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CELEFUNT: A Portable Test Package

for Complex Elementary Functions

by

W. J. Cody

Abstract

This paper discusses CELEFUNT, a package of Fortran programs for testing complex elemen-
tary functions.

1 Introduction

CELEFUNT is a collection of test programs for the complex floating-point elementary functions
required by the 1978 ANSI Fortran Standard (CABS, CSQRT, CLOG, CEXP, CSIN/CCOS, and

the complex power function) [1]. It is a companion to the ELEFUNT package [3] introduced over
ten years ago for testing the real floating-point elementary functions and a forthcoming INTFUNT
package for testing intrinsic functions involving integers. Thee packages, together with the envi-

ronmental inquiry programs MACHAR [2] and PARANOIA [4], provide the means for a thorough
examination of the computational environment available to the Fortran programmer.

The next section provides a broad overview of the techniques used in CELEFUNT to assess
accuracy. Section 3 discusses portability issues, while subsequent sections discuss the individual

test programs in more detail. Each discussion includes an error analysis, a tabulation of test

results on three different systems (SUN Fortran 1.2 under SUNOS 4.1 running on a Sun 3/60,
VAX Fortran under VMS 5.3 running on a VAX 8700, and Lahey F77L 4.0 running under DOS

3.30 on an IBM/XT with a coprocessor), and an interpretation of those results to aid others in
interpreting their results.

We standardize our notation in the following discussions so that mathematical quantities are

expressed in lower case (x, sin(x), etc.) and machine quantities are expressed in upper case (X,
SIN(X), etc.). Where the distinction is not important, we will use the mathematical notation.

2 Overview of Testing

There are three widely accepted approaches to testing the accuracy of function routines. In order

of decreasing resolution these are table-driven techniques [5, 6], comparison with higher-precision
computations, and evaluation of carefully selected identities. The first of these is capable of deter-

mining tile error in a function evaluation to within a small fraction (typically 0.001 or less) of an

ulp (unit in the last place) and is by far the preferred method. Programs implementing this method



are portable but require great care in preparation. They also usually require lengthy machine runs

for each test; however, because these tests need be run infrequently, this latter characteristic is
not a serious drawback. The second method is capable of determining errors to within 0.5 to 1

ulp, depending on the arithmetic characteristics of the host machine. The major disadvantage
of this approach is that testing of func._ions written for the highest precision arithmetic on the

machine requires an inefficient extended-precision arithmetic package. Programs for testing-lower
precision functions either use the same arithmetic package (increasing portability at the expense
of efficiency) or use the native hight:r-precision arithmetic (increasing efficiency at the expense of

portability). The third approach is generally capable of determining errors to within less than 2

ulps, and often to within 1 ulp, depending upon the circumstances of the test (the identity used,
domain tested, etc.). Test programs implementing this approach are again highly portable.

We regard the first and third approaches as being the most practical. The use of identities is

usually adequate for distinguishing between acceptable and unacceptable function programs, but
table-driven methods are essential to identify truly exceptional function programs.

CELEFUNT relies on identities to determine the accuracy of seven different complex elementary
functions required by the 1978 Fortran standard. The general approach is to select an identity that
involves only one or two evaluations of the function under test and that is numerically stable (i.e.,

evaluation of the identity does not introduce serious contamination of the error being measured)
over some region of interest. Because we are testing complex-valued functions, we are interested
in three different error measurem,:,nts: the error as a complex result, and the error in each of the

components of the result. Identities numerically stable for one of these measurements may not be

stable for all three; hence, some care is needed in the choice of the identities and of the test regions.
Details of these choices are discussed for each of the test programs a little later.

Given an identity and a test domain, the procedure is to select a reasonable number M (we use
2,000) of test arguments from a uniform random distribution over the region. We divide the domain
of the real component into M subdomains, selecting test arguments by taking a real component

from each of the subdomains in turn, and pairing it with a random imaginary component drawn

from the undivided domain of imaginary components. Where the test domain is not rectangular,
we use a rejection procedure on the imaginary component. Clearly this approach does not provide
a truly uniform distribution in nonrectangular domains, but we do believe that the deviation from
uniformity in these cases is not detrimental to our tests.

Once the test argument has been selected, it is purified if necessary to guarantee that it and
related derived arguments are all exact machine numbers. For example, the test of CABS uses

the arguments 3 × Z, 4 x Z, and 5 x Z, where Z is random. To guarantee that rounding error

in the evaluation of these auxiliary arguments does not contaminate the tests, we perturb the last
few bits of each component of Z to form a nearby argument Z such that the products 3 × 2,

4 x Z, and 5 × 2 are all exact machine-representable numbers. The details of this purification

process necessarily varies from one test to another, but it is a simple process in every case. We
then evaluate the expression

E = F(2) - S(2)
e(2) '

where F(2) is the function evaluation and I(2) is the evaluation of the identity. In this case, E is
an estimate of the complex relative error in F(2). Analogous expressions are used to evaluate the
component errors.



