 0.1819 | 0.0928        | 0.0285  |
| 3   | 13939   | 5      | 22476   | 0.1560 | 0.0595        | 0.0110  |
| 3   | 13939   | 6      | 3247    | 0.0    | 0.0777        | 0.2099  |
| 3   | 13939   | 6      | 16957   | 0.0    | 0.0056        | 0.0012  |
| 3   | 13939   | 6      | 22787   | 0.0    | 0.0727        | 0.1761  |
| 5   | 13939   | '      | 4937    | 0.0    | 0.2488        | 0.2551  |
| 2   | 13939   | ''     | 10230   | 0.0    | 0.0048        | 0.0032  |
| จั  | 13939   | Ŕ      | 6674    | 0.0    | 0.0           | 0.3326  |
| 3   | 13939   | ğ      | 25888   | 0.0    | 0.0           | 0.0094  |
|     |         |        |         |        |               |         |
| 3   | 18577   | 3      | 18577   | 0.0000 | 0.0471        | 0.0876  |
| 3   | 18577   | 3      | 21946   | 0.0070 | 0.0000        | 0.0579  |
| 3   | 10577   | 4      | 161     | 0.1538 | 0.2855        | 0.0512  |
| 5   | 105//   | 4      | 14882   | 0.0623 | 0.0792        | 0.0156  |
| 2   | 18577   | 4      | 10003   | 0.0104 | 0.119/        | 0.0002  |
| 3   | 18577   | 4<br>5 | 20305   | 0.7098 | 0.0276        | 0.0173  |
| 3   | 18577   | 5      | 16208   | 0.0011 | 0.0032        | 0.2212  |
| 3   | 18577   | 5      | 20303   | 0.0000 | 0.1907        | 0.0910  |
| 3   | 18577   | 5      | 22476   | 0.0020 | 0.0568        | 0.0397  |
|     |         | -      | · · -   |        | · · · · • • • |         |

PAGE 6 Appendix V

# TABLE 2 U(K) \*2 FOR PM+3

ľ

| J 1                  | LEVEL 1 | J2       | LEVEL 2       | (U2) *2 | (U4) *2 | (06) *2          |
|----------------------|---------|----------|---------------|---------|---------|------------------|
| 3                    | 18577   | 6        | 3247          | 0.0     | 0.3298  | 0.0388           |
| 3                    | 18577   | 6        | 16957         | 0.0     | 0.0008  | 0.0073           |
| 3                    | 18577   | ĕ        | 22787         | 0.0     | 0.0238  | 0.1178           |
| Ä                    | 18577   | 7        | 4937          | 0.0     | 0.0533  | 0.0611           |
| 3                    | 18577   | ,<br>7   | 18258         | 0.0     | 0.0245  | 0.0070           |
| 3                    | 18577   | .,       | 2 3 7 9 6     | 0.0     | 0.0606  | 0.0088           |
| 3                    | 19577   | Å        | 6674          | 0.0     | 0.0000  | 0.0000           |
| 2                    | 10577   | 0        | 109/15        | 0.0     | 0.0     | 0.0040           |
| 3                    | 19577   | 0        | 19045         | 0.0     | 0.9     | 0.0105           |
| 5                    | 10577   | ,        | 20000         | 0.0     | 0.0     | 0.0302           |
| 3                    | 21946   | 3        | 2 1946        | 0.1057  | 0.0228  | 0.0094           |
| จั                   | 21946   | u U      | 161           | 0 0137  | 0 0428  | 0 0056           |
|                      | 21940   | - n      | 1/100         | 0.0108  | 0.0720  | 0.0000           |
| 3                    | 21940   |          | 18083         | 0.0298  | 0.0209  | 0.1162           |
| 3                    | 21940   | - n      | 20565         | 0.0290  | 0.0204  | 0.0046           |
| ž                    | 21046   | Ē        | 1630          | 0 1623  | 0.031/  | 0.0040           |
| 2                    | 21940   | 5        | 16209         | 0.1023  | 0.0314  | 0.0201           |
| 2                    | 21940   | 5        | 20202         | 0.0004  | 0.0100  | 0.0100           |
| 2                    | 21940   | 5        | 20303         | 0.0042  | 0.0005  | 0.0103           |
| 2                    | 21940   | 2        | 22470         | 0.0224  | 0.1341  | 0.0023           |
| 2                    | 21940   | 6        | 3247          | 0.0     | 0.0422  | 0.0003           |
| 2                    | 21940   | 6        | 10357         | 0.0     | 0.0109  | 0.0498           |
| 2                    | 21940   | 0        | 22/07         | 0.0     | 0.0022  | 0.0097           |
| 3                    | 21940   | 4        | 4937          | 0.0     | 0.0048  | 0.0174           |
| 3                    | 21946   | '        | 18238         | 0.0     | 0.0806  | 0.0310           |
| 3                    | 21946   | /        | 23/90         | 0.0     | 0.2000  | 0.1614           |
| 3                    | 21946   | 8        | 6674          | 0.0     | 0.0     | 0.0086           |
| 3                    | 21946   | 8        | 19845         | 0.0     | 0.0     | 0.0026           |
| 3                    | 21946   | 9        | 25888         | 0.0     | 0.0     | 0.0110           |
| н                    | 161     | "        | 161           | 0 1156  | 0 1303  | 0 3/1 05         |
| 4                    | 161     |          | 1/002         | 0.000   | 0.1393  | 0.3495           |
|                      | 101     | 4        | 10002         | 0.0004  | 0.0290  | 0.2400           |
| - <del>4</del><br>// | 161     | 4        | 20565         | 0.0079  | 0.0313  | 0.0278           |
| 7                    | 161     | 5        | 1630          | 0.0001  | 0.0000  | 0.0704           |
| - n                  | 161     | 5        | 16209         | 0.0247  | 0.0020  | 0.9702           |
| 4                    | 161     | 5        | 20200         | 0.0000  | 0.0020  | 0.0341           |
|                      | 161     | 5        | 20303         | 0.0001  | 0.0079  | 0.0102           |
| -                    | 161     | 5        | 22470         | 0.0002  | 0.0002  | 0.6901           |
| 'n                   | 161     | 6        | 16957         | 0.0021  | 0.0000  | 0.0091           |
| 4                    | 16 1    | 2        | 22227         | 0.0021  | 0.0023  | 0.0101           |
| 4                    | 101     | 7        | 22/0/         | 0.0000  | 0.0003  | 0.0010           |
| 7                    | 101     | <b>'</b> | 4737<br>10250 | 0.0     | 0.0024  | 0.1573           |
| 4                    | 101     | <b>'</b> | 10200         | 0.0     |         |                  |
| - <del>4</del>       | 101     | 6        | 23170<br>2274 | 0.0     | 0.0014  | 0.0095           |
| 4                    | 101     | 0        | 00/4          | 0.0     | 0.0000  |                  |
| 4                    | 101     | Ø        | 19845         | 0.0     | 0.0002  | 0.0080           |
| 4                    | 101     | Э        | 20000         | 0.0     | 0.0     | 0.001/           |
| b                    | 1/1882  | 11       | 1/1983        | 0 0190  | 0 0000  | 0 06 93          |
| 4                    | 14002   | <b>4</b> | 19002         | 0.0100  | 0.0000  | 0.0093<br>0 0/E3 |
| 4                    | 14002   | 4        | 10003         | 0.2605  |         | 0.0400           |
| 4                    | 14882   | 4        | 20303         | V.2090  | 0.0407  | 0.0319           |

112

2

113

PAGE 7 Appendix V

,

.

#### TABLE 2 U(K)\*2 FOR PM+3

| J1     | LEVEL 1 | J2     | LEVEL 2 | (U2)*2 | (04) *2 | (06) *2 |
|--------|---------|--------|---------|--------|---------|---------|
| 4      | 14882   | 5      | 1639    | 0.0025 | 0.1468  | 0.3679  |
| 4      | 14882   | 5      | 16208   | 0.1380 | 0.1409  | 0.0143  |
| 4      | 14882   | 5      | 203 )   | 0.2552 | 0.0213  | 0.1351  |
| 4      | 14882   | 5      | 22476   | 0.3371 | 0.0000  | 0.0587  |
| 4      | 14882   | 6      | 3247    | 0.0056 | 0.2931  | 0.1830  |
| 4      | 14882   | 6      | 16957   | 0.0009 | 0.0003  | 0.0158  |
| 4      | 14882   | 6      | 22787   | 0.2040 | 0.2208  | 0.0915  |
| 4      | 14882   | 7      | 4937    | 0.0    | 0.1589  | 0.0239  |
| 4      | 14882   | 7      | 18258   | 0.0    | 0.0254  | 0.0257  |
| 4      | 14882   |        | 23190   | 0.0    | 0.0012  | 0.0137  |
| 4      | 14002   | 0      | 100/4   | 0.0    | 0.2025  | 0.7232  |
| 4      | 14002   | 0      | 25988   | 0.0    | 0.0110  | 0.0030  |
| ц<br>Ц | 14882   | 10     | 30230   | 0.0    | 0.0     | 0.0041  |
| -      | 14002   | 10     | 50250   | 0.0    |         | 010041  |
| 4      | 18083   | 4      | 18083   | 0.0771 | 0.2855  | 0.0396  |
| 4      | 18083   | 4      | 20565   | 0.1287 | 0.0925  | 0.0303  |
| 4      | 18083   | 5      | 1639    | 0.0515 | 0.0449  | 0.0979  |
| 4      | 18083   | 5      | 16208   | 0.0245 | 0.0025  | 0.0946  |
| 4      | 18083   | 5      | 20303   | 0.0017 | 0.0122  | 0.0196  |
| 4      | 18083   | ے<br>ح | 22470   | 0.0302 | 0.0744  | 0.0009  |
| 4      | 18083   | 6      | 3247    | 0.2100 | 0.0001  | 0.3893  |
| ц<br>Ц | 18083   | 6      | 22787   | 0.0146 | 0.0133  | 0.1606  |
| ū      | 18083   | 7      | 4937    | 0.0    | 0.1903  | 0.0493  |
| ů,     | 18083   | 7      | 18258   | 0.0    | 0.0617  | 0.7751  |
| 4      | 18083   | 7      | 23796   | 0.0    | 0.0783  | 0.1901  |
| 4      | 18083   | 8      | 6674    | 0.0    | 0.0249  | 0.0004  |
| 4      | 18083   | 8      | 19845   | 0.0    | 0.0652  | 0.4024  |
| 4      | 18083   | 9      | 25888   | 0.0    | 0.0     | 0.0095  |
| 4      | 18083   | 10     | 30230   | 0.0    | 0.0     | 0.0141  |
| 4      | 20565   | 4      | 20565   | 0.0129 | 0.0744  | 0.0520  |
| 4      | 20565   | 5      | 1639    | 0.1773 | 0.2720  | 0.0052  |
| 4      | 20565   | 5      | 16208   | 0.0263 | 0.0356  | 0.1679  |
| 4      | 20565   | 5      | 20303   | 0.0072 | 0.2639  | 0.0065  |
| 4      | 20565   | 5      | 22476   | 0.0011 | 0.0804  | 0.0116  |
| 4      | 20565   | 6      | 3247    | 0.7627 | 0.0506  | 0.0159  |
| 4      | 20000   | 0<br>4 | 10957   | 0.0250 | 0.0257  | 0.2029  |
| 4      | 20565   | 7      | 22101   | 0.0000 | 0.1290  | 0.1574  |
| и<br>Ц | 20565   | 7      | 18258   | 0.0    | 0.0247  | 0.3475  |
| 4      | 20565   | ż      | 23796   | 0.0    | 0.0106  | 0.0662  |
| 4      | 20565   | 8      | 6674    | 0.0    | 0.0252  | 0.0325  |
| 4      | 20565   | 8      | 19845   | 0.0    | 0.0001  | 0.1090  |
| 4      | 20565   | 9      | 25888   | 0.0    | 0.0     | 0.0498  |
| 4      | 20565   | 10     | 30230   | 0.0    | 0.0     | 0.0097  |
| 5      | 1639    | 5      | 1639    | 0.1078 | 0.0498  | 0.0514  |
| 5      | 1639    | 5      | 16208   | 0.0003 | 0.0229  | 0.1551  |
| -      |         |        |         | -      |         | •       |

Ň

1

A CARLEN AND A CAR

)

÷1.

11

113

 $\mathbf{k}$ 

# PAGE 8 Appendix V

# TABLE 2 U(K) \*2 FOR PM+3

| J1 | LEVEL 1 | <b>J2</b> | LEVEL 2 | (U2) *2 | (U4) *2 | (86) *2 |
|----|---------|-----------|---------|---------|---------|---------|
| 5  | 1639    | 5         | 20303   | 0.0120  | 0.0673  | 0.0867  |
| 5  | 1639    | 5         | 22476   | 0.0072  | 0.0792  | 0.0376  |
| 5  | 1639    | 6         | 3247    | 0.0352  | 0.1378  | 0.7160  |
| 5  | 1639    | 6         | 16957   | 0.0000  | 0.0016  | 0.0219  |
| 5  | 1639    | 6         | 22787   | 0.0001  | 0.0096  | 0.0181  |
| 5  | 1639    | 7         | 4937    | 0.0023  | 0.0372  | 0.7862  |
| 5  | 1639    |           | 18258   | 0.0003  | 0.0003  | 0.0024  |
| 5  | 1639    |           | 23/96   | 0.0014  | 0.0002  | 0.0088  |
| 5  | 1639    | 8         | 00/4    | 0.0     | 0.0018  | 0.1248  |
| 5  | 1639    | ğ         | 25888   | 0.0     | 0.0014  | 0.0093  |
| 5  | 1639    | 10        | 30230   | 0.0     | 0.0     | 0.0010  |
|    |         |           |         |         | •       |         |
| 5  | 16208   | 5         | 16208   | 0.1448  | 0.1799  | 0.0011  |
| 5  | 16208   | 5         | 20303   | 0.2912  | 0.1071  | 0.0634  |
| 5  | 16208   | 2         | 22470   | 0.1431  | 0.0074  | 0.0028  |
| 5  | 16208   | 6         | 3247    | 0.0027  | 0.1110  | 0.3900  |
| 5  | 16208   | 6         | 22787   | 1.0815  | 0.0000  | 0.0123  |
| 5  | 16208   | 7         | 4937    | 0.0100  | 0.3247  | 0.6748  |
| 5  | 16208   | 7         | 18258   | 0.0003  | 0.0026  | 0.0069  |
| 5  | 16208   | 7         | 23796   | 0.0000  | 0.0003  | 0.0135  |
| 5  | 16208   | 8         | 6674    | 0.0     | 0.5368  | 0.5927  |
| 5  | 16208   | 8         | 19845   | 0.0     | 0.0305  | 0.0032  |
| 5  | 16208   | 9         | 25888   | 0.0     | 0.0152  | 0.0013  |
| 5  | 16208   | 10        | 30230   | 0.0     | 0.0     | 0.0516  |
| 5  | 20303   | 5         | 20303   | 0.0199  | 0.0479  | 0.0891  |
| 5  | 20303   | 5         | 22476   | 0.1368  | 0.2224  | 0.0646  |
| 5  | 20303   | 6         | 3247    | 0.1014  | 0.1560  | 0.1462  |
| 5  | 20303   | 6         | 16957   | 0.0009  | 0.0044  | 0.2903  |
| 5  | 20303   | 6         | 22787   | 0.0276  | 0.1058  | 0.2984  |
| 5  | 20303   | 7         | 4937    | 0.5669  | 0.0540  | 0.0186  |
| 5  | 20303   | '         | 18258   | 0.0092  | 0.0097  | 0.0397  |
| 5  | 20303   | <b>`</b>  | 23190   | 0.0000  | 0.0311  | 0.3041  |
| 5  | 20303   | 0<br>8    | 198/15  | 0.0     | 0.0226  | 0.0394  |
| 5  | 20303   | ğ         | 25888   | 0.0     | 0.1405  | 0.2378  |
| 5  | 20303   | 10        | 30230   | 0.0     | 0.0     | 0.0220  |
| 5  | 22476   | 5         | 22476   | 0.0557  | 0.0445  | 0.0226  |
| 5  | 22476   | 6         | 3247    | 0.1377  | 0.2552  | 0.0060  |
| 5  | 22476   | 6         | 16957   | 0.0024  | 0.0078  | 0.3494  |
| 5  | 22476   | 6         | 22787   | 0.0019  | 0.3339  | 0.0775  |
| 5  | 22476   | 7         | 4937    | 0.7352  | 0.1535  | 0.0029  |
| 5  | 22476   | 7         | 18258   | 0.0388  | 0.0216  | 0.0780  |
| 5  | 22476   | 7         | 23796   | 0.0005  | 0.0230  | 0.2824  |
| 5  | 22476   | 8         | 6674    | 0.0     | 0.1888  | 0.0431  |
| 5  | 22476   | 8         | 19845   | 0.0     | 0.0418  | 0.4974  |
| 5  | 22476   | 9         | 25888   | 0.0     | 0.0243  | 0.2139  |

1 . .

2

f

11

15

PAGE

n -

PAGE 9 Appendix V

•

.

#### TABLE 2 U(K) \*2 FOR PM+3

| J1       | LEVEL 1      | J 2     | LEVEL 2       | (U2) *2 | (04) *2 | (86) *2 |
|----------|--------------|---------|---------------|---------|---------|---------|
| 5        | 22476        | 10      | 30230         | 0.0     | 0.0     | 0.0109  |
| 6        | 3247         | 6       | 3247          | 0.1216  | 0.0542  | 0.0562  |
| 6        | 3247         | 6       | 16957         | 0.0017  | 0.0006  | 0.0005  |
| 6        | 3247         | 6       | 22787         | 0.0099  | 0.0851  | 0.0846  |
| 6        | 3247         | 7       | 4937          | 0.0365  | 0.1528  | 1.0211  |
| 6        | 3247         | 7       | 18258         | 0.0001  | 0.0043  | 0.0342  |
| 6        | 3247         | 7       | 23796         | 0.0013  | 0.0001  | 0.0000  |
| 6        | 3247         | 8       | 6674          | 0.0014  | 0.0243  | 0.6224  |
| 6        | 3247         | 8       | 19845         | 0.0000  | 0.0001  | 0.0109  |
| 6        | 3247         | 10      | 30230         | 0.0     | 0.0033  | 0.0024  |
| 6        | 16957        | 6       | 16957         | 0.0139  | 0.0064  | 0.0000  |
| b<br>c   | 16957        | 2       | 22187         | 0.0000  | 0.0000  | 0.0299  |
| 0        | 16957        | '       | 4937          | 0.0000  | 0.0014  | 0.0072  |
| 6        | 16957        | ' '     | 10200         | 0.0404  | 0.0227  | 1 16 22 |
| 0<br>4   | 16957        |         | 6674          | 0.1930  | 0.1151  | 1. 1525 |
| 6        | 16957        | 0       | 108/15        | 0.0000  | 0.0182  | 0.1470  |
| 6        | 16957        | q       | 25888         | 0.0     | 0.0046  | 0.2582  |
| 6        | 16957        | 10      | 30230         | 0.0     | 0.0000  | 0.0159  |
| _        |              |         |               |         |         |         |
| 6        | 22/8/        | 5       | 22181         | 0.0144  | 0.2478  | 0.1907  |
| 6        | 22101        | '       | 493/          | 0.1320  | 0.3040  | 0.1010  |
| 6        | 22101        | '       | 22706         | 0.0000  | 0.0000  | 0.1099  |
| 6        | 22707        | <u></u> | 23790<br>667# | 1 3628  | 0 7629  | 0.0331  |
| 6        | 22787        | 8       | 19845         | 0.0003  | 0.0000  | 0.1212  |
| 6        | 22787        | ğ       | 25888         | 0.0     | 0.0459  | 0.1545  |
| 6        | 22787        | 10      | 30230         | 0.0     | 0.0617  | 0.1374  |
| 7        | 402 <b>7</b> | 7       | 1102 <b>7</b> | 0 1535  | 0 1225  | 0 0221  |
| 4        | 4937         | 7       | 4737          | 0.1535  | 0.1225  | 0.0331  |
| <b>'</b> | 4937         | ''      | 23796         | 0.0072  | 0 0005  | 0 0116  |
| 7        | 4937         | Ŕ       | 6674          | 0.0266  | 0.1363  | 1.5529  |
| 7        | 4937         | Ř       | 19845         | 0.0004  | 0.0085  | 0.0488  |
| 7        | 4937         | ğ       | 25888         | 0.0009  | 0.0030  | 0.0325  |
| 7        | 4937         | 10      | 30230         | 0.0     | 0.0005  | 0.0044  |
| 7        | 18258        | 7       | 18258         | 0.0793  | 0.0054  | 0.3551  |
| 7        | 18258        | 7       | 23796         | 0.0840  | 0.0351  | 0.5325  |
| 7        | 18258        | 8       | 6674          | 0.0000  | 0.0036  | 0.0181  |
| 7        | 18258        | 8       | 19845         | 0.0521  | 0.0806  | 0.0000  |
| 7        | 18258        | 9       | 25888         | 0.0000  | 0.0388  | 1.2992  |
| 7        | 18258        | 10      | 30230         | 0.0     | 0.0168  | 0.3257  |
| 7        | 23796        | 7       | 23796         | 0.3401  | 0.7310  | 0.0033  |
| 7        | 23796        | 8       | 6674          | 0.0000  | 0.0000  | 0.0087  |
| 7        | 23796        | 8       | 19845         | 0.0001  | 0.0476  | 0.0645  |
| 7        | 23796        | 9       | 25888         | 0.0010  | 0.1302  | 0.0867  |

DICE

11

.

15

.

11

-

#### PAGE 10 Appeydix v

ł

1/6

2

#### TABLE 2 U(K) \*2 FOR PM+3

| J1            | LEVEL 1      | <b>J</b> 2 | LEVEL 2       | (U2) *2          | (84) *2          | (06) *2          |
|---------------|--------------|------------|---------------|------------------|------------------|------------------|
| 7             | 23796        | 10         | 30230         | 0.0              | 0.0215           | 0.0057           |
| <b>8</b><br>8 | 6674<br>6674 | 8<br>8     | 6674<br>19845 | 0.2005<br>0.0174 | 0.3366<br>0.0094 | 1.6741<br>0.0251 |
| 8             | 6674         | 9          | 25888         | 0.0082           | 0.0156           | 0.0321           |
| 8             | 6674         | 10         | 30230         | 0.0000           | 0.0354           | 0.05 <b>77</b>   |
| 8             | 19845        | 8          | 19845         | 0.1402           | 0.0056           | 0.3464           |
| 8             | 19845        | 9          | 25888         | 0.1942           | 0.5884           | 0.6729           |
| 8             | 19845        | 10         | 30230         | 0.0000           | 0.5142           | 1.5495           |
| 9             | 25888        | 9          | 25888         | 1.3240           | 0.1557           | 0.4892           |
| 9             | 25888        | 10         | 30230         | 0.3074           | 1.2875           | 1.3587           |
| 10            | 30230        | 10         | 30230         | 3.3000           | 0.0004           | 1.5336           |

٠





116

с¥,

PAGE 11

# **BLANK PAGE**

Ś

**DACE 1**9

i19

PAGE 1

.

#### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVED                                                                 | CALC                                                                         | 0-C                                                        | STATE                                        | 3 J                                                                | MJ                                                                               |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 0<br>48<br>115                                                           | -1<br>52<br>126                                                              | 2<br>-3<br>-10                                             | 6 H<br>6 H<br>6 H                            | 5/2<br>5/2<br>5/2                                                  | 3/2<br>1/2<br>5/2                                                                |
| 1000<br>1044<br>1185<br>1280                                             | 1000<br>1017<br>1203<br>1258                                                 | 0<br>27<br>- 17<br>22                                      | 6H<br>6H<br>6H<br>6H                         | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                                    | 1/2<br>5/2<br>- 7/2<br>3/2                                                       |
| 2210<br>2245<br>2343<br>2409<br>2473                                     | 2191<br>2236<br>2335<br>2408<br>2461                                         | 19<br>9<br>7<br>1<br>12                                    | 6H<br>6H<br>6H<br>6H<br>6H                   | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                                    | 1/2<br>-7/2<br>-9/2<br>3/2<br>5/2                                                |
| 3520<br>3568<br>3651<br>3676<br>3727<br>3791                             | 3529<br>3531<br>3651<br>3658<br>3731<br>3794                                 | -8<br>37<br>0<br>18<br>-3<br>-2                            | 6 H<br>6H<br>6H<br>6H<br>6H<br>6H            | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2               | 1/2<br>-9/2<br>-7/2<br>3/2<br>-11/2<br>5/2                                       |
| 4972<br>4983<br>5007<br>5046<br>5056<br>5123<br>5160                     | 4971<br>4995<br>5006<br>5014<br>5038<br>5116<br>5183                         | 1<br>-11<br>32<br>18<br>7<br>-22                           | 6H<br>6H<br>6H<br>6H<br>6H<br>6H<br>6H       | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2       | -11/2<br>3/2<br>1/2<br>5/2<br>-9/2<br>-7/2<br>13/2                               |
| 6309<br>6342<br>6406<br>6450<br>6461<br>6567<br>6567<br><br>6691<br>6707 | 6299<br>6335<br>6417<br>6464<br>6565<br>6580<br>6588<br>6660<br>6710<br>6736 | 10<br>7<br>-10<br>-13<br>-31<br>2<br>-12<br><br>-18<br>-28 | 6H<br>6F<br>6H<br>6H<br>6F<br>6H<br>6F<br>6F | 15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>3/2<br>15/2<br>15/2<br>3/2 | -7/2<br>-9/2<br>1/2<br>5/2<br>-11/2<br>3/2<br>1/2<br>15/2<br>-11/2<br>3/2<br>1/2 |
| 7176<br>7184<br>7223                                                     | 7168<br>7179<br>7228                                                         | 8<br>5<br>-4                                               | 6F<br>6F<br>6F                               | 5/2<br>5/2<br>5/2<br>5/2                                           | 1/2<br>5/2<br>3/2                                                                |

1

1. S. S. S.

\$

PAGE 2 Appendix VI

· -

#### TABLE 1 SM+3:LAF3

| OBSERVE | D CALC | 0 <b>-</b> C | STAT      | E J         | MJ    |
|---------|--------|--------------|-----------|-------------|-------|
| 7002    | 7995   | -2           | 6 F       | 7/2         | 3/2   |
| 80/11   | 8020   | 21           | or<br>6 F | 7/2         | -7/2  |
| 80.60   | 8048   | 12           | 68        | 7/2         | 1/2   |
| 8092    | · 8096 | -3           | 65        | 7/2         | 5/2   |
| 0092    | 0090   |              | or        | 1/2         | 5/2   |
| 9170    | 9170   | 0            | 6F        | 9/2         | 1/2   |
| 9178    | 9171   | 7            | 6 F       | 9/2         | -7/2  |
| 9228    | 9209   | 19           | 6F        | 9/2         | -9/2  |
| 9252    | 9240   | 12           | 6F        | 9/2         | 3/2   |
| 9268    | 9268   | 0            | 6F        | 9/2         | 5/2   |
| 10561   | 10560  | 1            | 6F        | 11/2        | -7/2  |
| 10584   | 10577  | 7            | 6F        | 11/2        | -9/2  |
| 10593   | 10581  | 11           | 6 F       | 11/2        | 5/2   |
| 10603   | 10616  | -12          | 6F        | 11/2        | -11/2 |
| 106 13  | 10618  | -4           | 6 F       | 11/2        | 3/2   |
| 10644   | 10640  | 4            | 6F        | 11/2        | 1/2   |
| 17858   | 17874  | - 15         | ЦC        | 5/2         | 1/2   |
| 17949   | 17969  | - 19         | 40        | 5/2         | 5/2   |
| 18045   | 18077  | - 31         | 43        | 5/2         | 3/2   |
|         |        | •••          |           | <i>., 1</i> | -,-   |
| 18924   | 18921  | 3            | 6 F       | 3/2         | 3/2   |
| 18942   | 18934  | 8            | 6F        | 3/2         | 1/2   |
| 20037   | 20050  | - 12         | 4G        | 7/2         | 1/2   |
| 20093   | 20094  | 0            | 4 G       | 7/2         | -7/2  |
| 20112   | 20120  | -7           | 4G        | 7/2         | 3/2   |
| 20164   | 20159  | 5            | 4G        | 7/2         | 5/2   |
| 204 16  | 20413  | 3            | 4 M       | 15/2        | -9/2  |
| 20473   | 20483  | -9           | 4T        | 9/2         | 1/2   |
| 20499   | 20517  | - 17         | 41        | 9/2         | 5/2   |
| 20526   | 20528  | -1           | 4 I       | 9/2         | 3/2   |
|         | 20541  | • • •        | 4I        | 9/2         | -7/2  |
|         | 20653  |              | 4 M       | 15/2        | -11/2 |
|         | 20790  | • • •        | 4 M       | 15/2        | -7/2  |
|         | 20793  |              | 4 M       | 15/2        | 13/2  |
|         | 20870  | • • •        | 4 M       | 15/2        | 5/2   |
| • • •   | 20874  | • • •        | 4 M       | 15/2        | -9/2  |
| •••     | 20909  |              | 4 M       | 15/2        | 1/2   |
| •••     | 20916  | • • •        | 4M        | 15/2        | 3/2   |
| •••     | 20941  | • • •        | 4 I       | 11/2        | 5/2   |
|         | 20987  | • • •        | 4M<br>47  | 15/2        | 15/2  |
| •••     | 21105  | •••          | 41<br>4 T | 11/2 -      | -11/2 |
| • • •   | 21124  | • • •        | 41        | 11/2        | 3/2   |
| • • •   | 21148  | • • •        | 41<br>41  | 11/2        | -1/2  |
| •••     | 21247  | • • •        | 41<br>41  | 11/2        | -9/2  |
| • • •   | 21212  |              | 41        | 11/2        | -7/2  |

د . ۲

/20

.

1

.

.

·· .

.

۰.

.
#### APPENDIX VI

.

;

#### TABLE 1 SM+3:LAF3

| OBSERVE:                         | D CALC                                                                                                                     | 0-C                                   | STAT                                                                                                     | EJ                                                                                         | MJ                                                                                                |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 21663<br>21674<br>21706<br>21736 | 21539<br>21607<br>21623<br>21638<br>21659<br>21666<br>21681                                                                | 25<br>15<br>40<br>55                  | 41<br>41<br>41<br>41<br>41<br>41<br>41                                                                   | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2                                       | -7/2<br>13/2<br>-9/2<br>5/2<br>-11/2<br>1/2<br>3/2                                                |
| 22164<br>22207<br>22240          | 22171<br>22223<br>22242                                                                                                    | -6<br>-15<br>-1                       | 4F<br>4G<br>4F                                                                                           | 5/2<br>5/2<br>5/2                                                                          | 3/2<br>5/2<br>1/2                                                                                 |
|                                  | 22486<br>22539<br>22546<br>22559<br>22570<br>22631<br>22678<br>22727<br>22734                                              |                                       | 4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M                                                     | 17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2                               | 13/2<br>15/2<br>-11/2<br>-9/2<br>-7/2<br>5/2<br>3/2<br>1/2<br>17/2                                |
|                                  | 22794<br>22816<br>22854<br>22902<br>22943<br>22981<br>23018<br>23025<br>23035<br>23045<br>23045<br>23077<br>23111<br>23146 | · · · · · · · · · · · · · · · · · · · | 4G<br>4G<br>4G<br>4I<br>4I<br>4I<br>4I<br>4I<br>4I<br>4I<br>4I                                           | 9/2<br>9/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15                   | -9/2<br>5/2<br>3/2<br>-11/2<br>-7/2<br>-11/2<br>-7/2<br>-9/2<br>13/2<br>5/2<br>3/2<br>1/2<br>15/2 |
| 24084<br>24119<br>24153          | 23973<br>24032<br>24074<br>24079<br>24100<br>24115<br>24118<br>24140<br>24147<br>24160<br>24165<br>24172<br>24178          | 5<br>4<br>-6                          | 444444<br>444<br>664<br>48<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>5/2<br>5/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2 | 15/2<br>13/2<br>17/2<br>-11/2<br>-9/2<br>-7/2<br>1/2<br>3/2<br>1/2<br>3/2<br>5/2<br>-19/2<br>5/2  |

2

ź

. · ; ,

120

1

-

104

۰,

12.

192

#### APPENDIX VI

# TABLE 1 SM+3:LAF3

| OBSERVE | D CALC | 0 <b>-</b> C | STATI       | ВJ   | MJ     |
|---------|--------|--------------|-------------|------|--------|
| 24608   | 24620  | - 11         | 4 L         | 13/2 | 1/2    |
| 24629   | 24640  | - 10         | <u>4</u> т. | 13/2 | 3/2    |
| 24631   | 24641  | -9           | 4T.         | 13/2 | 13/2   |
| 24651   | 24659  | - 1ú         | <u>ит</u>   | 13/2 | -11/2  |
| 24678   | 24695  | -6           | 41          | 13/2 | -7/2   |
| 24070   | 24003  | - 10         | 45          | 13/2 | 5/2    |
| 24002   | 24095  | - 12         | 41          | 12/2 | -0/2   |
| 24/10   | 24/24  | -13          | 41          | 13/2 | -972   |
| 24911   | 24913  | -1           | 4G          | 7/2  | 5/2    |
| 24993   | 24974  | 19           | 4F          | 7/2  | 3/2    |
| 25007   | 24997  | 10           | 4G          | 7/2  | -7/2   |
| 25064   | 25055  | 9            | 6 P         | 3/2  | 1/2    |
| 25081   | 25062  | 19           | 6 P         | 3/2  | 3/2    |
| •••     | 25093  | • • •        | 4F          | 7/2  | 1/2    |
|         | 25152  |              | 11.34       | 21/2 | 17/2   |
| 25166   | 25150  | •••          | 40          | 11/2 | 1/2    |
| 25100   | 25155  | - 15         | 40          | 11/2 | 2/2    |
| 20102   | 25190  | - 15         | 41          | 11/2 | 5/2    |
| 2520/   | 25202  | •••          | 41          | 11/2 | -9/2   |
| 25204   | 25204  | - 21         | 41          | 11/2 | - 11/2 |
| 25210   | 25250  | -21          | 40.         | 21/2 | 15/2   |
| 20248   | 20200  | -0           | 4 11        | 21/2 | 15/2   |
|         | 25275  | - 20         | 46          | 21/2 | -10/2  |
| 25282   | 20312  | - 29         | 40          | 21/2 | - 19/2 |
| •••     | 20330  | • • •        | 4 🖪         | 21/2 | 1/2    |
| • • •   | 25404  |              | 4 11        | 21/2 | 3/2    |
| •••     | 25420  | • • •        | 48          | 21/2 | 5/2    |
| •••     | 25444  | • • •        | 4 12        | 21/2 | 13/2   |
| • • •   | 20022  | • • •        | 4 11        | 21/2 | -11/2  |
| •••     | 20000  |              | 4 🖪         | 21/2 | -9/2   |
| • • •   | 25582  | • • •        | 4 11        | 21/2 | -1/2   |
| •••     | 25603  | • • •        | 4 L         | 15/2 | 1/2    |
| •••     | 25636  |              | 41          | 15/2 | 3/2    |
| • • •   | 25641  | • • •        | 4 L         | 15/2 | 13/2   |
| •••     | 25689  | • • •        | 4M          | 21/2 | -21/2  |
| •••     | 25691  |              | 4 <u>L</u>  | 15/2 | -11/2  |
| •••     | 25692  | • • •        | 4L          | 15/2 | 5/2    |
| •••     | 25698  | •••          | 4L          | 15/2 | 15/2   |
| •••     | 25764  | • • •        | 4L          | 15/2 | -9/2   |
| •••     | 25765  | • • •        | 4G          | 11/2 | 5/2    |
| • • •   | 25778  |              | 4L          | 15/2 | -7/2   |
| • • •   | 25812  | • • •        | 4G          | 11/2 | 3/2    |
|         | 25812  | • • •        | 4G          | 11/2 | -7/2   |
| • • •   | 25849  |              | 4G          | 11/2 | -11/2  |
| • • •   | 25866  | • • •        | 4G          | 11/2 | 1/2    |
| •••     | 25896  | • • •        | 4G          | 11/2 | -9/2   |
|         | 26492  | • • •        | 4 D         | 1/2  | 1/2    |

