The recent operational performance of the CERN Omega ring imaging Čerenkov detector

Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX United Kingdom

M. Davenport and J. Eades

CERN, CH-1211, Geneva 23, Switzerland

ABSTRACT

We discuss the design and construction of the Time Projection Chambers (TPCs) of the Omega Ring Imaging Čerenkov Detector (RICH). Details are given of the TPC high voltage system and its monitoring and control. In addition, the operation and monitoring of the readout is described together with results of tests on the performance of the front end amplifiers.

The operation of the RICH TPCs and electronics during the first data run of WA69, in 1984, is discussed together with relevant results from laboratory tests. Results from the preliminary analysis of a sample of data from the 1984 run are also presented.

1. INTRODUCTION

Figure 1 shows a general view of the RICH in the WA69 high energy photo production experiment at the CERN Omega Spectrometer.

Secondary particles from interactions in the spectrometer enter the detector and traverse a 5 meter atmospheric pressure gas radiator (Fig. 2), producing ultraviolet Čerenkov radiation which is focussed by a 7m x 4m mirror array onto a focal surface containing 16 time projection chambers (TPCs).

A single TPC is shown in plan and elevation in Fig. 3. Čerenkov photons enter the TPC through an ultraviolet transmitting window of Suprasil II fused silica ("quartz"). The gas mixture in the TPC was 80% methane (CH₄) and 20% isobutane (C₄H₁₀). This mixture was passed through a gas purification system to reduce the contamination from oxygen and water vapour to the level of a few parts per million, and then bubbled through the organic photoionizing liquid tetrakis(dimethylamino)ethylene (TMAE) at a temperature of 15°C. The Čerenkov photons photoionize the TMAE molecules (average ultraviolet absorption length 43 mm) and the resulting photoelectrons drift under the influence of an applied electric field to the central proportional wire plane (PWP).

Each of the 192 sense wires in the PWP is connected to a local preamplifier and in turn to a second stage amplifier, discriminator and time slice encoder (TSE) as shown in Fig. 4. After an event trigger, data from the TPCs are strobed into memory where they are encoded into wire number and time slice and read into CAMAC.

The number of photoelectrons seen in the Čerenkov cone angle θ developed in a radiator length L (cm)
Fig. 3. Plan and Elevation of a TPC.

Fig. 4. Schematic of the RICH Readout System.

is given by

\[N_{\text{e}} = \frac{370 \text{Lein}}{\theta} \int Q(E) R(E) T_{w}(E) T_{g}(E) \, dE = N_{\text{e}} \text{Lein} \theta \]

where \(E \) is the Čerenkov photon energy, \(N_{\text{e}} \) represents overall detection efficiency for Čerenkov photons and is the product of the mirror UV reflectivity \(R(E) \), the quartz window UV transmission \(T_{w}(E) \), and TMAE quantum efficiency \(Q(E) \) and the radiator gas transmission \(T_{g}(E) \). The value of \(N_{\text{e}} \) seen under actual experimental running conditions is given in \(\theta \).

2. THE TPC AND THEIR HIGH VOLTAGE SYSTEM

Each TPC consists of a 30 cm drift volume on either side of the PWP. The drift field is defined by 4 resistive chains connected in parallel at their top and bottom ends. Two chains are fitted to the quartz window, which is permanently attached to the RICH, forming part of the radiator gas enclosure. The other pair are attached to the demountable TPC, and can be easily unplugged from a high voltage distribution panel when the TPC is removed for servicing. Each chain consists of 98 1 MΩ, 1% tolerance resistors, and supplies voltage to 100 μm diameter field wires mounted at 2 mm pitch on both sides of the glass and quartz windows. A negative potential—typically \(-11 \text{kV}^{2}\) — is applied to the outermost field wires and also to the copper boards which form the ends of the drift volumes. The graded potentials from the wires are also connected to plated strips on double sided circuit boards, so that each potential forms two concentric closed loops around the drift volumes.