Finally, we gather error statistics for the test. The statistics reported for each region includes
N, the number of times E = 0; MRE, the maximum relative error as measured by E; RMS, the

root mean square error; and the 2 and F(2) corresponding to MRE. These latter quantities are

helpful for analysis of the computation leading to the MRE.

Both MRE and RMS are reported as an estimated loss of base-/3 significant digits, where/3 is
the floating-point radix. This measurement is independent of the v,a.chin(; wordlength and hence

is useful for comparing results on different machines with the same/3. The equations used are

MRE = max[0.0, p + In(max E )/In(/3)],

and

RMS= max[0.0,p+
where p is the number of significant base-/3 digits in the significand. Note that the computation of

MRE and I{MS Ims been adjusted so they never report a negative loss of signifcant digits. With
these definitions the complex relative error E may not be zero even though the MRE is. This
situation can occur when the erroneous component of F(Z) is much smaller in magnitude than the
correct component. Also note that for M = 2000 and _ = 2, RMS >_MRE - 5.48.

Accuracy tests based on identities are augmented with additional small tests looking at the
preservation of mathematical properties, such as exp(x) x exp(-x) = 1, and the behavior with
extreme arguments. Auxiliary tests of this type are grouped at the end of the program in increasing

order of probability of an exception that might terminate program execution.

When the test program is finished, we attempt to determine experimentally how accurate it

is by calibrating it. Calibration consists of running the test program in single-precision arithmetic
with a function program that accepts single-precision arguments, does all computations in double

precision, and then returns single-precision results. Such a function program returns values correct

to within the rounding error on the machine. Thus, the errors reported by the test program
represent the "noise" in the testing process; they measure the ability of the test program to detect
"perfection."

3 Portability Issues

The programs in this package have been written with portability in mind. To this end, we impose

strong typing; that is, every variable is declared in a Fortran TYPE statement. Although the
Fortran standard does not include a specification for double-precision complex arithmetic, most

popular compilers today provide that capability. A brief survey showed that more compilers recog-

nize the data type COMPLEX* 16 than the data type DOUBLE COMPLEX, with some recognizing
both. We have therefore used the former syntax in our programs. This must be altered for those

few compilers that require a different declaration.

All floating-point or complex constants are initialized in DATA statements to localize the
changes that must be made in moving from single- to double-precision versions of the programs.
Conversion from one data type to another is explicit for the same reason, and generic names are

used for the intrinsic and elementary functions.

Where statements must be modified (DATA and TYPE statements, for example) to change

working precision, alternative statements containing the modifications are provided. Those
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statements needed for a single-precision version of the program are identified with the charac-
ters "CS" in the first two columns, those needed for a double-precision version are identified with
the characters "CD," and those needed for a calibration run are identified with the characters

"CC." Thus, a globa.1 replacement of "CS" in columns 1 and 2 with blanks prepares a single-
precision version of the test program, while a global replacement of "CD" with blanks prepares
a double-precision version. Replacing both "CS" and "CC" with blanks prepares a calibration

version complete with the necessary auxiliary function that does internal computations in double
precision. Note that the programs will not compile correctly without one of these global changes.

Finally, the package contains both a random number generator and the environmental in-

quiry program MACHAR to determine tlm necessary machine-dependent parameters. MACItAR
is known to malfunction on a few machines (see [2]). On those machines, the test programs must
be modified to delete the call to MACHAR and to provide the necessary machine parameter values

in some other way, perhaps in DATA statements. The comments at the top of each test program

define the needed parameters as an aid in making such changes.

Many of the test programs a,nd MACItAR contain computations that are sensitive to the order

of evaluation and, more important, to the precision of intermediate results. These programs have
been carefully written to avoid trouble, but. they may malfunction if compiler optimization alters

the order of evaluation or if it retains and uses results in higher-than-working precision, lt is
imperative that compiler optimization be turned off.

Be warned that the random number program, lIEN, has not been tested for general-purpose
generation of random numbers. It is adequate for our use, but we cannot attest to its suitability for

any other purpose. As with the test programs, appropriate versions of both REN and MACtIAR
must be prepared with global editing.

We believe these programs to be completely portable between machines and precisions subject
to the above comments.