2

•

A State of the second se

3

#### τu ν. 0323 0.0127 υ.υ

#### PAGE 5

### APPENDIX VI

# TABLE 1 SM+3:LAF3

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OBSERVE | D CALC         | 0-C            | STAT             | ΕJ           | MJ          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------------|------------------|--------------|-------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 26691<br>26693 | •••            | 4 K<br>2 K       | 17/2<br>17/2 | 1/2<br>3/2  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 26707          | •••            | 4L<br>4K         | 17/2         | 5/2<br>13/2 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 26747          |                | 6 P              | 7/2          | -7/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 26771          |                | 2K               | 17/2         | 15/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •   | 26792          | • • •          | 4L<br>6P         | 17/2         | 17/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 26807          | •••            | 4K               | 17/2         | -11/2       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 26809          | • • •          | 6 P              | 7/2          | 3/2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 26839          | • • •          | 6 P              | 7/2          | 1/2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 26845          | • • •          | 4 <u>L</u><br>4K | 17/2         | -7/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 20032          | • • •          | 41               | 1772         | - 57 2      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 26926          | • • •          | 4 K              | 13/2         | 1/2         |
| 26993 $4K$ $13/2$ $3/2$ $27090$ $4K$ $13/2$ $5/2$ $27070$ $4K$ $13/2$ $7/2$ $27110$ $4K$ $13/2$ $13/2$ $27363$ $27361$ $2$ $4F$ $9/2$ $-7/2$ $27417$ $27432$ $-14$ $4F$ $9/2$ $5/2$ $27432$ $27468$ $-35$ $4F$ $9/2$ $3/2$ $27448$ $27484$ $-35$ $4F$ $9/2$ $1/2$ $27508$ $27533$ $-24$ $4F$ $9/2$ $-9/2$ $2764E$ $27655$ $-6$ $4D$ $3/2$ $1/2$ $27658$ $27664$ $-5$ $4D$ $3/2$ $1/2$ $27691$ $27719$ $-27$ $6P$ $5/2$ $1/2$ $27734$ $27765$ $-30$ $6P$ $5/2$ $3/2$ $28248$ $28250$ $-1$ $6P$ $7/2$ $1/2$ $28262$ $28253$ $9$ $4H$ $7/2$ $5/2$ $28343$ $28349$ $-5$ $4H$ $7/2$ $7/2$ $28409$ $28403$ $6$ $6P$ $7/2$ $3/2$ $28715$ $28738$ $-22$ $4K$ $15/2$ $5/2$ $28753$ $28753$ $0$ $4K$ $15/2$ $1/2$ $28754$ $$ $4K$ $15/2$ $13/2$ $28790$ $28794$ $-3$ $4K$ $15/2$ $15/2$ $28806$ $$ $4K$ $15/2$ <td></td> <td>26953</td> <td>•••</td> <td>4 K</td> <td>13/2</td> <td>-9/2</td> |         | 26953          | •••            | 4 K              | 13/2         | -9/2        |
| 27011 $$ $4K$ $13/2$ $5/2$ $$ $27070$ $$ $4K$ $13/2$ $-7/2$ $$ $27110$ $$ $4K$ $13/2$ $13/2$ $27363$ $27361$ $2$ $4F$ $9/2$ $-7/2$ $27417$ $27432$ $-14$ $4F$ $9/2$ $5/2$ $27432$ $27468$ $-35$ $4F$ $9/2$ $3/2$ $27448$ $27484$ $-35$ $4F$ $9/2$ $-9/2$ $27448$ $27484$ $-35$ $4F$ $9/2$ $-9/2$ $27508$ $27533$ $-24$ $4F$ $9/2$ $-9/2$ $2764E$ $27655$ $-6$ $4D$ $3/2$ $1/2$ $27658$ $27664$ $-5$ $4D$ $3/2$ $3/2$ $27691$ $27719$ $-27$ $6P$ $5/2$ $1/2$ $27734$ $27765$ $-30$ $6P$ $5/2$ $3/2$ $28248$ $28250$ $-1$ $6P$ $7/2$ $1/2$ $28262$ $28253$ $9$ $4H$ $7/2$ $5/2$ $28343$ $28349$ $-5$ $4H$ $7/2$ $7/2$ $28409$ $28403$ $6$ $6P$ $7/2$ $3/2$ $28715$ $28738$ $-22$ $4K$ $15/2$ $1/2$ $28753$ $28753$ $0$ $4K$ $15/2$ $1/2$ $28754$ $$ $4K$ $15/2$ $13/2$ $28790$ $28794$ $-3$ $4K$ $15/2$ $15/2$ $28806$ $$ $4K$ $15/$                                                  | • • •   | 26983          | • • •          | 4K               | 13/2         | -11/2       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 27011          | • • •          | 4 K              | 13/2         | 5/2         |
| 27110 $4K$ $13/2$ $13/2$ $27363$ $27361$ $2$ $4F$ $9/2$ $-7/2$ $27417$ $27432$ $-14$ $4F$ $9/2$ $5/2$ $27432$ $27468$ $-35$ $4F$ $9/2$ $3/2$ $27448$ $27484$ $-35$ $4F$ $9/2$ $1/2$ $27508$ $27533$ $-24$ $4F$ $9/2$ $-9/2$ $2764E$ $27655$ $-6$ $4D$ $3/2$ $1/2$ $27658$ $27664$ $-5$ $4D$ $3/2$ $1/2$ $27691$ $27719$ $-27$ $6P$ $5/2$ $1/2$ $27734$ $27765$ $-30$ $6P$ $5/2$ $5/2$ $27758$ $27773$ $-14$ $6P$ $5/2$ $3/2$ $28248$ $28250$ $-1$ $6P$ $7/2$ $1/2$ $28248$ $28250$ $-1$ $6P$ $7/2$ $1/2$ $28248$ $28250$ $-1$ $6P$ $7/2$ $3/2$ $28343$ $28349$ $-5$ $4H$ $7/2$ $-7/2$ $28409$ $28403$ $6$ $6P$ $7/2$ $3/2$ $28755$ $28738$ $-22$ $4K$ $15/2$ $5/2$ $28753$ $28753$ $0$ $4K$ $15/2$ $1/2$ $28778$ $28781$ $-2$ $4K$ $15/2$ $13/2$ $28790$ $28794$ $-3$ $4K$ $15/2$ $-9/2$ $28811$ $0$ $4K$ $15/2$ $-7/2$                                                             | •••     | 27070          | • • •          | 4 K              | 13/2         | -7/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••     | 27110          | • • •          | 4 K              | 13/2         | 13/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27363   | 27361          | 2              | 4F               | 9/2          | -7/2        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 274 17  | 27432          | - 14           | 4F               | 9/2          | 5/2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27432   | 27468          | -35            | 4F<br>(12        | 9/2          | 3/2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27508   | 27533          | -24            | 4F<br>4F         | 9/2          | -9/2        |
| 2765827664-54D $3/2$ $3/2$ 2769127719-276P $5/2$ $1/2$ 2773427765-306P $5/2$ $5/2$ 2775827773-146P $5/2$ $3/2$ 2824828250-16P $7/2$ $1/2$ 282622825394H $7/2$ $5/2$ 2834328349-54H $7/2$ $-7/2$ 284092840366P $7/2$ $3/2$ 2871528738-224K $15/2$ $5/2$ 287532875304K $15/2$ $3/2$ 287544K $15/2$ $13/2$ 2879028794-34K $15/2$ $15/2$ 288064K $15/2$ $-9/2$ 288102881104K $15/2$ $-7/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27648   | 27655·         | -6             | 4D               | 3/2          | 1/2         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27658   | 27664          | <del>-</del> 5 | 4 D              | 3/2          | 3/2         |
| 27734 27765 -30 6P 5/2 5/2   27758 27773 -14 6P 5/2 3/2   28248 28250 -1 6P 7/2 1/2   28262 28253 9 4H 7/2 5/2   28343 28349 -5 4H 7/2 -7/2   28409 28403 6 6P 7/2 3/2   28715 28738 -22 4K 15/2 5/2   28753 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 1/2   28778 28781 -2 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2    28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27691   | 27719          | -27            | 6P               | 5/2          | 1/2         |
| 27758 27773 -14 6P 5/2 3/2   28248 28250 -1 6P 7/2 1/2   28262 28253 9 4H 7/2 5/2   28343 28349 -5 4H 7/2 -7/2   28409 28403 6 6P 7/2 3/2   28715 28738 -22 4K 15/2 5/2   28753 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27734   | 27765          | - 30           | 6P               | 5/2          | 5/2         |
| 28248 28250 -1 6P 7/2 1/2   28262 28253 9 4H 7/2 5/2   28343 28349 -5 4H 7/2 -7/2   28409 28403 6 6P 7/2 3/2   28715 28738 -22 4K 15/2 5/2   28726 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21/58   | 21113          | - 14           | 6 P              | 5/2          | 3/2         |
| 28262 28253 9 4H 7/2 5/2   28343 28349 -5 4H 7/2 -7/2   28409 28403 6 6P 7/2 3/2   28715 28738 -22 4K 15/2 5/2   28726 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 1/2   28778 28781 -2 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28248   | 28250          | -1             | 6 P              | 7/2          | 1/2         |
| 28343 28349 -5 4H 7/2 -7/2   28409 28403 6 6P 7/2 3/2   28715 28738 -22 4K 15/2 5/2   28726 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 13/2   28778 28781 -2 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28262   | 28253          | 9              | 4H               | 7/2          | 5/2         |
| 28715 28738 -22 4K 15/2 5/2   28726 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 11/2   28778 28781 -2 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28343   | 28349          | -5             | 48<br>612        | 7/2          | -1/2        |
| 28715 28738 -22 4K 15/2 5/2   28726 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 -11/2   28778 28781 -2 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20402   | 20400          | Ū              |                  | .,_          | 572         |
| 28720 28742 -15 4K 15/2 1/2   28753 28753 0 4K 15/2 3/2    28754  4K 15/2 -11/2   28778 28781 -2 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28715   | 28738          | - 22           | 4 K              | 15/2         | 5/2         |
| 28754  4K 15/2 -11/2   28778 28781 -2 4K 15/2 -11/2   28790 28794 -3 4K 15/2 13/2   28790 28794 -3 4K 15/2 15/2    28806  4K 15/2 -9/2   28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20120   | 20142          | CI -<br>0      | 4К<br>4¥         | 15/2         | 3/2         |
| 28778 28781 -2 4K 15/2 13/2<br>28790 28794 -3 4K 15/2 15/2<br>28806 4K 15/2 -9/2<br>28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 28754          | •••            | 4 K              | 15/2         | -11/2       |
| 28790 28794 -3 4K 15/2 15/2<br>28806 4K 15/2 -9/2<br>28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28778   | 28781          | -2             | 4 K              | 15/2         | 13/2        |
| <b></b> 28806 <b></b> 4K 15/2 -9/2<br>28810 28811 0 4K 15/2 -7/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28790   | 28794          | -3             | 4 K              | 15/2         | 15/2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28810   | 28806          | •••            | 4К<br>4K         | 15/2         | -9/2        |

į A CHARLEN COM . . 4

22

192

12

16Y

5.

¢

### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVE | D CALC        | 0-C   | STAT | ЕJ   | MJ    |
|---------|---------------|-------|------|------|-------|
| 28938   | 28935         | 3     | 4 H  | 9/2  | -7/2  |
|         | 28956         |       | 4H   | 9/2  | 1/2   |
| 28981   | 29007         | - 25  | 4 H  | 9/2  | -9/2  |
| 290 37  | 29063         | - 25  | 6 P  | 7/2  | 5/2   |
| 29055   | 29076         | -20   | 4 H  | 9/2  | 3/2   |
| 29086   | 29103         | -16   | 6P   | 7/2  | 3/2   |
| 29094   | 29103         | -8    | 6 P  | 7/2  | 1/2   |
|         | 29107         |       | 4 K  | 17/2 | 5/2   |
|         | 29117         |       | 4 K  | 17/2 | -7/2  |
|         | 29136         |       | 4 K  | 17/2 | -9/2  |
| • • •   | 29137         |       | 4 K  | 17/2 | -11/2 |
|         | 29143         |       | 4 K  | 17/2 | 17/2  |
| • • •   | 29138         |       | 6 P  | 7/2  | -7/2  |
| • • •   | 29151         |       | 4 K  | 17/2 | 13/2  |
| •••     | 29168         |       | 4 K  | 17/2 | 3/2   |
| • • •   | 29184         |       | 4H   | 9/2  | 5/2   |
|         | 29205         | • • • | 4 K  | 17/2 | 1/2   |
|         | 29223         | • • • | 4 K  | 17/2 | 15/2  |
|         | 29298         |       | 4 M  | 19/2 | 1/2   |
| • • •   | 2930 <b>7</b> |       | 4 M  | 19/2 | 3/2   |
| • • •   | 29312         | • • • | 4 L  | 19/2 | 5/2   |
| • • •   | 29331         | • • • | 4H   | 11/2 | -9/2  |
|         | 29347         |       | 4 L  | 19/2 | 17/2  |
| • • •   | 29356         | • • • | 4H   | 11/2 | -11/2 |
| • • •   | 29361         | • • • | 4 H  | 11/2 | 1/2   |
| • • •   | 29365         |       | 4H   | 11/2 | -7/2  |
| • • •   | 29412         |       | 4H   | 11/2 | 3/2   |
| • • •   | 29448         | • • • | 4 M  | 19/2 | 15/2  |
| • • •   | 29456         |       | 4L   | 19/2 | -19/2 |
| • • •   | 29476         | • • • | 4 M  | 19/2 | 13/2  |
| •••     | 29503         | • • • | 4 H  | 11/2 | 5/2   |
| • • •   | 29572         | • • • | 41   | 19/2 | -11/2 |
| • • •   | 29582         |       | 4 H  | 13/2 | -11/2 |
| •••     | 29587         | • • • | 4L   | 19/2 | -7/2  |
| • • •   | 29590         |       | 4 11 | 19/2 | -9/2  |
| •••     | 29032         | • • • | 41   | 13/2 | 3/2   |
| •••     | 29640         | • • • | 41   | 13/2 | 1/2   |
| •••     | 29683         | • • • | 48   | 13/2 | 5/2   |
| • • •   | 29708         |       | 4 H  | 13/2 | -9/2  |
|         | 29712         | • • • | 4 H  | 13/2 | 13/2  |
| • • •   | 29761         |       | 4 H  | 13/2 | -1/2  |

125

110

#

#### PAGE 7

### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERV  | ED CALC | 0-C   | STAT       | re j | MJ    |
|---------|---------|-------|------------|------|-------|
| 30027   | 30025   | 2     | 4G         | 7/2  | 5/2   |
| 30125   | 30139   | - 13  | 4G         | 7/2  | -7/2  |
| 30141   | 30142   | 0     | 4G         | 7/2  | 1/2   |
| •••     | 30191   |       | 4G         | 9/2  | 3/2   |
| 20.2.10 | 30207   | •••   | 46         | 9/2  | -9/2  |
| 30213   | 30217   | - 26  | 40         | 9/2  | -7/2  |
| 30235   | 30202   | -20   | 40         | 9/2  | - 1/2 |
| 30329   | 30346   | - 16  | 40         | 7/2  | 3/2   |
|         | 30444   |       | 4G         | 5/2  | 1/2   |
|         | 30489   |       | 4G         | 5/2  | 5/2   |
| •••     | 30539   | • • • | 4G         | 5/2  | 3/2   |
| •••     | 31222   | • • • | 4 P        | 1/2  | 1/2   |
| •••     | 31341   | • • • | 2K         | 15/2 | 13/2  |
| •••     | 31358   | •••   | 2K         | 15/2 | -11/2 |
| 31420   | 31412   | 8     | 2L         | 15/2 | -9/2  |
| 31442   | 31454   | -11   | 2L<br>21   | 15/2 | 5/2   |
| 51475   | 31474   | U     | 2L<br>2¥   | 15/2 | 3/2   |
| • • •   | 31515   | • • • | 2 N<br>4 G | 11/2 | -11/2 |
| •••     | 31518   | • • • | 40<br>40   | 11/2 | 5/2   |
|         | 31525   | •••   | 2L         | 15/2 | -7/2  |
| •••     | 31552   | •••   | 4 P        | 3/2  | 3/2   |
| 31627   | 31608   | 19    | 2K         | 15/2 | 1/2   |
| • • •   | 31615   | • • • | 4G         | 11/2 | 3/2   |
| • • •   | 31628   | • • • | 4G         | 11/2 | -7/2  |
| •••     | 31676   | •••   | 2L         | 15/2 | 15/2  |
| 31716   | 31710   | 6     | 4G         | 11/2 | -9/2  |
| 31761   | 31735   | 26    | 4G         | 11/2 | 1/2   |
| 32800   | 32808   | -7    | 4P         | 5/2  | 1/2   |
| 32822   | 32829   | ~0    | 42         | 5/2  | 5/2   |
| 32833   | 32001   | -/    | 49         | 5/2  | 3/2   |
| 33608   | 33583   | 25    | 2F         | 5/2  | 1/2   |
| 33681   | 33658   | 23    | 2F         | 5/2  | 5/2   |
| 33765   | 33742   | 23    | 2K         | 13/2 | -11/2 |
| • • •   | 33795   | • • • | 2K         | 13/2 | -9/2  |
| •••     | 33824   | • • • | 21         | 5/2  | 3/2   |
| •••     | 33091   | • • • | 21         | 13/2 | -7/2  |
| • • •   | 33040   | • • • | 27<br>47   | 9/2  | -7/2  |
| •••     | 33961   | • • • | 28         | 13/2 | 3/2   |
| •••     | 33966   | •••   | 47         | 9/2  | 5/2   |
|         | 33996   |       | 4F         | 9/2  | -9/2  |
| •••     | 34033   | • • • | 4F         | 9/2  | 1/2   |
|         | 34048   |       | 2K         | 13/2 | 5/2   |
| •••     | 34056   |       | 4 F        | 9/2  | 3/2   |
|         | 34090   |       | 2K         | 13/2 | 13/2  |

.

125

21

110

#### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVER | CALC  | 0-C   | STATE      | J     | MJ    |
|----------|-------|-------|------------|-------|-------|
|          |       |       |            |       |       |
|          | 24224 |       | 27         | 17 /2 | 12/2  |
| •••      | 34331 | • • • | 21         | 17/2  | 15/2  |
| •••      | 34397 | •••   | 21         | 17/2  | -11/2 |
|          | 34402 |       | 21         | 17/2  | -7/2  |
|          | 34407 |       | 2L         | 17/2  | 3/2   |
| • • •    | 34453 | • • • | 2L         | 17/2  | 5/2   |
| • • •    | 34455 |       | 2L         | 17/2  | -11/2 |
| •••      | 34474 |       | 2L         | 17/2  | -9/2  |
| •••      | 34487 |       | 4I         | 9/2   | 5/2   |
| •••      | 34534 | • • • | 2L         | 17/2  | 17/2  |
| •••      | 34557 | • • • | <b>4</b> I | 9/2   | 5/2   |
| •••      | 34588 | • • • | 41         | 9/2   | 3/2   |
| • • •    | 34599 |       | 41         | 9/2   | -9/2  |
| •••      | 34630 | • • • | 41         | 9/2   | 1/2   |
|          | 35575 |       | 2 N        | 19/2  | -19/2 |
| •••      | 35651 | • • • | 4 F        | 7/2   | 5/2   |
|          | 35666 |       | 2 N        | 19/2  | 17/2  |
| •••      | 35678 |       | 4F         | 7/2   | 1/2   |
|          | 35699 |       | 2 N        | 19/2  | -9/2  |
| • • •    | 35701 |       | 2 N        | 19/2  | -11/2 |
| • • •    | 35718 |       | 2 N        | 19/2  | -7/2  |
| • • •    | 35728 |       | 2 N        | 19/2  | 17/2  |
| •••      | 35737 | • • • | 2N         | 19/2  | 13/2  |
| •••      | 35759 | • • • | 2 N        | 19/2  | 5/2   |
| • • •    | 35762 | • • • | 2N         | 19/2  | 3/2   |
| • • •    | 35762 | • • • | 2 N        | 19/2  | 1/2   |
| • • •    | 35794 | • • • | 41         | 1/2   | -1/2  |
| • • •    | 35864 | • • • | 22         | 1/2   | 1/2   |
| •••      | 35874 | • • • | 4 F        | 1/2   | 3/2   |
| 35890    | 35902 | - 11  | <b>4</b> I | 11/2  | -7/2  |
| 35905    | 35920 | - 14  | 4I         | 11/2  | -9/2  |
| 35954    | 35955 | 0     | 4 I        | 11/2  | 5/2   |
| 35996    | 35983 | 13    | 4I         | 11/2  | -11/2 |
| 36007    | 36009 | - 1   | 4 I        | 11/2  | 3/2   |
| 36055    | 36052 | 3     | 4I         | 11/2  | 1/2   |

#### FAGE

-----

2

127

*#)* 

μ

,

1

2

### APPENDIX VI

### TABLE 1 SM+3:LAF3

| OBSERVEI                                  | CALC                                                                                                                                                                                           | 0-C                                   | STATE                                                                               | 3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBSERVEI                                  | 36310   36339   36404   36461   36461   36520   36526   36526   36571   36572   36602   36632   36643   36645   36645   36659   36659   36659   366700   36702   36703   36726   36735   36738 | 0-c                                   | STATE<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41 | J<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/ | MJ<br>13/2<br>-11/2<br>-9/2<br>-7/2<br>1/2<br>5/2<br>5/2<br>15/2<br>-11/2<br>-9/2<br>-19/2<br>-19/2<br>-19/2<br>-21/2<br>17/2<br>3/2<br>1/2<br>3/2<br>1/2<br>3/2<br>1/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-9/2<br>-1/2<br>-1/2<br>-1/2<br>-1/2<br>-1/2<br>-1/2<br>-7/2<br>-1/2<br>-1/2<br>-7/2<br>-1/2<br>-7/2<br>-1/2<br>-7/2<br>-1/2<br>-7/2<br>-1/2<br>-7/2<br>-1/2<br>-7/2<br>-1/2<br>-1/2<br>-7/2<br>-1/2<br>-1/2<br>-7/2<br>-1/2<br>-1/2<br>-5/2<br>-1/2<br>-7/2<br>-1/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-7/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2<br>-1/2<br>-5/2 |
| 36755                                     | 36752<br>36781<br>36839<br>36839<br>36840<br>36845                                                                                                                                             | 3                                     | 4 F<br>2N<br>2N<br>2N<br>2N<br>2N<br>2N                                             | 3/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2<br>15/2<br>-7/2<br>13/2<br>-9/2<br>-11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| · · · ·<br>· · ·<br>· · ·<br>· · ·        | 36903<br>36922<br>36960<br>37037<br>37051<br>37072<br>37131<br>37216<br>37268                                                                                                                  | · · · · · · · · · · · · · · · · · · · | 2M<br>2M<br>2M<br>2M<br>2M<br>2M<br>2M<br>2M<br>2M                                  | 17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17/2<br>17/2<br>-9/2<br>1/2<br>5/2<br>3/2<br>-11/2<br>15/2<br>13/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37623<br>37634<br>37634<br>37657<br>37679 | 37599<br>37614<br>37619<br>37638<br>37638                                                                                                                                                      | 24<br>20<br>15<br>19<br>18            | 2H<br>2H<br>2H<br>2H<br>2H<br>2H                                                    | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -7/2<br>1/2<br>-9/2<br>3/2<br>5/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

.

.

127

-

 $\mu$ 

112

#### APPENDIX VI

•

----

\_ \_

# TABLE 1 SM+3:LAF3

\_

- ---

| OBSERVE | D CALC | 0-C   | STATI     | E J   | MJ                |
|---------|--------|-------|-----------|-------|-------------------|
|         |        |       |           |       |                   |
|         | 20400  |       |           | 7 / 2 | 2 4 2             |
| •••     | 20104  | • • • | 25        | 7/2   | -7/2              |
| • • •   | 38280  |       | 25<br>2F  | 7/2   | 1/2               |
| 38467   | 38467  | 0     | 2P        | 3/2   | 3/2               |
| 38492   | 38484  | 9     | 29        | 3/2   | 1/2               |
|         | 38499  |       | 2F        | 7/2   | 5/2               |
|         |        |       |           |       |                   |
| •••     | 38902  | • • • | 2K        | 15/2  | 13/2              |
| •••     | 38971  | • • • | 2K        | 15/2  | -11/2             |
| • • •   | 39000  | • • • | 26        | 15 /2 | 3/2               |
| • • •   | 30102  | • • • | 20        | 7/2   | 3/2               |
| •••     | 39171  | •••   | 26        | 7/2   | -7/2              |
|         | 39214  |       | 2K        | 15/2  | 1/2               |
|         | 39245  |       | 2K        | 15/2  | 5/2               |
| • • •   | 39316  |       | 2G        | 7/2   | 3/2               |
| • • •   | 39361  |       | 2K        | 15/2  | -9/2              |
| • • •   | 39400  | • • • | 28        | 11/2  | -7/2              |
| • • •   | 39446  | • • • | 28        | 11/2  | -9/2              |
| •••     | 39400  | • • • | 211       | 15/2  | -11/2             |
| •••     | 39400  | • • • | 21        | 13/2  | 5/2               |
| •••     | 39506  | •••   | 28        | 11/2  | $\frac{3/2}{1/2}$ |
|         | 39541  |       | 2G        | 7/2   | 3/2               |
| • • •   | 39581  |       | 2K        | 15/2  | -7/2              |
|         |        |       |           | •     | ·                 |
| • • •   | 40316  |       | 2№        | 19/2  | -19/2             |
| • • •   | 40486  |       | 2M        | 19/2  | -7/2              |
| •••     | 40505  | • • • | 21        | 19/2  | -9/2              |
| •••     | 40222  | • • • | 211       | 19/2  | -11/2             |
| • • •   | 40090  | • • • | 211<br>2M | 19/2  | 5/2               |
| •••     | 40719  |       | 21        | 19/2  | 3/2               |
|         | 40762  |       | 2D        | 5/2   | 1/2               |
| • • •   | 40781  |       | 2 D       | 5/2   | 1/2               |
| •••     | 40806  |       | 2D        | 5/2   | 5/2               |
| • • •   | 40849  | • • • | 2D        | 5/2   | 3/2               |
| •••     | 40883  | • • • | 21        | 11/2  | -11/2             |
| •••     | 40095  | • • • | 211<br>Эт | 19/2  | 2/2               |
| •••     | 40303  | • • • | 21        | 11/2  | 1/2               |
| •••     | 40981  |       | 21        | 11/2  | -9/2              |
|         | 41061  |       | 21        | 19/2  | 15/2              |
|         | 41087  |       | 21        | 11/2  | -7/2              |
| • • •   | 41139  |       | 2K        | 13/2  | -11/2             |
| • • •   | 41178  | • • • | 21        | 11/2  | 5/2               |
| • • •   | 41250  | • • • | 2K        | 13/2  | -9/2              |
| •••     | 41252  | • • • | 2K<br>2%  | 13/2  | 1/2               |
| •••     | 41309  | • • • | ZK        | 3/2   | 5/2               |
| •••     | 41302  | • • • | 2K        | 13/2  | 5/2               |

-4

2 è ر ~

129

r

1

, --`, ,

#### APPENDIX VI

### TABLE 1 SM+3:LAF3

| OBSERVEI                                  | CALC                                                                                                                                                                                               | 0-C                             | STATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E J                                                                                                                                                    | MJ                                                                                                                                                                                                  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •••                                       | 41397<br>41534                                                                                                                                                                                     | •••                             | 2K<br>2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13/2<br>13/2                                                                                                                                           | 13/2<br>-7/2                                                                                                                                                                                        |
| •••                                       | 41737<br>41756                                                                                                                                                                                     | •••                             | 2D<br>2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/2<br>3/2                                                                                                                                             | 1/2<br>3/2                                                                                                                                                                                          |
| 42066<br>42124<br>42135<br>42176<br>42227 | 42054<br>42102<br>42112<br>42158<br>42199                                                                                                                                                          | 12<br>22<br>23<br>18<br>28      | 2G<br>2G<br>2G<br>2G<br>2G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                                                                                                                        | -9/2<br>5/2<br>3/2<br>1/2<br>-7/2                                                                                                                                                                   |
| 42378<br>42462<br>42486                   | 42390<br>42465<br>42481                                                                                                                                                                            | -11<br>-2<br>5                  | 4G<br>4G<br>4G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/2<br>5/2<br>5/2                                                                                                                                      | 1/2<br>5/2<br>3/2                                                                                                                                                                                   |
| 426 16<br>42658<br>427 11                 | 42616<br>42625<br>42642<br>42700                                                                                                                                                                   | 0<br>16<br>11                   | 4G<br>4G<br>4G<br>4G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/2<br>7/2<br>7/2<br>7/2                                                                                                                               | -7/2<br>1/2<br>3/2<br>5/2                                                                                                                                                                           |
| 42959<br>42990<br>43040<br>43074          | 42715<br>42875<br>42923<br>42938<br>42963<br>42973<br>42993<br>43025<br>43025<br>43045<br>43045<br>43045<br>43045<br>43088<br>43118<br>43146<br>43167<br>43169<br>43167<br>43169<br>43215<br>43228 | - 13<br>-2<br>17<br>-2<br>9<br> | 20<br>2K<br>4H<br>4H<br>4H<br>20<br>4H<br>20<br>2K<br>2K<br>2K<br>2K<br>20<br>2K<br>2K<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>2K<br>20<br>4H<br>20<br>2K<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4H<br>20<br>4<br>20<br>4 | 21/2<br>15/2<br>9/2<br>9/2<br>9/2<br>21/2<br>9/2<br>21/2<br>21/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>21/2<br>15/2<br>21/2<br>15/2<br>21/2<br>21 | -21/2<br>13/2<br>-11/2<br>3/2<br>5/2<br>-9/2<br>1/2<br>-7/2<br>-9/2<br>-7/2<br>-9/2<br>1/2<br>-7/2<br>15/2<br>-7/2<br>15/2<br>-7/2<br>15/2<br>-7/2<br>13/2<br>-9/2<br>13/2<br>-11/2<br>3/2<br>-11/2 |
| 43258<br><br>43324                        | 43237<br>43266<br>43266<br>43272<br>43276<br>43294<br>43294<br>43302<br>43368                                                                                                                      | -7<br><br>22                    | 20<br>20<br>4H<br>4H<br>2K<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21/2<br>21/2<br>11/2<br>11/2<br>11/2<br>15/2<br>21/2<br>21/2                                                                                           | 3/2<br>1/2<br>-7/2<br>-9/2<br>5/2<br>-7/2<br>17/2<br>15/2                                                                                                                                           |

.

179

1

μ

### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSEBVED       | CALC                                                                                                                                                                                         | 0-C | STATI                                                                                                                                                                                                          | S J                                                                                                                              | <b>U</b> J                                                                                                                                                                             |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38467<br>38492 | 38184<br>38256<br>38280<br>38467<br>38484<br>38499                                                                                                                                           | 09  | 2F<br>2F<br>2F<br>2P<br>2P<br>2F                                                                                                                                                                               | 7/2<br>7/2<br>7/2<br>3/2<br>3/2<br>7/2                                                                                           | 3/2<br>-7/2<br>1/2<br>3/2<br>1/2<br>5/2                                                                                                                                                |
|                | 38902<br>38971<br>39000<br>39117<br>39142<br>39147<br>39214<br>39245<br>39316<br>39361<br>39400<br>39446<br>39455<br>39468<br>39455<br>39468<br>39455<br>39468<br>39455<br>39506<br>39541    |     | 2K<br>2G<br>2G<br>2G<br>2G<br>2K<br>2G<br>2K<br>2H<br>2H<br>2H<br>2H<br>2H<br>2H<br>2H<br>2H<br>2C<br>2K<br>2H<br>2H<br>2C<br>2K<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C<br>2C | 15/2<br>15/2<br>7/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>11/2<br>11/2<br>11                                                | 13/2<br>-11/2<br>5/2<br>3/2<br>-7/2<br>-7/2<br>5/2<br>3/2<br>-9/2<br>-9/2<br>-11/2<br>15/2<br>5/2<br>1/2<br>3/2<br>-7/2                                                                |
|                | 10316<br>10486<br>10505<br>10555<br>10696<br>10698<br>10719<br>10762<br>10781<br>10806<br>10849<br>10883<br>10895<br>10909<br>10972<br>10861<br>1087<br>1139<br>1178<br>1250<br>1359<br>1382 |     | 2M<br>2M<br>2M<br>2M<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D<br>2D                                                                                                             | 19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>5/2<br>5/2<br>5/2<br>5/2<br>11/2<br>19/2<br>11/2<br>11/2<br>13/2<br>13/2<br>13/2<br>13/2 | -19/2<br>-7/2<br>-9/2<br>-11/2<br>5/2<br>3/2<br>1/2<br>5/2<br>3/2<br>-11/2<br>3/2<br>-11/2<br>3/2<br>-9/2<br>15/2<br>-7/2<br>-11/2<br>5/2<br>-9/2<br>15/2<br>-9/2<br>1/2<br>5/2<br>3/2 |

and the second of the second of

Ĵ.

r

129

:

#### PAGE 11

#### APPENDIX VI

# TABLE 1 SM+3:LAF3

| OBSERVE | D CALC | 0-C          | STAT       | EJ              | MJ    |
|---------|--------|--------------|------------|-----------------|-------|
| •••     | 41397  |              | 2К         | 13/2            | 13/2  |
| •••     | 41534  | • • •        | 2K         | 13/2            | -7/2  |
| •••     | 41737  |              | 2D         | 3/2             | 1/2   |
| •••     | 41756  | • • •        | 2D         | 3/2             | 3/2   |
| 42066   | 42054  | 12           | 2G         | 9/2             | -9/2  |
| 42124   | 42102  | 22           | 2G         | 9/2             | 5/2   |
| 42135   | 42112  | 23           | 2G         | 9/2             | 3/2   |
| 42170   | 42158  | 18           | 26         | 9/2             | -7/2  |
| 42221   | 42177  | 20           | 29         | 9/2             | - 1/2 |
| 42378   | 42390  | -11          | 4G         | 5/2             | 1/2   |
| 42462   | 42465  | -2           | 4G         | 5/2             | 5/2   |
| 42400   | 42401  | 5            | 46         | 5/2             | 3/2   |
| 426 16  | 42616  | 0            | 4G         | 7/2             | -7/2  |
| 12659   | 42020  | 16           | 4G<br>//G  | 7/2             | 3/2   |
| 42711   | 4270L  | 11           | 4G         | 7/2             | 5/2   |
|         |        | ••           |            | .,-             | -, -  |
| •••     | 42715  | • • •        | 20         | 21/2            | -21/2 |
| •••     | 42875  | • • •        | 21         | 15/2            | -11/2 |
| •••     | 42923  | •••          | 2R<br>4H   | 9/2             | 3/2   |
|         | 42963  |              | 4 H        | 9/2             | 5/2   |
| 42959   | 42973  | <b>- 1</b> 3 | 4 H        | 9/2             | -9/2  |
| 42990   | 42993  | -2           | 4 H        | 9/2             | 1/2   |
| 43040   | 43023  | 17           | 4H         | 9/2             | -7/2  |
|         | 43025  | •••          | 20         | 21/2            | -9/2  |
| 43074   | 43045  | 29           | 4 m<br>2 N | 3/2             | - 1/2 |
| • • •   | 43043  | • • •        | 28         | 15/2            | - 3/2 |
|         | 43088  |              | 20         | 21/2            | -11/2 |
| • • •   | 43118  | • • •        | 2K         | 15/2            | 5/2   |
|         | 43144  | • • •        | 2K         | 15/2            | 15/2  |
| •••     | 43146  | • • •        | 2K         | 15/2            | -7/2  |
| •••     | 43167  | • • •        | 4H<br>2¥   | 11/2            | -9/2  |
| • • •   | 43109  | • • •        | 20         | $\frac{13}{21}$ | 13/2  |
|         | 43215  | •••          | 4T         | 11/2            | -11/2 |
|         | 43226  |              | 4 H        | 11/2            | 3/2   |
| • • •   | 43228  | • • •        | 20         | 21/2            | -19/2 |
| • • •   | 43237  | • • •        | 20         | 21/2            | 3/2   |
|         | 43266  | •••          | 20         | 21/2            | 1/2   |
| 43258   | 43266  | -7           | 48         | 11/2            | -1/2  |
| •••     | 43276  | •••          | 40<br>41   | 11/2            | -3/2  |
|         | 43294  |              | 2K         | 15/2            | -7/2  |
| 43324   | 43302  | 22           | 20         | 21/2            | 17/2  |
| •••     | 43368  |              | 20         | 21/2            | 15/2  |
|         |        |              |            |                 |       |

.

129

116

.

.

r

. 2

1

#### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVE | D CALC | 0-C     | STAT       | EĴ             | MJ     |
|---------|--------|---------|------------|----------------|--------|
|         |        |         |            |                |        |
|         | 43446  |         | 4 H        | 13/2           | 13/2   |
| •••     | 43542  |         | 4 H        | 13/2           | 3/2    |
| •••     | 43545  |         | 4 H        | 13/2           | -7/2   |
| • • •   | 43545  | • • •   | 4 H        | 13/2           | -11/2  |
| •••     | 43565  | • • •   | 4 H        | 13/2           | 1/2    |
| • • •   | 43576  | • • •   | 4H         | 13/2           | 5/2    |
| •••     | 43590  | • • •   | 21         | 13/2           | -9/2   |
| •••     | 43703  | • • •   | 21         | 11/2           | 5/2    |
| •••     | 43728  | • • •   | 21         | 11/2           | -11/2  |
| • • •   | 43780  |         | 21         | 11/2           | 3/2    |
| • • •   | 43789  | • • •   | 21         | 11/2           | -7/2   |
| •••     | 43829  | • • •   | 21         | 11/2           | 1/2    |
| • • •   | 43000  | 6       | 21         | 11/2           | - 9/ 2 |
| •••     | 43953  | • • •   | 4 H        | 7/2            | -7/2   |
|         | 44003  |         | 4H         | 7/2            | 3/2    |
| •••     | 44005  |         | 4H         | 7/2            | 1/2    |
| •••     | 44016  | • • •   | 4 H        | 1/2            | 5/2    |
|         | 44481  | • • •   | 2G         | 9/2            | -7/2   |
| • • •   | 44559  | • • •   | 2G         | 9/2            | 1/2    |
| 44597   | 44622  | -24     | 2G         | 9/2            | -9/2   |
| •••     | 44692  | • • •   | 2G         | 9/2            | 5/2    |
| •••     | 44710  | • • •   | 26         | 972            | 3/2    |
| •••     | 45031  | • • •   | 4G         | 7/2            | 1/2    |
| • • •   | 45065  | • • •   | 4G         | 7/2            | -7/2   |
| ***     | 45071  | •••     | 4G         | 7/2            | 3/2    |
| 45122   | 45146  | -23     | 46         | 1/2            | 5/2    |
| •••     | 45262  |         | 4G         | 9/2            | 1/2    |
|         | 45320  | • • •   | 4G         | 9/2            | -7/2   |
|         | 45324  | •••     | 4G         | 9/2            | -9/2   |
| 40366   | 433/9  | - 12    | 46         | 9/2            | 3/2    |
| •••     | 40440  | • • •   | 40         | 9/2            | 5/2    |
| •••     | 45668  | • • •   | 21         | 13/2           | 13/2   |
| •••     | 45732  | • • •   | 21         | 13/2           | 1/2    |
| •••     | 45770  | • • •   | 21         | 13/2           | 3/2    |
| •••     | 45812  | . • • • | 4G<br>2T   | $\frac{11}{2}$ | 5/2    |
| • • •   | 43017  | • • •   | 21<br>4G   | 13/2           | -11/2  |
| •••     | 45837  |         | 46         | 11/2           | 1/2    |
|         | 45845  |         | 48         | 13/2           | 5/2    |
| •••     | 45861  | • •     | 4G         | 11/2           | -11/2  |
| • • •   | 45869  | • • •   | 4 G        | 11/2           | -7/2   |
| •••     | 45891  | • • •   | 21         | 13/2           | -9/2   |
| •••     | 45917  | • • •   | 4 <u>H</u> | 13/2           | -7/2   |
| •••     | 45930  | • • •   | 4G         | 11/2           | -9/2   |

. ١, 2 and the second se , , .

.