The PWP structure consists of 192 10 cm long, 20 μm diameter gold plated tungsten sense wires at 4 mm pitch, separated by 0.8 mm thick copper-coated fiberglass cathodes. The separators define the anode-cathode spacing of 1.6 mm, and extend 4 mm into each drift volume to limit the solid angle for the emission of UV photons produced in the avalanches around the sense wires. To complete the PWP, 50 cathode wires of 100 μm diameter were pitched at 2 mm across the entrances to all cells perpendicular to the cathode dividers. The sense wires are effectively at ground potential, being connected to the preamplifier inputs, while the cathodes are operated in the voltage range \(-1.8 \text{ to } -2.15 \text{kV}\). To protect the sense wires and their amplifiers, each cathode voltage supply cable included a current limiting series resistor. In addition, the cathode supplies incorporated an over-current trip and a ramping facility which reduced their output by about 500 volts between beam gates, to quench any long term discharges within the TPCs.

In each TPC, the final drift wires were biased to a more negative potential than the PWP cathodes with a variable resistance whose value was selected, in conjunction with the drift chain supply voltage, to set up the required drift field at a particular PWP operating voltage.

Figure 5 shows the circuit for a single resistance channel. Resistances are selected with "make before break" rotary switches and a potentiometer. It is necessary to prevent the voltage on the final drift wires of the TPC rising to a level — perhaps due to an incorrect resistance selection, or to an open circuit fault arising between the rotary switch contacts — where potentially damaging breakdown to the PWP would occur. The voltage is monitored via a 1000:1 divider chain by a voltage sensing relay (VSR) and compared to a reference voltage representing 1/1000 of the safe maximum. Should this be exceeded, the VSR closes a high voltage reed relay, grounding the bottom ends of the drift chains. The JFET acts as an impedance buffer between the monitor network and the low input impedance VSR.

The TPC high voltages and currents were continuously monitored by a CAMAC data logger and written to tape with the other RICH data. An on-line monitoring program warned when any voltage or current had drifted outside its permitted limits.

1. N. = -30 kV, 1 mA Supply, Alpha Mark II Series, Breden-berg Ltd, Thornton Heath, Surrey, England
2. P. A. G. Model 345 Regulated High Voltage power supply, Rutherford Appleton Laboratory, 1976
3. THE RICH READOUT SYSTEM

3.1 General Description

Figure 4 shows the RICH readout system in schematic form. Signals at the sense wires are received by locally-mounted preamplifiers (CERN/Lachen type MSD2) — guarded against discharges of up to 5 kV from 300 pf by transistor protection circuits (Fig. 6), before passing to 8 channel time slice encoder modules (TSEs) containing main amplifiers (gain × 100), discriminators and 128 slice time-addressed memories. The TSEs operate in a circular-buffer mode, making the system sensitive to Čerenkov signals arriving before the formation of the event trigger (Fig. 7). Memory time slice widths are determined by the frequency of a high stability CAMAC-programmable clock generator. The clock frequency is chosen on the basis of the measured drift velocity and the required spatial resolution in the direction of drift. Under typical run conditions, with a drift field of 430 V/cm, the drift velocity of 3.6 cm/μs (for a gas mixture containing 60% methane, 20% isobutane and TMAE) gave a maximum drift time of 6 μs over 20 cm. A clock frequency of 31 MHz was generally applied, giving a drift coordinate resolution of about 1.8 mm.
Gray-encoding of memory addresses ensures that only one bit transition occurs during each address change — minimizing the digital “noise” injected into the TSEs. Following an event trigger, the TSEs memories remain sensitive for a number of clock pulses chosen by

\[n_{th} = 128 - (\Delta t \cdot f) \]

where \(f \) is the clock frequency and \(\Delta t \) is the expected time interval between the arrival of the Čerenkov light in the TPCs and the formation of the event trigger.

Data is read from the TSE memories in Gray-encoded time slice order, compressed and passed along 32 parallel streams (one for each group of 96 wires) at 2 MHz to 1024 word stack memories before being read sequentially into CAMAC.

3.6 Amplifier Performance

The two main requirements for the TPC amplifier system were

i) adequate sensitivity to detect single photoelectrons with a TPC gas gain in the range \(10^3 \)–\(10^4 \) electrons.

ii) crosstalk rejection for the large signals resulting from the passage of secondary particles through the 10 cm of drift gas.