4 Test of CABS

Let z = z + iy. Then ]z] = x/z _ + y2 maps the complex plane onto the positive real axis. Our

accuracy tests for CABS, which exploit this definition, are unusual in that they are completoly free

of any extraneous error. The first identity used is based on the Pythagorean number set (3,4,5).
Given a random machine number X drawn from the interval (1,20), our program perturbs X in
the low-order bits to obtain V, say, so that 3V, 4V, and 5V are all exactly representable machine

numbers. This is accomplished by the Fortran statements

Y = X * EIGHT

Z=X+Y
V=Z ....Y

which zeroes out the last four bits ,_f X, provided all assignments to the left-hand variables are

at working precision. Because the significand of 5 is exactly representable in three bits, and the
number of significant bits of a product is at most the sum of the significant bits in the factors, all
of the desired products with V are exact machine numbers (the extra trailing zero bit in V protects

against the lack of a guard bit, improper rounding, etc.). Then



Table 1: Test Results for CABS
.,

Test/Machine N MRE RMS

.,
.,_

x e (1,20)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00
IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00

VAX, Cal./SP/G-DP 2000 0.09 0.00

1(5z,12z)1vs 13x
e (1,2o)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00
IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00
VAX, SP 1246 0.30 0.00

VAX, G-DP 0 1.00 0.51

CABS(W)-5VE=
CABS(I¥) '

where W = (3+4i)V, estimates the error in CABS(W). That is, if we let CABS(W) = Iwl(1

E = Iwl(1+ - 5v
lwl(l+_) "

Multiplying numerator and denominator by (1 - _) and retaining only first-order error terms, we
obtain

E-L

The second test is identical to the first, except that it uses the Pythagorean number set (5,12,13)
and the last five bits of X are zeroed out. While these tests are limited to two different rays

in the complex plane, we believe that the test results are representative of the function behavior
everywhere. If doubt exists, it i_ easy to modify or augment the tests to use other Pythagorean
number sets or to draw X from other intervals.

The auxiliary tests include invocation of CABS for the extreme arguments Z = (3 + 4i)XMIN,

147 = (5/16 + 12/16i)XMAX, and Z = 4147, where XMIN is the smallest positive normalized
floating-point number and XMAX is tlm largest finite floating-point number. The first two cases
should not cause trouble, while the final computation should provoke an error return of some sort.

Table 1 presents the results of running our test program on three representative systems. The
calibration runs found no errors at all, corroborating our assertion that the test procedure was



itself error-free. Indeed, the first test never detected an error on any of the machine/precision
combinations tested. Although the VAX routines were not perfect in the second test, the maximum
relative error detected was only 1 bit, indicating that the programs are accurate to within rounding

error. The routines all passed the auxiliary tests, with the SUN programs returning a value of oo
in the last test, and the other two systems aborting execution with error messages that did not
identify CABS as the culprit. Overall, these CABS programs appear to be superb.

5 Test of CSQRT

Represent.: ' z in polar coordinates, z = pe i°. Then v/_ = v/-fi+ 8/2 maps the complex plane slit
along the negative real axis onto the right half of the complex plane.

Accuracy tests of CSQRT are based on the identity _ = z applied over the square region

with vertices at (0,0), and (10,70), and again over the square region with vertices at (0,0) and
(-100,100). The algebraic sign of the result must be changed in the second case.

Roundoff error in the computation of Z, Z is minimized by purifying both X and Y, the real

and imaginary components of Z, so that slightly more than half of the trailing bits are zero in each
case and the products X, X,Y, Y, and X, Y are all exact machine numbers. Then Z, Z is

explicitly constructed with real component X, X -Y, Y and imaginary component 2, X, Y.

Roundoff error is limited to at most one rounding error in the real component, and the imaginary
component is completely free of error. _

The magnitude of the complex error in CSQRT is estimated as the absolute value of

E= CSQRT(Z,Z)-Z
CSQRT(Z, Z) "

Let CSQRT(Z,Z) = _/(z2)(1 + e)(1 + t_), where 5 is the relative error in the CSQRT function and

e is the relative error in evaluating Z, Z. Because the arguments have been purified, e is a real
quantity, the error in the real component of Z, Z. Then

E = x/z2(1 + e)(1 + 6) - z.

If one ignores higher-order terms in the errors, this simplifies to

E = _ + e/2.

Thus E contaminates 6, the error we wish to measure, with half the rounding error in the evaluation

of the real component of Z, Z. We expect this contamination to be small and the statistics based
on E to be a reliable indicator of the accuracy of CSQRT.