21

1

i14

2

è

;

4

#### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVE | D CALC         | 0-C   | STATI | 3 J  | MJ    |
|---------|----------------|-------|-------|------|-------|
| •••     | 46204          |       | 2H    | 11/2 | 1/2   |
| • • •   | 46222          |       | 2н    | 11/2 | -9/2  |
| • • •   | 46267          |       | 4H    | 13/2 | 13/2  |
| • • •   | 46269          | • • • | 2L    | 17/2 | 17/2  |
|         | 46298          |       | 2L    | 17/2 | -7/2  |
| 46284   | 46300          | - 15  | 2н    | 11/2 | -11/2 |
| • • •   | 46330          |       | 2L    | 17/2 | 3/2   |
|         | 46334          |       | 2L    | 17/2 | 1/2   |
| •       | 46341          |       | 2L    | 17/2 | 15/2  |
| • • •   | 46349          |       | 2L    | 17/2 | 5/2   |
|         | 46393          |       | 2H    | 11/2 | 3/2   |
|         | 46412          |       | 4 H   | 13/2 | 1/2   |
| 46402   | 46422          | - 19  | 4H    | 13/2 | 5/2   |
| •••     | 46422          |       | 4 H   | 13/2 | 3/2   |
| • • •   | 46435          | • • • | 2L    | 17/2 | -11/2 |
| •••     | 46445          |       | 2L    | 17/2 | -9/2  |
| • • •   | 46448          |       | 2L    | 17/2 | 13/2  |
| • • •   | 46473          |       | 4H    | 13/2 | -7/2  |
| •••     | 46492          |       | 4H    | 13/2 | -7/2  |
| • • •   | 46512          |       | 4 H   | 13/2 | -11/2 |
| •••     | 46531          |       | 4H    | 13/2 | -9/2  |
| •••     | 46550          |       | 4 P   | 3/2  | 3/2   |
| 46603   | 46587          | 16    | 4 P   | 3/2  | 1/2   |
| •••     | 46592          |       | 2H    | 11/2 | -7/2  |
| •••     | 46962          |       | 2D    | 5/2  | 5/2   |
| • • •   | 46972          |       | 2D    | 5/2  | 3/2   |
| •••     | 47057          |       | 2D    | 5/2  | 1/2   |
| •••     | 47266          |       | 2H    | 11/2 | -11/2 |
| 47336   | 4 <b>7</b> 327 | 9     | 2H    | 11/2 | 5/2   |
| 47374   | 47397          | -22   | 2H    | 11/2 | 3/2   |
| •••     | 47471          |       | 2H    | 11/2 | -7/2  |
| •••     | 47620          |       | 2H    | 11/2 | -9/2  |
|         |                |       |       |      |       |

i19

13

1

#### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVE                                | D CALC                                                                                                            | 0-C                                         | STAT                                                                       | E J                                                          | MJ                                                                                       |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|
| · · · ·<br>· · · ·<br>· · · ·<br>· · · | 43446<br>43542<br>43545<br>43545<br>43565<br>43576<br>43590<br>43703                                              | • • • •<br>• • •<br>• • •<br>• • •<br>• • • | 4H<br>4H<br>4H<br>4H<br>4H<br>2H<br>2I                                     | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2 | 13/2<br>3/2<br>-7/2<br>-11/2<br>1/2<br>5/2<br>-9/2<br>5/2                                |
| ••••<br>•••<br>•••<br>•••              | 43728<br>43780<br>43789<br>43829<br>43888                                                                         | • • •                                       | 21<br>21<br>21<br>21<br>21<br>21                                           | 11/2<br>11/2<br>11/2<br>11/2<br>11/2                         | -11/2<br>3/2<br>-7/2<br>1/2<br>-9/2                                                      |
| • • •<br>• • •<br>• • •                | 43953<br>44003<br>44005<br>44016                                                                                  | • • •<br>• • •<br>• • •                     | 4H<br>4H<br>4H<br>4H                                                       | 7/2<br>7/2<br>7/2<br>7/2                                     | -7/2<br>3/2<br>1/2<br>5/2                                                                |
| 44597                                  | 44481<br>44559<br>44622<br>44692<br>44710                                                                         | -24                                         | 2G<br>2G<br>2G<br>2G<br>2G                                                 | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                              | -7/2<br>1/2<br>-9/2<br>5/2<br>3/2                                                        |
| 45122                                  | 45031<br>45065<br>45071<br>45146                                                                                  | -23                                         | 4G<br>4G<br>4G<br>4G                                                       | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                              | 1/2<br>-7/2<br>3/2<br>5/2                                                                |
| 45366                                  | 45262<br>45320<br>45324<br>45379<br>45440                                                                         | - 12                                        | 4G<br>4G<br>4G<br>4G<br>4G                                                 | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                              | 1/2<br>-7/2<br>-9/2<br>3/2<br>5/2                                                        |
|                                        | 45668<br>45732<br>45770<br>45812<br>45817<br>45828<br>45837<br>45845<br>45861<br>45861<br>45869<br>45891<br>45917 |                                             | 21<br>21<br>21<br>4G<br>21<br>4G<br>4G<br>4G<br>4G<br>21<br>4G<br>21<br>4G | 13/2<br>13/2<br>13/2<br>11/2<br>13/2<br>11/2<br>11/2<br>11/2 | 13/2<br>1/2<br>3/2<br>5/2<br>-11/2<br>3/2<br>1/2<br>5/2<br>-11/2<br>-7/2<br>-9/2<br>-7/2 |

ر ر ر

ĩ

7/

#### APPENDIX VI

#### TABLE 1 SM+3:LAF3

| OBSERVEI | CALC  | Ò-C   | STATE | : J  | MJ    |
|----------|-------|-------|-------|------|-------|
| ·•••     | 46204 |       | 2H    | 11/2 | 1/2   |
| • • •    | 46222 | • • • | 2H    | 11/2 | -9/2  |
| • • •    | 46267 |       | 4H    | 13/2 | 13/2  |
|          | 46269 | • • • | 2L    | 17/2 | 17/2  |
| • • •    | 46298 |       | 2L    | 17/2 | -7/2  |
| 46284    | 46300 | - 15  | 2H    | 11/2 | -11/2 |
| •••      | 46330 | • • • | 2L    | 17/2 | 3/2   |
| •••      | 46334 |       | 2L    | 17/2 | 1/2   |
| •••      | 46341 |       | 2L    | 17/2 | 15/2  |
| • • •    | 46349 |       | 2L    | 17/2 | 5/2   |
|          | 46393 |       | 2H    | 11/2 | 3/2   |
| • • •    | 46412 |       | 4 H   | 13/2 | 1/2   |
| 46402    | 46422 | - 19  | 4H    | 13/2 | 5/2   |
|          | 46422 |       | 4 H   | 13/2 | 3/2   |
|          | 46435 |       | 2L    | 17/2 | -11/2 |
| •••      | 46445 |       | 2L    | 17/2 | -9/2  |
| •••      | 46448 | • • • | 2L    | 17/2 | 13/2  |
| · • • •  | 46473 |       | 4 H   | 13/2 | -7/2  |
|          | 46492 |       | 4H    | 13/2 | -7/2  |
| • • •    | 46512 |       | 4 H   | 13/2 | -11/2 |
| • • •    | 46531 |       | 4H    | 13/2 | -9/2  |
| •••      | 46550 |       | 4 P   | 3/2  | 3/2.  |
| 46603    | 46587 | 16    | 4 P   | 3/2  | 1/2   |
| •••      | 46592 |       | 2H    | 11/2 | -7/2  |
|          | 46962 |       | 2D    | 5/2  | 5/2   |
|          | 46972 |       | 2D    | 5/2  | 3/2   |
| • • •    | 47057 |       | 2D    | 5/2  | 1/2   |
| • • •    | 47266 |       | 2H    | 11/2 | -11/2 |
| 47336    | 47327 | 9     | 2H    | 11/2 | 5/2   |
| 47374    | 47397 | - 22  | 2H    | 11/2 | 3/2   |
| • • •    | 47471 |       | 2H    | 11/2 | -7/2  |
|          | 47620 |       | 2H    | 11/2 | -9/2  |

1000

1

1. N.

:--1<sup>0</sup>. 6 - .

÷,

7/

1

2/

120

12

nd**r**a

a the

197

3

#### APPENDIX VI

#### TABLE 1A SM+3:LAF3 CENTERS OF GRAVITY

| CALC CENTER | STATE  |
|-------------|--------|
| 101         | 6H 5/2 |
| 1135        | 6н 7/2 |
| 2341        | 6H 9/2 |
| 3667        | 6H11/2 |
| 5072        | 6H13/2 |
| 6387        | 6F 1/2 |
| 6520        | 6¥15/2 |
| 6637        | 6F 3/2 |
| 7141        | 6F 5/2 |
| 8009        | 6F 7/2 |
| 9189        | 6F 9/2 |
| 10583       | 6F11/2 |
| 18031       | 4G 5/2 |
| 18982       | 4F 3/2 |
| 20161       | 4G 7/2 |
| 20660       | 4I 9/2 |
| 20825       | 4115/2 |
| 21147       | 4111/2 |
| 21644       | 4113/2 |
| 22301       | 4F 5/2 |
| 22612       | 4117/2 |
| 22873       | 4G 9/2 |
| 23048       | 4115/2 |
| 24132       | 6P 5/2 |
| 24138       | 419/2  |
| 24676       | 4L13/2 |
| 24995       | 4F 7/2 |
| 25064       | 6P 3/2 |
| 25 20 1     | 4K11/2 |
| 25434       | 4127/2 |
| 25667       | 4L15/2 |
| 25829       | 4G11/2 |
| 20440       | 40 1/2 |
| 26762       | 4117/2 |
| 26786       | 6P 7/2 |

1

1

- <u>\$</u>, 4

, ÷.

#### PAGE 15 Appendix VI

#### TABLE 2 U(K) \*2 FOR SM+3

| J1  | IEVEL | 1 J2 | LEVEL 2       | (02) *2 | (U4) *2 | (06) *2 |
|-----|-------|------|---------------|---------|---------|---------|
| 1/2 | 6387  | 3/2  | 6637          | 0.0174  | 0.0     | 0.0     |
| 1/2 | 6387  | 3/2  | 25064         | 0.1920  | 0.0     | 0.0     |
| 1/2 | 6387  | 5/2  | 101           | 0.1938  | 0.0     | 0.0     |
| 1/2 | 6387  | 5/2  | 7141          | 0.0140  | 0.0     | 0.0     |
| 1/2 | 6387  | 5/2  | 22301         | 0.0011  | 0.0     | 0.0     |
| 1/2 | 6387  | 5/2  | 24132         | 0.0106  | 0.0     | 0.0     |
| 1/2 | 6387  | 7/2  | 1135          | 0.0     | 0.1386  | 0.0     |
| 1/2 | 6387  | 7/2  | 8009          | 0.0     | 0.0306  | 0.0     |
| 1/2 | 6387  | 7/2  | 24995         | 0.0     | 0.0030  | 0.0     |
| 1/2 | 6387  | 7/2  | 26786         | 0.0     | 0.0966  | 0.0     |
| 1/2 | 6387  | 9/2  | 2341          | 0.0     | 0.1521  | 0.0     |
| 1/2 | 6387  | 9/2  | 9189          | 0.0     | 0.0071  | 0.0     |
| 1/2 | 6387  | 9/2  | 20660         | 0.0     | 0.0012  | 0.0     |
| 1/2 | 6387  | 11/2 | 3667          | 0.0     | 0.0     | 0.3365  |
| 1/2 | 6387  | 11/2 | 10583         | 0.0     | 0.0     | 0.0287  |
| 1/2 | 6387  | 11/2 | 25829         | 0.0     | 0.0     | 0.0015  |
| 1/2 | 6387  | 13/2 | 5072          | 0.0     | 0.0     | 0.1026  |
| 1/2 | 6387  | 13/2 | 24676         | 0.0     | 0.0     | 0.0026  |
| 1/2 | 26446 | 3/2  | 18982         | 0.0079  | 0.0     | 0.0     |
| 1/2 | 26446 | 3/2  | 25064         | 0.0061  | 0.0     | 0.0     |
| 1/2 | 26446 | 5/2  | 18031         | 0.0180  | 0.0     | 0.0     |
| 1/2 | 26446 | 5/2  | 22301         | 0.0532  | 0.0     | 0.0     |
| 1/2 | 26446 | 5/2  | 24132         | 0.0106  | 0.0     | 0.0     |
| 1/2 | 26446 | 7/2  | 20161         | 0.0     | 0.0226  | 0.0     |
| 1/2 | 26446 | 7/2  | 24995         | 0.0     | 0.0789  | 0.0     |
| 1/2 | 26446 | 7/2  | 26786         | 0.0     | 0.0028  | 0.0     |
| 1/2 | 26446 | 9/2  | 20660         | 0.0     | 0.0805  | 0.0     |
| 1/2 | 26446 | 9/2  | 22873         | 0.0     | 0.0294  | 0.0     |
| 1/2 | 26446 | 11/2 | 3667          | 0.0     | 0.0     | 0.0029  |
| 1/2 | 26446 | 11/2 | 21147         | 0.0     | 0.0     | 0.0992  |
| 1/2 | 26446 | 11/2 | 25201         | 0.0     | 0.0     | 0.0527  |
| 1/2 | 26446 | 11/2 | 2582 <b>9</b> | 0.0     | 0.0     | 0.0816  |
| 1/2 | 26446 | 13/2 | 21644         | 0.0     | 0.0     | 0.0297  |
| 1/2 | 26446 | 13/2 | 24676         | 0.0     | 0.0     | 0.1446  |
| 3/2 | 6637  | 3/2  | 6637          | 0.0029  | 0.0     | 0.0     |
| 3/2 | 6637  | 3/2  | 18982         | 0.0011  | 0.0     | 0.0     |
| 3/2 | 6637  | 3/2  | 25064         | 0,2922  | 0.0     | 0.0     |
| 3/2 | 6637  | 5/2  | 101           | 0.1444  | 0.1365  | 0.0     |
| 3/2 | 6637  | 5/2  | 7141          | 0.0222  | 0.0282  | 0.0     |
| 3/2 | 6637  | 5/2  | 18031         | 0.0010  | 0.0000  | 0.0     |
| 3/2 | 6637  | 5/2  | 22301         | 0.0036  | 0.0003  | 0.0     |
| 3/2 | 6637  | 5/2  | 24132         | 0.0711  | 0.0237  | 0.0     |
| 3/2 | 6637  | 7/2  | 1135          | 0.2434  | 0.1174  | 0.0     |
| 3/2 | 6637  | 7/2  | 8009          | 0.0183  | 0.0080  | 0.0     |
| 3/2 | 6637  | 7/2  | 20161         | 0.0023  | 0.0009  | 0.0     |
| 3/2 | 6637  | 7/2  | 24995         | 0.0010  | 0.0063  | 0.0     |
| 3/2 | 6637  | 7/2  | 26786         | 0.0024  | 0.1592  | 0.0     |
| 3/2 | 6637  | 9/2  | 2341          | 0.0     | 0 1183  | 0 3793  |

١

•

A WARD IN PARTY

. ;-; ---

.

3

12.

d in the

#### PAGE 16 Appendix VI

--; --

۰ ر

> ; ;;;;

#### TABLE 2 U(K) \*2 FOR SM+3

| J1                                                                 | LEVEL                                                                                                                                                                                                                | 1 J2                                                                                                                                     | LEVEL 2                                                                                                                                                                                        | (U2) *2                                                                                                                                                               | (84) *2                                                                                                                                                                                   | (U6) *2                                                                                                             |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2 | 6637<br>6637<br>6637<br>6637<br>6637<br>6637<br>6637<br>6637                                                                                                                                                         | 9/2<br>9/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>13/2<br>15/2<br>15/2<br>15/2<br>15/2                                               | 9189<br>22873<br>3667<br>10583<br>21147<br>25201<br>25829<br>5072<br>6520<br>20825<br>23048<br>25667                                                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                    | 0.0301<br>0.0000<br>0.2119<br>0.0041<br>0.0062<br>0.0013<br>0.0000<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                              | 0.0098<br>0.026<br>0.0287<br>0.0489<br>0.0001<br>0.0001<br>0.0013<br>0.4036<br>0.0615<br>0.0099<br>0.0028<br>0.0021 |
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2 | 18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982<br>18982 | 3/2<br>3/2<br>5/2<br>5/2<br>7/2<br>7/2<br>7/2<br>7/2<br>9/2<br>9/2<br>9/2<br>9/2<br>11/2<br>11/2<br>13/2<br>13/2<br>13/2<br>15/2<br>15/2 | 18982<br>25064<br>18031<br>22301<br>24132<br>1135<br>8009<br>20161<br>24995<br>26786<br>2341<br>20660<br>22873<br>21147<br>25201<br>25829<br>5072<br>21644<br>24676<br>20825<br>23048<br>25667 | 0.0023<br>0.0037<br>0.0763<br>0.0609<br>0.0015<br>0.0083<br>0.0001<br>0.0289<br>0.0149<br>0.0013<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 0.0<br>0.0440<br>0.0018<br>0.0771<br>0.0000<br>0.0013<br>0.1525<br>0.0001<br>0.0158<br>0.0029<br>0.1075<br>0.0401<br>0.2990<br>0.1483<br>0.0016<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                  |
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2 | 25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064<br>25064                                                                                           | 3/2<br>5/2<br>5/2<br>5/2<br>5/2<br>7/2<br>7/2<br>7/2<br>7/2<br>9/2<br>9/2                                                                | 25064<br>101<br>7141<br>18031<br>22301<br>24132<br>1135<br>8009<br>20161<br>24995<br>26786<br>2341<br>9189<br>20660                                                                            | 0.0096<br>0.0000<br>0.2638<br>0.0008<br>0.0012<br>0.1220<br>0.0000<br>0.1450<br>C.0018<br>0.0326<br>0.4736<br>0.0<br>0.0                                              | 0.0<br>0.1630<br>0.0094<br>0.0001<br>0.0310<br>0.0013<br>0.1589<br>0.0469<br>0.0087<br>0.0070<br>0.0070<br>0.0000<br>0.1125<br>0.1448<br>0.0101                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                  |

134

:

•

34090 ... 2K 13/2 13/2

. .

.

134

, •

. بې <del>سېم</del>

1.000

新ためのた後

ł

#### PAGE 17 Appendix Vi

#### TABLE 2 U(K)\*2 FOR SM+3

| J1                | IEVEL 1 J2                             | LEVEL 2                 | (U2)*2                     | (04)*2                     | (06) *2                    |
|-------------------|----------------------------------------|-------------------------|----------------------------|----------------------------|----------------------------|
| 3/2<br>3/2<br>3/2 | 25064 9/2<br>25064 11/2<br>25064 11/2  | 22873<br>3667<br>10583  | 0:0<br>0.0<br>0.0          | 0.0388<br>0.0465<br>0.3702 | 0.0016<br>0.0118<br>0.0000 |
| 3/2<br>3/2        | 25064 11/2<br>25064 11/2<br>25064 11/2 | 21147<br>25201<br>25829 | 0.0                        | 0.0040                     | 0.0470                     |
| 3/2<br>3/2<br>3/2 | 25064 13/2<br>25064 13/2<br>25064 13/2 | 5072<br>21644           | 0.0                        | 0.0                        | 0.0570                     |
| 3/2<br>3/2        | 25064 15/2<br>25064 15/2               | 6520<br>25667           | 0.0                        | 0.0                        | 0.1418<br>0.0316           |
| 5/2<br>5/2<br>5/2 | 101 5/2<br>101 5/2<br>101 5/2          | 101<br>7141<br>24132    | 0.3881<br>0.0331<br>0.0000 | 0.0567<br>0.2844<br>0.0244 | 0.0<br>0.0<br>0.0          |
| 5/2<br>5/2        | 101 7/2<br>101 7/2<br>101 7/2          | 1135<br>8009<br>20161   | 0.2062                     | 0.1963                     | 0.0952                     |
| 5/2<br>5/2<br>5/2 | 101 7/2<br>101 7/2<br>101 7/2          | 24995<br>26786          | 0.0002                     | 0.0011                     | 0.00023                    |
| 5/2<br>5/2<br>5/2 | 101 9/2<br>101 9/2<br>101 5/2          | 2341<br>9189<br>20660   | 0.0257<br>0.0000<br>0.0022 | 0.1397<br>0.0205<br>0.0005 | 0.3262<br>0.3416<br>0.0014 |
| 5/2<br>5/2<br>5/2 | 101 9/2<br>101 11/2<br>101 11/2        | 22873<br>3667<br>10583  | 0.0000<br>0.0<br>0.0       | 0.0009<br>0.0240<br>0.0006 | 0.0027<br>0.2649<br>0.0516 |
| 5/2<br>5/2        | 101 11/2<br>101 11/2                   | 21147<br>25201          | 0.0                        | 0.0000                     | 0.0111                     |
| 5/2<br>5/2<br>5/2 | 101 13/2<br>101 13/2<br>101 13/2       | 5072<br>21644           | 0.0                        | 0.0006                     | 0.0662                     |
| 5/2<br>5/2<br>5/2 | 101 13/2<br>101 15/2<br>101 15/2       | 24676<br>6520<br>20825  | 0.0<br>0.0<br>0.0          | 0.0080<br>0.0<br>0.0       | 0.0092<br>0.0043<br>0.0319 |
| 5/2<br>5/2        | 101 15/2<br>101 17/2                   | 25667<br>22612          | 0.0<br>0.0                 | 0.0<br>0.0                 | 0.0056<br>0.0054           |
| 5/2<br>5/2<br>5/2 | 7141 5/2<br>7141 5/2<br>7141 5/2       | 7141<br>18031<br>22301  | 0.0007<br>0.0062           | 0.0117<br>0.0014<br>0.0042 | 0.0                        |
| 5/2<br>5/2        | 7141 5/2<br>7141 7/2                   | 24132                   | 0.1884<br>0.∠118           | 0.0674                     | 0.0                        |
| 5/2<br>5/2<br>5/2 | 7141 7/2<br>7141 7/2<br>7141 7/2       | 20161<br>24995          | 0.0004                     | 0.0008                     | 0.0045                     |
| 5/2<br>5/2<br>5/2 | 7141 7/2<br>7141 9/2<br>7141 9/2       | 26786<br>2341<br>9189   | 0.0243<br>0.3374<br>0.0140 | 0.1802<br>0.1013<br>0.0298 | 0.0000<br>0.0475<br>0.0356 |
| 5/2<br>5/2<br>5/2 | 7141 9/2<br>7141 9/2<br>7141 11/2      | 20660<br>22873<br>3667  | 0.0000<br>0.0023           | 0.0011<br>0.0004           | 0.0019                     |
| 5, 2              |                                        |                         |                            | 512505                     | 5.2007                     |

•

#### PAGE 18 Appendix VI

s,

÷

، ر

> 20 1

> > $\phi$

١,

#### TABLE 2 U (K) \*2 FOR SM+3

|   | J 1               | LEVEL                | 1 J2                 | LEVEL 2                 | (U2)*2            | (04) *2                    | (06) *2                    |
|---|-------------------|----------------------|----------------------|-------------------------|-------------------|----------------------------|----------------------------|
|   | 5/2<br>5/2<br>5/2 | 7141<br>7141<br>7141 | 11/2<br>11/2<br>11/2 | 10583<br>21147<br>25201 | 0.0<br>0.0<br>0.0 | 0.0225<br>0.0027<br>0.0016 | 0.0511<br>0.0000<br>0.0004 |
|   | 5/2               | 7141                 | 11/2                 | 25829                   | 0.0               | 0.0000                     | 0.0075                     |
|   | 5/2               | 7141                 | 13/2                 | 5072                    | 0.0               | 0.2116                     | 0.2867                     |
|   | 5/2               | 7141                 | 13/2                 | 24676                   | 0.0               | 0.0000                     | 0.0018                     |
|   | 5/2               | 7141                 | 15/2                 | 6520                    | 0.0               | 0.0                        | 0.3400                     |
|   | 5/2               | 7141                 | 15/2                 | 20825                   | 0.0               | 0.0                        | 0.0179                     |
|   | 5/2               | 7141                 | 17/2                 | 22612                   | 0.0               | 0.0                        | 0.0193                     |
|   | 5/2               | 18031                | 5/2                  | 18031                   | 0.3424            | 0.2483                     | 0.0                        |
|   | 5/2               | 18031                | 5/2                  | 22301                   | 0.0098            | 0.0309                     | 0.0                        |
|   | 5/2               | 18031                | 7/2                  | 1135                    | 0.0000            | 0.0078                     | 0.0075                     |
|   | 5/2               | 18031                | 7/2                  | 8009                    | 0.0000            | 0.0015                     | 0.0001                     |
|   | 5/2               | 18031                | 7/2                  | 20161                   | 0.0000            | 0.0083                     | 0.4094                     |
|   | 5/2               | 18031                | 7/2                  | 24995                   | 0.0022            | 0.0057                     | 0.0281                     |
|   | 5/2               | 180 3 1              | 9/2                  | 28780                   | 0.0018            | 0.0250                     | 0.0019                     |
|   | 5/2               | 18031                | 9/2                  | 9189                    | 0.0016            | 0.0002                     | 0.0002                     |
|   | 5/2               | 18031                | 9/2                  | 20660                   | 0.0369            | 0.1101                     | 0.0188                     |
|   | 5/2               | 18031                | 9/2                  | 22873                   | 0.0032            | 0.0187                     | 0.0309                     |
|   | 5/2               | 18031                | 11/2                 | 3667                    | 0.0               | 0.0045                     | 0.0018                     |
|   | 5/2               | 18031                | 11/2                 | 25201                   | 0.0               | 0.0074                     | 0.2350                     |
|   | 5/2               | 18031                | 11/2                 | 25829                   | 0.0               | 0.0013                     | 0.1314                     |
|   | 5/2               | 180 31               | 13/2                 | 5072                    | 0.0               | 0.0000                     | 0.0014                     |
|   | 5/2               | 18031                | 13/2                 | 21644                   | 0.0               | 0.3028                     | 0.7218                     |
|   | 5/2               | 18031                | 13/2                 | 24676                   | 0.0               | 0.1459                     | 0.0767                     |
|   | 5/2               | 18031                | 15/2                 | 20825                   | 0.0               | 0.0                        | 0.8354                     |
|   | 5/2               | 18031                | 15/2                 | 25667                   | 0.0               | 0.0                        | 0.0057                     |
|   | 5/2               | 18031                | 17/2                 | 22612                   | 0.0               | 0.0                        | 0.0203                     |
|   | 5/2               | 18031                | 17/2                 | 26762                   | 0.0               | 0.0                        | 0.0092                     |
|   | 5/2               | 22301                | 5/2                  | 22301                   | 0.0003            | 0.0345                     | 0.0                        |
|   | 5/2               | 22301                | 5/2                  | 24132                   | 0.0444            | 0.0016                     | 0.0                        |
|   | 5/2               | 22301                | 7/2                  | 8009                    | 0.0123            | 0.0087                     | 0,0000                     |
|   | 5/2               | 22301                | 7/2                  | 20161                   | 0.1850            | 0.0808                     | 0.0373                     |
|   | 5/2               | 22301                | 7/2                  | 24995                   | 0.0203            | 0.0319                     | 0.1124                     |
|   | 5/2               | 22301                | 7/2                  | 26786                   | 0.0125            | 0.0128                     | 0.0000                     |
|   | 5/2               | 22301                | 9/2                  | 2341                    | 0.0064            | 0.0008                     | 0.0000                     |
|   | 5/2               | 22301                | 9/2                  | 20660                   | 0.0229            | 0.0091                     | 0.1122                     |
|   | 5/2               | 22301                | 9/2                  | 22873                   | 0.0222            | 0.1156                     | 0.0721                     |
| 1 | 5/2               | 22301                | 11/2                 | 3667                    | 0.0               | 0.0141                     | 0.0080                     |
|   | 5/2               | 22301                | 11/2                 | 10583                   | 0.0               | 0.0044                     | 0.0001                     |
|   | 5/2               | 22301                | 11/2                 | 21147                   | 0.0               | 0.0054                     | 0.3369                     |

136

127

.

#### PAGE 19 Appendix VI

.

.

r

•

#### TABLE 2 U(K) \*2 FOR SM+3

| J 1           | LEVEL | 1 J2 | LEVEL 2       | (U2) *2 | (04) *2 | (06) *2 |
|---------------|-------|------|---------------|---------|---------|---------|
| 5/2           | 22301 | 11/2 | 25201         | 0.0     | 0.1495  | 0.0116  |
| 5/2           | 22301 | 11/2 | 258 <b>29</b> | 0.0     | 0.0056  | 0.2032  |
| 5/2           | 22301 | 13/2 | 5072          | 0.0     | 0.0035  | 0.0070  |
| 5/2           | 22301 | 13/2 | 21644         | 0.0     | 0.1186  | 0.1111  |
| 5/2           | 22301 | 13/2 | 24676         | 0.0     | 0.1341  | 0.0639  |
| 5/2           | 22301 | 15/2 | 20825         | 0.0     | 0.0     | 0.0082  |
| 5/2           | 22301 | 15/2 | 23048         | 0.0     | 0.0     | 0.0172  |
| 5/2           | 22301 | 15/2 | 25667         | 0.0     | 0.0     | 0 103/  |
| 5/2           | 22301 | 17/2 | 23612         | 0.0     | 0.0     | 0 6557  |
| 5/2           | 22501 | 1772 | 22012         | 0.0     | 0.0     | 0.0557  |
| 5/2           | 24132 | 5/2  | 24132         | 0.2386  | 0.0005  | 0.0     |
| 5/2           | 24132 | 7/2  | 1135          | 0.0000  | 0.0706  | 0.0050  |
| 5/2           | 24132 | 7/2  | 8009          | 0.3046  | 0.1199  | 0.0000  |
| 5/2           | 24132 | 7/2  | 20161         | 0.0062  | 0.0319  | 0.0017  |
| 5/2           | 24132 | 7/2  | 24995         | 0.0651  | 0.0110  | 0.0005  |
| 5/2           | 24132 | 7/2  | 26786         | 0.2737  | 0.0077  | 0.0001  |
| 5/2           | 24132 | 9/2  | 2341          | 0.0004  | 0.1302  | 0.0178  |
| 5/2           | 24132 | 9/2  | 9189          | 0.3246  | 0.1715  | 0.0000  |
| 5/2           | 24132 | 9/2  | 20660         | 0.0007  | 0.0185  | 0.1326  |
| 5/2           | 24132 | 9/2  | 22873         | 0.0577  | 0.0195  | 0.0052  |
| 5/2           | 24132 | 11/2 | 3667          | 0.0     | 0.1527  | 0.0467  |
| 5/2           | 24132 | 11/2 | 10583         | 0.0     | 0.1616  | 0.0000  |
| 5/2           | 24132 | 11/2 | 21147         | 0.0     | 0.0205  | 0.0009  |
| 5/2           | 24132 | 11/2 | 25201         | 0.0     | 0.0265  | 0.0217  |
| 5/2           | 24132 | 11/2 | 25829         | 0.0     | 0.1119  | 0.0627  |
| 5/2           | 24132 | 13/2 | 5072          | 0.0     | 0.1224  | 0.0824  |
| 5/2           | 24132 | 13/2 | 21644         | 0.0     | 0.0002  | 0.0476  |
| 5/2           | 24132 | 13/2 | 24676         | 0.0     | 0.0047  | 0.0015  |
| 5/2           | 24132 | 15/2 | 6520          | 0.0     | 0.0     | 0.0740  |
| 5/2           | 24132 | 15/2 | 20825         | 0.0     | 0.0     | 0.0249  |
| 5/2           | 24132 | 15/2 | 23048         | 0.0     | 0.0     | 0.2011  |
| 5/2           | 24132 | 17/2 | 22612         | 0.0     | 0.0     | 0.0186  |
| 5/2           | 24132 | 17/2 | 26762         | 0.0     | 0.0     | 0.1009  |
| 572           | 24132 |      | 20702         |         |         | 01 1005 |
| 7/2           | 1135  | 7/2  | 1135          | 0.2831  | 0.0143  | 0.2951  |
| 7/2           | 1135  | 7/2  | 8009          | 0.0420  | 0.2955  | 0.0004  |
| 7/2           | 1135  | 7/2  | 20161         | 0.0000  | 0.0024  | 0.0048  |
| 7/2           | 1135  | 7/2  | 24995         | 0.0000  | 0.0000  | 0.0026  |
| 7/2           | 1135  | 7/2  | 26786         | 0.0000  | 0.0088  | 0.0862  |
| 7/2           | 1135  | 9/2  | 2341          | 0.2938  | 0.1652  | 0.0080  |
| 7/2           | 1135  | 9/2  | 9189          | 0.0017  | 0.1328  | 0.4555  |
| 7/2           | 1135  | 9/2  | 20660         | 0.0002  | 0.0007  | 0.0066  |
| 7/2           | 1135  | 11/2 | 3667          | 0.0382  | 0.1792  | 0.2542  |
| 7/2           | 1135  | 11/2 | 10583         | 0.0000  | 0.0104  | 0.2281  |
| 7/2           | 1135  | 11/2 | 21147         | 0.0002  | 0.0000  | 0.0104  |
| 7/2           | 1135  | 11/2 | 25201         | 0.0016  | 0.0000  | 0.0061  |
| 7/2           | 1135  | 11/2 | 25829         | 6.0000  | 0.0005  | 0.0004  |
| 7/2           | 1135  | 13/2 | 5072          | 0.0     | 0.0245  | 0.2811  |
| 7/2           | 1135  | 13/2 | 24676         | 0.0     | 0.0000  | 0.0095  |
| $\frac{1}{2}$ | 1135  | 15/2 | 6520          | 0.0     | 0.0003  | 0.0467  |

136

.

127

.

3.

· · ·

•••• 41302 ••• 2A 13/2 3/2

14

#### PAGE 20 Appendix VI

#### TABLE 2 U(K) \*2 FOR SM+3

| J1            | LEVEL | 1 J2     | LEVEL 2 | (U2) *2 | (04)*2 | (06) *2 |
|---------------|-------|----------|---------|---------|--------|---------|
| 7/2           | 1135  | 15/2     | 23048   | 0.0     | 0.0019 | 0.0104  |
| 7/2           | 1135  | 15/2     | 25667   | 0.0     | 0.0076 | 0.0071  |
| 7/2           | 1135  | 17/2     | 22612   | 0.0     | 0.0    | 0.0220  |
| $\frac{1}{2}$ | 1135  | 17/2     | 26762   | 0.0     | 0.0    | 0.0033  |
| 7/2           | 1135  | 19/2     | 24138   | 0.0     | 0.0    | 0.0043  |
|               |       | <b>-</b> |         |         |        |         |
| 1/2           | 8009  | 1/2      | 8009    | 0.0034  | 0.0217 | 0.0290  |
| 1/2           | 8009  | 7/2      | 20101   | 0.0070  | 0.0000 | 0.0004  |
| 7/2           | 8009  | 7/2      | 24333   | 0.0035  | 0.0041 | 0.0000  |
| 7/2           | 8009  | 9/2      | 20700   | 0.2493  | 0.1320 | 0.2625  |
| 7/2           | 8009  | 9/2      | 9189    | 0.0550  | 0.0051 | 0.0586  |
| 7/2           | 8009  | 9/2      | 20660   | 0.0000  | 0.0023 | 0.0009  |
| 7/2           | 8009  | 9/2      | 22873   | 0.0000  | 0.0007 | 0.0031  |
| 7/2           | 8009  | 11/2     | 3667    | 0.4881  | 0.0308 | 0.3276  |
| 7/2           | 8009  | 11/2     | 10583   | 0.0065  | 0.0497 | 0.0357  |
| 7/2           | 8009  | 11/2     | 21147   | 0.0000  | 0.0006 | 0.0013  |
| 7/2           | 8009  | 11/2     | 25201   | 0.0000  | 0.0018 | 0.0013  |
| 7/2           | 8009  | 11/2     | 25829   | 0.0012  | 0.0000 | 0.0017  |
| 1/2           | 8009  | 13/2     | 5072    | 0.0     | 0.43/2 | 0.0002  |
| 7/2           | 8009  | 15/2     | 21044   | 0.0     | 0.0049 | 0.0017  |
| 7/2           | 0009  | 15/2     | 20925   | 0.0     | 0.1300 | 0.7121  |
| 7/2           | 8009  | 15/2     | 20025   | 0.0     | 0.0038 | 0.0043  |
| 7/2           | 8009  | 15/2     | 25667   | 0.0     | 0.0019 | 0.0031  |
| 7/2           | 8009  | 17/2     | 22612   | 0.0     | 0.0    | 0.0230  |
| 7/2           | 8009  | 19/2     | 24138   | 0.0     | 0.0    | 0.0215  |
|               |       | •        |         |         |        |         |
| 7/2           | 20161 | 7/2      | 20161   | 0.3327  | 0.1197 | 0.0001  |
| 7/2           | 20161 | 7/2      | 24995   | 0.0066  | 0.0556 | 0.0266  |
| 1/2           | 20101 | 1/2      | 26/80   | 0.0003  | 0.0436 | 0.0062  |
| 7/2           | 20101 | 9/2      | 2341    | 0.0000  | 0.0090 | 0.0038  |
| 7/2           | 20161 | 9/2      | 20660   | 0.0004  | 0.0768 | 0.1086  |
| 7/2           | 20161 | 9/2      | 22873   | 0.0006  | 0.0005 | 0.1904  |
| 7/2           | 20161 | 11/2     | 3667    | 0.0099  | 0.0014 | 0.0000  |
| 7/2           | 20161 | 11/2     | 10583   | 0.0010  | 0.0000 | 0.0001  |
| 7/2           | 20161 | 11/2     | 21147   | 0.0240  | 0.0741 | 0.1662  |
| 7/2           | 20161 | 11/2     | 25201   | 0.0000  | 0.0081 | 0.1439  |
| 7/2           | 20161 | 11/2     | 25829   | 0.0079  | 0.0022 | 0.0660  |
| 7/2           | 20161 | 13/2     | 5072    | 0.0     | 0.0059 | 0.0000  |
| 7/2           | 20161 | 13/2     | 21644   | 0.0     | 0.0133 | 0.0169  |
| 7/2           | 20161 | 15/2     | 24070   | 0.0     | 0.0055 | 0.3055  |
| 7/2           | 20101 | 15/2     | 20025   | 0.0     | 0 1222 | 0.0000  |
| 7/2           | 20161 | 15/2     | 25667   | 0.0     | 0.2806 | 0. 5751 |
| 7/2           | 20161 | 17/2     | 22612   | 0.0     | 9.0    | 0.5022  |
| 7/2           | 20161 | 17/2     | 26762   | 0.0     | 0.0    | 0.0769  |
| 7/2           | 20161 | 19/2     | 24138   | 0.0     | 0.0    | 0.0330  |

ţ

130

 $\dot{\phi}_i$ 

139

ц. ;

... 43368 ... 20 21/2 15/2

#### PAGE 21 Appendix VI

٠

#### TABLE 2 U(K) \*2 FOR SM+3

| J1              | IEVEL 1 J2 | LEVEL 2 | (U2) *2 | (U4)*2 | (06) *2 |
|-----------------|------------|---------|---------|--------|---------|
| 7/2             | 24995 7/2  | 24995   | 0.0048  | 0.0668 | 0.0135  |
| 7/2             | 24995 7/2  | 26786   | 0.0000  | 0.0030 | 0.0106  |
| 7/2             | 24995 9/2  | 2341    | 0.0009  | 0.0011 | 0.0103  |
| 7/2             | 24995 9/2  | 9189    | 0.0137  | 0.0010 | 0.0000  |
| 7/2             | 24995 9/2  | 20660   | 0.0092  | 0.0009 | 0.2028  |
| 7/2             | 24995 9/2  | 22873   | 0.2300  | 0.1546 | 0.0049  |
| 7/2             | 24995 11/2 | 3667    | 0.0074  | 0.0002 | 0.0121  |
| 7/2             | 24995 11/2 | 10583   | 0.0230  | 0.0010 | 0.0001  |
| 7/2             |            | 21147   | 0.0122  | 0.0098 | 0.0373  |
| 1/2             | 24995 11/2 | 25201   | 0.0003  | 0.0576 | 0.1335  |
| 1/2             | 24995 11/2 | 25829   | 0.0137  | 0.0245 | 0.0991  |
| 1/2             |            | 5072    | 0.0     | 0.0121 | 0.0016  |
| 7/2             | 24995 13/2 | 21044   | 0.0     | 0.0230 | 0.1104  |
| 7/2             | 24995 1372 | 24070   | 0.0     | 0.0185 | 0.1391  |
| 7/2             | 24999 15/2 | 20825   | 0.0     | 0.0001 | 0.007/  |
| 7/2             | 24995 15/2 | 23048   | 0.0     | 0 1892 | 0.0009  |
| 7/2             | 24995 15/2 | 25667   | 0.0     | 0.0196 | 0.1390  |
| 7/2             | 24995 17/2 | 26762   | 0.0     | 0.0    | 0.1659  |
| $\frac{1}{7/2}$ | 24995 19/2 | 24138   | 0.0     | 0.0    | 0.7863  |
| ., _            | ,_         |         |         | • • •  |         |
| 7/2             | 26786 7/2  | 26786   | 0.1550  | 0.0042 | 0.0005  |
| 7/2             | 26786 9/2  | 2341    | 0.0000  | 0.0361 | 0.0968  |
| 7/2             | 26786 9/2  | 9189    | 0.3402  | 0.1343 | 0.0000  |
| 1/2             | 26/86 9/2  | 20660   | 0.0002  | 0.0002 | 0.1008  |
| 1/2             | 26786 9/2  | 22873   | 0.0000  | 0.0714 | 0.0240  |
| 1/2             | 20/00 11/2 | 300/    | 0.0004  | 0.1080 | 0.0933  |
| 7/2             | 20/00 11/2 | 21147   | 0.0957  | 0.0058 | 0.0000  |
| 7/2             | 26786 11/2 | 25201   | 0.0002  | 0.0072 | 0.0975  |
| 7/2             | 26786 11/2 | 25201   | 0.0000  | 0.1692 | 0.0090  |
| 7/2             | 26786 13/2 | 5072    | 0.0     | 0.2295 | 0.0201  |
| 7/2             | 26786 13/2 | 21644   | 0.0     | 0.0122 | 0.0721  |
| 7/2             | 26786 13/2 | 24676   | 0.0     | 0.0082 | 0.0481  |
| 7/2             | 26786 15/2 | 6520    | 0.0     | 0.4309 | 0.0305  |
| 7/2             | 26786 15/2 | 20825   | 0.0     | 0.0002 | 0.0059  |
| 7/2             | 26786 15/2 | 23048   | 0.0     | 0.0000 | 0.0594  |
| 7/2             | 26786 15/2 | 25667   | 0.0     | 0.0049 | 0.0295  |
| 7/2             | 26786 17/2 | 26762   | 0.0     | 0.0    | 0.0398  |
| 7/2             | 26786 19/2 | 24138   | 0.0     | 0.0    | 0.0394  |
| 9/2             | 2341 972   | 2341    | 0.3286  | 0.0210 | 0.2632  |
| 9/2             | 2341 9/2   | 9189    | 0.0336  | 0.3340 | 0.1809  |
| 9/2             | 2341 9/2   | 20660   | 0.0002  | 0.0001 | 0.0034  |
| 9/2             | 2341 9/2   | 22873   | 0.0000  | 0.0026 | 0.0028  |
| 9/2             | 2341 11/2  | 3667    | 0.3432  | 0.2317 | 0.0000  |
| 9/2             | 2341 11/2  | 10583   | 0.0007  | 0.0691 | 0.5206  |
| 9/2             | 2341 11/2  | 21147   | 0.0000  | 0.0006 | 0.0015  |
| 9/2             | 2341 11/2  | 25201   | 0.0010  | 0.0000 | 0.0043  |
| 9/2             | 2341 11/2  | 25829   | 0.0001  | 0.0001 | 0.0011  |

and the training

Ś

1

<del>م</del>ئيد:

139

-

138

12

. .