These parameters were investigated by injecting calibrated amounts of charge into the system with circuits designed to simulate the shapes of pulses seen from either single photoelectrons or track ionization (Fig. 8). The amplifier charge sensitivity was measured at several TSE discriminator threshold voltages, and the charge amplification (in mV/μC) computed. In laboratory tests, noise limited the minimum practicable charge threshold to \(4 - 5 \mu \text{C} \) (about 27000 electrons), at a corresponding discrimination level of \(-100 \text{ mV} \). An amplification of 23 mV/μC was found to give linear response for signals up to \(-10^4 \) electrons. Although higher gain was possible, this resulted in a shorter range of linear amplification and increased interchannel crosstalk. At a TSE discriminator threshold of \(-375 \text{ mV} \), crosstalk only became visible — as synchronous hits on the two channels adjacent to the struck wire — for signals in excess of \(1.2 \times 10^5 \) electrons. A sense wire that had collected the charge from an avalanche induced by several hundred ion pairs was insensitive due to amplifier saturation for a period of at least 2.5 μs to a following single photoelectron signal.

3.6 On Line Calibration and Monitoring

The threshold voltages applied to the TSE discriminators of each half — TPC could be independently controlled, and were monitored — together with the voltages — by a CAMAC data logging system.

Pulses of known charge were injected into fiducial amplifiers in each TPC to provide an on-line calibration of the charge sensitivity at a particular TSE threshold. A common pulse was split and sent to locally-mounted pulse shapers through independently-controlled attenuators. A second test system was used to identify ‘dead’ readout channels by pulsing all the odd- or even-numbered channels simultaneously.

![Amplifier Calibration Pulse Shapers](image)

Fig. 8: Amplifier Calibration Pulse Shapers.
4. LABORATORY TESTS OF TPC PERFORMANCE

4.1 Laboratory Set-up

A TPC and quartz window were mounted vertically to intercept a collimated beam of UV light from a low pressure deuterium lamp (Fig. 9). The TPC and UV beam were surveyed to ensure that the beam entered the chamber at normal incidence — parallel to the TPC sense wires.

Photoelectrons produced in the gas then drifted horizontally into the PWP cells. An inclined calcium fluoride plate reflected ~ 1% of the incident beam onto a wavelength shifted photomultiplier tube (PMT) to allow the beam intensity to be monitored. The optical elements were mounted on a traversing stage which allowed the beam to be scanned vertically and horizontally in 0.1 mm increments.

The beam, having traversed a 40 cm air path, entered the TPC through the quartz window. Photons below 230 nm, photoionised the TMAE vapour (saturated at 10°C) and the resulting photoelectrons drifted to the PWP. The vertical profile of the photoelectron distribution was 0.5 mm FWHM after 2 cm of drift.

A group of adjacent sense wires were instrumented with standard front end preamplifiers and connected to a TSE module as shown in Fig. 9. The PMT signal was discriminated and scaled to provide a normalization rate. The singles rates on individual wires were also scaled, as was the 'OR' of the group.

The following sections give details of measurements made with this system to provide a better understanding of the RICH TPC performance during the 1984 run.

4.4 Electrostatic collection efficiency.

In our original TPC design, the PWP sense wires were separated by 0.6 mm thick brass cathode strips. Due to mechanical construction constraints, these were replaced — with the exception of one early TPC — with 0.3 mm copper-clad fiberglass for the production TPCs.

In the following tests, the beam was positioned so that photoelectrons drifted 2 cm to the PWP structure. The beam was then scanned vertically, in 0.2 mm steps, over several cells. The corrected OR (10μs) rate showed a series of minima, coinciding with the surveyed positions of the separators. These minima deepened as the drift field was increased. A collection efficiency was calculated as the integrated beam response of the chamber across each cell divided by the integrated beam intensity derived at low drift field. The variation in collection efficiency with applied drift field is shown in Fig. 10.

Three chamber configurations were tested:

a) 0.6 mm separators, with cathode wires.
b) 0.6 mm separators, without cathode wires.
c) 0.3 mm brass separators with cathode wires.

All curves show a loss of collection efficiency with increasing drift field. The difference between curves a) and b) implies losses to both separators and cathode wires. Curve c) shows that while thinner separators improve the efficiency, losses due to cathode wires are still present at high drift fields.