To measure the error in the real component of CSQRT(Z, Z), set

/_ = REAL{CSQRT(Z, Z)} - X
REAL{CSQRT(Z, Z)} '

Letting _ be the relative error in the real component of SQRT(Z, Z), we have

_{x/z2(1 + e)}(1 + _) '



Table 2: Test Results for CSQRT

Error in Error in

Test/Machine Vector Error Real Component :[mag. Component
N MRE RMS N MRE RMS N MRE RMS

_r(Z × Z) V$ Z

z e (0,10)x (0,10)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 1999 0.00 0.00 1999 0.00 0.00 1999 0.14 0.00

L:IM XT, Lahey Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0,00 0.00
IBM XT, Lahey DP 1999 0.00 0.00 1999 9.46 3.98 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00

VAX, SP 1826 1.17 0.00 1826 1.39 0.00 1826 1.00 0.00
VAX, G-DP 1172 1.16 0.00 1172 ]..37 0.01 1172 1.38 0.02

-v/(z xz) w z
z _ (0,-100)x(0,100)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
IBM xT, Lahey Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
IBM XT, Lahey DP 1998 0.00 0.00 1999 0.27 0.00 1999 0.01 0.00

VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.0P, 0.00:

VAX, SP 1836 1.00 0.00 1836 1.00 0.00 1836 1.01 0.00
VAX, G-DP 1201 1.14 0.00 1201 1.34 0.00 i201 1.36 0.00

Again ignoring higher-order terms in the errors, we can simplify this to

s_= _+ _/2.

Similarly,
' _ =_+_12
J

measures tile error in the imaginary component of CSQRT(Z • Z). These expressions show that
and E are reasonable estimates of the component errors.

The calibration results presented in Table 2 verify the quality of our test program, and the o_her

results indicate the overall l_igh quality of the programs tested. The large error detected in the real
component in the first double-precision test under the Lahey compiler on the XT occurred for a Y

over 3.,000 times larger than X, hence for Z. Z large and close to the negative real axis. Because
ali other sources of error have been eliminated, and ali of the other programs tested handled this

same case with little or no error, we suspect tha: Lahey's CSQRT has a problem computing results

very close to the imaginary axis.

The special argument tests uncovered important problems with the double-precision program
on the Sun and both programs on the VAX. The Sun program returned a real component of oo



and all of the VAX tests failed with an overflow error message for the argument (1 -t- i)XMAX,
where XMAX is the largest floating-point number. Curiously, the programs functioned correctly

for the argument (1 -t- i)XMIN, where XMIN is the smallest positive normalized floating-point
number. The obvious programming mistake should have given an underflow message in the latter
case, so the mistake is more subtle.

6 Test of CLOG

Again represent z in polar coordinates, z = pete. ,Then In z = In p-t- i8 maps the complex plane slit

along the negative real axis onto the infinite strip lYl <- Tr, with the unit circle mapping onto the
imaginary axis in that strip.

The accuracy tests of CLOG are based on the identity In z = In (z2)/2 applied over the rect-
angular regions with vertices at (2,0) and (10,10), (lED0,-1000) and (2000,-4000), and (_,-E) and

(0.25,-0.25), where _ is of the order of roundoff error on the machine. For these tests, arguments
are purified in the same way as for the tests of CSQI_T, so the imaginary component of Z, Z is

exact. Because none of our test regions include the unit circle, the real part of In (z) never vanishes.

The magnitude of the complex error in CLOG is estimated as the absolute value of

E = CLOG(Z)- CLOG(Z, Z)/2
CLOG(Z)

Let 6 be the complex relative error in CLOG(Z), e be the relative error in evaluating Z, Z, and
a be the relative error in evaluating CLOG(Z, Z). Then

lh(z)(1 + _)

which reduces to
£

E=_-a
2 In(z)

when higher-order terms in the error are neglected. The corresponding estimate for error in the

real component is

= _[m(z)](1 + _)- _{ln(z211 +_])}(1+ b)/2
_<l_(_)(_ + _)}

which reduces to
E

2×
The reduced expression for the error in the imaginary component,

is even simpler, because e is real.



Table 3: Test Results for CLOG

Error in Error in

Test/Machine Vector Error Real Component Imag. Component
N MRE RMS N MRE RMS N MRE RMS

l,(z) in(z2)2
z e (2, 10) x (0,10)

Sun 3/60 Cal./SP 1988 0.00 0.00 2000 0.00 0:00 1988 0.95 0.00
Sun 3/60 DP 1696 0.98 0.00 1724 1.00 0.00 1963 0.97 0.00

IBM XT, Lahey Cal./SP 1988 0.00 0.00 2000 0.00 0.00 1988 0.95 0.00

IBM XT, Lahey DP 1978 0.86 0.00 1994 0.86 0.00 1980 0.95 0.00
VAX, Cal. 1988 0.00 0.00 2000 0.00 0.00 1988 0.95 0.00

VAX, SP 983 1.46 0.00 1573 1.47 0.00 1248 1.30 0.00
VAX, G-DP 1085 0.99 0.00 1524 1.00 0.00 1406 1.74 0.00

z e (1000,2000)×
(-1000,-4000)