# PAGE 22 Appendix VI

....

137 2

~/ ~

3

and and while the state of the

÷.

ر

۰. . 1. The second second

5,

् स • • • • म

# TABLE 2 U(K)\*2 FOR SM+3

| J 1        | IEVEL 1 J2 | LEVEL 2             | (U2) *2 | (04)*2 | (U6) *2 |
|------------|------------|---------------------|---------|--------|---------|
| 9/2        | 2341 13/   | 2 5072              | 0.0337  | 0.1744 | 0.3905  |
| 9/2        | 2341 13/   | 2 21044             | 0.0000  | 0.0001 | 0.0129  |
| 9/2        | 2341 15/   | 2 24070             | 0.0     | 0.0117 | 0.2043  |
| 9/2        | 2341 15/   | 2 20825             | 0.0     | 0.0008 | 0.0056  |
| 9/2        | 2341 15/   | 2 25667             | 0.0     | 0.0000 | 0.0069  |
| 9/2        | 2341 17/   | 2 22612             | 0.0     | 0.0002 | 0.0018  |
| 9/2        | 2341 17/   | 2 26762             | 0.0     | 0.0066 | 0.0095  |
| 9/2        | 2341 19/   | 2 24138             | 0.0     | 0.0    | 0.0125  |
| 9/2        | 2341 21/   | 2 25434             | 0.0     | 0.0    | 0.0016  |
| 9/2        | 9189 9/    | 2 9189              | 0.0368  | 0.0094 | 0.0482  |
| 9/2        | 9189 9/    | 2 20660             | 0.0000  | 0.0009 | 0.0003  |
| 9/2        | 9109 9/    | 2 22013             | 0.0072  | 0.0001 | 0.0003  |
| 9/2        | 9189 11/   | 2 10583             | 0.0503  | 0.0652 | 0.0149  |
| 9/2        | 9189 11/   | 2 21147             | 0.0000  | 0.0035 | 0.0000  |
| 9/2        | 9189 11/   | 2 25201             | 0.0000  | 0.0010 | 0.0000  |
| 9/2        | 9189 11/   | 2 25829             | 0.0002  | 0.0008 | 0.0004  |
| 9/2        | 9189 13/   | 2 5072              | 0.7085  | 0.0332 | 0.4312  |
| 9/2        | 9189 13/   | 2 21644             | 0.0005  | 0.0013 | 0.0020  |
| 9/2        | 9189 13/   | 2 24676             | 0.0001  | 0.0018 | 0.0000  |
| 9/2        | 9189 15/   | 2 6520              | 0.0     | 0.5743 | 0.7457  |
| 9/2        | 9189 15/   | 2 20825             | 0.0     | 0.0010 | 0.0002  |
| 9/2        | 9189 15/   | 2 23048             | 0.0     | 0.0037 | 0.0090  |
| 9/2        | 9189 17/   | 2 22612             | 0.0     | 0.0002 | 0.0048  |
| 9/2        | 9189 17/   | 2 26/62             | 0.0     | 0.0023 | 0.0061  |
| 9/2<br>9/2 | 9189 21/   | 2 25434             | 0.0     | 0.0    | 0.0231  |
| 9/2        | 20660 97   | 2 20660             | 0.2267  | 0.1580 | 0.0048  |
| 9/2        | 20660 9/   | 2 22873             | 0.0029  | 0.0356 | 0.1400  |
| 9/2        | 20660 11/  | 2 10583             | 0.0000  | 0.0000 | 0.0009  |
| 9/2        | 20660 11/  | 2 21147             | 0.1471  | 0.1009 | 0.0782  |
| 9/2        | 20660 11/  | 2 25201             | 0.0316  | 0.0554 | 0.2256  |
| 9/2        | 20660 11/  | 2 25829             | 0.0007  | 0.0138 | 0.0687  |
| 9/2        | 20660 13/  | 2 5072              | 0.0000  | 0.0000 | 0.0017  |
| 9/2        | 20660 13/  | 2 21644             | 0.0306  | 0.1225 | 0.2710  |
| 9/2        | 20660 13/  | 2 24676             | 0.0181  | 0.1904 | 0.4506  |
| 9/2        | 20000 15/  | 2 6520              | 0.0     | 0.0000 | 1 0010  |
| 9/2        | 20000 15/  | 2 20020<br>2 230/18 | 0.0     | 0.0222 | 0 0265  |
| 9/2        | 20660 15/  | 2 25667             | 0.0     | 0.0630 | 0.2417  |
| 9/2        | 20660 17/  | 2 22612             | 0.0     | 0.0011 | 0.4636  |
| 9/2        | 20660 17/  | 2 26762             | 0.0     | 0.0029 | 0.0027  |
| 9/2        | 20660 19/  | 2 24138             | 0.0     | 0.0    | 0.0253  |
| 9/2        | 22873 9/3  | 2 22873             | 0.3143  | 0.0224 | 0.1291  |
| 9/2        | 22873 11/2 | 2 3667              | 0.0000  | 0.0095 | 0.0016  |
| 9/4        | 228/3 11/2 | 2 21147             | V+U176  | 0.08/9 | 0.0067  |

14

•

191

100

... 43368 ... 20 21/2 15/2

, *'* 

and the state of the second second

#### PAGE 23 Appendix Vi

.

#### TABLE 2 U(K)\*2 FOR SM+3

| J1                                                           | LEVEL 1 J2                                                                                                                                                                         | LEVEL 2                                                                                                                          | (U2) *2                                                                                                                                      | (U4)*2                                                                                                                                             | (U6) *2                                                                                                                                            |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2  | 22873 11/2<br>22873 11/2<br>22873 13/2<br>22873 13/2<br>22873 13/2<br>22873 15/2<br>22873 15/2<br>22873 15/2<br>22873 15/2<br>22873 15/2<br>22873 17/2<br>22873 17/2               | 25201<br>25829<br>5072<br>21644<br>24676<br>6520<br>20825<br>23048<br>25667<br>22612<br>26762                                    | 0.0015<br>0.0100<br>0.0044<br>0.0120<br>0.0002<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                     | 0.0041<br>0.0015<br>0.0005<br>0.0497<br>0.0319<br>0.0016<br>0.0161<br>0.0007<br>0.0793<br>0.2156<br>0.4347                                         | 0.2043<br>0.0005<br>0.0000<br>0.1406<br>0.0272<br>0.0002<br>0.0706<br>0.1630<br>0.2881<br>0.0357<br>1.1074                                         |
| 9/2<br>9/2                                                   | 22873 19/2                                                                                                                                                                         | 25434                                                                                                                            | 0.0                                                                                                                                          | 0.0                                                                                                                                                | 0.0467                                                                                                                                             |
| 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2 | 3667 11/2<br>3667 11/2<br>3667 11/2<br>3667 11/2<br>3667 13/2<br>3667 13/2<br>3667 13/2<br>3667 15/2<br>3667 15/2<br>3667 15/2<br>3667 15/2<br>3667 17/2<br>3667 17/2<br>3667 21/2 | 3667<br>10583<br>21147<br>25829<br>5072<br>21644<br>24676<br>6520<br>20825<br>23048<br>25667<br>22612<br>26762<br>24138<br>25434 | 0.4871<br>0.0158<br>0.0017<br>0.0002<br>0.3428<br>0.0000<br>0.0005<br>0.0171<br>0.0000<br>0.0000<br>0.0002<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 0.0004<br>0.2559<br>0.0000<br>0.0008<br>0.3560<br>0.0016<br>0.0002<br>0.1085<br>0.0016<br>0.0001<br>0.0031<br>0.0018<br>0.0018<br>0.0018<br>0.0018 | 0.2837<br>0.7610<br>0.0050<br>0.0068<br>0.1086<br>0.0011<br>0.0101<br>0.4978<br>0.0000<br>0.0209<br>0.0025<br>0.0137<br>0.0029<br>0.0032<br>0.0032 |
| 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2 | 10583 11/2<br>10583 11/2<br>10583 11/2<br>10583 11/2<br>10583 13/2<br>10583 13/2<br>10583 13/2<br>10583 15/2<br>10583 15/2<br>10583 15/2<br>10583 15/2<br>10583 17/2<br>10583 19/2 | 10583<br>21147<br>25201<br>25829<br>5072<br>21644<br>24676<br>6520<br>20825<br>23048<br>25667<br>26762<br>24138<br>25434         | 0.1382<br>0.0000<br>0.0066<br>0.1668<br>0.0002<br>0.0000<br>1.0103<br>0.0003<br>0.0018<br>0.0002<br>0.0<br>0.0                               | 0.0483<br>0.0008<br>0.0001<br>0.5949<br>0.0038<br>0.0015<br>0.7789<br>0.0012<br>0.0079<br>0.0034<br>0.0012<br>0.0034<br>0.0012<br>0.001            | 0.0026<br>0.0033<br>0.0012<br>0.0005<br>0.7112<br>0.0042<br>0.0035<br>0.3420<br>0.0004<br>0.0029<br>0.0047<br>0.0027<br>0.0027<br>0.0200           |
| 11/2<br>11/2<br>11/2<br>11/2<br>11/2                         | 21147 11/2<br>21147 11/2<br>21147 11/2<br>21147 11/2<br>21147 13/2<br>21147 13/2                                                                                                   | 21147<br>25201<br>25829<br>21644<br>24676                                                                                        | 0.1181<br>0.0141<br>0.0093<br>0.2640<br>0.0437                                                                                               | 0.0495<br>0.0374<br>0.0739<br>0.0481<br>0.1422                                                                                                     | 0.3297<br>0.3388<br>0.1636<br>0.1449<br>0.1556                                                                                                     |

:41

H

172

\$

#### ••• 45930 ••• 46 11/2 -9/2

#### PAGE 24 Appendix VI

#### TABLE 2 U(K)\*2 FOR SM+3

| J1   | IEVEL 1 J2 | LEVEL 2       | (U2) *2 | (04) *2 | <b>(</b> 06) *2 |
|------|------------|---------------|---------|---------|-----------------|
| 11/2 | 21147 15/2 | 6520          | 0.0000  | 0.0000  | 0.0028          |
| 11/2 | 21147 15/2 | 20825         | 0.0278  | 0.5935  | 0.0427          |
| 11/2 | 21147 15/2 | 23048         | 0.0129  | 0.0092  | 0.0950          |
| 11/2 | 21147 15/2 | 25667         | 0.0316  | 0.0593  | 0.3142          |
| 11/2 | 21147 17/2 | 22612         | 0.0     | 0.0122  | 0.8906          |
| 11/2 | 21147 17/2 | 26762         | 0.0     | 0.0386  | 0.1126          |
| 11/2 | 21147 19/2 | 24138         | 0.0     | 0.0078  | 0.4568          |
| 11/2 | 21147 21/2 | 25434         | 0.0     | 0.0     | 0.0141          |
| 11/2 | 25201 11/2 | 2520 <b>1</b> | 0.1673  | 0.0033  | 0.0060          |
| 11/2 | 25201 11/2 | 25829         | 0.0005  | 0.0051  | 0.0909          |
| 11/2 | 25201 13/2 | 50 <b>7</b> 2 | 0.0000  | 0.0000  | 0.0048          |
| 11/2 | 25201 13/2 | 21644         | 0.0251  | 0.0020  | 0.2442          |
| 11/2 | 25201 13/2 | 24676         | 0.4310  | 0.2064  | 0.0427          |
| 11/2 | 25201 15/2 | 6520          | 0.0000  | 0.0000  | 0.0029          |
| 11/2 | 25201 15/2 | 20825         | 0.0052  | 0.5504  | 0.1659          |
| 11/2 | 25201 15/2 | 23048         | 0.0048  | 0.1994  | 0.3966          |
| 11/2 | 25201 15/2 | 25667         | 0.0001  | 0.0549  | 0.1969          |
| 11/2 | 25201 17/2 | 22612         | 0.0     | 0.2208  | 0.0289          |
| 11/2 | 25201 17/2 | 26762         | 0.0     | 0.0801  | 0.0920          |
| 11/2 | 25201 19/2 | 24138         | 0.0     | 0.0063  | 0.0648          |
| 11/2 | 25201 21/2 | 25434         | 0.0     | 0.0     | 0.0038          |
| 11/2 | 25829 11/2 | 25829         | 0.1454  | 0.0061  | 0.0652          |
| 11/2 | 25829 13/2 | 5072          | 0.0017  | 0.0032  | 0.0063          |
| 11/2 | 25829 13/2 | 21644         | 0.0409  | 0.1123  | 0.0487          |
| 11/2 | 25829 13/2 | 24676         | 0.0120  | 0.0224  | 0.0820          |
| 11/2 | 25829 15/2 | 6520          | 0.0000  | 9.0011  | 0.0012          |
| 11/2 | 25829 15/2 | 20825         | 0.0004  | 0.0070  | 0.0126          |
| 11/2 | 25829 15/2 | 23048         | 0.0010  | 0.0569  | 0.0001          |
| 11/2 | 25829 15/2 | 25667         | 0.0298  | 0.0086  | 0.0973          |
| 11/2 | 25829 1//2 | 22612         | 0.0     | 0.0415  | 0.0828          |
| 11/2 | 25029 1//2 | 20/02         | 0.0     | 0.0039  | 0.0935          |
| 11/2 | 25029 19/2 | 24138         | 0.0     | 0.3023  | 0.0759          |
| 11/2 | 23029 21/2 | 20434         | 0.0     | 0.0     | 0.0540          |
| 13/2 | 5072 13/2  | 5072          | 0.7978  | 0.0745  | 0.1034          |
| 13/2 | 5072 1372  | 21644         | 0.0048  | 0.0000  | 0.0022          |
| 13/2 | 5072 13/2  | 240/6         | 0.000/  | 0.0000  | 0.0014          |
| 13/2 | 5072 15/2  | 6520          | 0.2504  | 0.4148  | 0.6992          |
| 13/2 | 5072 15/2  | 20825         | 0.0001  | 0.0021  | 0.0039          |
| 13/2 | 5072 15/2  | 23048         | 0.0000  | 0.0010  | 0.0074          |
| 13/2 | 5072 15/2  | 2300/         | 0.0015  | 0.0009  | 0.01/9          |
| 13/2 | 5072 17/2  | 22012         | 0.0000  | 0.0057  | 0.0038          |
| 13/2 | 5072 17/2  | 20/02         | 0.0000  | 0.0036  | 0.0310          |
| 13/2 | 5072 19/2  | 24138         | 0.0     | 0.0024  | 0.0314          |
| 13/2 | 5012 21/2  | 20434         | 0.0     | 0.0039  | 0.0028          |

 ر ۲

.\*

,

•

43

• • •

•...

71

-----

### PAGE 25 Appendix VI

.

ι.

, A

ъ.

 $\gamma_{0}$ °,

ē , 34 A n S

¥

ł.

, ~ Ñ

1 1

•7

ţ, .

,

٠.,

### TABLE 2 U(K)\*2 FOR SM+3

| J1           | LEVEL 1            | J2 LEVEL               | 2 (U2) *2 | (U4)*2  | (06) *2   |
|--------------|--------------------|------------------------|-----------|---------|-----------|
| 13/2<br>13/2 | 21644 1<br>21644 1 | 3/2 21644<br>3/2 24676 | 0.0493    | 0.0529  | 0.0871    |
| 13/2         | 21644 1            | 5/2 6520<br>5/2 20829  |           | 0.0001  | 0.0041    |
| 13/2         | 21644 1            | 5/2 23048              | 0.0388    | 0.1682  | 0.2002    |
| 13/2         | 21644 1            | 5/2 25667              | 0.0649    | 0.0926  | 0.1637    |
| 13/2         | 21644 1            | 7/2 22612              | 0.0529    | 0.5293  | 0.0138    |
| 13/2         | 21644 1            | 7/2 26/62              | 0.0346    | 0.0208  | 0.2962    |
| 13/2         | 21644 2            | 1/2 25434              | 0.0       | 0.0055  | 0.3034    |
| 13/2         | 24676 1            | 3/2 24676              | 0.0081    | 0.0818  | 0.0001    |
| 13/2         | 24676 1            | 5/2 6520               | 0.0000    | 0.0000  | 0.0034    |
| 13/2         | 24676 1            | 5/2 23048              | 0.2441    | 0.0014  | 0.1029    |
| 13/2         | 24676 1            | 5/2 25667              | 0.0007    | 0.0717  | 0.0032    |
| 13/2         | 24676 1            | 7/2 22612              | 0.0113    | 0.0124  | 0.8855    |
| 13/2         | 24676 1            | 7/2 26762              | 0.0258    | 0.0452  | 0.6603    |
| 13/2         | 24676 1            | 9/2 24138<br>1/2 25434 |           | 0.0245  | 0.0316    |
| 1372         | 24070 2            | 1/2 23434              | 0.0       | 0.0000  | 0.0001    |
| 15/2         | 6520 1             | 5/2 6520               | 1.3358    | 0.6497  | 0.4629    |
| 15/2         | 6520 1             | 5/2 20825              | 0.0022    | 0.0000  | 0.0001    |
| 15/2         | 6520 1             | 5/2 25667              | 0.0009    | 0.0000  | 0.0038    |
| 15/2         | 6520 1             | 7/2 22612              | 0.0004    | 0.0019  | 0.0015    |
| 15/2         | 6520 1             | 7/2 26762              | 0.0034    | 0.0026  | 0.0003    |
| 15/2         | 6520 19            | 9/2 24138              | 0.0003    | 0.0095  | 0.0056    |
| 15/2         | 6520 2             | 1/2 25434              | 0.0       | 0.0030  | 0.0649    |
| 15/2         | 208 25 15          | 5/2 20825              | 0.3461    | 0.9739  | 0.0240    |
| 15/2         | 20825 15           | 5/2 23048              | 0.1093    | 0.0122  | 0.2040    |
| 15/2         | 20825 1            | 5/2 25667              | 0.0334    | 0.0723  | 0.2713    |
| 15/2         | 20825 17           | 7/2 26762              | 0.0071    | 0.0156  | 0.2598    |
| 15/2         | 20825 19           | 9/2 24138              | 0.0154    | 0.1631  | 0.1581    |
| 15/2         | 20825 21           | 1/2 25434              | 0.0       | 0.0009  | 0.3139    |
| 15/2         | 23048 15           | 5/2 23048              | 0.0608    | 0.4222  | 0.0139    |
| 15/2         | 23048 15           | 5/2 25667              | 0.0336    | 0.1600  | 0.0933    |
| 15/2         | 23048 17           | //2 22612              | 0.1358    | 0.3701  | 0.0002    |
| 15/2         | 23048 19           | 7/2 20/02              | 0.0469    | 0.4440  | 0.0138    |
| 15/2         | 23048 21           | /2 25434               | 0.0       | 0.0003  | 1.1875    |
| 15/2         | 25667 15           | 5/2 25667              | 0.0038    | 0.0858  | 0.0767    |
| 15/2         | 25667 17           | 7/2 22612              | 0.7604    | 0.2200  | 0.0417    |
| 15/2         | 25667 17           | 7/2 26762              | 0.0001    | 0.1437  | 0.0484    |
| 15/2         | 25667 24           | 772 24138<br>172 25424 | 0.0276    | 0.2102  | 0.9932    |
| 13/2         | 2001 2             | 172 20434              | V.V       | V. 1000 | v. v. 304 |

43

15

.

.

7/

-----

. . .

• ;

•••• 45930 ••• 4G 11/2 -9/2

#### PAGE 26 Appendix Vi

#### TABLE 2 U(K) \*2 FOR SM+3

| J1   | IEVEL 1 J2 | LEVEL 2 | (U2) *2 | (U4)*2 | (06) *2 |
|------|------------|---------|---------|--------|---------|
| 17/2 | 22612 17/2 | 226 12  | 0.6020  | 0.8442 | 0.0008  |
| 17/2 | 22612 17/2 | 26762   | 0.0007  | 0.0629 | 0.4190  |
| 17/2 | 22612 19/2 | 24138   | 0.0499  | 0.0676 | 0.4943  |
| 17/2 | 22612 21/2 | 25434   | 0.0056  | 0.0853 | 0.3317  |
| 17/2 | 26762 17/2 | 26762   | 0.0007  | 0.1350 | 0.0459  |
| 17/2 | 26762 19/2 | 24138   | 0.9357  | 0.5552 | 0.0670  |
| 17/2 | 26762 21/2 | 25434   | 0.0674  | 0.5015 | 0.7585  |
| 19/2 | 24138 19/2 | 24138   | 0.6771  | 0.9087 | 0.0275  |
| 19/2 | 24138 21/2 | 25434   | 0.0437  | 0.0943 | 0.8814  |
| 21/2 | 25434 21/2 | 25434   | 0.6674  | 1.2562 | 0.9348  |

, उत्त

. . . . .....

!

,.**•** 

145

1

7/

21

1

145 ,50

# APPENDIX VII

-12

•; 4

### APPENDIX VII

|           | TABLE   | 1     |              |
|-----------|---------|-------|--------------|
| EU+3:LAF3 | CENTERS | 5 OF  | GRAVITY      |
| OBSERVED  | CALC    | 0-C   | STATE        |
| •••       | 0       | • • • | 7F0          |
| • • •     | 372     |       | 7F 1         |
| • • •     | 1026    |       | 7F 2         |
| • • •     | 1866    |       | 7F 3         |
|           | 2823    |       | 7F4          |
|           | 3849    |       | 7F5          |
| •••       | 4907    | • • • | 7F6          |
| • • •     | 17293   | • • • | 5D0          |
| • • •     | 19027   |       | 5D1          |
|           | 21483   |       | 5D 2         |
|           | 24355   |       | 5D 3         |
|           | 25325   |       | 5 <b>l</b> 6 |
| • • •     | 26357   |       | 5L7          |
|           | 26392   |       | 5G 2         |
| • • •     | 26622   |       | 5G 3         |
|           | 26735   |       | 5G4          |
|           | 26752   |       | 5G 6         |
|           | 26763   |       | 5G 5         |
| • • •     | 27244   |       | 5L8          |
|           | 27586   |       | 5D4          |
|           | 27960   |       | 5L9          |
|           | 28427   |       | 5T. 10       |



147

49

1 1 1

> a da sera de sera de sera a la sera de sera de

| 3 |  |  |
|---|--|--|
|   |  |  |

#### PAGE 3 Appendix VII

٩

.

#### TABLE 2 U(K)\*2 FOR EU+3

| J 1 | LEVEL 1 | J2 | LEVEL 2      | (U2) *2 | (04) *2 | (06) *2 |
|-----|---------|----|--------------|---------|---------|---------|
| 0   | 0       | 2  | 1026         | 0.1374  | 0.0     | 0.0     |
| Ŭ,  | 0       | 4  | 2823         | 0.0     | 0.1402  | 0.0     |
| 0   | U       | 4  | 27586        | 0.0     | 0.0011  | 0.0     |
| 0   | 0       | 6  | 4907         | 0.0     | 0.0     | 0.1450  |
| 0   | 0       | Ö  | 25325        | 0.0     | 0.0     | 0.0153  |
| U   | U       | D  | 20/52        | 0.0     | 0.0     | 0.003/  |
| 0   | 17293   | 2  | 1026         | 0.0032  | 0.0     | 0.0     |
| 0   | 17293   | 2  | 21483        | 0.0142  | 0.0     | 0.0     |
| Û   | 17293   | 2  | 26392        | 0.0146  | 0.0     | 0.0     |
| 0   | 17293   | 4  | 2823         | 0.0     | 0.0023  | 0.0     |
| 0   | 17293   | ų. | 26735        | 0.0     | 0.0359  | 0.0     |
| 0   | 17293   | 4  | 27586        | 0.0     | 0.0134  | 0.0     |
| 0   | 17293   | 6  | 25325        | 0.0     | 0.0     | 0.2384  |
| 0   | 17293   | 6  | 26752        | 0.0     | 0.0     | 0.2212  |
| 1   | 372     | 1  | 372          | 0.1541  | 0.0     | 0.0     |
| 1   | 372     | 1  | 19027        | 0.0025  | 0.0     | 0.0     |
| 1   | 372     | 2  | 1026         | 0.0518  | 0.0     | 0.0     |
| 1   | 372     | 3  | 1866         | 0.2092  | 0.1281  | 0.0     |
| 1   | 372     | 3  | 24355        | 0.0004  | 0.0012  | 0.0     |
| 1   | 372     | 3  | 26622        | 0.0002  | 0.0012  | 0.0     |
| 1   | 372     | 4  | 2823         | 0.0     | 0.1741  | 0.0     |
| 1   | 372     | 5  | 3849         | 0.0     | 0.1192  | 0.0544  |
| 1   | 372     | 5  | 26763        | 0.0     | 0.0004  | 0.0097  |
| 1   | 372     | 6  | 490 <b>7</b> | 0.0     | 0.0     | 0.3774  |
| 1   | 372     | 6  | 25325        | 0.0     | 0.0     | 0.0091  |
| 1   | 372     | 6  | 26752        | 0.0     | 0.0     | 0.0049  |
| 1 · | 372     | 7  | 26357        | 0.0     | 0.0     | 0.0181  |
| 1   | 19027   | 1  | 19027        | 0.0133  | 0.0     | 0.0     |
| 1   | 19027   | 2  | 21483        | 0.0122  | 0.0     | 0.0     |
| 1   | 19027   | 2  | 26392        | 0.0209  | 0.0     | 0.0     |
| 1   | 19027   | 3  | 1866         | 0.0038  | 0.0019  | 0.0     |
| 1   | 19027   | 3  | 24355        | 0.0183  | 0.0059  | 0.0     |
| 1   | 19027   | 3  | 26622        | 0.0164  | 0.0594  | 0.0     |
| 1   | 19027   | 4  | 2823         | 0.0     | 0.0028  | 0.0     |
| 1   | 19027   | 4  | 27586        | 0.0     | 0.0078  | 0.0     |
| 1   | 19027   | 5  | 26763        | 0.0     | 0.0484  | 0.2332  |
| 1   | 19027   | 6  | 25325 `      | 0.0     | 0.0     | 0.1479  |
| 1   | 19027   | 6  | 26752        | 0.0     | 0.0     | 0.5717  |
| 1   | 19027   | 7  | 26357        | 0.0     | 0.0     | 0.2020  |
| 2   | 1026    | 2  | 1026         | 0.1000  | 0.1219  | 0.0     |
| 2   | 1026    | 2  | 21483        | 0.0018  | 0.0015  | 0.0     |
| 2   | 1026    | 3  | 1866         | 0.1863  | 0.2124  | 0.0     |
| 2   | 1026    | 3  | 24355        | 0.0002  | 0.0020  | 0.0     |
| 2   | 1026    | 4  | 2823         | 0.2226  | 0.0062  | 0.0329  |
| 2   | 1026    | 4  | 26735        | 0.0000  | 0.0007  | 0.0078  |
| 2   | 1026    | 5  | 3849         | 0.0     | 0.3153  | 0.2089  |

49

#### 5/2 25004 5/2 ==

¥:

•

•

, . . F

#### PAGE 4 Appendix VII

#### TABLE 2 U(K) \*2 FOR EU+3

| J 1 | LEVEL 1 | J2 | LEVEL 2       | (U2) *2 | (04) *2 | (U6) *2 |
|-----|---------|----|---------------|---------|---------|---------|
| 2   | 1026    | 5  | 26763         | 0.0     | 0.0003  | 0.0046  |
| 2   | 1026    | 6  | 4907          | 0.0     | 0.0477  | 0.4696  |
| 2   | 1026    | 6  | 26752         | 0.0     | 0.0000  | 0.0019  |
| 2   | 1026    | 7  | 2635 <b>7</b> | 0.0     | 0.0     | 0.0110  |
| 2   | 1026    | 8  | 27244         | 0.0     | 0.0     | 0.0193  |
| 2   | 21483   | 2  | 21483         | 0.0011  | 0.0069  | 0.0     |
| 2   | 21483   | 2  | 26392         | 0.0086  | 0.0482  | 0.0     |
| 2   | 21483   | 3  | 1866          | 0.0023  | 0.0026  | 0.0     |
| 2   | 21483   | 3  | 24355         | 0.0351  | 0.0126  | 0.0     |
| 2   | 21483   | 3  | 26622         | 0.0305  | 0.0031  | 0.0     |
| 2   | 21483   | 4  | 2823          | 0.0020  | 0.0003  | 0.0000  |
| 2   | 21483   | 4  | 26735         | 0.0267  | 0.0320  | 0.2210  |
| 2   | 21483   | 4  | 27586         | 0.0042  | 0.0003  | 0.0040  |
| 2   | 21483   | 5  | 3849          | 0.0     | 0.0016  | 0.0000  |
| 2   | 21483   | 5  | 26763         | 0.0     | 0.0008  | 0.3829  |
| 2   | 21483   | 6  | 25325         | 0.0     | 0.0041  | 0.1586  |
| 2   | 21483   | 6  | 26752         | 0.0     | 0.0343  | 0.1586  |
| 2   | 21483   | 7  | 2635 <b>7</b> | 0.0     | 0.0     | 0.2479  |
| 2   | 21483   | 8  | 27244         | 0.0     | 0.0     | 0.2481  |
| 2   | 26392   | 2  | 26392         | 0.0784  | 0.0032  | 0.0     |
| 2   | 26392   | 3  | 24355         | 0.0017  | 0.0373  | 0.0     |
| 2   | 26392   | 3  | 26622         | 0.1097  | 0.0215  | 0.0     |
| 2   | 26392   | 4  | 2823          | 0.0000  | 0.0000  | 0.0019  |
| 2   | 26392   | 4  | 26735         | 0.0225  | 0.0279  | 0.0057  |
| 2   | 26392   | 4  | 27586         | 0.0005  | 0.0040  | 0.4282  |
| 2   | 26392   | 5  | 26763         | 0.0     | 0.0067  | 0.1056  |
| 2   | 26392   | 6  | 25325         | 0.0     | 0.0480  | 0.4599  |
| 2   | 26392   | 6  | 26752         | 0.0     | 0.0004  | 0.0192  |
| 2   | 26392   | 7  | 26357         | 0.0     | 0.0     | 0.5130  |
| 2   | 26392   | 8  | 27244         | 0.0     | 0.0     | 0.0853  |
| 3   | 1866    | 3  | 1866          | 0.0275  | 0.0260  | 0.0281  |
| 3   | 1866    | 3  | 24355         | 0.0010  | 0.0005  | 0.0000  |
| 3   | 1866    | 3  | 26622         | 0.0000  | 0.0004  | 0.0048  |
| 3   | 1866    | 4  | 2823          | 0.3880  | 0.1352  | 0.1588  |
| 3   | 1866    | 4  | 26735         | 0.0002  | 0.0001  | 0.0030  |
| 3   | 1866    | 5  | 3849          | 0.1754  | 0.2527  | 0.3836  |
| 3   | 1866    | 5  | 26763         | 0.0000  | 0.0011  | 0.0005  |
| 3   | 1866    | 6  | 4907          | 0.0     | 0.2310  | 0.4135  |
| 3   | 1866    | 6  | 25325         | 0.0     | 0.0000  | 0.0013  |
| 3   | 1866    | 6  | 26752         | 0.0     | 0.0004  | 0.0102  |
| 3   | 1866    | 8  | 27244         | 0.0     | 0.0     | 0.0092  |
| 3   | 1860    | 9  | 21960         | 0.0     | 0.0     | 0.0168  |
| 3   | 24355   | 3  | 24355         | 0.0149  | 0.0023  | 0.0031  |
| 3   | 24355   | 3  | 26622         | 0.0115  | 0.0229  | 0.2656  |
| 3   | 24355   | 4  | 2823          | 0.0039  | 0.0002  | 0.0000  |
| 3   | 24355   | 4  | 26735         | 0.0215  | 0.0005  | 0.3633  |

150

51

134

.

:

#### 5/2 7141 11/2 3667 0.0 0.2305 0.2087

.

PAGE 5 Appendix VII

#### TABLE 2 U(K)\*2 FOR EU+3

| J 1 | LEVEL 1 | J 2 | LEVEL 2        | (U2)*2 | (04) *2 | (06) *2 |
|-----|---------|-----|----------------|--------|---------|---------|
| 3   | 24355   | 4   | 27586          | 0.0592 | 0.0063  | 0.0030  |
| 3   | 24355   | 5   | 3849           | 0.0001 | 0.0014  | 0.0000  |
| 3   | 24355   | 5   | 26763          | 0.0328 | 0.0174  | 0.2023  |
| 3   | 24355   | 6   | 25325          | 0.0    | 0.0000  | 0.0164  |
| 3   | 24355   | 6   | 26752          | 0.0    | 0.0097  | 0.0500  |
| 3   | 24355   | 7   | 26357          | 0.0    | 0.0067  | 0.1349  |
| 3   | 24355   | 8   | 27244          | 0.0    | 0.0     | 0.3256  |
| 3   | 24355   | 9   | 27960          | 0.0    | 0.0     | 0.3477  |
| 3   | 26622   | 3   | 26622          | 0.0227 | 0.0017  | 0.0644  |
| 3   | 26622   | 4   | 26735          | 0.1414 | 0.0745  | 0.1508  |
| 3   | 26622   | 4   | 27586          | 0.0021 | 0.0129  | 0.2131  |
| 3   | 26622   | 5   | 3849           | 0.0000 | 0.0000  | 0.0010  |
| 3   | 26622   | 5   | 26763          | 0.0292 | 0.0508  | 0.0086  |
| 3   | 26622   | 6   | 4907           | 0.0    | 0.0000  | 0.0020  |
| 3   | 26622   | 6   | 25325          | 0.0    | 0.0155  | 0.3677  |
| 3   | 26622   | 6   | 26752          | 0.0    | 0.0019  | 0.1249  |
| 3   | 26622   | 7   | 26357          | 0.0    | 0.1106  | 0.1248  |
| 3   | 26622   | 8   | 27244          | 0.0    | 0.0     | 0.5665  |
| 3   | 26622   | 9   | 27960          | 0.0    | 0.0     | 0.1166  |
| 4   | 2823    | 4   | 2823           | 0.0117 | 0.2841  | 0.3528  |
| 4   | 2823    | 4   | 26735          | 0.0002 | 0.0009  | 0.0005  |
| 4   | 2823    | 4   | 2 <b>7</b> 580 | 0.0005 | 0.0006  | 0.0002  |
| 4   | 2823    | 5   | 3849           | 0.5684 | 0.0128  | 0.4412  |
| 4   | 2823    | 5   | 26763          | 0.0001 | 0.0000  | J.0059  |
| 4   | 2823    | 6   | 4907           | 0.0856 | 0.5145  | 0.2691  |
| 4   | 2823    | 6   | 25325 ·        | 0.0000 | 0.0002  | 0.0046  |
| 4   | 2823    | 6   | <b>267</b> 52  | 0.0001 | 0.0020  | 0.0048  |
| 4   | 2823    | 7   | 26357          | 0.0    | 0.0000  | 0.0080  |
| 4   | 2823    | 8   | 27244          | 0.0    | 0.0000  | 0.0040  |
| 4   | 2823    | 9   | 27960          | 0.0    | 0.0     | 0.0052  |
| 4   | 2823    | 10  | 28427          | 0.0    | 0.0     | 0.0093  |
| 4   | 26735   | 4   | 26735          | 0.0407 | 0.0000  | 0.0116  |
| 4   | 26735   | 4   | 27586          | 0.0156 | 0.0381  | 0.1108  |
| 4   | 20735   | 5   | 3849           | 0.0009 | 0.0000  | 0.0036  |
| 4   | 26735   | 5   | 26763          | 0.0982 | 0.1241  | 0.0505  |
| 4   | 26735   | 6   | 4907           | 0.0000 | 0.0003  | 0.0020  |
| 4   | 26735   | 6   | 25325          | 0.0094 | 0.0297  | 0.1569  |
| 4   | 26735   | 6   | 26752          | 0.0279 | 0.0538  | 0.0001  |
| 4   | 26735   | 1   | 26357          | 0.0    | 0.0070  | 0.2662  |
| 4   | 26735   | 8   | 27244          | 0.0    | 0.1897  | 0.1232  |
| 4   | 26735   | 9   | 27960          | 0.0    | 0.0     | 0.8211  |
| 4   | 26735   | 10  | 28427          | 0.0    | 0.0     | 0.0161  |
| 4   | 27586   | 4   | 27586          | 0.0817 | 0022    | 0.0068  |
| ų.  | 27586   | 5   | 3849           | 0.0034 | 0.0004  | 0.0003  |
| 4   | 27586   | 5   | 26763          | 0.0825 | 0.0322  | 0.0384  |
| 4   | 27586   | 6   | 4907           | 0.0012 | 0.0000  | 0.0000  |

and a strain and a summer of the strain and a strain a st

. .