The collection efficiency — deduced under the 1984 running conditions of $E_D = 420 \text{ V/cm}, V_{PWP} = -2.15 \text{ kV}$ — was 0.49 ±
enhancement in electrostatic efficiency from a reduction in drift
field is not practical (at least with the present gas mixture).
Work is in progress to investigate focus structures which would
 improve the overall efficiency.

4.c Single photon detection efficiency

Pulse height spectra for single photoelectron avalanches in
CH₄ have been observed to have an exponential form in the
regime of low applied field and gas gain. As these parameters
increase the spectra develop into a peaked form which can be
described by a Poisson distribution. The electronic threshold
applied after the final stage of amplification however cuts into
this distribution, leaving some fraction of it undetected.

The response of the TPC to single photoelectrons has been
studied at a variety of isobutane concentrations and PWP op­
rating voltages. The beam was aligned to ensure that the
photoelectrons drifted onto a single wire. Pulse height spec­
tra were accumulated in a multichannel analyzer from signals
detected with a TSE amplifier with calibrated charge gain.

![Fig. 11. TPC Single Photoelectron Pulse Height Spectrum.](image)

The background-subtracted OR (100 ns) and OR (10 μs)
count rates were measured at a variety of PWP cathode volt­
gages for a fixed drift field of 200 V/cm. These are plotted for
a TSE threshold of -160 mV in Fig. 12. The curve for OR
(10 μs) at -375 mV is shown for comparison.

A divergence of OR (10 μs) and OR (100 ns) is observed
at the higher voltages, indicating the onset of afterpulsing.
This effect was not observed when a similar measurement was
made with no TMAE in the chamber. In this latter case,
photoelectrons were ejected from the copper end board of one
of the drift volumes, using a mercury discharge lamp. The
after pulsing suppressed by the 10 μs gate has been attributed
to photon feedback (§4.d).

The full beam intensity was measured to be 9.3 ± 0.4 kHz.
At a cathode voltage of -2.15 kV, the single photoelectron
detection efficiency was 0.88 ± 0.04 at -160 mV, and 0.72 ±
0.04 at the experimental operating threshold of -375 mV.

4.d Photon Feedback

The addition of TMAE to the drift gas of a TPC produces
a source of afterpulsing known as photon feedback. The UV
photons created in an avalanche around a sense wire propagate
outwards into the drift region where they convert with high
efficiency. The resulting phototlockeclons then drift back to the
sense planes, initiating further avalanches.

While feedback from single photoelectron avalanches adds
a small background underneath the ring points, feedback from
charged track ionization in the drift gas may be several hundred
times greater and can cause significant background. Cathode
separators are used to restrict the solid angle for escape of
feedback photons and the addition of isobutane to the drift
gas significantly reduces the level of feedback.

Some of the main features of photon feedback have been
extracted from laboratory measurements outlined in Section
4.c. The parameter

\[F = \frac{\text{OR (100 ns)} - \text{OR (10 μs)}}{\text{OR (10 μs)}} \]

has been calculated, and represents the fraction of feedback
produced by a single photoelectron avalanche which returns to
the adjacent wires surrounding the struck wire. The quotient
removes the dependence on the single photoelectron detection
efficiency, but is not corrected for electrostatic collection effi­
ciency or electron absorption in the drift gas.

The dependence of the parameter \(F \) on the cathode voltage
is shown in Fig. 12 and its dependence on isobutane concen­
tration is shown in Fig. 13.

The main features observed are:

i) Feedback increases approximately exponentially with
cathode voltage. The voltage at which feedback becomes self­
sustaining limits the PWP operation to a point several hun­
dred volts below the limit found in methane/isobutane mix­
tures without TMAE.

ii) The addition of isobutane to pure methane rapidly de­
creases the feedback observed but even at large concentrations
of isobutane, feedback is still present.