Sun 3/60 Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 1908 0.99 0.00 1931 1.00 0.00 1975 0.96 0.00

IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00

VAX, SP 981 1.00 0.00 1883 1.00 0.00 1044 1.28 0.12
VAX, G-DP 1395 0.99 0.00 1886 1.00 0.00 1475 0.99 0.00

z e 0.25)×

Sun 3/60 Cal./SP 1988 0.41 0.00 1996 {}.41 0.00 1992 0.94 0.00

Sun 3/60 DP 1648 0.97 0.00 1673 1.00 0.00 1969 0.97 0.00
IBM XT, Lahey Cal./SP 1988 0.41 0.00 1996 0.41 0.00 1992 0.94 0.00
IBM XT, Lahey DP 1973 0.92 0.00 1987 0.93 0.00 1982 0.96 0.00

VAX, Cal. 1988 0.41 0.00 1996 0.41 0.00 1992 0.94 0.00
VAX, SP 894 1.46 0.00 1455 1.69 0.00 1209 1.39 0.00
VAX, G-DP 972 1.38 0.00 1390 1.56 0.00 1392 1.35 0.00

In all of these expressions, the first two error terms are inherent to E, which involves two evalu-

ations of CLOG. Coefficients for the terms involving e involve division by twice some component of
ln(z). The selection of test regions guarantees that these coefficients are less than 1 in magnitude.

For example, in the first test 0.693 < In 2 _< _ In _ < Ilh zl, so the coefficients of e in E and/_ are
bounded above by 0.722.

The calibration results for these tests presented in Table 3 show that the testing error is bounded

by one bit. Note in particular that the calibration results are identical for all three systems tested,
attesting to the validity of these results across systems. We see nothing in the tabulated results
for the system-supplied routines to indicate problems.



As with the CSQRT tests, the double-precision program on the Sun and both programs on

the VAX malfunctioned for the argument (XMAX,XMAX). The Sun program returned a real
component of oo, and all of the VAX tests failed with an overflow error message.

7 Test of CEXP

Let z = x + iy. Then expz = exp(x)(cosy + isiny) is a periodic function of period 2ri. It maps
the infinite horizontal strip lYl -< 7r into the complex plane slit along the negative real axis. The

real axis is mapped onto the positive real axis, the imaginary axis within the strip is mapped onto
the unit circle, and the lines lYl = _r are mapped onto the slit.

Our tests of CEXP exploit the identity exp(z) = exp(z- A)exp(A), A = (1 + i)/16, over
appropriate regions. Should the real or imaginary components of exp (z) be significantly less in

magnitude than the corresponding components of exp(z- A), the product exp(z- A)exp(A)
must involve the subtraction of nearly equal quantities and hence a large cancellation error. To

minimize this problem, we choose regions that '_est the exponential dependence on x while staying
away from regions in which sin(y) or cos (y) vanishes or even approaches a zero with increasing

y. The rectangles with vertices at (0,0.0625) and (1,1), (1.625,1.625) and (3,3), and (16,16) and
(17,17) meet thes e req ui rements.

The magnitude of the complex error in CEXP is estimated as the absolute value of

Z = CEXP(Z)- CEXP(Z- DEL)(1 + CDEL)
CEXP(Z)

where the term 1 + CDEL represents exp (A) to several decimal places beyond working precision.
Errors in this expression are controlled in two ways. First, the arguments are purified so both Z
and Z - DEL are exact machine numbers, and second, the product is computed as

CEXP(Z- DEL)+ CEXP(Z- DEL)CDEL,

reducing the rounding error to a level that can be ignored. Remaining errors in E are 5, the complex

relative error in CEXP(Z), and a, the relative error in evaluating CEXP(Z - DEL). Thus

E= exp(z)(l+5)-exp(z-A)exp(A)(lq-o')
exp (z)(1 + ¢q)

If only first-order error terms are retained, this becomes

E=6-a.

The expressions for the errors in the real and imaginary components are analogous.