51

150

.

2

110

Ľ

#### PAGE 6 Appendix VII

#### TABLE 2 U(K) \*2 FOR EU+3

| J 1      | LEVEL 1      | J2     | LEVEL 2       | (U2) *2 | (U4) *2 | (U6) *2 |
|----------|--------------|--------|---------------|---------|---------|---------|
|          | 77596        | 2      | 25 225        | 0 0005  | 0 0020  | 0 0166  |
|          | 27500        | ۵<br>۲ | 25325         | 0.0005  | 0.0020  | 0.0100  |
|          | 27500        | 7      | 20752         | 0.0303  | 0.0020  | 0.0000  |
| 4        | 27586        | ģ      | 20337         | 0.0     | 0.0023  | 0.0000  |
| <u> </u> | 27586        | ä      | 27244         | 0.0     | 0.0001  | 0.1575  |
|          | 27586        | 10     | 21900         | 0.0     | 0.0     | 0.1347  |
| 4        | 27500        | 10     | 20421         | 0.0     | 0.0     | 0.03/9  |
| 5        | 3849         | 5      | 3849          | 0.2762  | 0.2063  | 0.3225  |
| 5        | 3849         | 5      | 26763         | 0.0020  | 0,0002  | 0.0047  |
| 5        | 3849         | 6      | 4907          | 0.5410  | 0.6451  | 0.1213  |
| 5        | 3849         | 6      | 26752         | 0.0001  | 0.0016  | 0.0026  |
| Š        | 3849         | 7      | 26357         | 0.0000  | 0.0002  | 0.0073  |
| Š        | 3849         | 8      | 27244         | 0.0     | 0.0000  | 0.0176  |
| 5        | 3849         | ģ      | 27960         | 0.0     | 0.0002  | 0.0176  |
| 5        | 3849         | 10     | 28427         | 0.0     | 0.0     | 0.0015  |
| -        |              |        |               |         |         |         |
| 5        | 26763        | 5      | 26763         | 0.0511  | 0.0008  | 0.0186  |
| 5        | 26763        | 6      | 4907          | 0.0010  | 0.0011  | 0.0012  |
| 5        | 26763        | 6      | 25325         | 0.0070  | 0.0403  | 0.0405  |
| 5        | 26763        | 6      | 26752         | 0.0743  | 0.1716  | 0.0025  |
| 5        | 26763        | 7      | 26357         | 0.0163  | 0.0692  | 0.1518  |
| 5        | 26763        | 8      | 27244         | 0.0     | 0.0134  | 0.3016  |
| 5        | 26763        | 9      | 27960         | 0.0     | 0.2596  | 0.4888  |
| 5        | 26763        | 10     | 28427         | 0.0     | 0.0     | 0.6377  |
|          |              |        |               |         |         |         |
| 6        | 4907         | 6      | 4907          | 1.2029  | 0.3940  | 0.0294  |
| 6        | 4907         | 6      | 26752         | 0.0085  | 0.0022  | 0.0003  |
| 6        | 4907         | 1      | 26357         | 0.0000  | 0.0001  | 0.0013  |
| 6        | 4907         | 8      | 27244         | 0.0000  | 0.0003  | 0.0074  |
| 6        | 4907         | 9      | 27960         | 0.0     | 0.0000  | 0.0242  |
| 6        | 4907         | 10     | 28427         | 0.0     | 0.0020  | 0.0524  |
| c        | 25225        | 6      | 25225         | 0 0050  | 0 0255  | 0 1750  |
| 2        | 25325        | 4      | 23323         | 0.0030  | 0.9333  | 0.1758  |
| 4        | 25325        | 7      | 20752         | 0.0019  | 0.0320  | 0.0009  |
| 6        | 25325        | ģ      | 20357         | 0.0147  | 0.3310  | 0.1400  |
| 6        | 25325        | å      | 27960         | 0.0010  | 0.0723  | 0.1020  |
| ő        | 25325        | 10     | 28427         | 0.0     | 0.0067  | 0.0563  |
| Ŭ        | 20020        |        | 20421         |         |         | 0.0505  |
| 6        | 26752        | 6      | 26752         | 0.1047  | 0.0578  | 0.0094  |
| 6        | 26752        | 7      | 26357         | 0.0004  | 0.0612  | 0.0509  |
| 6        | 26752        | 8      | 27244         | 0.0177  | 0.0480  | 0.0601  |
| 6        | 26752        | 9      | 27960         | 0.0     | 0.0384  | 0.3009  |
| 6        | 26752        | 10     | 28427         | 0.0     | 0.2938  | 1.4460  |
|          |              |        |               |         |         |         |
| 7        | 26357        | 7      | 2635 <b>7</b> | 0.0152  | 0.6740  | 0.0269  |
| 7        | <b>26357</b> | 8      | 27244         | 0.0249  | 0.4856  | 0.1671  |
| 7        | 26357        | 9      | 27960         | 0.0083  | 0.0804  | 0.1032  |
| 7        | 26357        | 10     | 28427         | 0.0     | 0.0000  | 0.0313  |

15

53

136

. .

ħ

ھ ھي بر

京は一次のほど



15



VII

APPENDIX

わ

138

139

S.

ฦ
## PAGE 1 Appendix VIII

# TABLE 1 GD+3:LAF3

| OBSERVED                                                                                                 | CALC                                                                                   | 0-C                                       | STAT                                   | E J                                                          | MJ                                                                 |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| 0.0<br>0.0<br>0.0<br>0.0                                                                                 | 1<br>1<br>1<br>1                                                                       | 0<br>0<br>0<br>0                          | 85<br>85<br>85<br>85                   | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                              | -7/2<br>5/2<br>3/2<br>1/2                                          |
| 32177.11<br>32185.62<br>32199.61<br>32228.57                                                             | 32183<br>32189<br>32209<br>32232                                                       | -5<br>-3<br>-8<br>-3                      | 6P<br>6P<br>6P<br>6P                   | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                              | -7/2<br>5/2<br>3/2<br>1/2                                          |
| 32771.75<br>32791.96<br>32809.29                                                                         | 32787<br>32788<br>32799                                                                | -14<br>4<br>10                            | 6 P<br>6 P<br>6 P                      | 5/2<br>5/2<br>5/2                                            | 3/2<br>5/2<br>1/2                                                  |
| 33352.00<br>33370.00                                                                                     | 33351<br>33366                                                                         | 1<br>4                                    | 6 P<br>6 P                             | 3/2<br>3/2                                                   | 1/2<br>3/2                                                         |
| 35923.00<br>35945.24<br>35969.03<br>35996.14                                                             | 35929<br>35939<br>35962<br>35979                                                       | -5<br>6<br>7<br>17                        | 61<br>61<br>61<br>61                   | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                              | 5/2<br>3/2<br>-7/2<br>1/2                                          |
| 36275.25<br>36286.08<br>36306.24<br>36314.26<br>36333.45                                                 | 36268<br>36276<br>36297<br>36305<br>36316                                              | 8<br>10<br>9<br>10<br>17                  | 61<br>61<br>61<br>61<br>61             | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                              | 5/2<br>-7/2<br>3/2<br>-9/2<br>1/2                                  |
| 36340.81<br>36343.03<br>36347.18<br>36351.69<br>36354.80<br>36364.51<br>36371.71<br>36377.86<br>36384.90 | 36342<br>36344<br>36344<br>30348<br>30348<br>36350<br>36355<br>36358<br>36358<br>36359 | -1<br>3<br>5<br>7<br>15<br>17<br>20<br>26 | 61<br>61<br>61<br>61<br>61<br>61<br>61 | 17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2 | -9/2<br>-11/2<br>-7/2<br>13/2<br>15/2<br>5/2<br>3/2<br>17/2<br>1/2 |
| 36551.43<br>36563.33<br>36573.18<br>36586.14<br>36594.86<br>36613.04                                     | 36556<br>36567<br>36575<br>36593<br>36593<br>36611                                     | -4<br>-3<br>-1<br>-6<br>2<br>2            | 61<br>61<br>61<br>61<br>61<br>61       | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2         | -7/2<br>-9/2<br>5/2<br>3/2<br>-11/2<br>1/2                         |
| 36661.81<br>36670.99<br>36679.98<br>36690.17<br>36700.50                                                 | 36674<br>36686<br>36690<br>36706<br>36707                                              | -11<br>-14<br>-9<br>-14                   | 61<br>61<br>61<br>61                   | 15/2<br>15/2<br>15/2<br>15/2<br>15/2                         | -9/2<br>-11/2<br>-7/2<br>5/2<br>13/2                               |

12.10

57

Q.

2

še

Gu.

139

÷.

2/2 22013 11/2 21141 0:0110 0:0013 0:0001

## PAGE 2 Appendix VIII

# TABLE 1 GD+3:LAF3

| OBSERVED | CALC            | 0-C   | STAT     | ΕJ   | MJ           |
|----------|-----------------|-------|----------|------|--------------|
| 36703.65 | 36714           | -10   | 61       | 15/2 | 15/2         |
| 36713.00 | 36722           | -8    | 6I       | 13/2 | -7/2         |
| 36715.52 | 36722           | -6    | 61       | 15/2 | 3/2          |
| 36720.08 | 36725           | -3    | 61       | 15/2 | 15/2         |
| 36724.82 | 36732           | -6    | 61       | 15/2 | 1/2          |
| 36734.46 | 36737           | -2    | 61       | 13/2 | -11/2        |
| 36738.99 | 36737           | 2     | 61       | 13/2 | 5/2          |
| 36752.82 | 36759           | -5    | 61       | 13/2 | 13/2         |
| 36763.02 | 36769           | -5    | 61       | 13/2 | 3/2          |
| 36772.50 | 36770           | 2     | 61       | 13/2 | 1/2          |
| 39667.00 | 39660           | 7     | 6 D      | 9/2  | -9/2         |
| 39686.00 | 39694           | -7    | 6 D      | 9/2  | 1/2          |
| 39719.00 | 39729           | -9    | 6 D      | 9/2  | 3/2          |
| 39742.00 | 39741           | 1     | 6 D      | 9/2  | -7/2         |
| 39758.00 | 39763           | -4    | 6 D      | 9/2  | 5/2          |
| •••      | 40644           | •••   | 6 D      | 1/2  | 1/2          |
| 40734.00 | 40732           | 2     | 6 D      | 7/2  | 5/2          |
| 40740.00 | 40737           | 3     | 6 D      | 7/2  | 3/2          |
| 40744.00 | 40743           | 1     | 6 D      | 7/2  | 1/2          |
| 40751.00 | 40754           | -2    | 6 D      | 7/2  | -7/2         |
| •••      | 40895           |       | 6 D      | 3/2  | 3/2          |
| •••      | 40909           |       | 6 D      | 3/2  | 1/2          |
| • • •    | 41004           |       | 6 D      | 5/2  | 3/2          |
| •••      | 41049           |       | 6 D      | 5/2  | 5/2          |
| • • •    | 41061           | • • • | 6 D      | 5/2  | 1/2          |
| 49170.00 | 49159           | 11    | 6G       | 7/2  | <b>-7/</b> 2 |
| •••      | 49232           |       | 6 G      | 7/2  | 3/2          |
| 49221.00 | 49233           | -11   | 6G       | 7/2  | 5/2          |
| 49240.00 | 49248           | -7    | 6G       | 7/2  | 1/2          |
|          | 4953 <b>3</b>   | • • • | 6 G      | 11/2 | -11/2        |
| • • •    | 49539           |       | 6G       | 9/2  | -9/2         |
|          | 49608           | • • • | 6G       | 9/2  | -7/2         |
| •••      | 49633           |       | 6 G      | 9/2  | 1/2          |
| •••      | 49643           |       | 6G       | 5/2  | 5/2          |
| • • •    | 49670           |       | 6G       | 9/2  | 3/2          |
| - • •    | 49674           | • • • | 6G       | 9/2  | -7/2         |
| • • •    | 49695           | • • • | 6 G      | 9/2  | 3/2          |
| •••      | 49732           | •••   | 6G       | 11/2 | 1/2          |
| •••      | 49/35           | •••   | 6G       | 11/2 | 3/2          |
| •••      | 49/41           | •••   | 06       | 11/2 | 5/2          |
| • • •    | 49010<br>//00/0 | • • • | 0G<br>6C | 11/2 | -1/2         |
|          |                 |       |          | 11/4 | / /.         |

۶.

:41

11

-

;

 $\cdot$ 

#### PAGE 3

APPENDIX VIII

# TABLE 1A GD+3:LAF3 CENTERS OF GRAVITY

| CALC | CENTER | STATE  |
|------|--------|--------|
|      | 2      | 8S 7/2 |
| 32   | 2232   | 6P 7/2 |
| 32   | 2827   | 6P 5/2 |
| 33   | 3398   | 6P 3/2 |
| 35   | 5949   | 6I 7/2 |
| 36   | 5291   | 6I 9/2 |
| 36   | 5345   | 6117/2 |
| 36   | 582    | 6111/2 |
| 36   | 5704   | 6115/2 |
| 36   | 5742   | 6113/2 |
| 39   | 723    | 6D 7/2 |
| 40   | 654    | 6D 1/2 |
| 40   | 901    | 6F 3/2 |
| 41   | 037    | 6D 5/2 |

:41

# **BLANK PAGE**

などので、ことは思いというな

4

, T.,

43

۰. a - - --

۰,

# PAGE 5 Appendix VIII

# TABLE 2 U(K) \*2 FOR GD+3

| J1                                                                 | LEVEL 1 J2                                                                                                                                      | LEVEL 2                                                                                | (U2) *2                                                                                  | (U4) *2                                                                                    | (U6) *2                                                                             |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2                      | 40654 3/2<br>40654 3/2<br>40654 5/2<br>40654 5/2<br>40654 9/2<br>40654 9/2<br>40654 11/2                                                        | 33398<br>40901<br>32827<br>41037<br>36291<br>39723<br>36582                            | 0.0028<br>0.0090<br>0.0572<br>0.0301<br>0.0<br>0.0<br>0.0                                | 0.0<br>0.0<br>0.0<br>0.0031<br>0.0088<br>0.0                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.033                              |
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2        | 33398 3/2   33398 3/2   33398 5/2   33398 5/2   33398 7/2   33398 9/2   33398 9/2   33398 11/2   33398 13/2   33398 15/2                        | 33398<br>40901<br>32827<br>41037<br>32232<br>36291<br>39723<br>36582<br>36742<br>36704 | 0.0109<br>0.0222<br>0.0430<br>0.0725<br>0.0090<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0002<br>0.0013<br>0.0004<br>0.0002<br>0.0022<br>0.0016<br>0.0<br>0.0              | 0.0<br>0.0<br>0.0<br>0.2310<br>0.0000<br>0.4382<br>0.5719<br>0.5483                 |
| 3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2<br>3/2        | 409013/2409015/2409015/2409017/2409017/2409019/24090111/24090113/24090115/2                                                                     | 40901<br>32827<br>41037<br>32232<br>35949<br>36291<br>36582<br>36742<br>36704          | 0.0323<br>0.0742<br>0.0130<br>0.0276<br>0.0000<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0018<br>0.0061<br>0.0022<br>0.0045<br>0.0005<br>0.0116<br>0.0<br>0.0              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0011<br>0.0362<br>0.0837<br>0.0355                    |
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 328275/2328275/2328277/2328279/2328279/23282711/23282713/23282715/23282717/2                                                                    | 32827<br>41037<br>32232<br>35949<br>36291<br>39723<br>36582<br>36742<br>36704<br>36345 | 0.0292<br>0.0424<br>0.0180<br>0.0000<br>0.0001<br>0.2003<br>0.0<br>0.0<br>0.0<br>0.0     | 0.0013<br>0.0073<br>0.0001<br>0.0023<br>0.0015<br>0.0014<br>0.0000<br>0.0052<br>0.0<br>0.0 | 0.0<br>0.0001<br>0.7074<br>0.4109<br>0.0002<br>0.1428<br>0.0026<br>0.1435<br>1.1037 |
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 41037 5/2<br>41037 7/2<br>41037 7/2<br>41037 7/2<br>41037 9/2<br>41037 9/2<br>41037 9/2<br>41037 11/2<br>41037 13/2<br>41037 15/2<br>41037 17/2 | 41037<br>2<br>32232<br>35949<br>36291<br>39723<br>36582<br>36742<br>36704<br>36345     | 0.0005<br>0.026<br>0.0868<br>0.0002<br>0.0001<br>0.0035<br>0.0<br>0.0<br>0.0<br>0.0      | 0.0247<br>0.0000<br>0.0005<br>0.0123<br>0.0088<br>0.0120<br>0.0000<br>0.0245<br>0.0<br>0.0 | 0.0<br>0.0000<br>0.0445<br>0.0945<br>0.0002<br>0.0660<br>0.0015<br>0.0715<br>0.1368 |

.

#### PAGE 6 APPENDIX VIII

# TABLE 2 U(K)\*2 FOR GD+3

| J1                                                          | LEVEL 1 J2                                                                                                        | LEVEL 2                                                                            | (U2)*2                                                              | (04) *2                                                                      | (06) *2                                                                      |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 2 7/2<br>2 7/2<br>2 9/2<br>2 9/2<br>2 11/2<br>2 13/2<br>2 15/2<br>2 17/2                                          | 32232<br>35949<br>36291<br>39723<br>36582<br>36742<br>36704<br>36345               | 0.0011<br>0.0000<br>0.0000<br>0.0060<br>0.0000<br>0.0<br>0.0<br>0.0 | 0.0000<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0044<br>0.0110<br>0.0000<br>0.0188<br>0.0257<br>0.0287<br>0.0228 |
| 1/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 0 1/2<br>32232 7/2<br>32232 7/2<br>32232 9/2<br>32232 9/2<br>32232 11/2<br>32232 13/2<br>32232 15/2<br>32232 17/2 | 0<br>32232<br>35949<br>36291<br>39723<br>36582<br>36782<br>36742<br>36704<br>36345 | 0.1202<br>0.0000<br>0.0003<br>0.1879<br>0.0000<br>0.0<br>0.0<br>0.0 | 0.0017<br>0.0018<br>0.0048<br>0.0210<br>0.0051<br>0.0019<br>0.0037<br>0.0    | 0.0001<br>0.1763<br>0.3759<br>0.0000<br>0.5639<br>0.7186<br>0.8186<br>0.7818 |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2                      | 35949 7/2<br>35949 9/2<br>35949 9/2<br>35949 11/2<br>35949 15/2                                                   | 35949<br>36291<br>39723<br>36582<br>36704                                          | 0.0047<br>0.0008<br>0.0002<br>0.0008<br>0.0                         | 0.0087<br>0.0013<br>0.0011<br>0.0005<br>0.0001                               | 0.0007<br>0.0025<br>0.0046<br>0.0000<br>0.0009                               |
| 9/2<br>9/2<br>9/2<br>9/2<br>9/2                             | 36291 9/2<br>36291 9/2<br>36291 11/2<br>36291 13/2<br>36291 13/2<br>36291 15/2                                    | 36291<br>39723<br>36582<br>36742<br>36704                                          | 0.0099<br>0.0008<br>0.0021<br>0.0016<br>0.0                         | 0.0141<br>0.0060<br>0.0019<br>0.0013<br>0.0019                               | 0.0005<br>0.0099<br>0.0018<br>0.0001<br>0.0002                               |
| 9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2                      | 39723 9/2<br>39723 11/2<br>39723 13/2<br>39723 15/2<br>39723 15/2<br>39723 17/2                                   | 39723<br>36582<br>36742<br>36704<br>36345                                          | 0.0854<br>0.0011<br>0.0002<br>0.0<br>0.0                            | 0.0722<br>0.0191<br>0.0326<br>0.0318<br>0.0140                               | 0.0017<br>0.0075<br>0.0002<br>0.0095<br>0.0409                               |
| 11/2<br>11/2<br>11/2<br>11/2<br>11/2                        | 36582 11/2<br>36582 13/2<br>36582 15/2<br>36582 17/2                                                              | 36582<br>36742<br>36704<br>36345                                                   | 0.0129<br>0.0045<br>0.0019<br>0.0                                   | 0.0191<br>0.0009<br>0.0033<br>0.0018                                         | 0.0007<br>0.0016<br>0.0000<br>0.00011                                        |
| 13/2<br>13/2<br>13/2                                        | 36742 13/2<br>36742 15/2<br>36742 17/2                                                                            | 36742<br>36704<br>36345                                                            | 0.0122<br>0.0082<br>0.0013                                          | 0.0235<br>0.0001<br>0.0055                                                   | 0.0015<br>0.0010<br>0.0012                                                   |
| 15/2<br>15/2                                                | 36704 15/2<br>36704 17/2                                                                                          | 36704<br>36345                                                                     | 0.0067<br>0.0115                                                    | 0.0189<br>0.0088                                                             | 0.0040<br>0.0008                                                             |

. .

, 14

. и ж

٠

.

.

.

?

145 -

5

-

-

•

, JU

7

APPENDIX IX

Į ć

# APPENDIX IX

|           | TABLE  | 1     |              |
|-----------|--------|-------|--------------|
| TB+3:LAF3 | CENTER | S OF  | GRAVITY      |
|           |        |       |              |
| OBSERVED  | CALC   | 0-C   | STATE        |
|           |        |       |              |
| • • •     | 124    | • • • | 7F6          |
| • • •     | 21/2   | • • • | 755          |
| • • •     | 3439   | •••   | 754          |
| 4423      | 4418   | 2     | 783          |
| 5074      | 5106   | -31   | 782          |
| 5560      | 5501   | 20    | 751          |
| 5614      | 5/64   | 30    | 780          |
| 20566     | 20568  | -1    | 504          |
| 26317     | 26360  | - 42  | 5D3          |
| 26529     | 26547  | - 17  | 566          |
| 27111     | 27095  | 16    | 5L 10        |
| 27919     | 27891  | 28    | 5G 5         |
| 28247     | 28231  | 16    | 502          |
|           | 28411  |       | 564          |
| 28489     | 28532  | -42   | 51.9         |
| 29069     | 29101  | -31   | 5G 3         |
| 29343     | 29314  | 29    | 51.8         |
| 29595     | 29581  | 14    | 517          |
| 25050     | 29655  |       | 562          |
|           | 29794  |       | 516          |
| 30750     | 30734  | 16    | 5D1          |
|           | 31348  |       | 500          |
|           |        |       |              |
| 31492     | 31503  | -10   | 5H7          |
| 32998     | 33015  | - 16  | 5H6          |
| 33942     | 33891  | 51    | 5H5          |
| 34466     | 34463  | 3     | 5H4          |
| 35063     | 35058  | 5     | 5F5          |
| • • •     | 35060  |       | 5H 3         |
| 35344     | 35255  | 89    | 518          |
| • • •     | 35498  |       | 5F4          |
|           | 36674  |       | 5 <b>F</b> 3 |
| 36657     | 36713  | - 55  | 517          |
| 37275     | 37260  | 15    | 5F2          |
| •••       | 37606  |       | 5F1          |
| •••       | 37722  |       | 516          |
| • • •     | 37732  | • • • | 514          |
| • • •     | 38110  | • • • | 515          |
| 39287     | 39297  | -9    | 589          |
| 55207     | 39515  |       | 502          |
| •••       | 40309  |       | 566          |
| 40913     | 40939  | - 25  | 58.8         |
| 41447     | 41458  | -10   | 585          |
|           | 41473  |       | 566          |
|           | 41817  |       | 587          |

147

.

ł

5

÷,

49

| 2 | 1026 | 4 | 26735 | 0 0000 | 0 0007 | 0.0323 |
|---|------|---|-------|--------|--------|--------|
| 2 | 1026 | 5 | 3849  | 0.0    | 0.3153 | 0.2089 |

## PAGE 3 Appendix ix

## TABLE 2 U(K) \*2 FOR TB+3

| J1 | LEVEL 1      | J 2    | LEVEL 2      | (02) *2 | (04) *2 | (06) *2 |
|----|--------------|--------|--------------|---------|---------|---------|
| 0  | 5784         | 2      | 5106         | 0.1391  | 0.0     | 0.0     |
| 0  | 5784         | 2      | 20231        | 0.0010  | 0.0     | 0.0     |
| ň  | 5784         | ц<br>Ц | 20569        | 0.0     | 0.0017  | 0.0     |
| õ  | 5784         | 6      | 125          | 0.0     | 0.0     | 0.1441  |
| Ŭ  | 3704         | Ŭ      | 123          |         | 0.0     | 011441  |
| 1  | 5561         | 1      | 5561         | 0.1562  | 0.0     | 0.0     |
| 1  | 5561         | 2      | 5106         | 0.0513  | 0.0     | 0.0     |
| 1  | 5561         | 3      | 4419         | 0.2102  | 0.1273  | 0.0     |
| 1  | 556 <b>1</b> | 3      | 26360        | 0.0011  | 0.0013  | 0.0     |
| 1  | 5561         | 4      | 3439         | 0.0     | 0.1719  | 0.0     |
| 1  | 5561         | 4      | 20569        | 0.0     | 0.0025  | 0.0     |
| 1  | 5561         | 5      | 2173         | 0.0     | 0.1188  | 0.0537  |
| 1  | 5561         | 6      | 125          | 0.0     | 0.0     | 0.3761  |
| 1  | 5561         | 7      | 29582        | 0.0     | 0.0     | 0.0093  |
| 2  | 5106         | 2      | 5106         | 0.1002  | 0.1211  | 0.0     |
| 2  | 5106         | 2      | 28231        | 0.0010  | 0.0010  | 0.0     |
| 2  | 5106         | 3      | 4419         | 0.1829  | 0.2101  | 0.0     |
| 2  | 5106         | 3      | 26360        | 0.0014  | 0.0026  | 0.0     |
| 2  | 5106         | 4      | 3439         | 0.2224  | 0.0060  | 0.0324  |
| 2  | 5106         | 4      | 20569        | 0.0011  | 0.0004  | 0.0001  |
| 2  | 5106         | 4      | 28412        | 0.0016  | 0.0000  | 0.0005  |
| 2  | 5106         | 5      | 2173         | 0.0     | 0.3135  | 0.2071  |
| 2  | 5106         | 5      | 27892        | 0.0     | 0.0001  | 0.0014  |
| 2  | 5106         | 6      | 125          | 0.0     | 0.0481  | 0.4695  |
| 2  | 5106         | 7      | 29582        | 0.0     | 0.0     | 0.0157  |
| 2  | 5106         | 8      | 29315        | 0.0     | 0.0     | 0.0199  |
| 2  | 28231        | 2      | 28231        | 0.0168  | 0.0080  | 0.0     |
| 2  | 28231        | 3      | 4419         | 0.0028  | 0.0024  | 0.0     |
| 2  | 28231        | 3      | 26360        | 0.0269  | 0.0056  | 0.0     |
| 2  | 28231        | 4      | 3439         | 0.0009  | 0.0005  | 0.0000  |
| 2  | 28231        | 4      | 20569        | 0.0362  | 0.0048  | 0.0059  |
| 2  | 28231        | 4      | 28412        | 0.0602  | 0.0008  | 0.0217  |
| 2  | 28231        | 5      | 2173         | 0.0     | 0.0027  | 0.0006  |
| 2  | 28231        | 5      | 27892        | 0.0     | 0.0166  | 0.1466  |
| 2  | 28231        | 6      | 26548        | 0.0     | 0.0255  | 0.3510  |
| 2  | 28231        | 7      | 29582        | 0.0     | 0.0     | 0.3579  |
| 2  | 28231        | 0      | 29315        | 0.0     | 0.0     | 0.2572  |
| 3  | 4419         | 3      | 4419         | 0.0272  | 0.0253  | 0.0278  |
| 3  | 4419         | 3      | 26360        | 0.0007  | 0.0009  | 0.0000  |
| 3  | 4419         | 4      | 3439         | 0.3782  | 0.1343  | 0.1575  |
| 3  | 4419         | 4      | 20569        | 0.0022  | 0.0005  | 0.0006  |
| 3  | 4419         | 4      | 28412        | 0.0025  | 0.0000  | 0.0026  |
| 3  | 4419         | 5      | 2173         | 0.1767  | 0.2504  | 0.3816  |
| 3  | 4419         | 5      | 27892        | 0.0019  | 0.0001  | 0.0020  |
| 3  | 4419         | 0<br>Q | 120<br>20315 | 0.0     | 0.2323  | 0.4129  |
| 2  | 4417         | 0      |              | V + V   | V • V   | V. VIJZ |

þ ŗ,

-----

67

3 24355 4 26735 0.0215 0.0005 0.3633

.

~ ż

د. ر

.

2

.

-1

# PAGE 4 Appendix ix

# TABLE 2 U(K) \*2 FOR TB+3

| J 1 | LEVEL 1       | J2 | LEVEL 2 | (U2)*2 | (04) *2 | (06) *2 |
|-----|---------------|----|---------|--------|---------|---------|
| З   | 4419          | 9  | 28532   | 0.0    | 0.0     | 0.0255  |
| 3   | 26360         | 3  | 26360   | 0.0000 | 0.0021  | 0.0027  |
| 3   | 26360         | 4  | 3439    | 0.0065 | 0.0001  | 0.0002  |
| 3   | 26360         | 4  | 20569   | 0.0535 | 0.0291  | 0.0085  |
| 3   | 26360         | 4  | 28412   | 0.0058 | 0.0228  | 0.1398  |
| 3   | 26360         | 5  | 2173    | 0.0005 | 0.0028  | 0.0016  |
| 3   | 26360         | 5  | 27892   | 0.0837 | 0.0303  | 0.2981  |
| 3   | 26360         | 6  | 125     | 0.0    | 0.0002  | 0.0014  |
| 3   | 26360         | 6  | 26548   | 0.0    | 0.0341  | 0.2412  |
| 3   | 26360         | 7  | 29582   | 0.0    | 0.0035  | 0.0221  |
| 3   | 26360         | 8  | 29315   | 0.0    | 0.0     | 0.2546  |
| 3   | 26360         | 9  | 28532   | 0.0    | 0.0     | 0.4161  |
| 4   | 3439          | 4  | 3439    | 0.0120 | 0.2792  | 0.3500  |
| 4   | 3439          | 4  | 20569   | 0.0002 | 0.0022  | 0.0014  |
| 4   | 3439          | 4  | 28412   | 0.0000 | 0.0006  | 0.0068  |
| 4   | 3439          | 5  | 2173    | 0.5541 | 0.0120  | 0.4374  |
| 4   | 3439          | 5  | 27892   | 0.0042 | 0.0009  | 0.0012  |
| 4   | 3439          | 6  | 125     | 0.0888 | 0.5159  | 0.2658  |
| 4   | 3439          | 6  | 26548   | 0.0023 | 0.0000  | 0.0025  |
| 4   | 3439          | 7  | 29582   | 0.0    | 0.0029  | 0.0069  |
| 4   | 3439          | 8  | 29315   | 0.0    | 0.0014  | 0.0004  |
| 4   | 3439          | 9  | 28532   | 0.0    | 0.0     | 0.0150  |
| 4   | 3439          | 10 | 27096   | 0.0    | 0.0     | 0.0322  |
| 4   | 20569         | 4  | 20569   | 0.0463 | 0.0310  | 0.0038  |
| 4   | 20569         | 4  | 28412   | 0.0004 | 0.0051  | 0.5115  |
| 4   | 2056 <b>9</b> | 5  | 2173    | 0.0142 | 0.0013  | 0.0022  |
| 4   | 20569         | 5  | 27892   | 0.0046 | 0.0631  | 0.3964  |
| 4   | 20569         | 6  | 125     | 0.0009 | 0.0008  | 0.0013  |
| 4   | 20569         | 6  | 26548   | 0.1131 | 0.2067  | 0.1457  |
| 4   | 20569         | 7  | 29582   | 0.0    | 0.0333  | 0.0336  |
| 4   | 2056 <b>9</b> | 8  | 29315   | 0.0    | 0.0104  | 0.0723  |
| 4   | 20569         | 9  | 28532   | 0.0    | 0.0     | 0.2758  |
| 4   | 20569         | 10 | 27096   | 0.0    | 0.0     | 0.8669  |
| 4   | 28412         | 4  | 28412   | 0.0682 | 0.0148  | 0.0062  |
| 4   | 28412         | 5  | 2173    | 0.0005 | 0.0000  | 0.0021  |
| 4   | 28412         | 5  | 27892   | 0.0285 | 0.1564  | 0.0665  |
| 4   | 28412         | 6  | 125     | 0.0001 | 0.0003  | 0.0087  |
| 4   | 28412         | 6  | 26548   | 0.0113 | 0.0903  | 0.0677  |
| 4   | 28412         | 7  | 29582   | 0.0    | 0.2416  | 0.3920  |
| 4   | 28412         | 8  | 29315   | 0.0    | 0.0016  | 0.0036  |
| 4   | 28412         | 9  | 28532   | 0.0    | 0.0     | 0.2736  |
| 4   | 28412         | 10 | 27096   | 0.0    | 0.0     | 0.0540  |
| 5   | 2173          | 5  | 2173    | 0.2764 | 0.2071  | 0.3179  |
| 5   | 2173          | 5  | 27892   | 0.0001 | 0.0002  | 0.0065  |
| 2   | 21/3          | Ö  | 120     | U.33// | V.042U  | V.1178  |

168

150

.

.

ł

| 4 | 2/586 | 5 | 3849         | 0.0034 | 0.0004 | 0.0003 |
|---|-------|---|--------------|--------|--------|--------|
| 4 | 27586 | 5 | 26763        | 0.0825 | 0.0322 | 0.0384 |
| 4 | 27586 | 6 | 490 <b>7</b> | 0.0012 | 0.0000 | 0.0000 |

. S. . . . . . . . 

÷2 ...

# PAGE 5 APPENDIX IX

# TABLE 2 U(K) \*2 FOR TB+3

| J 1 | LEVEL 1 | J 2 | LEVEL 2        | (U2) *2 | (U4) *2 | (U6) *2        |
|-----|---------|-----|----------------|---------|---------|----------------|
| 5   | 2173    | 6   | 26548          | 0.0040  | 0.0028  | 0.0093         |
| 5   | 2173    | 7   | 29582          | 0.0002  | 0.0003  | 0.0066         |
| 5   | 2173    | 8   | 29315          | 0.0     | 0.0019  | 0.0210         |
| 5   | 2173    | 9   | 28532          | 0.0     | 0.0007  | 0.0136         |
| 5   | 2173    | 10  | 27096          | 0.0     | 0.0     | 0.0015         |
| 5   | 27892   | 5   | 2 <b>7</b> 892 | 0.2578  | 0.0001  | <b>0.</b> 0540 |
| 5   | 27892   | 6   | 125            | 0.0012  | 0.0018  | 0.0131         |
| 5   | 27892   | 6   | 26548          | 0.0203  | 0.1466  | 0.0648         |
| 5   | 27892   | 7   | 29582          | 0.0115  | 0.1091  | 0.3075         |
| 5   | 27892   | 8   | 29315          | 0.0     | 0.2877  | 0.3396         |
| 5   | 27892   | 9   | 28532          | 0.0     | 0.0001  | 0.0532         |
| 5   | 27892   | 10  | 27096          | 0.0     | 0.0     | 0.4457         |
| 6   | 125     | 6   | 125            | 1.2125  | 0.3881  | 0.0275         |
| 6   | 125     | 6   | 26548          | 0.0016  | 0.0044  | 0.0116         |
| 6   | 125     | 7   | 29582          | 0.0006  | 0.0001  | 0.0121         |
| 6   | 125     | 8   | 2 <b>9</b> 315 | 0.0000  | 0.0001  | 0.0228         |
| 6   | 125     | 9   | 28532          | 0.0     | 0.0019  | 0.0455         |
| 6   | 125     | 10  | 27096          | 0.0     | 0.0003  | 0.0580         |
| 6   | 26548   | 6   | 26548          | 0.5802  | 0.0288  | 0.3499         |
| 6   | 26548   | 7   | 2 <b>9</b> 582 | 0.0464  | 0.0002  | 0.3264         |
| 6   | 26548   | 8   | 29315          | 0.0059  | 0.0256  | 0.5607         |
| 6   | 26548   | 9   | 28532          | 0.0     | 0.2520  | 0.7123         |
| 6   | 26548   | 10  | 27096          | 0.0     | 0.0068  | 0.9143         |
| 7   | 29582   | 7   | 29582          | 0.0832  | 0.4493  | 0.2158         |
| 7   | 29582   | 8   | 29315          | 0.0829  | 0.4047  | 0.0877         |
| 7   | 29582   | 9   | 28532          | 0.0003  | 0.0342  | 0.1139         |
| 7   | 29582   | 10  | 27096          | 0.0     | 0.1037  | 0.0029         |
| 8   | 29315   | 8   | 29315          | 0.0509  | 0.6174  | 0.1799         |
| 8   | 29315   | 9   | 28532          | 0.0771  | 0.4809  | 0.1204         |
| 8   | 29315   | 10  | 27096          | 0.0000  | 0.0698  | 0.0803         |
| 9   | 28532   | 9   | 28532          | 0.0236  | 0.9206  | 0.1766         |
| 9   | 28532   | 10  | 27096          | 0.0727  | 0.4668  | 0.1548         |
| 10  | 27096   | 10  | 2 <b>709</b> 6 | 0.0002  | 1.8580  | 0.3777         |

51

150



15

57

1.1

# **BLANK PAGE**



# APPENDIX X

¢

<u> 22.</u> ~. 171

Þ

-

気泉

Ŷ.

• • •

3

57

œ.