It is of interest to understand the mechanisms of feedback
phototon emission in order to find the optimum conditions to
limit its effect. A mechanism proposed to explain photon
emission in a scintillating drift chamber containing \(\text{Ar/CH₄} \)
mixtures provides possible insight. The relevant processes
which result in photon emission in the wavelength range
143.0 → 230.0 nm, between the \(\text{CH}_2 \) UV cut-off and the pho­
tonization threshold of TMAE are:

\[\text{e}^- + \text{CH}_4 \rightarrow \text{C}_2\text{H}_2^+ + 4\text{e}^- \rightarrow \text{C} + h\nu \]

\[\text{C} \text{I}(156.1 \text{ nm}) \]
\[\text{C} \text{I}(165.7 \text{ nm}) \]
\[\text{C} \text{I}(183.1 \text{ nm}) \]

\[\text{C}_2\text{H}_2^+ \rightarrow 2\text{CH}_2^+ \]
Fig. 12. Variation of Detection Efficiency and Photon Feedback with PWP Cathode High Voltage.

Fig. 13. Variation of Photon Feedback with Isobutane Concentration.

Figure 14 shows the position of these transitions on a plot of the transmission of 10 cm long samples of various gases. At present, however, we are unable to distinguish between a continuous or fine-structured photon-emission spectrum.

5. OPERATIONAL CONSIDERATIONS AND EXPERIENCE FROM THE 1984 WA69 RUN

5.1 General Considerations

The efficient operation of any RICH is dependent on the simultaneous optimization of a large number of parameters. This optimization is difficult to achieve and maintain when transferring from the test beam or laboratory set-up to the larger scale of a complete detector.

Fig. 14. Gas UV Transmission Curves, and C. I. Photon Emission Energies.
Additional constraints are placed on the detector when operating in the full experimental environment due to the large increase in beam intensity, beam-related background and electronic noise. Contradictions may arise between settings for optimal detection of single photoelectrons (i.e., a high N$_e$) and those required for stable, long-term operation of the TPCs: access for servicing or repairs may be restricted or even impossible.

In our experience it is essential to preselect and subsequently monitor the gases used both in the radiator and TPCs by, for example, measurement of UV transmission, refractive index, oxygen and water vapour contamination and drift velocity. (7)

5.5 Operational experience in WA69.

The beam for the WA69 experiment delivered 2 x 109 tagged photons/sec in the energy range 70 to 180 GeV, derived from a primary 200 GeV electron beam of 3 x 109/sec. However, the total photon flux between the Čerenkov e$^+e^-$ threshold of 21 MeV to full energy was 3.3 x 109. In addition, the flux of soft photons (from synchrotron radiation) was estimated at 5 x 109 for 21 MeV < E_T < 100 MeV. This high instantaneous photon flux gave a significant Čerenkov background in the TPCs from e$^+e^-$ pairs created by the conversion of photons in material upstream of the RICH radiator. Together with the ionisation trails left in the TPCs by secondary particles and the effects of photon feedback, this contributed to the relatively high beam currents drawn by the TPC proportional wire planes — typically 2-4 μA at 2.15 kV and reduced the usable width of the single electron signal plateau. The PWP supply overcurrent trips were normally to set to 20 μA to protect the sense wires and preamplifiers, and the high voltage ramped down between SPS beam spills to reduce the incidence of overcurrent trips. The beam background was however too high to allow the TPCs to be operated with long-term stability above 2.15 kV. The TSE discriminator thresholds sat at +375 mV, above the local electronic noise level, (5.4.d), while the drift gas contained 20% isobutane to help stabilise the TPCs by reducing photon feedback (5.4.d). This gas mixture required a drift field of about 240 V/cm for an acceptable drift velocity and sensitive range, but resulted in electrostatic losses of electrons entering the PWP. (5.4.b). The TMAE bubbler temperature of 15°C was chosen to prevent condensation within the TPCs. At this temperature, 90% of Čerenkov photons are absorbed by the TMAE.3

6. PRELIMINARY ANALYSIS

OF THE RICH PERFORMANCE IN 1984

In order to calibrate the performance of the RICH under actual experimental running conditions, we have made a preliminary analysis of the reaction

$$\tau^+ \rightarrow e^+e^-+\nu$$

This was the dominant process in WA69, as in any photoproduction experiment, and provides a clean source of $\beta = 1$ charged particles — important in the calibration of any RICH.

The vector momentum and position of the final state leptons at the exit of the Omega Spectrometer were reconstructed by the program TRIDENT,15 and used to predict the centres of the corresponding Čerenkov rings in the RICH TPCs.