Table 4 summarizes the test results. Note that the calibration runs on the three systems are
in general agreement, and that the MRE measured in the calibration runs is consistent with our

analysis. Based on the tabulated results, the CEXP routines tested look good.
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Table 4: Test Results for CEXP

Error in Error in

T_t/Machine Vector ErTor Real Component Imag. Component
N MIlE RMS N MRE RMS N MRE RMS

C z VS fz-_c_

t_= (1 + i)/16

z e (0,1) x (1/16,1)

Sun 3/60 Cal./SP 1121 0.98 0.00 1512 1.00 0.00 1479 1.02 0.00
Sun 3/60 DP 539 1.96 0.15 1010 2.00 0.17 995 1.93 0.18
IBM XT, Lahey Cal./SP 1129 0.97 0.00 1489 0.99 0.00 1513 1.00 0.00
IBM XT, Lahey DP 1127 0.99 0.00 1495 1.00 0.00 1505 1.00 0.00
VAX, Cal. 1!50 0.9'c. 0.00 1502 1.00 0.00 1528 1.00 0.00
VAX, SP 574 1.85 0.11 1077 1.90 0.12 985 1.98 0.17

VAX, G-DP 530 1..74 0.14 1023 1.99 0.1.5 982 1.97 0.21

z E {1.625,33 x (1.625,3)

Sun 3/60 Cal./SP t069 0.97 0.00 1483 1.06 0.00 1449 1..22 0.00
Sun 3/60 DP 558 1.73 0.11 1061 1.95 0.10 1000 2.03 0.19

IBM XT, Lahey Cal./SP 1116 0.98 0.00 1528 0.99 0.00 1453 1.22 0.00
IBM XT, Lahey DP 1155 0.97 0.00 1546 1.00 0.00 1477 1.18 0.00
VAX, Cal. 1105 0.98 0.00 1529 1.10 0.00 1457 1.10 0.00
VAX, SP 541 1.75 0.12 1012 1.93 0.14 1036 2.08 0.17

VAX, G-DP 515 1.91 0.14 998 1.95 0.19 981 1.96 0.18

z (16,173x (16,173

Sun 3/60 Cal./SP 1093 0.92 0.00 1469 1.00 0.00 1,,190 1.00 0.00
Sun 3/60DP 518 1.86 0.16 985 1.90 0.21 1016 1.98 0.15

IBM XT, Lahev Cal./SP 1117 0.92 0.00 1471 1.00 0.00 1523 1.00 0.00

IBM XT, Lahey DP 1103 0.97 0.00 1476 1.02 0.00 1495 1.00 0.00
VAX, Cal. 1115 0.92 0.00 1467 1.05 0.00 1520 1.00 0.00
VAX, SP 526 1.83 0.18 974 2.17 0.23 1019 1.98 0.16
VAX. G-DP 485 1.85 0.21 942 1.98 0.25 957 1.92 0.21

Special tests include a brief check that, exp (z)exp (-z) = 1, tests with special arguments, and
tests with arguments with components so extreme that an error return of some sort is warranted.

The Sun routines always returned a result. Computations with arguments with large n<=gative real

components returned zero resuhs, those with large positive imaginary components (so the compu-
tation of the requisite sin (y) and cos(y) ,,-alues makes little sense) proceeded without complaint,

and those wilh large positive real components returned (_c.,_). The Lahey routines aborted tl,-
first case with an overflow(!) message, aborted the second case with a correct, error message, and
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incorrectly returned (0, 0) in the last case with no indication of an error. The first two cases were
procesr_ed without complaint on the VAX, but the third corlrectly aborted with an overflow message.

Test of Complex Power Function

The complex power function is the exponentiation function, z w = exp(wlnz). The obvious al-

gorithm is not the most accurate way to compute this function in the real case [3]. Instead,' a
self-contained c_mputation that evaluates and uses w In z to beyond working precision is best. The
corresponding algorithm for the complex case has not been published and is probably not known

yet. To achieve the most accu, acy, single-precision routines might do all internal computations in
double precision, and double-premsion routines on machines with IEEE floating-point arithmetic
might do all internal computations in extended precision. Routines implementing the mathematical

definition in working precision wi!l strufi_le for accuracy.

Our tests are based on three different identities. The first test compares z _, w = 1 + 0i, against

z in the rectangular region with vertices at (1,0) ,_nd (10,10). This is the purest test possible,

measuring the accuracy of the direct exp (lh) cycle; it should easi_.y distinguish between routines
that use extra precision internally and those that do not. The magnitude of the complex error in
this test is estimated as the absolute value of

Z, ,W - Z
E=

Z. ,14/ '

where W = (1,0). Because all arguments are exact, there is no need for argument purification.
The usual error analysis reduces this to

E-b,

where _ is the complex relative error in exponentiation. Error estimates for the real and imaginary
coraponents are analogous.

For a binary machine, we can estimate the reported value of the vector MRE as follows. The

major contribution to th¢. relative vector error is in the computation of exp (ln p), where p is the
modulus of z. Further, the relative error in the real exponential function is roughly the absolute

error in its argument. In exponentiation routines that use higher-precision arithme _ internally
(such as the routine in our calibration runs), the absolute error in In p will be neglig_bie. In other

routines, the detected MRE in our tests should roughly equal the integer part of In (p) for p the
maximum modulus in the test region. This integer is 2, which is representable in 2 bits. We

therefore expect that calibration runs and tests of routines exploiting higher-precision arithmetic
will find no error in this case and that tests of routines exploiting the definition of exponentiation

in working-precision arithmetic will report losse_ slightly grea_er than 2 bits.