<u>ј</u>Б \

H

APPENDIX X

## TABLE 1 DY+3:LAF3

| OBSERVED | CALC | 0-C        | STATE      | 3 J  | MJ    |
|----------|------|------------|------------|------|-------|
| 0        | 22   | -21        | 6н         | 15/2 | 1/2   |
| 17       | 26   | -8         | 6 H        | 15/2 | 15/2  |
| 69       | 79   | -9         | 6 H        | 15/2 | 13/2  |
| 124      | 106  | 18         | 6 H        | 15/2 | 3/2   |
| 184      | 195  | - 10       | 6 H        | 15/2 | 5/2   |
| 208      | 216  | -7         | 6 H        | 15/2 | -11/2 |
| 307      | 323  | - 15       | 6 H        | 15/2 | -9/2  |
| • • •    | 335  | • • •      | 6 H        | 15/2 | -7/2  |
| 3502     | 3493 | 9          | 6 H        | 13/2 | 13/2  |
| • • •    | 3579 |            | 6 H        | 13/2 | -7/2  |
| 3576     | 3616 | -39        | 6 H        | 13/2 | 3/2   |
| 36 18    | 3636 | -17        | 6H         | 13/2 | 5/2   |
| 3630     | 3637 | -6         | 6 H        | 13/2 | 1/2   |
| 3645     | 3671 | - 25       | 6 H        | 13/2 | -9/2  |
| 3695     | 3679 | <b>1</b> 6 | 6 <b>H</b> | 13/2 | -11/2 |
| 5882     | 5873 | 9          | 6H         | 11/2 | -7/2  |
| 5908     | 5910 | - 1        | 6 H        | 11/2 | -11/2 |
| 5924     | 5913 | 11         | 6 H        | 11/2 | -9/2  |
| 5944     | 5931 | 13         | 6H         | 11/2 | 5/2   |
| 5975     | 5968 | 7          | 6 H        | 11/2 | 3/2   |
| 6020     | 6021 | 0          | 6 H        | 11/2 | 1/2   |
| 7633     | 7613 | 20         | 6 H        | 9/2  | 5/2   |
| 7665     | 7654 | 11         | 6H         | 9/2  | -9/2  |
| 7728     | 7719 | 9          | 6 H        | 9/2  | 3/2   |
| 7758     | 7777 | -18        | 6 F        | 11/2 | 1/2   |
| 7801     | 7809 | -7         | 6H         | 9/2  | -7/2  |
| 7814     | 7839 | - 24       | 6 F        | 11/2 | 1/2   |
| 7838     | 7840 | -1         | 6 F        | 11/2 | 5/2   |
| 7842     | 7852 | -9         | 6F         | 11/2 | 3/2   |
| 7933     | 7938 | -4         | 6 H        | 9/2  | 1/2   |
| 7998     | 8009 | - 10       | 6F         | 11/2 | -7/2  |
| 8077     | 8094 | - 16       | 6 F        | 11/2 | -9/2  |
| 8992     | 8974 | 18         | 6 F        | 9/2  | 5/2   |
| 9087     | 9069 | 18         | 6 H        | 7/2  | 3/2   |
| 9074     | 9072 | 2          | 6F         | 9/2  | -7/2  |
| 9144     | 9139 | 5          | 6F         | 9/2  | 3/2   |
| 9181     | 9176 | 5          | 6 F        | 9/2  | 1/2   |
| 9235     | 9240 | -4         | 6F         | 9/2  | -9/2  |
| 9282     | 9277 | 5          | 6 H        | 7/2  | -7/2  |
| 9343     | 9330 | 13         | 6н         | 7/2  | 1/2   |
| 9435     | 9447 | -11        | 6 H        | 7/2  | 5/2   |
| 10222 1  | 0211 | 11         | 6H         | 5/2  | 5/2   |
| 10285 1  | 0265 | 20         | 6 H        | 5/2  | 1/2   |
| 10345 1  | 0736 | 9          | 6 H        | 5/2  | 3/2   |

172

.

S CHARLE

158

" ميد



:

70

36690.17 36700.50

57

G.

) //6 10040

36706 36707 \_

-14 -5 01

61 61 15/2

15/2 15/2 5/2 13/2 ł

t

:

49849 ... 6G 11/2 -9/2

...

• • •

.

ł

ł

1

.

N.S.

#### PAGE 2

# APPENDIX X

# TABLE 1 DY+3:LAF3

| OBSERVI                                                              | ED CALC                                                                                         | 0 <b>-</b> C                               | STAT                                                        | E J                                                          | MJ                                                                           |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|
| 1 10 37<br>1 1 1 0 9<br>1 1 1 4 0<br>1 1 1 5 3                       | 11028<br>11101<br>11141<br>11143                                                                | 9<br>8<br>0<br>10                          | 6F<br>6F<br>6F<br>6F                                        | 7/2<br>7/2<br>7/2<br>7/2                                     | 5/2<br>1/2<br>-7/2<br>3/2                                                    |
| 12456<br>12504<br>12520                                              | 12455<br>12493<br>12512                                                                         | 1<br>11<br>8                               | 6F<br>6F<br>6F                                              | 5/2<br>5/2<br>5/2                                            | 3/2<br>5/2<br>1/2                                                            |
| 13271<br>13285                                                       | 13277<br>13286                                                                                  | -5<br>0                                    | 6F<br>6F                                                    | 3/2<br>3/2                                                   | 3/2<br>1/2                                                                   |
| •••                                                                  | 13827                                                                                           | •••                                        | 6 F                                                         | 1/2                                                          | 1/2                                                                          |
| 21057<br>21142<br>21159<br>21205<br>21395                            | 21071<br>21137<br>21163<br>21205<br>21393                                                       | - 13<br>5<br>-3<br>0<br>2                  | 4F<br>4F<br>4F<br>4I<br>4F                                  | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                              | -9/2<br>5/2<br>3/2<br>1/2<br>-7/2                                            |
| 22022<br>22132<br>22175<br>22189<br>22213<br>22292<br>22342<br>22379 | 21956<br>22111<br>22155<br>22184<br>22209<br>22272<br>22332<br>22357                            | 66<br>21<br>20<br>5<br>4<br>20<br>10<br>22 | 41<br>41<br>41<br>41<br>41<br>41<br>41<br>41                | 15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2 | 15/2<br>5/2<br>13/2<br>-7/2<br>-9/2<br>-11/2<br>13/2                         |
| 23468<br>23497<br>23513<br>23537<br>23551                            | 23457<br>23512<br>23531<br>23554<br>23570<br>23616                                              | 11<br>- 14<br>- 17<br>- 16<br>- 18         | 4G<br>4G<br>4F<br>4G<br>4G                                  | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2                 | -9/2<br>-7/2<br>-11/2<br>5/2<br>3/2<br>1/2                                   |
| 24990<br>25008<br>25073<br>25098<br>25195                            | 24865<br>24955<br>24969<br>24986<br>25097<br>25097<br>25102<br>25145<br>25227<br>25229<br>25229 | 21<br>22<br>- 23<br>- 3<br>- 31            | 4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M<br>4 M | 21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2<br>21/2 | -21/2<br>-7/2<br>3/2<br>1/2<br>-9/2<br>-11/2<br>5/2<br>13/2<br>15/2<br>-19/2 |

175

....

.

2.

÷

: : : : : .

÷

## APPENDIX X

## TABLE 1 DY+3:LAF3

| OBSERVEL      | CALC          | 0 <b>-</b> C    | STATI      | J    | MJ    |
|---------------|---------------|-----------------|------------|------|-------|
|               | 25588         | •••             | 4I         | 13/2 | 13/2  |
| 25661         | 25647         | 14              | 4I         | 13/2 | 5/2   |
| 25691         | 25713         | -21             | 4I         | 13/2 | 3/2   |
| 25740         | 25716         | 24              | 4I         | 13/2 | -7/2  |
| 25748         | 25748         | 0               | 4 F        | 7/2  | 1/2   |
| 25778         | 25811         | - 32            | 4 K        | 17/2 | 17/2  |
| • • •         | 25814         | • • •           | 4I         | 13/2 | -9/2  |
| 25824         | 25819         | 5               | 4I         | 13/2 | -11/2 |
| • • •         | 25831         |                 | 4 K        | 17/2 | -7/2  |
| 25849         | 25859         | -9              | 4I         | 13/2 | 1/2   |
| 25867         | 25899         | -31             | 4 K        | 17/2 | 5/2   |
| • • •         | 25900         |                 | 4I         | 13/2 | -9/2  |
| • • •         | 2590 <b>7</b> | • • •           | 4 F        | 7/2  | -7/2  |
| • • •         | 25910         |                 | 4 F        | 7/2  | 3/2   |
| 25903         | 25920         | - 16            | 4K         | 17/2 | 1/2   |
| 25918         | 25929         | - 10            | 4K         | 17/2 | 3/2   |
| • • •         | 25958         |                 | 4 F        | 7/2  | 5/2   |
| 25940         | 25968         | -27             | 4 K        | 17/2 | 15/2  |
| 25953         | 25974         | -20             | 4 <b>I</b> | 17/2 | -11/2 |
| 25990         | 25986         | 4               | 4I         | 17/2 | 13/2  |
| •••           | 26178         |                 | 4 M        | 19/2 | -19/2 |
| • • •         | 26188         | • • •           | 4 M        | 19/2 | -9/2  |
| • • •         | 26194         | • • •           | 4 M        | 19/2 | -7/2  |
| 26260         | 26228         | 32              | 4 M        | 19/2 | -11/2 |
| 26358         | 26348         | 10              | 4 M        | 19/2 | 13/2  |
| 26429         | 26396         | 33              | 4 M        | 19/2 | 5/2   |
| 26448         | 26421         | 27              | 4 M        | 19/2 | 3/2   |
| 26509         | 26481         | 28              | 4 M        | 19/2 | 1/2   |
| 26571         | 26517         | 54              | 4M         | 19/2 | 17/2  |
| 26583         | 26527         | 56              | 4 M        | 19/2 | 15/2  |
| 27482         | 27508         | -25             | 4P         | 3/2  | 1/2   |
| 27536         | 27556         | <del>-</del> 19 | 6P         | 3/2  | 3/2   |
| 27581         | 27586         | -4              | 6 P        | 5/2  | 5/2   |
| 27624         | 27626         | -1              | 6 P        | 5/2  | 3/2   |
| <b>276</b> 65 | 27659         | 6               | 6P         | 5/2  | 1/2   |
| •••           | 2784 1        |                 | 4I         | 11/2 | -11/2 |
| 279 19        | 27944         | -24             | 4I         | 11/2 | 5/2   |
| • • •         | 27959         |                 | 4I         | 11/2 | 3/2   |
| 27988         | 28001         | - 12            | 4I         | 11/2 | 1/2   |
| 28036         | 28006         | 30              | 4 <b>I</b> | 11/2 | -7/2  |
| 28074         | 28035         | 39              | 4I         | 11/2 | -9/2  |

175

74

....

.

••••

Ľ

. . ÷

J

• .

٠

.

and a substant of the substant of

. \* \* \*

.

8. ľ

Ne je

.

# APPENDIX X

# TABLE 1 DY+3:LAF3

| OBSERVE        | D CALC        | 0-C        | STAT        | ЕJ   | MJ    |
|----------------|---------------|------------|-------------|------|-------|
| 28347          | 28409         | -61        | 4 M         | 15/2 | 15/2  |
| 28381          | 28448         | - 65       | 4 1         | 15/2 | 5/2   |
|                | 28515         |            | 4 M         | 15/2 | 3/2   |
| 28536          | 28574         | - 37       | 4 M         | 15/2 | 1/2   |
| 285 <b>77</b>  | 28600         | -22        | 4 M         | 15/2 | -7/2  |
| 28613          | 28632         | - 18       | 6 P         | 7/2  | 3/2   |
| 28636          | 28653         | - 16       | 6P          | 1/2  | 1/2   |
| 28058          | 20002         | - 5        | 6P          | 1/2  | 3/2   |
| 20074          | 2000/         | 7<br>8     | 6 P         | 7/2  | -7/2  |
| 28734          | 28769         | - 34       | ОР<br>41 М  | 15/2 | -11/2 |
| 20734          | 28797         |            | 4 M         | 15/2 | 13/2  |
| •••            |               | •••        |             | ,-   |       |
| • • •          | 29467         | • • •      | 4F          | 5/2  | 3/2   |
| 2 <b>9</b> 535 | 29574         | - 38       | 4I          | 9/2  | 1/2   |
| 29638          | 29620         | 18         | 4I          | 9/2  | -9/2  |
| 29667          | 29622         | 45         | 4 F         | 5/2  | 5/2   |
| 29684          | 29688         | -3         | 4F          | 5/2  | 1/2   |
| 29752          | 29732         | 20         | 4I<br>4T    | 9/2  | -7/2  |
| 29/8/          | 29825         | -31        | 41          | 9/2  | 5/2   |
| 29033          | 23033         | 0          | 41          | 3/2  | 5/2   |
| 29890          | 29917         | -26        | 4G          | 9/2  | -7/2  |
|                | 29945         |            | 4 M         | 17/2 | 5/2   |
| • • •          | 29949         | • • •      | 4 M         | 17/2 | 3/2   |
| • • •          | 29984         | • • •      | 4 M         | 17/2 | 17/2  |
|                | 29986         | •••;       | 4 M         | 17/2 | -9/2  |
| 29982          | 29988         | -5         | 4K<br>// 14 | 17/2 | 15/2  |
| • • •          | 30037         | • • •      | 4 M         | 17/2 | -11/2 |
| 30075          | 30066         | 9          | 4K          | 17/2 | 13/2  |
| 30141          | 30131         | 10         | 4 M         | 17/2 | -7/2  |
|                | 30193         |            | 4G          | 9/2  | 1/2   |
| 30243          | 30220         | 23         | 4G          | 9/2  | 3/2   |
| • • •          | 30269         | • • •      | 4G          | 9/2  | 5/2   |
| 30302          | 30293         | 9          | 4G          | 9/2  | 3/2   |
| 30887          | 30868         | 19         | 6 P         | 3/2  | 1/2   |
| 30924          | 3089 <b>7</b> | 2 <b>7</b> | 6 P         | 3/2  | 3/2   |
|                |               |            |             |      |       |

5/2 4103/ 15/2 36/04 0.0 0.0 0.0715 5/2 41037 17/2 36345 0.0 0.0 0.1368

٠

1

ţć.

2,

÷

1 3.

F

PAGE 5

APPENDIX X

TABLE 1 Dy+3:laf3

| OBSERVEI                                                                                                             | D CALC                                                                                                                                                          | 0-C                                                                        | STATE                                                                                                                   | E J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBSERVEI<br>31055<br>31134<br>31169<br>31194<br>31211<br>31225<br>31259<br>31282<br>31294<br>31328<br>31379<br>31452 | D CALC<br>31061<br>31101<br>31137<br>31152<br>31171<br>31219<br>31232<br>31234<br>31250<br>31329<br>31344<br>31348<br>31382<br>31344<br>31382<br>31431<br>31434 | 0-c<br>-5<br>-2<br>17<br>23<br>-7<br>-6<br>-20<br>-20<br>-20<br>-20<br>-21 | STATE<br>4K<br>4K<br>4K<br>4K<br>4K<br>4K<br>4M<br>4K<br>4L<br>4K<br>4L<br>2L<br>2L<br>4K<br>4K<br>4L<br>2L<br>2L<br>4K | 5 J<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>19/2<br>1 | MJ<br>1/2<br>13/2<br>3/2<br>15/2<br>-11/2<br>5/2<br>-9/2<br>17/2<br>17/2<br>17/2<br>-9/2<br>5/2<br>-19/2<br>-7/2<br>15/2<br>-11/2<br>-7/2<br>13/2<br>-11/2<br>-9/2<br>-7/2<br>-9/2<br>-7/2<br>-9/2<br>-7/2<br>-9/2<br>-7/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br>-9/2<br> |
| 31580<br>31660<br>31716                                                                                              | 31570<br>31655<br>31712<br>31717<br>32060                                                                                                                       | 10<br>5<br>                                                                | 4G<br>4G<br>4G<br>4G<br>4D                                                                                              | 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>5/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/2<br>3/2<br>1/2<br>-7/2<br>1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •••                                                                                                                  | 32089<br>32169<br>32182                                                                                                                                         | •••                                                                        | 4D<br>4D<br>4D                                                                                                          | 5/2<br>1/2<br>5/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/2<br>1/2<br>3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33202<br>33218<br>33236<br>33256                                                                                     | 33179<br>33186<br>33196<br>33207<br>33212<br>33225                                                                                                              | -2<br>16<br>11<br>24<br>31                                                 | 4K<br>4K<br>4K<br>4K<br>4K<br>4K                                                                                        | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7/2<br>13/2<br>3/2<br>1/2<br>-9/2<br>5/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33527<br>33527<br>33527<br>33527<br>33527<br>33623<br>33558                                                          | 33492<br>33515<br>33519<br>33520<br>33523<br>33578<br>33579                                                                                                     | 12<br>8<br>7<br>4<br>45<br>-20                                             | 4H<br>4H<br>4H<br>4H<br>4H<br>4H<br>4H<br>4H<br>4K<br>4H                                                                | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9/2<br>13/2<br>5/2<br>3/2<br>13/2<br>-7/2<br>1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 33666<br>33652                                                                                                       | 33645<br>33646                                                                                                                                                  | 21<br>6                                                                    | 4F<br>4F                                                                                                                | 3/2<br>3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2<br>3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

77

....

. . .

# APPENDIX X

## TABLE 1 DY+3:LAF3

| OBSERVE                                                                                                  | D CALC                                                                                                                                                                                                                                 | 0-C                                                                                                | STAT                                                 | E J                                                                      | MJ                                                                                                               |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 34029<br>34040<br>34052<br>34080                                                                         | 34021<br>34022<br>34036<br>34058                                                                                                                                                                                                       | 8<br>18<br>16<br>22                                                                                | 4D<br>4D<br>4D<br>4D                                 | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                                          | 1/2<br>3/2<br>-7/2<br>5/2                                                                                        |
| 34247<br>34250<br>34298<br>34313<br>34366<br>34366<br>34393<br>34418<br>34426<br>34477<br>34466<br>34525 | 34236<br>34237<br>34267<br>34272<br>34284<br>34293<br>34317<br>34322<br>34327<br>34327<br>34327<br>34328<br>34345<br>34354<br>34361<br>34361<br>34361<br>34361<br>34361<br>34364<br>34481<br>34439<br>34470<br>34470<br>34482<br>34502 | -24<br>-33<br>-23<br>-13<br>-13<br>-13<br>-17<br>-24<br>-17<br>-24<br>-18<br>-12<br>-3<br>-3<br>-3 | 44444444444444444444444444444444444444               | 11/2<br>11/2<br>17/2<br>17/2<br>17/2<br>11/2<br>17/2<br>17/2             | -9/2<br>-7/2<br>-11/2<br>3/2<br>1/2<br>-7/2<br>3/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15 |
| 34854<br>34873<br>34904<br>34914<br>34935<br>34973                                                       | 34851<br>34874<br>34902<br>34906<br>34929<br>34998                                                                                                                                                                                     | 3<br>0<br>2<br>8<br>6<br>-24                                                                       | 4G<br>4H<br>4G<br>4G<br>4G                           | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2                             | -9/2<br>-7/2<br>5/2<br>1/2<br>3/2<br>-11/2                                                                       |
| 35940<br>35966<br>35994<br>36006<br>36055<br>36055<br>36080                                              | 35780<br>35781<br>35910<br>35952<br>35963<br>35988<br>36008<br>36054<br>36095<br>36162                                                                                                                                                 | - 11<br>- 11<br>3<br>6<br>- 1<br>1<br>- 39<br>- 81                                                 | 4 K<br>4 K<br>4 K<br>4 K<br>4 G<br>6 G<br>4 G<br>4 G | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>7/2<br>7/2<br>7/2<br>11/2<br>7/2 | -9/2<br>1/2<br>-11/2<br>-7/2<br>3/2<br>3/2<br>-7/2<br>1/2<br>-7/2<br>5/2                                         |

.....

د لار ر

ر ۲۰

-

.

77

.

7

•

# APPENDIX X

# TABLE 1 DY+3:LAF3

| OBSERVE | D CALC | 0 <b>-</b> C | STATI      | 3 J  | MJ    |
|---------|--------|--------------|------------|------|-------|
| • • •   | 36467  |              | 4 L        | 13/2 | 5/2   |
| • • •   | 36469  |              | 4G         | 5/2  | 1/2   |
|         | 36469  |              | 4L         | 15/2 | 3/2   |
| 36494   | 36502  | -7           | 4 L        | 15/2 | 1/2   |
| 36512   | 36526  | - 13         | 4L         | 13/2 | -7/2  |
| 36536   | 36543  | -6           | 4 L        | 15/2 | 13/2  |
| • • •   | 36544  |              | 4 L        | 13/2 | -9/2  |
|         | 36564  |              | 4L         | 15/2 | 15/2  |
|         | 36564  | • • •        | 41.        | 15/2 | 5/2   |
|         | 36565  | • • •        | 4 <u>L</u> | 13/2 | 1/2   |
|         | 36582  |              | 4L         | 13/2 | 13/2  |
|         | 36586  |              | 4 <b>L</b> | 13/2 | 3/2   |
|         | 36604  |              | 4G         | 5/2  | 5/2   |
| 366 34  | 36610  | 24           | 4G         | 5/2  | 3/2   |
|         | 36622  | •••          | 4L         | 13/2 | -11/2 |
| 36668   | 36639  | 29           | 41         | 15/2 | -1/2  |
| 36653   | 36640  | 13           | 4 <u>1</u> | 15/2 | -9/2  |
| 36686   | 36677  | 9            | 4L         | 13/2 | 1/2   |
| 36752   | 36750  | 2            | 4G         | 9/2  | -7/2  |
| 36780   | 36785  | -4           | 4G         | 9/2  | 3/2   |
| •••     | 36812  | • • •        | 4G         | 9/2  | -9/2  |
|         | 36840  | • • •        | 4G         | 9/2  | -7/2  |
| •••     | 36854  | • • •        | 4G         | 9/2  | 1/2   |
| •••     | 37638  |              | 4G         | 7/2  | 3/2   |
| • • •   | 37672  |              | 4P         | 1/2  | 1/2   |
| • • •   | 37681  |              | 4L         | 7/2  | 5/2   |
| •••     | 37777  | • • •        | 4L         | 7/2  | -7/2  |
| •••     | 37794  |              | 4G         | ?/2  | 1/2   |
| 37944   | 37948  | -3           | 2L         | 15/2 | 15/2  |
| •••     | 37977  | • • •        | 4 F        | 3/2  | 1/2   |
| 37978   | 38011  | - 32         | 2L         | 15/2 | -7/2  |
| • • •   | 38021  |              | 4F         | 3/2  | 3/2   |
| •••     | 38112  | • • •        | 2L         | 15/2 | -9/2  |
| • • •   | 38214  |              | 2L         | 15/2 | 5/2   |
| • • •   | 38223  | • • •        | 21         | 15/2 | 1/2   |
| • • •   | 38296  |              | 21         | 15/4 | -9/2  |
|         | 38416  |              | 21         | 15/2 | -11/2 |
| •••     | 38476  | •••          | 21         | 15/2 | 13/2  |
| 38937   | 38908  | 29           | 4P         | 5/2  | 3/2   |
| 38996   | 38994  | 2            | 4P         | 5/2  | 5/2   |
| 39090   | 39080  | 10           | 4P         | 5/2  | 1/2   |
| 39152   | 39169  | - 16         | 4P         | 3/2  | 3/2   |
| 39176   | 39192  | - 15         | 4P         | 3/2  | 1/2   |

79

-----

67

•

аў. 1

، ۲۰۱۴ ۱۹۹۹ و ۱

¢

# APPENDIX X

## TABLE 1A DY+3:LAF3 CENTERS OF GRAVITY

| CALC | CENTER             | STATE   |
|------|--------------------|---------|
|      | 175                | 6H15/2  |
| 3    | 626                | 6H13/2  |
| 5    | 952                | 6111/2  |
| 7    | 806                | 6H 9/2  |
| 7    | 853                | 6F11/2  |
| ģ    | 166                | 6F 9/2  |
| 9    | 223                | 6H 7/2  |
| 10   | 273                | 6H 5/2  |
| 11   | 070                | 68 7/2  |
| 12   | U71                | 6F 5/2  |
| 13   | 267                | 6F 3/2  |
| 13   | 207<br>81 <i>u</i> | 6F 1/2  |
| 13   | 014                | 01 1/2  |
| 21   | 228                | 4F 9/2  |
| 22   | 222                | 4815/2  |
| 23   | 563                | 4G11/2  |
| 25   | 109                | 4M21/2  |
| 25   | 794                | 4113/2  |
| 25   | 856                | 4F 7/2  |
| 25   | 890                | 4K 17/2 |
| 26   | 334                | 4119/2  |
| 27   | 543                | 6P 3/2  |
| 270  | 520                | 60 5/2  |
| 270  | 524                | UF 3/2  |

÷

| 3 | 4419 | 5 | 27892 | 0.0019 | 0.0001 | 0.0020 |  |
|---|------|---|-------|--------|--------|--------|--|
| 3 | 4419 | 6 | 125   | 0.0    | 0.2323 | 0.4129 |  |
| 3 | 4419 | 8 | 29315 | 0.0    | 0.0    | 0.0152 |  |

and an application of the second s

- . :...

ر خر د

j

# PAGE 9 Appendix x

•

## TABLE 2 U(K)\*2 FOR DY+3

| 71  | 1 FUFT 1.17 | 1 6761 2      | (112) *2 | (114)*2 | 11161 *2 |
|-----|-------------|---------------|----------|---------|----------|
| 01  | LEVEL 102   |               | (02) 2   | (04)+2  | (00)*2   |
| 1/2 | 13814 3/2   | 13267         | 0.0175   | 0.0     | 0.0      |
| 1/2 |             | 27543         | 0.0665   | 0.0     | 0.0      |
| 1/2 | 13814 5/2   | 102/3         | 0.1918   | 0.0     | 0.0      |
| 1/2 | 13814 5/2   | 27624         | 0.0100   | 0.0     | 0.0      |
| 1/2 | 13814 7/2   | 9273          | 0.0      | 0.1394  | 0.0      |
| 1/2 | 13814 7/2   | 11070         | 0.0      | 0.0294  | 0.0      |
| 1/2 | 13814 7/2   | 25856         | 0.0      | 0.0156  | 0.0      |
| 1/2 | 13814 9/2   | 7806          | 0.0      | 0.1512  | 0.0      |
| 1/2 | 13814 9/2   | 9166          | 0.0      | 0.0060  | 0.0      |
| 1/2 | 13814 11/2  | 5952          | 0.0      | 0.0     | 0.3478   |
| 1/2 | 13814 11/2  | 7853          | 0.0      | 0.0     | 0.0050   |
| 1/2 | 13814 11/2  | 23563         | 0.0      | 0.0     | 0.0020   |
| 1/2 | 13814 13/2  | 3626          | 0.0      | 0.0     | 0.1001   |
| 1/2 | 13814 13/2  | 25794         | 0.0      | 0.0     | 0.0013   |
| 3/2 | 13267 3/2   | 27543         | 0.1391   | 0.0     | 0.0      |
| 3/2 | 13267 5/2   | 10273         | 0.1396   | 0.1346  | 0.0      |
| 3/2 | 13267 5/2   | 12471         | 0.0222   | 0.0260  | 0.0      |
| 3/2 | 13267 5/2   | 27624         | 0.0964   | 0.0227  | 0.0      |
| 3/2 |             | 9223          | 0.2421   | 0.1179  | 0.0      |
| 3/2 | 13267 7/2   | 11070         | 0.0134   | 0.0104  | 0.0      |
| 3/2 | 13267 1/2   | 2000          | 0.0000   | 0.0212  | 0.0      |
| 3/2 | 13267 9/2   | 9166          | 0.0      | 0.0311  | 0.0112   |
| 3/2 | 13267 11/2  | 5952          | 0.0      | 0.1935  | 0.0390   |
| 3/2 | 13267 11/2  | 7853          | 0.0      | 0.0166  | 0.0353   |
| 3/2 | 13267 13/2  | 3626          | 0.0      | 0.0     | 0.3950   |
| 3/2 | 13267 13/2  | 25794         | 0.0      | 0.0     | 0.0076   |
| 3/2 | 13267 15/2  | 175           | 0.0      | 0.0     | 0.0611   |
| 3/2 | 13267 15/2  | 22222         | 0.0      | 0.0     | 0.0014   |
| 3/2 | 27543 3/2   | 27543         | 0.0572   | 0.0     | C.O      |
| 3/2 | 27543 5/2   | 10273         | 0.0007   | 0.0743  | 0.0      |
| 3/2 | 27543 5/2   | 12471         | 0.1151   | 0.0023  | 0.0      |
| 3/2 | 27543 5/2   | 27624         | 0.0185   | 0.0000  | 0.0      |
| 3/2 | 27543 7/2   | 9223          | 0.0004   | 0.0494  | 0.0      |
| 3/2 | 21543 1/2   | 25956         | 0.0420   | 0.0179  | 0.0      |
| 3/2 | 27543 9/2   | 7806          | 0.1907   | 0.0393  | 0.0089   |
| 3/2 | 27543 9/2   | 9166          | 0.0      | 0.0757  | 0.0009   |
| 3/2 | 27543 9/2   | 21228         | 0.0      | 0.1031  | 0.0114   |
| 3/2 | 27543 11/2  | 5952          | 0.0      | 0.0072  | 0.0070   |
| 3/2 | 27543 11/2  | <b>7853</b> . | 0.0      | 0.1731  | 0.0000   |
| 3/2 | 27543 11/2  | 23563         | 0.0      | 0.0417  | 0.0296   |
| 3/2 | 27543 13/2  | 3626          | 0.0      | 0.0     | 0.0016   |
| 3/2 | 27543 13/2  | 25794         | 0.0      | 0.0     | 0.1531   |
| 3/2 | 27543 15/2  | 175           | 0.0      | 0.0     | 0.0508   |
| 3/2 | 21343 13/2  | <i></i>       | 0.0      | 0.0     | 0.0051   |

# 521735278920.00010.00020.00655217361250.53770.64200.1178

----

.

- s ,

•

م مر

، ب

.

\_

• •

•

## PAGE 10 Appendix X

## TABLE 2 U(K) \*2 FOR DY+3

| J 1                                                                | LEVEL                                                                                                                               | 1 J2                                                                                           | LEVEL 2                                                                                                                     | (U2) *2                                                                                                                           | (U4) *2                                                                                                                               | (U6) *2                                                                                                                              |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273<br>10273 | 5/2<br>5/2<br>7/2<br>7/2<br>9/2<br>9/2<br>11/2<br>11/2<br>13/2<br>15/2<br>17/2                 | 10273<br>12471<br>27624<br>9223<br>11070<br>25856<br>7806<br>9166<br>21228<br>5952<br>7853<br>23563<br>3626<br>175<br>25890 | 0.3736<br>0.0379<br>0.0000<br>0.2143<br>0.0044<br>0.0007<br>0.0237<br>0.0000<br>0.0000<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0  | 0.0659<br>0.2727<br>0.0302<br>0.1919<br>0.1315<br>0.0059<br>0.1300<br>0.0182<br>0.0035<br>0.0236<br>0.0031<br>0.0007<br>0.0012<br>0.0 | 0.0<br>0.0<br>0.0758<br>0.4393<br>0.0113<br>0.3127<br>0.3551<br>0.0011<br>0.2993<br>0.0177<br>0.0014<br>0.0590<br>0.0026<br>0.0024   |
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471<br>12471                   | 5/2<br>5/2<br>7/2<br>7/2<br>9/2<br>9/2<br>9/2<br>11/2<br>11/2<br>13/2<br>13/2<br>15/2          | 12471<br>27624<br>9223<br>11070<br>25856<br>7806<br>9166<br>21228<br>5952<br>7853<br>3626<br>25794<br>175                   | 0.0007<br>0.2868<br>0.1943<br>0.0439<br>0.0059<br>0.3358<br>0.0095<br>0.0062<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                   | 0.0171<br>0.0890<br>0.0583<br>0.0033<br>0.0188<br>0.1045<br>0.0333<br>0.0008<br>0.1971<br>0.0503<br>0.2103<br>0.0008<br>0.0           | 0.0<br>0.4192<br>0.0087<br>0.0005<br>0.0390<br>0.0301<br>0.0004<br>0.1557<br>0.0898<br>0.2852<br>0.0007<br>0.3446                    |
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2<br>5/2 | 27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624<br>27624 | 5/2<br>7/2<br>7/2<br>9/2<br>9/2<br>9/2<br>11/2<br>11/2<br>11/2<br>13/2<br>13/2<br>15/2<br>17/2 | 27624<br>9223<br>11070<br>25856<br>7806<br>9166<br>21228<br>5952<br>7853<br>23563<br>3626<br>25794<br>175<br>25890          | 0.2570<br>0.0000<br>0.4684<br>0.0910<br>0.0011<br>0.4981<br>0.0087<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0004<br>0.0997<br>0.1866<br>0.0146<br>0.1621<br>0.2551<br>0.0046<br>0.3230<br>0.1638<br>0.0199<br>0.1722<br>0.0098<br>0.0           | 0.0<br>0.0144<br>0.0000<br>0.0005<br>0.0279<br>0.0000<br>0.0110<br>0.0564<br>0.029<br>0.0283<br>0.0820<br>0.0010<br>0.0721<br>0.0633 |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2                             | 9223<br>9223<br>9223<br>9223<br>9223<br>9223                                                                                        | 7/2<br>7/2<br>7/2<br>9/2<br>9/2                                                                | 9223<br>11070<br>25856<br>7806<br>9166                                                                                      | 0.2618<br>0.0511<br>0.0031<br>0.3035<br>0.0039                                                                                    | 0.0087<br>0.2930<br>0.0045<br>0.1534<br>0.1255                                                                                        | 0.2859<br>0.0000<br>0.0231<br>0.0132<br>0.4498                                                                                       |

.

83

.

•

168

## PAGE 11 APPENDIX X

••

.

•

# TABLE 2 U(K) \*2 FOR DY+3

| J 1                                                                | LEVEL 1 J2                                                                                                                                                                      | LEVEL 2                                                                                                    | (U2) *2                                                                                                         | (04) *2                                                                                                                  | (06) *2                                                                                                                                  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 9223 9/2<br>9223 11/2<br>9223 11/2<br>9223 11/2<br>9223 13/2<br>9223 13/2<br>9223 15/2<br>9223 15/2<br>9223 15/2<br>9223 17/2<br>9223 19/2                                      | 21228<br>5952<br>7853<br>23563<br>3626<br>25794<br>175<br>22222<br>25890<br>26334                          | 0.0008<br>0.0348<br>0.0004<br>0.0001<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                           | 0.0079<br>0.1465<br>0.0306<br>0.0044<br>0.0309<br>0.0034<br>0.0034<br>0.0016<br>0.0<br>0.0                               | 0.0067<br>0.3426<br>0.1438<br>0.0013<br>0.2763<br>0.0001<br>0.0393<br>0.0003<br>0.0021<br>0.0082                                         |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 110707/2110707/2110709/2110709/21107011/21107011/21107011/21107013/21107013/21107015/21107017/21107019/2                                                                        | 11070<br>25856<br>7806<br>9166<br>21228<br>5952<br>7853<br>23563<br>3626<br>25794<br>175<br>25890<br>26334 | 0.0016<br>0.0102<br>0.2267<br>0.0630<br>0.0002<br>0.4449<br>0.0344<br>0.0107<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0274<br>0.0243<br>0.1387<br>0.0052<br>0.0043<br>0.0503<br>0.0344<br>0.0000<br>0.4217<br>0.0015<br>0.1352<br>0.0<br>0.0 | 0.0267<br>0.0004<br>0.2508<br>0.0435<br>0.0029<br>0.2521<br>0.0843<br>0.0000<br>0.0000<br>0.0000<br>0.0076<br>0.7138<br>0.0073<br>0.0156 |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 25856 7/2<br>25856 9/2<br>25856 9/2<br>25856 11/2<br>25856 11/2<br>25856 11/2<br>25856 13/2<br>25856 13/2<br>25856 13/2<br>25856 15/2<br>25856 15/2<br>25856 17/2<br>25856 19/2 | 25856<br>7806<br>9166<br>21228<br>5952<br>7853<br>23563<br>3626<br>25794<br>175<br>22222<br>25890<br>26334 | 0.0512<br>0.027<br>0.0544<br>0.0465<br>0.0405<br>0.1014<br>0.0872<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0     | 0.0275<br>0.0074<br>0.0266<br>0.0838<br>0.0318<br>0.0198<br>0.1410<br>0.0111<br>0.3756<br>0.0695<br>0.0389<br>0.0<br>0.0 | 0.0123<br>0.0112<br>0.0008<br>0.3307<br>0.0020<br>0.0001<br>0.2588<br>0.0321<br>0.0007<br>0.0260<br>0.0045<br>0.0393<br>0.2900           |
| 9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2 | 7806 9/2<br>7806 9/2<br>7806 9/2<br>7806 11/2<br>7806 11/2<br>7806 11/2<br>7806 13/2<br>7806 13/2<br>7806 15/2<br>7806 15/2<br>7806 15/2<br>7806 17/2                           | 7806<br>9166<br>21228<br>5952<br>7853<br>23563<br>3626<br>25794<br>175<br>22222<br>25890                   | 0.3081<br>0.0424<br>0.0021<br>0.3446<br>0.0037<br>0.0002<br>0.0338<br>0.0057<br>0.0<br>0.0<br>0.0               | 0.0160<br>0.3327<br>0.0024<br>0.1662<br>0.1159<br>0.0074<br>0.1712<br>0.0000<br>0.0166<br>0.0077<br>0.0202               | 0.2684<br>0.1716<br>0.0032<br>0.0137<br>0.4969<br>0.0000<br>0.3921<br>0.0040<br>0.2017<br>0.0000<br>0.0000                               |

۰,

ł

۔ بر

ر ر

.

•

...

83

# PAGE 12 Appendix x

.

....

1771

•

.