The radial distance r_i from the predicted centre to each digitizing observed the TPCs was then used to compute a Čerenkov Angle θ_i where

$$\theta_i = r_i/f$$

where f is the focal length: 500 cm. Assigning the electron mass, and using the track momentum to determine β, we obtain a value of refractive index n_ι, or refractivity ϵ_i for each digitizing:

$$n_\iota = \frac{1}{\beta \cos \theta_i}$$

$$\epsilon_i = (n_\iota - 1) \times 10^6$$

Figure 15 is a histogram of ϵ for e^+e^- taken under normal running conditions at a photon beam intensity of 2.5 x 109 /sec, and displays the following characteristics:

i) A distinct peak at $\epsilon = 300$, determining the refractive index of the nitrogen radiator, with a width corresponding to 0.04 hits / cm for the spatial resolution for photoelectrons relative to the predicted ring centre.

ii) A background level in the region of the Čerenkov peak corresponding to ~ 0.04 hits / cm2 / track in the TPCs, or a signal to background ratio of 3 within +2σ, of the expected signal. Having determined the refractive index of the radiator gas, the data were re-analysed with a Monte-Carlo generation of the expected ring for each track. For each TPC, the Monte-Carlo points lying within the sensitive area were summed and histogrammed as a function of the drift distance from the PWP. A comparison of this distribution with that observed in the data after background subtraction (i.e. the drift distance distribution corresponding to the peak of Fig. 15) allows an estimate of the variation of N_ι with drift distance. This is shown in Fig. 16 for a single TPC. The smooth curve is a fit to the form

$$N_\iota(d) = N_\iota(0)e^{-d/\lambda}$$

with

$$N_\iota(0) = 49.7 \pm 1.3$$

$$\lambda = 43.3 \pm 4.6 \text{ cm}$$

Absorption lengths (λ) of 45 cm were typical of all TPCs analysed in this way, with average N_ι values (over the 20 cm drift distance) of about 35 cm$^{-1}$.

These values of N_ι give a mean number of 10.5 Čerenkov photoelectrons per $\beta = 1$ track, with an associated background of 3.5 within +2σ, of the expected ring radius.
CONCLUSIONS

We have reported on the performance of the Omega RICH in the WA69 experiment. Under normal running conditions, the RICH operated at $N_e = 35 \text{ cm}^{-1}$. In a recent Monte Carlo simulation, an integration over the measured mirror UV reflectivity, the transmission of the drift and radiator gases and the quartz windows, the TMAE UV absorption length and quantum efficiency, predicted a value of $N_e = 127 \text{ cm}^{-1}$.

We have estimated the overall efficiency of the TPCs under actual run conditions to be 0.28 ± 0.03 from the product of three efficiencies

1) electron drift efficiency (over average distance of 10 cm) 0.79 ± 0.02

2) electrostatic collection efficiency 0.49 ± 0.04

3) single photoelectron detection efficiency 0.72 ± 0.04

Scaling the predicted N_e by the measured TPC efficiency, we obtain a value of $N_e = 36 \pm 6 \text{ cm}^{-1}$, which is consistent with the measured value. Modifications have been made to upgrade the RICH performance for the second phase of WA69 in 1985:

1) a gas recirculation system has been commissioned to allow the radiator to be filled with a mixture of C_2F_6 and nitrogen. The higher refractive index will increase the Čerenkov angle, and hence N_{CP}, enabling the detector to operate at lower particle momentum thresholds.

2) reductions in electronic noise will allow the readout system to be operated at lower effective charge thresholds

3) the central four TPCs have been equipped with a focusing system to improve their electrostatic collection efficiency

4) a calibration system, incorporating a pulsed UV lamp and UV transmitting optical fibres, has been installed to provide an on-line monitor of the drift velocity in each TPC.

The performance of the RICH in the 1985 run will be the subject of a future report.

ACKNOWLEDGEMENTS

We wish to thank the Rutherford Appleton Laboratory, SERC (UK) and CERN for financial and technical support for this project. We would like in particular to express our appreciation of the contribution made to this project by our late colleague Ken Freeston.

REFERENCES

7. A proposal to build a Ring Imaging Čerenkov Detector for use by the Omega Photon Collaboration in WA69 PPSESP/83/94 Rutherford Appleton Laboratory, April 1983.