Results reported, in Table 5 completely support this analysis. _Phey suggest that the Lahey

routines and the single-precision routine on the Sun use higher-precision arithmetic internally, and
that ali other rout'.'nes tested use working-precision arithmetic.

12



Table 5: Test Results for Complex Power

Error in Error in

Test/Machine Vector Error Real Component Imag. Component
N MRE RMS N MRE RMS N MRE RMS

z (1'°) vs z

z e (1, 10) x (0, 10)

Sun 3/60 Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 471 2.02 0.42 818 3.16 0.69 839 2.09 0.43

IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, SP 378 2.06 0.55 718 3.11 0.82 793 2.33 0.56

VAX, G-DP 365 2.14 0.66 715 3.28 0.90 733 2.42 0.70

z (2'°) vs z,z

z E (I,I0)x (0,I0)

Sun 3/60 Cal. 1995 0.95 0.00 1995 0.96 0.00 2000 0.00 0.00

Sun 3/60 SP 1993 0.95 0.00 1993 0.96 0.00 2000 0.00 0.00
Sun 3/60 DP 186 2.65 1.22 403 4.41 1.78 486 3.39 1.27

IBM XT, Lahey Cal./SP 1998 0.82 0.00 1998 0.83 0.00 2000 0.00 0.00
IBM XT, Lahey DP 1997 0.42 0.00 1997 0.43 0.00 2000 0.00 0.00

VAX, Cal. 1997 0.84 0.00 1997 0.85 0.00 2000 0.00 0.00
VAX, SP 149 2.97 1.40 375 5.24 2.06 421 3.65 1.45

VAX, G-DP 135 2.98 1.51 353 4.67 2.03 397 3.36 1.54

zwvs (z, z)/2
z, w E (4, 10) x (4, 10)

Sun 3/60 Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 1792 6.50 3.80 1793 13.03 7.83 1792 16.42 10.9.1

IBM XT, Lahey Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00

IBM XT, Lahey DP 1981 0.66 0.00 1988 4.26 0.00 1993 0.94 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00

VAX, SP 1222 6.44 4.38 1225 12.74 7.80 1224 12.90 7.86
VAX, G-DP 1294 6.67 4.35 1302 17.80 12.32 1303 16.07 10.60

The second test compares z_', w = 2 + Oi, against z2 in the same rectangular region less a wedge
about the line x = y. This is a more difficult test of exponentiation than the first test, but is still

simple enough to permit reasonably detailed analysis. We purify Z as in the other tests involving
Z, Z so there is no rounding error in forming the imaginary component and minimal error in the
real component. The magnitude of the complex error in this test is estimated as the absolute value
of

Z**W- Z*Z
E=

Z • ,W '
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where W = (2, 0). Let/5 be the complex relative error in exponentiation, and e the relative rounding
error in Z, Z. Then

E = + 6)- z2(1+
(z_')(1 + 6) '

This simplifies to
E=6-e,

where again only first-order error terms are retained. The error estimates for the real component is
analogous, but the e term disappears in the error estimate for the imaginary component (because
of argument purification).

The line z = y maps into the positive imaginary axis in this test. Arguments close to this line

can contribute massive unavoidable error to the computation. For such arguments, the In part of
the exponentiation computation, results in an imaginary component close to r/4. Regardless of

how accurate this computation is, there is some rounding error in the result (albeit much smaller
when done in higher-precision arithmetic than when done in working precision). This component

is doubled to a value very close to _r/2 and then used as an argument to the sin function in

computing the real component of the complex exp. The relative error in the result is roughly equal
to the number of significant figures of agreement between the argument and _r/2. Potentially, the
real component could lose all significance in this test (losses of 12 or more bits were encountered

during refinement of our test procedures). Because the real component is small in magnitude in

comparison to the imaginary component, this large component error does not greatly affect the
measured vector error. Nevertheless, we have rejected all test arguments with y within 5% of

z, thus eliminating a wedge-shaped region from our test domain. With this restriction, it is not
difficult to show that the maximum agreement between the argument to the sin and r/2 is 5 bits.

We expect the MRE on the real component to report a loss of about 5 bits on binary machines,

with the vector MRE significantly better than that. The results in Table 5 again corroborate our

analysis, and incidentally strengthen our suspicions about which routines use only working-precision
arithmetic.