-----

- -- -

:

# TABLE 2 U(K)\*2 FOR DY+3

| J1         | LEVEL 1 J2               | LEVEL 2            | (U2)*2     | (04)*2     | (06) *2          |
|------------|--------------------------|--------------------|------------|------------|------------------|
| 9/2        | 7806 21/                 | 2 25109            | 0.0        | 0.0        | 0.0226           |
| 9/2<br>9/2 | 9166 9/<br>9166 9/       | 2 9166             | 0.0313     | 0.0106     | 0.0428           |
| 9/2        | 9166 11/                 | 2 5952             | 0.2561     | 0.3942     | 0.0114           |
| 9/2        | 9166 11/                 | 2 7853             | 0.0239     | 0.0190     | 0.0154           |
| 9/2        | 9166 13/                 | 2 3626             | 0.6670     | 0.0236     | 0.0085           |
| 9/2        | 9166 13/                 | 2 25794            | 0.0012     | 0.0167     | 0.0082           |
| 9/2        | 9166 15/                 | 2 175              | 0.0        | 0.5746     | 0.7186           |
| 9/2        | 9166 15/                 | 2 22222            | 0.0        | 0.0126     | 0.0063           |
| 9/2        | 9166 19/                 | 2 26334            | 0.0        | 0.0321     | 0.0425           |
| 9/2        | 9166 21/                 | 2 25109            | 0.0        | 0.0        | 0.0919           |
| 9/2        | 21228 9/                 | 2 21228            | 0.0226     | 0.2572     | 0.3827           |
| 9/2        | 21228 11/                | 2 7853             | 0.0032     | 0.0032     | 0.0024           |
| 9/2        | 21228 11/                | 2 23563            | 0.4708     | 0.1686     | 0.1511           |
| 9/2        | 21228 13/                | 2 3626             | 0.0490     | 0.0164     | 0.0545           |
| 9/2        | 21228 13/                | 2 25/94            | 0.0068     | 0.0418     | 0.3971           |
| 9/2        | 21228 15/                | 2 22222            | 0.0        | 0.5584     | 0.0182           |
| 9/2        | 21228 17/                | 2 25890            | 0.0        | 0.4557     | 0.0315           |
| 9/2<br>9/2 | 21228 19/3<br>21228 21/3 | 2 26334<br>2 25109 | 0.0<br>0.0 | 0.0<br>0.0 | 0.1410<br>0.9115 |
| 11/2       | 5952 11/2                | 2 5952             | 0.4989     | 0.0328     | 0.0498           |
| 11/2       | 5952 11/2                | 2 7853             | 0.0021     | 0.1919     | 0.8336           |
| 11/2       | 5952 11/2                | 2 3626             | 0.2547     | 0.4933     | 0.0300           |
| 11/2       | 5952 13/2                | 2 25794            | 0.0032     | 0.0031     | 0.0221           |
| 11/2       | 5952 15/2                | 2 175              | 0.0912     | 0.0369     | 0.6392           |
| 11/2       | 5952 15/2                | 2 22222            | 0.0049     | 0.0026     | 0.0006           |
| 11/2       | 5952 19/2                | 2 26334            | 0.0        | 0.0213     | 0.0330           |
| 11/2       | 5952 21/2                | 2 25109            | 0.0        | 0.0        | 0.0376           |
| 11/2       | 7853 11/2                | 2 7853             | 0.1428     | 0.1385     | 0.0624           |
| 11/2       | 7853 13/2                | 23505              | 0.2518     | 0.4248     | 0.7751           |
| 11/2       | 7853 13/2                | 25794              | 0.0004     | 0.0068     | 0.0038           |
| 11/2       | 7853 15/2                | 2 175              | 0.9394     | 0.8299     | 0.2061           |
| 11/2       | 7853 15/2                | 222222             | 0.0020     | 0.0270     | 0.0022           |
| 11/2       | 7853 19/2                | 26334              | 0.0        | 0.0001     | 0.0208           |
| 11/2       | 7853 21/2                | 25109              | 0.0        | 0.Ü        | 0.0318           |
| 11/2       | 23563 11/2               | 23563              | 0.3577     | 0.0555     | 0.0127           |
| / 2        | 23303 13/2               | 5020               | 0.0012     | 0.0255     |                  |

١, and the second se 

-

氵

e,

*،* ک

.

.

i

٠

-

1

,

# PAGE 13 Appendix X

.

~

r

¢ è ) ~~,.

÷.

....

• •

7

ı

to an in the second second

<...-

177

# TABLE 2 U(K)\*2 FOR DY+3

| J1                                                   | LEVEL 1 J2                                                                                            | LEVEL 2                                                  | (U2)*2                                                | (U4)*2                                                   | (U6) *2                                                            |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| 11/2<br>11/2<br>11/2<br>11/2<br>11/2                 | 23563 13/2<br>23563 15/2<br>23563 15/2<br>23563 17/2<br>23563 19/2                                    | 25794<br>175<br>22222<br>25890<br>26334                  | 0.0000<br>0.0004<br>0.1356<br>0.0<br>0.0              | 0.0053<br>0.0141<br>0.0812<br>0.0981<br>0.4117           | 0.5958<br>0.0003<br>0.9026<br>0.7694<br>0.5393                     |
| 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2 | 23563 21/2<br>3626 13/2<br>3626 13/2<br>3626 15/2<br>3626 15/2<br>3626 15/2<br>3626 17/2<br>3626 19/2 | 25109<br>3626<br>25794<br>175<br>22222<br>25890<br>26334 | 0.7945<br>0.0014<br>0.2454<br>0.0049<br>0.0022<br>0.0 | 0.0738<br>0.0003<br>0.4136<br>0.0041<br>0.0044<br>0.0049 | 0.6624<br>0.1064<br>0.0004<br>0.6834<br>0.0107<br>0.0001<br>0.0026 |
| 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2 | 25794 13/2<br>25794 15/2<br>25794 15/2<br>25794 15/2<br>25794 17/2<br>25794 19/2<br>25794 21/2        | 25794<br>175<br>22222<br>25890<br>26334<br>25109         | 0.5060<br>0.0039<br>0.0220<br>0.0009<br>0.0<br>0.0    | 0.2108<br>0.0012<br>0.0103<br>0.1791<br>0.2761<br>0.0878 | 0. 1877<br>0. 0249<br>0. 0886<br>0. 0081<br>0. 0029<br>0. 4522     |
| 15/2<br>15/2<br>15/2<br>15/2<br>15/2                 | 175 15/2<br>175 15/2<br>175 17/2<br>175 19/2<br>175 21/2                                              | 175<br>22222<br>25890<br>26334<br>25109                  | 1.3310<br>0.0071<br>0.0101<br>0.0002<br>0.0           | 0.6452<br>0.0003<br>0.0042<br>0.0139<br>0.0101           | 0.4266<br>0.0659<br>0.0905<br>0.0968<br>0.0808                     |
| 15/2<br>15/2<br>15/2<br>15/2                         | 22222 15/2<br>22222 17/2<br>22222 19/2<br>22222 21/2                                                  | 22222<br>25890<br>26334<br>25109                         | 0.4738<br>0.2741<br>0.0014<br>0.0                     | 0.4363<br>0.0548<br>0.4909<br>0.2399                     | 0.5634<br>1.2889<br>1.0251<br>0.8452                               |
| 17/2<br>17/2<br>17/2                                 | 25890 17/2<br>25890 19/2<br>25890 21/2                                                                | 25890<br>26334<br>25109                                  | 0.1263<br>0.8045<br>0.0018                            | 0.0733<br>0.0361<br>1.2616                               | 0.1346<br>0.0265<br>0.0075                                         |
| 19/2<br>19/2<br>21/2                                 | 26334 19/2<br>26334 21/2                                                                              | 26334<br>25109                                           | 0.0428<br>C.7683                                      | 0.0612<br>0.3865                                         | 1.6829<br>0.1317                                                   |
| 21/6                                                 | 20109 21/2                                                                                            | 20109                                                    | 0.0/19                                                | 1.4333                                                   | v. 0022                                                            |

.

. **ب** 



# APPENDIX XI

|           | TABLE ' | ١      |              |     |
|-----------|---------|--------|--------------|-----|
| HO+3:LAF3 | CENTERS | 5 OF   | GRAVII       | Y Y |
| OBSERVED  | CALC    | 0-C    | STATE        |     |
| 0         | 9       | 8      | 5I 8         |     |
| 5146      | 5064    | 82     | 517          |     |
| 8568      | 8578    | -9     | 516          |     |
| 11123     | 11145   | -21    | 515          |     |
| • • •     | 13212   | • • •  | 5 <b>I</b> 4 |     |
| 15/120    | 15#56   | - 35   | 585          |     |
| 19207     | 19391   | -35    | 252          |     |
| 1039/     | 10501   | - 12   | 552          |     |
| 205.04    | 20500   | -13    | 523          |     |
| 20390     | 20394   | 17     | 523          |     |
| 21030     | 21033   | 12     | 220          |     |
| 212/9     | 21207   | 12     | JN0          |     |
| 22101     | 221/3   | 0      | 560          |     |
| ***       | 222007  | - 4 4  |              |     |
| 23942     | 23907   | -44    | 565<br>50 /i |     |
| 25072     | 25859   | 13     | 364<br>377   |     |
| 20087     | 20000   | 29     |              |     |
| 2/0/2     | 27652   | 20     | 565          |     |
| 2/6/2     | 2/6/8   | ~ 5    | 240          |     |
|           | 20234   | •••    | 502          |     |
| 20070     | 200/5   | 3      | 263          |     |
| 28878     | 28895   | - 10   | 323          |     |
| 29943     | 29941   | 2      | 360.         |     |
| 29943     | 29947   | -3     | 354          |     |
| 30795     | 30/99   | -3     | 262          |     |
|           | 33063   | • • •  | 303          |     |
| •••       | 33247   | •••    | 3P1          |     |
| 34100     | 34072   | 28     | 3110         |     |
| 34100     | 34156   | - 55   | 31.8         |     |
| 34811     | 34812   | U<br>U | 5G4          |     |
| 35206     | 35203   | 3      | 3G 3         |     |
| • • •     | 36008   | • • •  | 390          |     |
| • • •     | 36009   | • • •  | 5D4          |     |
| • • •     | 30294   | • • •  | 3F 2         |     |
|           | 30314   | •••    | 11.9         |     |
| 36724     | 36/20   | 4      | 385          |     |
| •••       | 3//94   | • • •  | 322          |     |
|           | 37900   | •••    | 3L/<br>377   |     |
| 38318     | 30339   | 39     | J1/          |     |
|           | 38212   |        | 354          |     |

25303 25272 31 4M 21/2 17/2

175

-----

ł

.

## PAGE 3 Appendix XI

## TABLE 2 U(K) \*2 FOR HO+3

| J 1 | LEVEL | 1 J2 | LEVEL 2       | (U2)*2 | (04) *2 | (86) *2 |
|-----|-------|------|---------------|--------|---------|---------|
| 0   | 36008 | 2    | 21040         | 0.0027 | 0.0     | 0.0     |
| 0   | 36008 | 4    | 13212         | 0.0    | 0.0089  | 0.0     |
| 0   | 36008 | 4    | 18538         | 0.0    | 0.0013  | 0.0     |
| 0   | 36008 | 6    | 85 <b>79</b>  | 0.0    | 0.0     | 0.0175  |
| 0   | 36008 | 6    | 22180         | 0.0    | 0.0     | 0.0351  |
| 0   | 36008 | 6    | 27679         | 0.0    | 0.0     | 0.0805  |
| 1   | 22255 | 1    | 22255         | 0.0302 | 0.0     | 0.0     |
| 1   | 22255 | 2    | 18381         | 0.0109 | 0.0     | 0.0     |
| 1   | 22255 | 2    | 21040         | 0.0539 | 0.0     | 0.0     |
| 1   | 22255 | 3    | 20595         | 0.0084 | 0.0586  | 0.0     |
| 1   | 22255 | 4    | 13212         | 0.0    | 0.1442  | 0.0     |
| 1   | 22255 | 4    | 18538         | 0.0    | 0.0468  | 0.0     |
| 1   | 22255 | 4    | 25859         | 0.0    | 0.0564  | 0.0     |
| 1   | 22255 | 5    | 11146         | 0.0    | 0.1396  | 0.1704  |
| 1   | 22255 | 5    | 15457         | 0.0    | 0.0000  | 0.1147  |
| 1   | 22255 | 5    | 23988         | 0.0    | 0.0070  | 0.0537  |
| 1   | 22255 | 5    | 27653         | 0.0    | 0.0074  | 0.0548  |
| 1   | 22255 | 6    | 8579          | 0.0    | 0.0     | 0.2383  |
| 1   | 22255 | 6    | 22180         | 0.0    | 0.0     | 0 0528  |
| 1   | 22255 | 7    | 5065          | 0.0    | 0.0     | 0.0568  |
| i   | 22255 | 7    | 26059         | 0.0    | 0.0     | 0.0020  |
|     |       | _    |               |        |         |         |
| 2   | 18381 | 2    | 18381         | 0.0000 | 0.0016  | 0.0     |
| 2   | 18381 | 2    | 21040         | 0.0016 | 0.0035  | 0.0     |
| 2   | 18381 | 3    | 20595         | 0.0065 | 0.0000  | 0.0     |
| 2   | 18381 | 4    | 13212         | 0.0014 | 0.0302  | 0.2839  |
| 2   | 18381 | 4    | 18538         | 0.0000 | 0.0159  | 0.0033  |
| 2   | 18381 | 4    | 25859         | 0.0328 | 0.2811  | 0.0216  |
| 2   | 18381 | 5    | 11146         | 0.0    | 0.0052  | 0.0968  |
| 2   | 18381 | 5    | 15457         | 0.0    | 0.0123  | 0.0050  |
| 2   | 18381 | 5    | 23988         | 0.0    | 0.1062  | 0.0004  |
| 2   | 18381 | 5    | <b>27</b> 653 | 0.0    | 0.0570  | 0.0006  |
| 2   | 18381 | 6    | 8579          | 0.0    | 0.0240  | 0.1458  |
| 2   | 18381 | 6    | 22180         | 0.0    | 0.3128  | 0.0047  |
| 2   | 18381 | 6    | 27679         | 0.0    | 0.0437  | 0.0065  |
| 2   | 18381 | 7    | 5065          | 0.0    | 0.0     | 0.4195  |
| 2   | 18381 | 7    | 26059         | 0.0    | 0.0     | 0.0553  |
| 2   | 18381 | 8    | 9             | 0.0    | 0.0     | 0.2145  |
| 2   | 21040 | 2    | 21040         | 0.0077 | 0.0271  | 0.0     |
| 2   | 21040 | 3    | 20595         | 0.0521 | 0.0000  | 0.0     |
| 2   | 21040 | 4    | 13212         | 0.0005 | 0.2011  | 0.0293  |
| 2   | 21040 | 4    | 18538         | 0.0085 | 0.0805  | 0.0317  |
| 2   | 21040 | 4    | 25859         | 0.2608 | 0.0012  | 0.1204  |
| 2   | 21040 | 5    | 11146         | 0.0    | 0.0473  | 0.3024  |
| 2   | 21040 | 5    | 15457         | 0.0    | 0.0052  | 0.1466  |
| 2   | 21040 | 5    | 23988         | 0.0    | 0.1423  | 0.0115  |
| 2   | 21040 | 5    | 27653         | 0.0    | 0.1233  | 0.0012  |
| 2   | 21040 | 6    | 8579          | 0.0    | 0.1365  | 0.1604  |

•

•

.

.

. #1

# **BLANK PAGE**

175

î.

> °a i ∼∫

## PAGE 4 Appendix XI

.....

## TABLE 2 U(K) \*2 FOR HO+3

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                      | JI LEVEI         | 1 J2           | LEVEL 2 | (U2) *2 | (04) *2 | (06) *2 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|---------|---------|---------|---------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                      | 2 2104           | 06             | 22180   | 0.0     | 0.0225  | 0.1010  |
| 2 21040 7 5065 0.0 0.0 0.0789   2 21040 7 26059 0.0 0.0 0.0550   2 21040 8 9 0.0 0.0 0.2041   2 21040 8 21268 0.0 0.0 0.2041   2 21040 8 21268 0.0 0.0 0.0036   3 20595 3 20595 0.0358 0.0637 0.0275   3 20595 4 13212 0.0002 0.0982 0.3949   3 20595 4 18538 0.0973 0.0298 0.0966   3 20595 4 25859 0.2147 0.0176 0.0509 | 2 2104           | 06             | 27679   | 0.0     | 0.0068  | 0.0099  |
| 2 21040 7 26059 0.0 0.0 0.0550   2 21040 8 9 0.0 0.0 0.2041   2 21040 8 21268 0.0 0.0 0.2041   2 21040 8 21268 0.0 0.0 0.0036   3 20595 3 20595 0.0358 0.0637 0.0275   3 20595 4 13212 0.0002 0.0982 0.3949   3 20595 4 18538 0.0973 0.0298 0.0966   3 20595 4 25859 0.2147 0.0176 0.0509                                 | 2 2104           | 0 7            | 5065    | 0.0     | 0.0     | 0.0789  |
| 2 21040 8 9 0.0 0.0 0.2041   2 21040 8 21268 0.0 0.0 0.0036   3 20595 3 20595 0.0358 0.0637 0.0275   3 20595 4 13212 0.0002 0.0982 0.3949   3 20595 4 18538 0.0973 0.0298 0.0966   3 20595 4 25859 0.2147 0.0176 0.0509                                                                                                   | 2 2104           | 0 7            | 26059   | 0.0     | 0.0     | 0.0550  |
| 2 21040 8 21268 0.0 0.0 0.0036   3 20595 3 20595 0.0358 0.0637 0.0275   3 20595 4 13212 0.0002 0.0982 0.3949   3 20595 4 18538 0.0973 0.0298 0.0966   3 20595 4 25859 0.2147 0.0176 0.0509                                                                                                                                | 2 2104           | 0 8            | 9       | 0.0     | 0.0     | 0.2041  |
| 3 20595 3 20595 0.0358 0.0637 0.0275   3 20595 4 13212 0.0002 0.0982 0.3949   3 20595 4 18538 0.0973 0.0298 0.0966   3 20595 4 25859 0.2147 0.0176 0.0509                                                                                                                                                                 | 2 2104           | 0 8            | 21268   | 0.0     | 0.0     | 0.0036  |
| 3 20595 4 13212 0.0002 0.0982 0.3949<br>3 20595 4 18538 0.0973 0.0298 0.0966<br>3 20595 4 25859 0.2147 0.0176 0.0509                                                                                                                                                                                                      | 3 2059           | 5 3            | 20595   | 0.0358  | 0.0637  | 0.0275  |
| 3 20595 4 18538 0.0973 0.0298 0.0966<br>3 20595 4 25859 0.2147 0.0176 0.0509                                                                                                                                                                                                                                              | 3 2059           | 5 4            | 13212   | 0.0002  | 0.0982  | 0.3949  |
| 3 20595 4 25859 0.2147 0.0176 0.0509                                                                                                                                                                                                                                                                                      | 3 2059           | 54             | 18538   | 0.0973  | 0.0298  | 0.0966  |
|                                                                                                                                                                                                                                                                                                                           | 3 2059           | 54             | 25859   | 0.2147  | 0.0176  | 0.0509  |
|                                                                                                                                                                                                                                                                                                                           | 3 2059           | 5<br>5<br>5    | 15457   | 0.0000  | 0.21/3  | 0.01/5  |
|                                                                                                                                                                                                                                                                                                                           | 3 2009           | 55             | 22088   | 0.0390  | 0.1005  | 0.0325  |
| 3 20595 5 27653 0 1544 0 0474 0 0059                                                                                                                                                                                                                                                                                      | 3 2059           | 55             | 27653   | 0.1544  | 0.1005  | 0.0059  |
| 3 20595 6 8579 0.0 0.0897 0.2172                                                                                                                                                                                                                                                                                          | 3 2059           | 5 6            | 8579    | 0.0     | 0.0897  | 0.2172  |
| 3 20595 6 22180 0.0 0.0655 0.1526                                                                                                                                                                                                                                                                                         | 3 2059           | 56             | 22180   | 0.0     | 0.0655  | 0.1526  |
| 3 20595 6 27679 0.0 0.0112 0.0509                                                                                                                                                                                                                                                                                         | 3 2059           | 5 6            | 27679   | 0.0     | 0.0112  | 0.0509  |
| 3 20595 7 5065 0.0 0.2463 0.2279                                                                                                                                                                                                                                                                                          | 3 2059           | 5 7            | 5065    | 0.0     | 0.2463  | 0.2279  |
| 3 20595 7 26059 0.0 0.0068 0.0049                                                                                                                                                                                                                                                                                         | 3 2059           | 57             | 26059   | 0.0     | 0.0068  | 0.0049  |
| 3 20595 8 9 0.0 0.0 0.3464                                                                                                                                                                                                                                                                                                | 3 2059           | 58             | 9       | 0.0     | 0.0     | 0.3464  |
| 3 20595 8 21268 0.0 0.0 0.0067                                                                                                                                                                                                                                                                                            | 3 2059           | 58             | 21268   | 0.0     | 0.0     | 0.0067  |
| 3 20595 9 28896 0.0 0.0 0.0012                                                                                                                                                                                                                                                                                            | 3 2059           | 5 <del>9</del> | 28896   | 0.0     | 0.0     | 0.0012  |
| 4 13212 4 13212 0.1222 0.1308 0.3456                                                                                                                                                                                                                                                                                      | 4 1321           | 2 4            | 13212   | 0.1222  | 0.1308  | 0.3456  |
| 4 13212 4 18538 0.0002 0.0241 0.2576                                                                                                                                                                                                                                                                                      | 4 1321           | 2 4            | 18538   | 0.0002  | 0.0241  | 0.2576  |
|                                                                                                                                                                                                                                                                                                                           | 4 1321           | 2 4            | 25859   | 0.0152  | 0.1072  | 0.0555  |
|                                                                                                                                                                                                                                                                                                                           | 4 1321           | 25             | 11146   | 0.0310  | 0.123/  | 0.9103  |
|                                                                                                                                                                                                                                                                                                                           | 4 1321           | 25             | 15457   | 0.0001  | 0.0061  | 0.0036  |
|                                                                                                                                                                                                                                                                                                                           | 4 1321           | 2 5            | 23988   | 0.0000  | 0.0091  | 0.0418  |
|                                                                                                                                                                                                                                                                                                                           | 4 1321<br>4 1321 | 2 5            | 8579    | 0.0023  | 0.0282  | 0.6639  |
|                                                                                                                                                                                                                                                                                                                           | 4 1321<br>4 1321 | 5 6            | 22180   | 0.0005  | 0.0013  | 0.0000  |
| 4 13212 6 27679 0.0000 0.0000 0.0200                                                                                                                                                                                                                                                                                      | 4 1321           | 2 6            | 27679   | 0.0000  | 0.0000  | 0.0200  |
| 4 13212 7 5065 0.0 0.0034 0.1568                                                                                                                                                                                                                                                                                          | 4 1321           | 2 7            | 5065    | 0.0     | 0.0034  | 0.1568  |
| 4 13212 7 26059 0.0 0.0006 0.0068                                                                                                                                                                                                                                                                                         | 4 1321           | 2 7            | 26059   | 0.0     | 0.0006  | 0.0068  |
| 4 13212 8 9 0.0 0.0000 0.0076                                                                                                                                                                                                                                                                                             | 4 1321           | 28             | 9       | 0.0     | 0.0000  | 0.0076  |
| 4 13212 8 21268 0.0 0.0046 0.0012                                                                                                                                                                                                                                                                                         | 4 1321           | 28             | 21268   | 0.0     | 0.0046  | 0.0012  |
| 4 13212 10 34072 0.0 0.0 0.0019                                                                                                                                                                                                                                                                                           | 4 1321           | 2 10           | 34072   | 0.0     | 0.0     | 0.0019  |
| 4 18538 4 18538 0.0770 0.0085 0.0886                                                                                                                                                                                                                                                                                      | 4 1853           | 3 4            | 18538   | 0.0770  | 0.0085  | 0.0886  |
| 4 18538 4 25859 0.3962 0.1052 0.0217                                                                                                                                                                                                                                                                                      | 4 1853           | 3 4            | 25859   | 0.3962  | 0.1052  | 0.0217  |
| 4 18538 5 11146 0.0016 0.1334 0.4666                                                                                                                                                                                                                                                                                      | 4 1853           | 3 5            | 11146   | 0.0016  | 0.1334  | 0.4666  |
| 4 18538 5 15457 0.1980 0.0920 0.0071                                                                                                                                                                                                                                                                                      | 4 1853           | 5              | 15457   | 0.1980  | 0.0920  | 0.0071  |
| 4 18538 5 23988 0.2751 0.0238 0.1395                                                                                                                                                                                                                                                                                      | 4 1853           | 5              | 23988   | 0.2751  | 0.0238  | 0.1395  |
|                                                                                                                                                                                                                                                                                                                           | 4 18538          | 5              | 2/005   | 0.29/4  | 0.0025  | 0.051/  |
| 4 10538 0 0579 U.UUII U.2574 0.1704                                                                                                                                                                                                                                                                                       | 4 18538          |                | 00/9    | 0.0011  | 0.2300  | 0.1704  |
| + 10330 0 22100 0.2320 0.2300 0.1289<br>+ 10530 6 37679 0.0103 0.0210 0.0250                                                                                                                                                                                                                                              | 4 18530          |                | 22100   | 0.0103  | 0.2300  | 0.1289  |
| 4 18538 7 5065 0.0 0.1965 0.0320                                                                                                                                                                                                                                                                                          | 4 18538          | 7              | 5065    | 0.0     | 0.1965  | 0.0320  |

1 X \* ر بر ; ÷ . . .

.

l

٠

i

ŧ

1

.

3.5

÷

ť,

÷., ...

33666 33645 21 4F 3/2 1/2 33652 33646 6 4F 3/2 3/2

.

•

.

....

K. S. R. S. B. C. K.

۰'\_

, ...

#### PAGE 5 APPENDIX XI

# TABLE 2 U(K) \*2 FOR HO+3

| J 1 | LEVEL 1       | J2 | LEVEL 2 | (U2) *2 | (84) *2 | (06) *2 |
|-----|---------------|----|---------|---------|---------|---------|
| 4   | 18538         | 7  | 26059   | 0.0     | 0.0156  | 0.0091  |
| 4   | 18538         | 8  | 9       | 0.0     | 0.2385  | 0.7090  |
| 4   | 18538         | 8  | 21268   | 0.0     | 0.0085  | 0.0007  |
| 4   | 18538         | 9  | 28896   | 0.0     | 0.0     | 0.0093  |
| 4   | 18538         | 10 | 34072   | 0.0     | 0.0     | 0.0417  |
| 4   | 25859         | 4  | 25859   | 0.0098  | 0.0138  | 0.1812  |
| 4   | 25859         | 5  | 11146   | 0.2254  | 0.2700  | 0.0329  |
| 4   | 25859         | 5  | 15457   | 0.0345  | 0.0138  | 0.2147  |
| 4   | 25859         | 5  | 23988   | 0.0128  | 0.1484  | 0.0268  |
| 4   | 25859         | 5  | 27653   | 0.0415  | 0.1417  | 0.0182  |
| 4   | 25859         | 6  | 8579    | 0.6896  | 0.0226  | 0.0003  |
| 4   | 25859         | 6  | 22180   | 0.0036  | 0.2047  | 0.2909  |
| 4   | 25859         | 6  | 27679   | 0.0030  | 0.0067  | 0.0093  |
| 4   | 25859         | 7  | 5065    | 0.0     | 0.2857  | 0.0642  |
| 4   | 25859         | 7  | 26059   | 0.0     | 0.0152  | 0.0044  |
| 4   | 25859         | 8  | 9       | 0.0     | 0.0351  | 0.0332  |
| 4   | 25859         | 8  | 21268   | 0.0     | 0.0919  | 0.0013  |
| 4   | 2585 <b>9</b> | 9  | 28896   | 0.0     | 0.0     | 0.0492  |
| 4   | 25859         | 10 | 34072   | 0.0     | 0.0     | 0.2687  |
| 5   | 11146         | 5  | 11146   | 0.1023  | 0.0364  | 0.0176  |
| 5   | 11146         | 5  | 15457   | 0.0071  | 0.0281  | 0.1630  |
| 5   | 11146         | 5  | 23988   | 0.0031  | 0.0642  | 0.0568  |
| 5   | 11146         | 5  | 27653   | 0.0040  | 0.0487  | 0.0418  |
| 5   | 11146         | 6  | 8579    | 0.0435  | 0.1703  | 0.5720  |
| 5   | 11146         | 6  | 22180   | 0.0171  | 0.0312  | 0.0124  |
| 5   | 11146         | 6  | 27679   | 0.0004  | 0.0011  | 0.0153  |
| 5   | 11146         | 7  | 5065    | 0.0028  | 0.0226  | 0.8896  |
| 5   | 11146         | 7  | 26059   | 0.0072  | 0.0042  | 0.0312  |
| 5   | 11146         | 8  | 9       | 0.0     | 0.0102  | 0.0930  |
| 5   | 11146         | 8  | 21268   | 0.0     | 0.0004  | 0.0041  |
| 5   | 11146         | 9  | 28896   | 0.0     | 0.0253  | 0.0242  |
| 5   | 11146         | 10 | 34072   | 0.0     | 0.0     | 0.0368  |
| 5   | 15457         | 5  | 15457   | 0.0729  | 0.1815  | 0.0050  |
| 5   | 15457         | 5  | 23988   | 0.3425  | 0.0353  | 0.1145  |
| 5   | 15457         | 5  | 27653   | 0.0907  | 0.1752  | 0.0483  |
| 5   | 15457         | 6  | 8579    | 0.0113  | 0.1242  | 0.4972  |
| 5   | 15457         | 6  | 22180   | 1.1305  | 0.3616  | 0.0321  |
| 5   | 15457         | 6  | 27679   | 0.1113  | 0.0000  | 0.0002  |
| 5   | 15457         | 7  | 5065    | 0.0194  | 0.3309  | 0.4298  |
| 5   | 15457         | 7  | 26059   | 0.0015  | 0.0112  | 0.0142  |
| 5   | 15457         | 8  | 9       | 0.0     | 0.4201  | 0.5701  |
| 5   | 15457         | 8  | 21268   | 0.0     | 0.0258  | 0.0190  |
| 5   | 15457         | 9  | 28896   | 0.0     | 0.0608  | 0.0741  |
| 5   | 15457         | 10 | 34072   | 0.0     | 0.0     | 0.1693  |
| 5   | 23988         | 5  | 23988   | 0.0706  | 0.0473  | 0.0139  |
| 5   | 23988         | 5  | 27653   | 0.0263  | 0.0132  | 0.2050  |

.

177

.

.

• ---

## PAGE 6 Appendix XI

-

.

.

ار 12 13

÷,

# TABLE 2 U(K) \*2 FOR HO+3

| 31 | LEVEL 1        | J2       | LEVEI 2 | (U2)*2 | (04) *2 | (06) *2       |
|----|----------------|----------|---------|--------|---------|---------------|
| 5  | 23988          | 6        | 8579    | 0.1286 | 0.1695  | 0.6789        |
| 5  | 23988          | 6        | 22180   | 0.0565 | 0.2568  | 0.2456        |
| 5  | 23988          | 6        | 27679   | 0,1987 | 0.0657  | 0.0168        |
| 5  | 23988          | 7        | 5065    | 0.5696 | 0.0240  | 0,1171        |
| 5  | 23988          | ,<br>T   | 26059   | 0.0164 | 0.0059  | 0.2487        |
| 5  | 23988          | ,<br>8   | 20035   | 0.0    | 0 5239  | 0.0000        |
| ŝ  | 23988          | 8        | 21269   | 0.0    | 0.0083  | 0.0007        |
| 5  | 23988          | ă        | 28896   | 0.0    | 0.3321  | 0.0007        |
| 5  | 23988          | 10       | 34072   | 0.0    | 0.027   | 0.3522        |
| 2  | 23700          | 10       | 34072   | 0.0    | 0.0     | •• 5522       |
| 5  | 27653          | 5        | 27653   | 0.0360 | 0.0058  | 0.0012        |
| 5  | 27653          | 6        | 8579    | 0.0949 | 0.2452  | 0.0460        |
| 5  | 27653          | 6        | 22180   | 0.0005 | 0.0711  | 0.1580        |
| 5  | 27653          | 6        | 27679   | 0.1501 | 0.5825  | 0.0000        |
| 5  | 27653          | 7        | 5065    | 0.7003 | 0.1913  | 0.0584        |
| 5  | 27653          | 7        | 26059   | 0.0036 | 0.0104  | 0.4806        |
| 5  | 27653          | 8        | 9       | 0.0    | 0.0938  | 0.1596        |
| 5  | 2 <b>7</b> 653 | 8        | 21268   | 0.0    | 0.0051  | 0.0214        |
| 5  | 27653          | 9        | 28896   | 0.0    | 0.1803  | 0.1726        |
| 5  | 27653          | 10       | 34072   | 0.0    | 0.0     | 0.2616        |
|    |                |          |         |        |         |               |
| 6  | 85 <b>7</b> 9  | 6        | 8579    | 0.1273 | 0.0681  | 0.0402        |
| 6  | 8579           | 6        | 22180   | 0.0091 | 0.0819  | 0.1094        |
| 6  | 8579           | 6        | 27679   | 0.0001 | 0.0051  | 0.0024        |
| 6  | 8579           | 7        | 5065    | 0.0314 | 0.1324  | 0.9295        |
| 6  | 85 <b>79</b>   | 7        | 26059   | 0.0011 | 0.0057  | 0.0722        |
| 6  | 8579           | 8        | 9       | 0.0087 | 0.0389  | 0.6920        |
| 6  | 8579           | 8        | 21268   | 0.0059 | 0.0041  | 0.0142        |
| 6  | 8579           | 9        | 28896   | 0.0    | 0.0071  | 0.0357        |
| 6  | 8579           | 10       | 34072   | 0.0    | 0.0177  | 0.0211        |
| 6  | 22180          | 6        | 22180   | 0.0025 | 0.3968  | 0.1209        |
| 6  | 22180          | 6        | 27679   | 0.0509 | 0.2992  | 0.0069        |
| õ  | 22180          | 7        | 5065    | 0.1484 | 0.4284  | 0.2633        |
| 6  | 22180          | 7        | 26059   | 0.0000 | 0.0003  | 0.1239        |
| 6  | 22180          | 8        | 9       | 1.4830 | 0.8201  | 0.1400        |
| 6  | 22180          | 8        | 21268   | 0.0000 | 0.0048  | 0.3076        |
| 6  | 22180          | 9        | 28896   | 0.0    | 0.0402  | 0.2810        |
| 6  | 22180          | 10       | 34072   | 0.0    | 0.0455  | 0.1696        |
| _  |                |          |         |        |         |               |
| 6  | 27679          | 6        | 27679   | 0.1499 | 0.1032  | 0.0418        |
| 6  | 27679          | 7        | 5065    | 0.0314 | 0.0586  | 0.0087        |
| 6  | 27679          | 7        | 26059   | 0.0040 | 0.0502  | 0.6854        |
| 6  | 27679          | 8        | 9       | 0.2540 | 0.1399  | 0.0013        |
| 6  | 27679          | 8        | 21268   | 0.1077 | 0.1109  | 1.5985        |
| 6  | 27679          | 9        | 28896   | 0.0    | 0.1181  | 0.8288        |
| 6  | 27679          | 10       | 34072   | 0.0    | 0.3381  | 0.2755        |
| 7  | 5065           | 7        | 5065    | 0 1502 | 0 1102  | 0 0207        |
| 7  | 5065           | <b>'</b> | 26059   | 0.0055 | 0.0059  | 0.0047        |
| •  |                | ,        |         |        |         | ~ ~ ~ ~ ~ ~ ~ |

77

.

.

' į

# 39152 39169 -16 4P 3/2 3/2 39176 39192 -15 4P 3/2 1/2

> 1

.". ;

## PAGE 7 Appendix XI

## TABLE 2 U(K)\*2 FOR HO+3

| J1       | LEVEL 1 | J2 | LEVEL 2 | (82) *2     | (04) *2 | (U6) *2 |
|----------|---------|----|---------|-------------|---------|---------|
| 7        | 5065    | 8  | 9       | 0.0249      | 0.1344  | 1.5231  |
| 7        | 5065    | 8  | 21268   | 0.0018      | 0.0044  | 0.0402  |
| 7        | 5065    | 9  | 28896   | 0.0009      | 0.0041  | 0.0103  |
| 7        | 5065    | 10 | 34072   | 0.0         | 0.0003  | 0.0059  |
| 7        | 26059   | 7  | 26050   | 0 0016      | 0 0223  | 0 0175  |
| '''      | 26059   |    | 20039   | 0.0010      | 0.0223  | 0.0775  |
| <b>'</b> | 26059   | 0  | 21269   | 0.0050      | 0.00044 | 0 1223  |
| 4        | 20039   | ő  | 21200   | 0.0005      | 0.0002  | 0.1223  |
| <u>'</u> | 26039   | 3  | 20090   | 0.0700      | 0.1903  | 0.1391  |
|          | 26059   | 10 | 34072   | 0.0         | 0.3112  | 0.3289  |
| 8        | 9       | 8  | 9       | 0.1951      | 0.3117  | 1.5460  |
| 8        | 9       | 8  | 21268   | 0.0205      | 0.0317  | 0.1535  |
| Ř        | 9       | ğ  | 28896   | 0.0179      | 0.0051  | 0.1499  |
| 8        | ģ       | 10 | 34072   | 0.0003      | 0.0681  | 0.0789  |
|          |         |    |         |             |         |         |
| 8        | 21268   | 8  | 21268   | 0.0260      | 0.0465  | 0.2019  |
| 8        | 21268   | 9  | 28896   | 0.3163      | 0.0568  | 2.0495  |
| 8        | 21268   | 10 | 34072   | 0.0134      | 1.0322  | 0.8500  |
|          |         |    |         | • • • • • - |         |         |
| 9        | 28896   | 9  | 28896   | 0.6858      | 1.3547  | 0.0291  |
| 9        | 28896   | 10 | 34072   | 0.7340      | 1.4855  | 0.5524  |
| 10       | 34072   | 10 | 34072   | 3.3219      | 0.0011  | 1.4872  |

79

в

APPENDIX XII
| 572 | 21040 | 1372 | 23134 | ••• | V • V | V• 1331 |  |
|-----|-------|------|-------|-----|-------|---------|--|
| 3/2 | 27543 | 15/2 | 175   | 0.0 | 0.0   | 0.0508  |  |
| 3/2 | 27543 | 15/2 | 22222 | 0.0 | 0.0   | 0.0051  |  |

## PAGE 1

## APPENDIX XII

### TABLE 1 ER+3:LAF3

| OBSERVED                                           | CALC                                                 | 0-C                                     | STAT                                          | B J                                                          | MJ                                                         |
|----------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| 0<br>51<br>121<br>200<br>219<br>314<br>400<br>443  | -9<br>50<br>121<br>188<br>198<br>310<br>397<br>442   | 10<br>1<br>12<br>22<br>4<br>3<br>1      | 4I<br>4I<br>4I<br>4I<br>4I<br>4I<br>4I<br>4I  | 15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2 | 13/2<br>-11/2<br>3/2<br>5/2<br>1/2<br>-9/2<br>-7/2<br>15/2 |
| 6604<br>6630<br>6670<br>6723<br>6754<br>6823       | 6607<br>6639<br>6677<br>6696<br>6730<br>6765<br>6835 | -2<br>-8<br>-6<br>4<br>-6<br>-10<br>-11 | 41<br>41<br>41<br>41<br>41<br>41<br>41        | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2 | -11/2<br>-9/2<br>-7/2<br>1/2<br>3/2<br>5/2<br>13/2         |
| 10301<br>10311<br>10330<br>10344<br>10358<br>10395 | 10299<br>10309<br>10336<br>10348<br>10359<br>10408   | 2<br>-5<br>-3<br>0<br>-12               | 4I<br>4I<br>4I<br>4I<br>4I                    | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2                 | -9/2<br>-7/2<br>1/2<br>3/2<br>5/2<br>-11/2                 |
| 124 19<br>125 18<br>126 15<br>1270 1<br>127 30     | 12401<br>12535<br>12605<br>12705<br>12725            | 18<br>- 16<br>10<br>-3<br>5             | 41<br>41<br>41<br>41<br>41                    | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                              | 7/2<br>1/2<br>3/2<br>5/2<br>-9/2                           |
| 15391<br>15432<br>15443<br>15474<br>15527          | 15393<br>15439<br>15447<br>15476<br>15529            | -1<br>-6<br>-3<br>-1<br>-1              | 4F<br>4F<br>4F<br>4F<br>4F                    | 9/2<br>9/2<br>9/2<br>9/2<br>9/2                              | 5/2<br>3/2<br>-7/2<br>3/2<br>1/2                           |
| 18557<br>18588                                     | 18559<br>18588                                       | -1<br>0                                 | 4 S<br>4 S                                    | 3/2<br>3/2                                                   | 3/2<br>1/2                                                 |
| 19266<br>19307<br>19314<br>19359<br>19359<br>19418 | 19271<br>19296<br>19318<br>19344<br>19350<br>19403   | -4<br>11<br>-3<br>15<br>9<br>15         | 2H2<br>2H2<br>2H2<br>2H2<br>2H2<br>2H2<br>2H2 | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2         | 1/2<br>-9/2<br>-11/2<br>-7/2<br>3/2<br>5/2                 |
| 20656<br>20703<br>20734<br>20786                   | 20655<br>20698<br>20736<br>20788                     | 1<br>5<br>-1<br>-1                      | 4F<br>4F<br>4F<br>4F                          | 7/2<br>7/2<br>7/2<br>7/2                                     | -7/2<br>1/2<br>5/2<br>3/2                                  |

.49

|     |       |     |      | 0.0001 |        |        |
|-----|-------|-----|------|--------|--------|--------|
| 7/2 | 0.223 | 9/2 | 7806 | 0.3035 | 0.1534 | 0.0132 |
| 1/2 | 2223  | 110 |      |        | 0 4055 | 0 0009 |
| 7/2 | 9223  | 9/2 | 9166 | 0.0039 | 0.1255 | 0.4490 |

• •

3

r ſ

ì

\* \*\* \*\*

#### PAGE 2

## APPENDIX XII

# TABLE 1 ER+3:LAF3

| OBSERVI                                                      | ED CALC                                                              | 0 <b>-</b> C                    | STAT                                         | E J                                                          | MJ                                                         |
|--------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| 22370                                                        | 22364                                                                | 6                               | 4F                                           | 5/2                                                          | 5/2                                                        |
| 22374                                                        | 22369                                                                | 5                               | 4F                                           | 5/2                                                          | 1/2                                                        |
| 22407                                                        | 22399                                                                | 9                               | 4F                                           | 5/2                                                          | 3/2                                                        |
| 22684                                                        | 22689                                                                | -4                              | 4F                                           | 3/2                                                          | 3/2                                                        |
| 22751                                                        | 22741                                                                | 10                              | 4F                                           | 3/2                                                          | 1/2                                                        |
| 24602                                                        | 24580                                                                | 22                              | 4F                                           | 9/2                                                          | -7/2                                                       |
| 24680                                                        | 24710                                                                | -29                             | 4F                                           | 9/2                                                          | 1/2                                                        |
| 24754                                                        | 24748                                                                | 6                               | 4F                                           | 9/2                                                          | 3/2                                                        |
| 24840                                                        | 24840                                                                | 0                               | 4F                                           | 9/2                                                          | 5/2                                                        |
| 24862                                                        | 24858                                                                | 4                               | 4F                                           | 9/2                                                          | 3/2                                                        |
| 26530<br>26558<br>26583<br>26647<br>26647<br>26709           | 26536<br>26567<br>26587<br>26650<br>26650<br>26713                   | 5<br>8<br>3<br>2<br>2<br>3      | 4G<br>4G<br>4G<br>4G<br>4G                   | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2                 | 1/2<br>-11/2<br>3/2<br>5/2<br>-9/2<br>-7/2                 |
| 27606                                                        | 27610                                                                | -3                              | 4 G                                          | 9/2                                                          | -9/2                                                       |
| 27620                                                        | 27617                                                                | 3                               | 4 G                                          | 9/2                                                          | 1/2                                                        |
| 27631                                                        | 27624                                                                | 7                               | 4 G                                          | 9/2                                                          | 3/2                                                        |
| 27646                                                        | 27639                                                                | 7                               | 4 G                                          | 9/2                                                          | 5/2                                                        |
| 27671                                                        | 27665                                                                | 6                               | 4 G                                          | 9/2                                                          | -7/2                                                       |
| 278 13<br>278 20<br>278 30<br>2790 4<br>279 35<br><br>281 27 | 27816<br>27823<br>27851<br>27891<br>27939<br>27959<br>27988<br>28135 | -2<br>-2<br>-20<br>13<br>-3<br> | 2K<br>2K<br>2K<br>2K<br>2K<br>2K<br>2K<br>2K | 15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2<br>15/2 | -9/2<br>-7/2<br>-11/2<br>5/2<br>3/2<br>13/2<br>1/2<br>15/2 |
| 28243<br>28257<br>28265                                      | 28221<br>28240<br>28249<br>28252                                     | 3<br>8<br>13                    | 4G<br>4G<br>4G<br>4G                         | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                              | 5/2<br>-7/2<br>3/2<br>1/2                                  |
| 31688                                                        | 31711                                                                | - 22                            | 2P                                           | 3/2                                                          | 3/2                                                        |
| 31746                                                        | 31765                                                                | - 18                            | 2P                                           | 3/2                                                          | 1/2                                                        |
| 33108<br>33119<br>33167<br>33201<br>33201                    | 33094<br>33105<br>33142<br>33153<br>33203<br>33206<br>33317<br>33405 | 3<br>-22<br>14<br>-1<br>-4      | 2K<br>2K<br>2K<br>2K<br>2K<br>2P<br>2K       | 13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>13/2<br>1/2  | -9/2<br>-7/2<br>-11/2<br>5/2<br>1/2<br>3/2<br>1/2          |

200

01

83

æ.,

-

;

|     |      |      |       | .0  | 0.0166 | 0.2017 |
|-----|------|------|-------|-----|--------|--------|
| 9/2 | 7806 | 15/2 | 22222 | 0.0 | 0.0077 | 0.0000 |
| 9/2 | 7806 | 17/2 | 25890 | 0.0 | 0.0202 | 0.0000 |

83

4

#### PAGE 3

.

## APPENDIX XII

#### TABLE 1 ER+3:LAF3

.

| OBSERVED                                           | CALC                                                                                      | 0-C                        | STATI                                                    | E J                                                          | MJ                                                                 |
|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| •••                                                | 33482<br>33494<br>33613                                                                   | •••                        | 4G<br>4G<br>4G                                           | 5/2<br>5/2<br>5/2                                            | 1/2<br>5/2<br>3/2                                                  |
| 34157<br>34196<br>34221<br>34280                   | 34167<br>34197<br>34228<br>34284                                                          | -9<br>0<br>-6<br>-3        | 4G<br>4G<br>4G<br>4G                                     | 7/2<br>7/2<br>7/2<br>7/2<br>7/2                              | -7/2<br>3/2<br>1/2<br>5/2                                          |
| 35026<br>35052<br>35085                            | 35042<br>35053<br>35092                                                                   | 15<br>0<br>6               | 2D 1<br>2D 1<br>2D 1                                     | 5/2<br>5/2<br>5/2                                            | 3/2<br>5/2<br>1/2                                                  |
| 36522<br>36555<br>36624<br>36721<br>36805          | 36529<br>36537<br>36636<br>36721<br>36792                                                 | -6<br>18<br>-11<br>0<br>13 | 2H2<br>2H2<br>2H2<br>2H2<br>2H2<br>2H2                   | 9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2                       | -9/2<br>5/2<br>3/2<br>1/2<br>-7/2                                  |
| 38804<br>38841<br>38834                            | 38794<br>38843<br>38844                                                                   | 10<br>-1<br>-9             | 4 D<br>4 D<br>4 D                                        | 5/2<br>5/2<br>5/2                                            | 3/2<br>5/2<br>1/2                                                  |
| 394 54<br>395 39<br>396 0 6<br>396 34              | 39487<br>39528<br>39606<br>39638                                                          | -32<br>11<br>0<br>-3       | 4D<br>4D<br>4D<br>4D<br>4D                               | 7/2<br>7/2<br>7/2<br>7/2                                     | 1/2<br>3/2<br>-7/2<br>5/2                                          |
| 41238<br>41297<br>41315<br>41382<br>41382<br>41497 | 41235<br>41302<br>41330<br>4 <b>13</b> 71<br>41392<br>41492                               | 3<br>-4<br>-14<br>-9<br>5  | 21<br>21<br>21<br>21<br>21<br>21<br>21                   | 11/2<br>11/2<br>11/2<br>11/2<br>11/2<br>11/2                 | 5/2<br>3/2<br>-11/2<br>-7/2<br>1/2<br>-9/2                         |
|                                                    | 4 180 9<br>4 183 3<br>4 1874<br>4 1875<br>4 1900<br>4 1926<br>4 1980<br>4 207 1<br>4 2087 | · · · ·                    | 2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L<br>2L | 17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2<br>17/2 | -7/2<br>-9/2<br>1/2<br>5/2<br>3/2<br>-11/2<br>13/2<br>17/2<br>15/2 |
| 42495<br>42526                                     | 42471<br>42500                                                                            | 24<br>26                   | 4 D<br>4 D                                               | 3/2<br>3/2                                                   | 3/2<br>1/2                                                         |
| 43088<br>43126                                     | 43096<br>43121                                                                            | -7<br>5                    | 4D<br>4D                                                 | 3/2<br>3/2                                                   | 1/2<br>3/2                                                         |

200

01

11/22356311/2235630.35770.05550.012711/22356313/236260.00120.02990.0065

n de la composition de la comp

ę.,

ł.

PAGE 4

## APPENDIX XII

#### TABLE 1 ER+3:LAF3

2

| OBSERVE | CALC     | 0-C   | STAT        | е ј   | MJ    |
|---------|----------|-------|-------------|-------|-------|
|         |          |       |             |       |       |
|         |          |       |             |       |       |
| 43687   | 43709    | -21   | 21          | 13/2  | 5/2   |
| 43746   | 43722    | 24    | 21          | 13/2  | 1/2   |
| 43746   | 43728    | 18    | 21          | 13/2  | 3/2   |
| 43760   | 43749    | 11    | 21          | 13/2  | 13/2  |
| 43834   | 43821    | 13    | 21          | 13/2  | -7/2  |
| 43915   | 43909    | 6     | 21          | 13/2  | -9/2  |
| •••     | 43968    | • • • | 21          | 13/2  | -11/2 |
| •••     | 47313    | • • • | 4 D         | 1/2   | 1/2   |
|         | 1.70/1 1 |       | 21          | 15 /0 | 0.42  |
| •••     | 47941    | • • • | 21          | 15/2  | -9/2  |
| • • •   | 41303    | • • • | 25          | 15/2  | -1/2  |
| •••     | 4/999    |       | 21          | 15/2  | 3/2   |
| • • •   | 40013    | • • • | 21          | 15/2  | 5/2   |
| •••     | 40033    | • • • | 21          | 15/2  | -11/2 |
| •••     | 40097    | • • • | 21          | 15/2  | -11/2 |
| •••     | 40193    | • • • | ∠L<br>2⊺    | 15/2  | 12/2  |
| • • •   | 40174    | • • • | 21-         | 15/2  | 1372  |
|         | 48371    | • • • | 2H1         | 9/2   | 5/2   |
|         | 48374    |       | 2H 1        | 9/2   | 3/2   |
|         | 48427    |       | 2H 1        | 9/2   | 1/2   |
| •••     | 48483    |       | 2H1         | 9/2   | -9/2  |
| •••     | 48513    | • • • | 2H <b>1</b> | 9/2   | -7/2  |
| 49223   | 49210    | 13    | 2D2         | 5/2   | 3/2   |
| 49272   | 49287    | -14   | 2D2         | 5/2   | 1/2   |
| 49357   | 49349    | 8     | 2D2         | 5/2   | 5/2   |
|         | 51295    |       | 2H <b>1</b> | 11/2  | 1/2   |
|         | 51355    |       | 211         | 11/2  | 3/2   |
| •••     | 51370    |       | 2H 1        | 11/2  | -11/2 |
|         | 51441    |       | 2H 1        | 11/2  | 5/2   |
|         | 51510    |       | 2អ 1        | 11/2  | -9/2  |
|         | 51512    |       | 281         | 11/2  | -7/2  |
|         |          |       |             | -     | •     |

i

3 -

#### PAGE 5

. •

;

، بر -----

4

3

• !

5

۶

•

## APPENDIX XII

## TABLE 1A ER+3:LAF3 CENTERS OF GRAVITY

| CALC CENTER | STATE   |
|-------------|---------|
| 217         | 4I 15/2 |
| 6712        | 4113/2  |
| 8583        | 4S 3/2  |
| 10346       | 4111/2  |
| 12597       | 41 9/2  |
| 15455       | 4F 9/2  |
| 19337       | 2811/2  |
| 20715       | 4F 7/2  |
| 22376       | 4F 5/2  |
| 22712       | 4F 3/2  |
| 24756       | 4F 9/2  |
| 26631       | 4G11/2  |
| 27637       | 4G 9/2  |
| 27922       | 2K15/2  |
| 28224       | 4G 7/2  |
| 33319       | 2P 1/2  |

#### PAGE 7 APPENDIX XII

.

## TABLE 2 U(K) \*2 FOR ER+3

| J1         | LEVEL 1       | J2   | LEVEL 2 | (U2)*2 | (U4)*2 | (06) *2 |
|------------|---------------|------|---------|--------|--------|---------|
| 1/2        | 33319         | 3/2  | 18583   | 0.0057 | 0.0    | 0.0     |
| 1/2        | 33319         | 3/2  | 22712   | 0.0353 | 0.0    | 0.0     |
| 1/2        | 33319         | 5/2  | 22376   | 0.0073 | 0.0    | 0.0     |
| 1/2        | 33319         | 7/2  | 20715   | 0.0    | 0.0204 | 0.0     |
| 1/2        | 33319         | 7/2  | 28224   | 0.0    | 0.0263 | 0.0     |
| 1/2        | 33319         | 9/2  | 12597   | 0.0    | 0.0272 | 0.0     |
| 1/2        | 33319         | 9/2  | 15455   | 0.0    | 0.0460 | 0.0     |
| 1/2        | 33319         | 9/2  | 27637   | 0.0    | 0.0083 | 0.0     |
| 1/2        | 33319 1       | 1/2  | 10346   | 0.0    | 0.0    | 0.0316  |
| 1/2        | 33319 1       | 11/2 | 19337   | 0.0    | 0.0    | 0.1686  |
| 1/2        | 33319 1       | 1/2  | 26631   | 0.0    | 0.0    | 0.0264  |
| 3/2        | 18583         | 3/2  | 18583   | 0.0371 | 0.0    | 0.0     |
| 3/2        | 18583         | 3/2  | 22712   | 0.0266 | 0.0    | 0.0     |
| 3/2        | 18583         | 5/2  | 22376   | 0.0077 | 0.0036 | 0.0     |
| 3/2        | 18583         | 7/2  | 20715   | 0.0000 | 0.0055 | 0.0     |
| 3/2        | 18583         | 7/2  | 28224   | 0.0475 | 0.1631 | 0.0     |
| 3/2        | 18583         | 9/2  | 12597   | 0.0    | 0.0765 | 0.2569  |
| 3/2        | 18583         | 9/2  | 15455   | 0.0    | 0.0001 | 0.0228  |
| 3/2        | 18583         | 9/2  | 24756   | 0.0    | 0.0036 | 0.0014  |
| 3/2        | 18583         | 9/2  | 27637   | 0.0    | 0.1659 | 0.0103  |
| 3/2        | 18583 1       | 1/2  | 10346   | 0.0    | 0.0046 | 0.0773  |
| 3/2        | 18583 1       | 1/2  | 19337   | 0.0    | 0.2002 | 0.0097  |
| 3/2        | 18583 1       | 1/2  | 26631   | 0.0    | 0.1282 | 0.0040  |
| 3/2        | 18583 1       | 3/2  | 6712    | 0.0    | 0.0    | 0.3419  |
| 3/2        | 18583 1       | 5/2  | 217     | 0.0    | 0.0    | 0.2225  |
| 3/2        | 18583 1       | 5/2  | 27922   | 0.0    | 0.0    | 0.0035  |
| 3/2        | 22712         | 3/2  | 22712   | 0.0709 | 0.0    | 0.0     |
| 3/2        | 22712         | 5/2  | 22376   | 0.0605 | 0.0351 | 0.0     |
| 3/2        | 22712         | 7/2  | 20715   | 0.0027 | 0.0577 | 0.0     |
| 3/2        | 22712         | 7/2  | 28224   | 0.0961 | 0.0342 | 0.0     |
| 3/2        | 22712         | 9/2  | 12597   | 0.0    | 0.2338 | 0.0545  |
| 3/2        | 22712         | 9/2  | 15455   | 0.0    | 0.0022 | 0.0616  |
| 3/2        | 22712         | 9/2  | 24756   | 0.0    | 0.0188 | 0.0057  |
| 3/2        | <b>2271</b> 2 | 9/2  | 27637   | 0.0    | 0.1711 | 0.1124  |
| 3/2        | 22712 1       | 1/2  | 10346   | 0.0    | 0.0913 | 0.4831  |
| 3/2        | 22712 1       | 1/2  | 19337   | 0.0    | 0.0004 | 0.0025  |
| 3/2        | 22712 1       | 1/2  | 26631   | 0.0    | 0.0232 | 0.0907  |
| 3/2        | 22712 1       | 3/2  | 6712    | 0.0    | 0.0    | 0.0347  |
| 3/2        | 22712 1       | 5/2  | 217     | 0.0    | 0.0    | 0.1255  |
| 5/2        | 22376         | 5/2  | 22376   | 0.0152 | 0.0050 | 0.0     |
| 5/2        | 22376         | 7/2  | 20715   | 0.0765 | 0.0498 | 0.0998  |
| 5/2        | 22376         | 1/2  | 28224   | 0.3831 | 0.0017 | 0.0380  |
| 5/2        | 22376         | 9/2  | 12597   | 0.0101 | 0.0629 | 0.1129  |
| 5/2        | 22376         | 9/2  | 15455   | 0.0005 | 0.2345 | 0.3491  |
| 5/2        | 22376         | 9/2  | 24/56   | 0.0092 | 0.0219 | 0.0056  |
| 5/2        | 22370         | 9/2  | 21031   | 0.1050 | 0.0846 | 0.0024  |
| <b>2/2</b> | 22310 7       | 1/2  | 10346   | 0.0    | 0.0984 | 0.0028  |

. . . . .

.....

ł

۴.

162

|   |       |   | • •   |     |        |        |
|---|-------|---|-------|-----|--------|--------|
| 2 | 21040 | 5 | 27653 | 0.0 | 0.1233 | 0.0012 |
| 2 | 21040 | 6 | 8579  | 0.0 | 0.1365 | 0.1604 |

-

. ..

ł

7.

and the second of the second

,

Ľ

PAGE 8 Appendix XII

## TABLE 2 U(K) \*2 FOR ER+3

| J1                                                                 | LEVEL 1 J2                                                                                                                                                     | LEVEL 2                                                                                      | (U2) *2                                                                                              | . (U4) <b>*</b> 2                                                                                          | (86) *2                                                                                                    |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 5/2<br>5/2<br>5/2<br>5/2<br>5/2                                    | 22376 11/2<br>22376 11/2<br>22376 13/2<br>22376 13/2<br>22376 15/2<br>22376 15/2                                                                               | 19337<br>26631<br>6712<br>217<br>27922                                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                      | 0.0581<br>0.0373<br>0.1794<br>0.0<br>0.0                                                                   | 0.1847<br>0.0806<br>0.3419<br>0.2221<br>0.0472                                                             |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 207157/2207157/2207159/2207159/2207159/22071511/22071511/22071511/22071511/22071513/22071515/2                                                                 | 20715<br>28224<br>12597<br>15455<br>24756<br>27637<br>10346<br>19337<br>26631<br>6712<br>217 | 0.1542<br>0.1221<br>0.0155<br>0.0119<br>0.0894<br>0.6234<br>0.0032<br>0.1258<br>0.0867<br>0.0<br>0.0 | 0.0103<br>0.0409<br>0.0935<br>0.0372<br>0.0483<br>0.0067<br>0.2653<br>0.0164<br>0.1264<br>0.3393<br>0.1465 | 0.1001<br>0.0070<br>0.4337<br>0.0109<br>0.0273<br>0.1194<br>0.1545<br>0.3984<br>0.0168<br>0.0001<br>0.6272 |
| 7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2<br>7/2 | 28224 7/2<br>28224 9/2<br>28224 9/2<br>28224 9/2<br>28224 9/2<br>28224 1/2<br>28224 11/2<br>28224 11/2<br>28224 11/2<br>28224 13/2<br>28224 15/2<br>28224 15/2 | 28224<br>12597<br>15455<br>24756<br>27637<br>10346<br>19337<br>26631<br>6712<br>217<br>27922 | 0.0033<br>0.1649<br>0.0000<br>0.0152<br>0.0034<br>0.5073<br>0.0006<br>0.0140<br>0.0<br>0.0<br>0.0    | 0.0048<br>0.3703<br>0.0123<br>0.0052<br>0.1887<br>0.2776<br>0.0393<br>0.0544<br>0.0997<br>0.0200<br>0.1206 | 0.0005<br>0.2168<br>0.0163<br>0.0244<br>0.1494<br>0.1616<br>0.2710<br>0.0177<br>0.0310<br>0.1171<br>0.0048 |
| 9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2 | 12597 9/2<br>12597 9/2<br>12597 9/2<br>12597 9/2<br>12597 11/2<br>12597 11/2<br>12597 11/2<br>12597 13/2<br>12597 15/2<br>12597 15/2                           | 12597<br>15455<br>24756<br>27637<br>10346<br>19337<br>26631<br>6712<br>217<br>27922          | 0.0040<br>0.1220<br>0.0138<br>0.0041<br>0.0021<br>0.1953<br>0.0631<br>0.0003<br>0.0<br>0.0           | 0.0782<br>0.0061<br>0.0066<br>0.0690<br>0.0648<br>0.0122<br>0.0087<br>0.1587<br>0.2101                     | 0.7932<br>0.0203<br>0.0032<br>0.0049<br>0.1520<br>0.2837<br>0.0228<br>0.7100<br>0.0072<br>0.0969           |
| 9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2<br>9/2        | 15455 9/2<br>15455 9/2<br>15455 9/2<br>15455 11/2<br>15455 11/2<br>15455 11/2<br>15455 13/2<br>15455 15/2<br>15455 15/2                                        | 15455<br>24756<br>27637<br>10346<br>19337<br>26631<br>6712<br>217<br>27922                   | 0.1369<br>0.0075<br>0.2170<br>0.0715<br>0.3790<br>0.4283<br>0.0109<br>0.0<br>0.0                     | 0.0751<br>0.0261<br>0.3167<br>0.0101<br>0.0236<br>0.0372<br>0.1533<br>0.5514<br>0.0867                     | 0.0507<br>0.0469<br>0.3650<br>1.2671<br>0.0008<br>0.0112<br>0.0828<br>C.4621<br>0.0142                     |

\_\_\_\_\_\_

.

¢,

;

### PAGE '9 APPENDIX XII

.

.

۰÷.

l

. .

. .

2

## TABLE 2 U(K) \*2 FOR ER+3

| J1   | LEVEL 1 J2 | LEVEL 2         | (U2) *2 | (U4) *2 | (06) *2   |
|------|------------|-----------------|---------|---------|-----------|
|      |            |                 |         |         |           |
| 9/2  | 24756 9/2  | 24756           | 0.0165  | 0.0546  | 0.5396    |
| 9/2  | 24756 9/2  | 27637           | 0.0251  | 0.0004  | 0.0328    |
| 9/2  | 24756 11/2 | 10346           | 0.0381  | 0.0753  | 0.1047    |
| 9/2  | 24756 11/2 | 19337           | 0.0285  | 0.1635  | 0.0610    |
| 9/2  | 24756 11/2 | 26631           | 0.2951  | 0.1068  | 0.1414    |
| 9/2  | 24756 13/2 | 6712            | 0.0590  | 0.1059  | 0.3531    |
| 9/2  | 24756 15/2 | 217             | 0.0     | 0.0243  | 0.2147    |
| 9/2  | 24756 15/2 | 27922           | 0.0     | 0.7139  | 0.0822    |
| 0.40 |            | 1 <b>7</b> 6 17 | 0 0010  | 0 0163  | 0 0070    |
| 9/2  | 27637 9/2  | 2/03/           | 0.0018  | 0.0153  | 0.0078    |
| 9/2  | 2/03/ 11/2 | 10340           | 0.0937  | 0.1001  | 0.0108    |
| 9/2  | 2/03/ 11/2 | 19337           | 0.0237  | 0.3403  | 0.1570    |
| 9/2  | 2/03/ 11/2 | 20031           | 1 1070  | 0.2117  | 0.1516    |
| 9/2  | 2/03/ 13/2 | 0/12            | 1.1078  | 0.30/2  | 0.0106    |
| 9/2  | 2/03/ 15/2 | 217             | 0.0     | 0.2337  | 0.1300    |
| 9/2  | 21031 15/2 | 21922           | 0.0     | 0.0056  | 0.0558    |
| 11/2 | 10346 11/2 | 10346           | 0.0784  | 0.0364  | 0.0277    |
| 11/2 | 10346 11/2 | 19337           | 0.0352  | 0.1385  | 0.0372    |
| 11/2 | 10346 11/2 | 26631           | 0.0002  | 0.0486  | 0.0133    |
| 11/2 | 10346 13/2 | 6712            | 0.0332  | 0.1706  | 1.0915    |
| 11/2 | 10346 15/2 | 217             | 0.0276  | 0.0002  | 0.3942    |
| 11/2 | 10346 15/2 | 27922           | 0.0463  | 0.0017  | 0.2426    |
| 11/2 | 10227 11/2 | 10227           | 0 0021  | 0 0726  | 0 1069    |
| 11/2 | 10227 11/2 | 26621           | 0.0021  | 0.0720  | 0.1000    |
| 11/2 | 10227 12/2 | 6710            | 0.0004  | 0.1515  | 0.0498    |
| 11/2 | 19337 15/2 | 217             | 0.0255  | 0 4138  | 0.0302    |
| 11/2 | 19337 15/2 | 27922           | 0.1010  | 0.0000  | 1.1445    |
| , _  | 1,000 10,2 | 21720           |         |         |           |
| 11/2 | 26631 11/2 | 26631           | 0.0049  | 0.2513  | 0.0669    |
| 11/2 | 26631 13/2 | 6712            | 0.1005  | 0.2648  | 0.2570    |
| 11/2 | 26631 15/2 | 217             | 0.9156  | 0.5263  | 0.1167    |
| 11/2 | 26631 15/2 | 27922           | 0.0998  | 0.0579  | 0.6787    |
| 12/2 | 6712 12/2  | 6710            | 0 1722  | 0 1721  | 0 2200    |
| 13/2 | 6712 15/2  | 217             | 0.0105  | 0 1172  | 1 // 325  |
| 13/2 | 6712 15/2  | 27922           | 0.0001  | 0.0015  | 0 0257    |
| .572 | 0112 1072  |                 |         | 0.0013  | 0 • V2 J1 |
| 15/2 | 217 15/2   | 217             | 0.2463  | 0.3803  | 1.8611    |
| 15/2 | 217 15/2   | 27922           | 0.0213  | 0.0039  | 0.0735    |
|      |            |                 |         |         |           |
| 15/2 | 27922 15/2 | 27922           | 1.8431  | 1.0174  | 0.0676    |

٠.

1

;

3

.

APPENDIX XIII

#### PAGE 1

## APPENDIX XIII

| TM+3:LAF3                             | TABLE<br>CENTER                       | 1<br>RS OF                   | GRAVITY                         |
|---------------------------------------|---------------------------------------|------------------------------|---------------------------------|
| OBSERVED                              | CALC                                  | 0-C                          | STATE                           |
| 200<br>5858<br>8336<br>12711<br>14559 | 175<br>5818<br>8391<br>12721<br>14597 | 25<br>40<br>-54<br>-9<br>-37 | 3H6<br>3F4<br>3H5<br>3H4<br>3F3 |
| 15173<br>21352                        | 15181<br>21314                        | -7<br>38                     | 3F 2<br>1G 4                    |
| 2806-1                                | 28001                                 | 60                           | 1D2                             |
| 34886                                 | 34975                                 | -88                          | <b>1I</b> 6                     |
| 35604<br>36559<br>38344               | 35579<br>36615<br>38268               | 25<br>-55<br>76              | 3P 0<br>3P 1<br>3P 2            |
| • • •                                 | 75300                                 | • • •                        | <b>1</b> S0                     |

#### PAGE 3 Appendix XIII

## TABLE 2 U(K) \*2 FOR TM+3

| J 1                                                      | LEVEL 1                                                              | J2                                   | LEVEL 2                                                          | (U2) *2                                                          | (U4) *2                                                            | <b>(</b> U6) *2                                            |
|----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| 0<br>0<br>0<br>0                                         | 35621<br>35621<br>35621<br>35621<br>35621<br>35621                   | 2<br>2<br>4<br>4<br>6                | 15180<br>28028<br>5828<br>12735<br>153                           | 0.3618<br>0.0297<br>0.0<br>0.0<br>0.0                            | 0.0<br>0.0<br>0.2796<br>0.0235<br>0.0                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0756                  |
| 1<br>1<br>1<br>1<br>1<br>1<br>1                          | 36603<br>36603<br>36603<br>36603<br>36603<br>36603<br>36603<br>36603 | 1<br>2<br>2<br>3<br>4<br>4<br>5<br>6 | 36603<br>15180<br>28028<br>14598<br>5828<br>12735<br>8396<br>153 | 0.1607<br>0.1374<br>0.4521<br>0.5714<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.1964<br>0.1099<br>0.4029<br>0.2857<br>0.0          | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0892<br>0.1239 |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 15180<br>15180<br>15180<br>15180<br>15180<br>15180<br>15180          | 2<br>2<br>3<br>4<br>5<br>6           | 15180<br>28028<br>14598<br>5828<br>12735<br>8396<br>153          | 0.1425<br>0.0642<br>0.0036<br>0.3026<br>0.2969<br>0.0<br>0.0     | 0.0443<br>0.3073<br>0.0745<br>0.0562<br>0.1711<br>0.2907<br>0.0000 | 0.0<br>0.0<br>0.0440<br>0.0763<br>0.5844<br>0.2550         |
| 2<br>2<br>2<br>2<br>2<br>2<br>2                          | 28028<br>28028<br>28028<br>28028<br>28028<br>28028<br>28028          | 2<br>3<br>4<br>5<br>6                | 28028<br>14598<br>5828<br>12735<br>8396<br>153                   | 0.1931<br>0.1638<br>0.5689<br>0.1257<br>0.0<br>0.0               | 0.0051<br>0.0698<br>0.0961<br>0.0124<br>0.0012<br>0.3131           | 0.0<br>0.0<br>0.0215<br>0.2300<br>0.0182<br>0.0958         |
| 33333                                                    | 14598<br>14598<br>14598<br>14598<br>14598<br>14598                   | 3<br>4<br>5<br>6                     | 14598<br>5828<br>12735<br>8396<br>153                            | 0.0625<br>0.0025<br>0.0817<br>0.6285<br>0.0                      | 0.0030<br>0.0005<br>0.3522<br>0.3467<br>0.3164                     | 0.0625<br>0.1688<br>0.2844<br>0.0<br>0.8413                |
| 4<br>4<br>4                                              | 5828<br>5828<br>5828<br>5828<br>5828                                 | 4<br>4<br>5<br>6                     | 5828<br>12735<br>8396<br>153                                     | 0.0104<br>0.1275<br>0.0909<br>0.5395                             | 0.4059<br>0.1311<br>0.1299<br>0.7261                               | 0.2651<br>0.2113<br>0.9264<br>0.2421                       |
| 4<br>4<br>4                                              | 12735<br>12735<br>12735                                              | 4<br>5<br>6                          | 12735<br>8396<br>153                                             | 0.2672<br>0.0131<br>0.2357                                       | 0.1650<br>0.4762<br>0.1081                                         | 0.5704<br>0.0095<br>0.5916                                 |
| 5<br>5                                                   | 8396<br>8396                                                         | 5<br>6                               | 8396<br>153                                                      | 0.9192<br>0.1074                                                 | 0.3668<br>0.2314                                                   | 0.1214<br>0.6385                                           |
| 6                                                        | 153                                                                  | 6                                    | 153                                                              | 1.2517                                                           | 0.6916                                                             | 0.7759                                                     |

APPENDIX XIV

|                  | Ω <sub>2</sub> ×10 <sup>-20</sup> cm <sup>2</sup> | Ω <sub>4</sub> x10 <sup>20</sup> cm <sup>2</sup> | $\Omega_{6} \times 10^{-20} \text{cm}^{2}$ | Reference |
|------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------|
| Pr <sup>3+</sup> | 0.12                                              | 1.77                                             | 4.78                                       | a         |
| Nd               | 0.35                                              | 2.57                                             | 2.50                                       | a         |
| Pm               | 0.5                                               | 1.9                                              | 2.2                                        | Ь         |
| Sm               | 1.0                                               | 0.5                                              | 1.5                                        | b         |
| Eu               | 1.19                                              | 1.16                                             | 0.39                                       | С         |
| Gd               | 1.1                                               | 1.2                                              | 0.5                                        | b         |
| Tb               | 1.1                                               | 1.4                                              | 0.9                                        | b         |
| Dy               | 1.1                                               | 1.4                                              | 0.9                                        | b,d       |
| Но               | 1.16                                              | 1.38                                             | 0.88                                       | е         |
| Er               | 1.07                                              | 0.28                                             | 0.63                                       | f         |
| Tm               | 0.52                                              | 0.59                                             | 0.22                                       | b,g,h     |

| <sup>a</sup> Krupke (1966)                | <sup>e</sup> Weber et al. (1972) |
|-------------------------------------------|----------------------------------|
| b<br>Approximate values from present work | <sup>f</sup> Weber (1967b)       |
| <sup>C</sup> Weber (1967a)                | <sup>g</sup> Weber (1967c)       |
| d <sub>Krupke</sub> (1974)                | <sup>h</sup> Pappalardo (1976)   |

.

APPENDIX XIV - TABLE 1

Calculated Values of  $\boldsymbol{\Omega}_{\lambda}$  for  $\mathrm{Ln}^{3+}\mathrm{:LaF}_{3}$ 

|            | Observed and calculated radiative life-times for Ln <sup>3+</sup> :LaF <sub>3</sub> |                        |                         |           |  |
|------------|-------------------------------------------------------------------------------------|------------------------|-------------------------|-----------|--|
|            | Excited<br>State                                                                    | <sup>τ</sup> R<br>µsec | τ<br>Observed<br>(µsec) | Reference |  |
| Pr         | 1 <sub>02</sub>                                                                     | 902                    | 520 ·                   | a         |  |
|            | 3 <sub>P0</sub>                                                                     | 73                     | 47                      |           |  |
| Nd         | 4 <sub>F3/2</sub>                                                                   | 635                    | 670                     | b         |  |
| <b>P</b> m | 5 <sub>F1</sub>                                                                     | 566                    | -                       | с         |  |
| Sm         | <sup>4</sup> 6 <sub>5/2</sub>                                                       | 2160                   | -                       | С         |  |
| Eu         | <sup>5</sup> 02                                                                     | 9200                   | 5400                    | b         |  |
|            | <sup>5</sup> D1                                                                     | 7700                   | 4700                    |           |  |
|            | <sup>5</sup> 00                                                                     | 6900                   | 6700                    |           |  |
| Ь          | <sup>5</sup> 03                                                                     | 809                    | -                       | с         |  |
|            | <sup>5</sup> D <sub>4</sub>                                                         | 1450                   | -                       |           |  |
| y          | 4 <sub>F9/2</sub>                                                                   | 896                    | -                       | с         |  |
| 0          | <sup>5</sup> s <sub>2</sub>                                                         | 826                    | -                       | е         |  |
|            | 5<br>5                                                                              | 779                    | -                       |           |  |
| r          | <sup>2</sup> P <sub>3/2</sub>                                                       | 430                    | 290                     | f         |  |
|            | <sup>4</sup> S <sub>3/2</sub>                                                       | 1020                   | 1000                    |           |  |
| m          | 1 <sub>D2</sub>                                                                     | 137                    | 54                      | a,g       |  |
|            | <sup>1</sup> G <sub>4</sub>                                                         | 1560                   | 960                     | a,g       |  |

| A | PP | 'ENC | NIX. | XIV | - | TABLE | 2 |
|---|----|------|------|-----|---|-------|---|
|---|----|------|------|-----|---|-------|---|

<sup>a</sup>Weber (1967c), (1968)

<sup>b</sup>Riseberg and Weber (1976), Weber (1967c)

<sup>C</sup>Present Work

•

<sup>d</sup>Weber (1967a), measured at 77°K

<sup>e</sup>Weber et al. (1972)

f<sub>Weber</sub> (1967b)

<sup>g</sup>Compare recent calculations by Pappalardo (1976)

| APPENDIX XI | 1 - T | ABLE | 3 |
|-------------|-------|------|---|
|-------------|-------|------|---|

| Partial lifetimes a `Branching Ratios in the<br>Relaxation of Excited States in Tb <sup>3+</sup> :LaF <sub>3</sub> . |                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
| Partial Electric-                                                                                                    | Partial Magnetic-<br>Dipole Lifetime (msec) |  |  |  |

| Transition                       | Partial Electric-<br>Dipole Lifetime (msec)                  | Partial Magnetic-<br>Dipole Lifetime (msec) | β <sub>R</sub> |
|----------------------------------|--------------------------------------------------------------|---------------------------------------------|----------------|
| <sup>5</sup> D3→ <sup>5</sup> D4 | 125.4                                                        | 3.413                                       | 0.24           |
| 7 <sub>F0</sub>                  | œ                                                            |                                             | 0              |
| 7 <sub>F1</sub>                  | 91.01                                                        |                                             | 0.009          |
| 7 <sub>F2</sub>                  | 51.93                                                        | 5.606                                       | 0.16           |
| 7 <sub>F3</sub>                  | 108.4                                                        | 109.3                                       | 0.015          |
| 7 <sub>F4</sub>                  | 28.61                                                        | 1.590                                       | 0.54           |
| 7 <sub>F5</sub>                  | 30.32                                                        |                                             | 0.027          |
| <sup>7</sup> F6                  | 87.15                                                        |                                             |                |
|                                  | ( <sup>5</sup> D <sub>3</sub> ) τ <sub>R</sub> = 0.809 msec. |                                             |                |
| 5 <sub>04</sub> →7 <sub>F0</sub> | 425.6                                                        |                                             | 0.003          |
| 7 <sub>F1</sub>                  | 275.9                                                        |                                             | 0.005          |
| 7 <sub>F2</sub>                  | 466.4                                                        |                                             | 0.003          |
| 7 <sub>F3</sub>                  | 208.3                                                        | 15.28                                       | 0.10           |
| <sup>7</sup> F4                  | 144.1                                                        | 505.1                                       | 0.013          |
| 7 <sub>F5</sub>                  | 27.52                                                        | 1.800                                       | 0.85           |
| 7 <sub>F</sub> 6                 | 114.0                                                        |                                             | 0.013          |
| -                                | $({}^{5}D_{4}) \tau_{R} = 1.45$ msec.                        |                                             |                |

<sup>a</sup>The intensity parameters used in the calculations are given in Appendix XIV - Table 1. The matrix elements of  $\underline{v}^{(\lambda)}$  appear in Appendix IX.