Our final test corresponds more closely to what might be encountered in practice. It compares

zw against (z2) w/2 for pairs of arguments drawn from the square region with vertices at (4,4) and
(10,10). Z is purified as before, and W is purified to guarantee that W/2 is also art exact machine

number. Then the vector error is estimated as the magnitude of

Z, ,W -- (Z, Z), ,(W/2)
E-

Z * *W

: Let 6 be the complex relative error in Z, ,W, a the relative error in (Z, Z) • ,(W/2), and e the

relative rounding error in Z, Z. Then

E = (z_)(1 + 6)- {[z2(1 + e)]_/2)(1 + a)
(z'_)(1 + Ii)

Retaining only first-order terms, we can simplify this to

E =/5 - a - (w/2)e.

Clearly the w/2 factor on e is significant and can dominate all other errors in this expression.
Unfortunately, such behavior limits this test to a demonstration of the inherent uncertainty of

complex exponentiation; it is useless as a true measure of the quality of exponentiation.
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The corresponding estimate for the error in the real component is

_?= _(z_)(1+ _)- _{[z(1+ _)]_/_}(1+ a)
R(z_)(1 + 6)

where 6, b, and e (because of argument purification) are ali real. Again ignoring higher-order terms
in the errors, we Simplify this to

=_ - a - _(w/2)E.
Similarly,

_= _(z_)(1+_)-_{[z2(i _,-_,)]_/2}(i+a)
_(zW)( 1 + _)

which simplifies to

/) = _- b- _(Wi2)c,

is an estimate of the error in the imaginary component.

Table 5 records large errors for routines we,sllslmcl, use only working-precision arithmetic. The

magnitude of these errors is discouraging, but noto liow often the identity was satisfied exactly.
These results demonstrate the difficulty of the computation, and especially how bad things can get

for unfortunate argument combinations. Alas, the routines tested here will probably represent the
state of the art until an algorithm is found that is as effective and efficient as the algorithm for the
real case.

Finally, the test program includes a check with extreme arguments and a check of the special

case z _ where z = 0 + Oi. All of the programs tested did well with the extreme arguments. In the
0° case the Sun programs returned NaNs while the La,Lcy and VAX programs aborted with invalid

argument messages.

9 Test of Complex CSIN/CCOS

Let z = x+iy. Then sin(z) = sin(x)cosh(y)+icos(z)sinh(y) and cos(z) = cos (x) cosh (y) -

/sin (x)sinh (y) are periodic functions of period 2_ri that map infinite vertical strips of width _r into
the complex plane with slits along the real axis for Izl > 1.

Our tests of CSIN and CCOS exploit the identities sin(z) = sin (w) cos (A) + cos (w) sin (A)

and cos(z) = cos(w)cos(A)-sin(w)sin(A), where w = z-A and A = (1+ i)/16. We minimize
subtraction error in these identities by restricting our tests to regions where y _ 1/16 (so the
hyperbolic functions are all positive) and where sin x and cos x have the same sign and about the

same magnitude. Specifically, the test of sin z is applied over the region with x and y drawn from
(1/16,10), and both tests are applied over the region with x and y drawn from (16,17). For these
regions, since all arguments in the identities are exact machine numbers, argument purification is

not necessary. Finally, numerical stability is enhanced by setting r = cos (A) - 1 and computing

sin (w)cos (A), for example, as sin (w) + r sin (u,). Both sin (A) and r are small complex constants
that can be precomputed and stored in DATA statements.

The magnitude of the error in CSIN is estimated as the absolute value of

CSIN(Z)- [CSIN(W)CCOS(D)+ CCOS(W)CSIN(D)]

E = CSIN(Z) '
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where D is A. Let 6, a, and v denote the relative errors in CSIN(Z), CSIN(W), and CCOS(W),
respectively. Then,

E = sin(z)(1 + 6)- [sin (w) cos (A)(1 + a)+ cos (w) sin (A)](1 + v)
sin (z)(1 + 6)

Retaining only first-order error terms, we reduce this expression to

E = 8 - Ma- Nv,

where
si,,(.,),',,s (A)M=

sin(z)

and

g = cos (wlsin (A).
sin(z)

For the first test region, x and y each drawn from (1/16,1), IMI < 0.96 and INI < 1 (see Table 6).

Indeed, INI decreases rapidly as z moves away from (1 + i)/16, assuming a value of about 0.75 for
z=l+i.

Analysis of the error measurement for the real component is more complicated. Set

/_ = REAL{CSIN(Z)}- REAL{CSIN(W)CCOS(D)+CCOS(W)CSIN(D)}
REAL{CSIN(Z)}

Let _ be the relative error in REAL(CSIN(Z)), ar and ai be the relative errors in the real and imag-

inary components of CSIN(W), respectively, and vr and vi be the relative errors in the components
of CCOS(W). The usual substitution and simplification yield

where

.ltir = _ sin (w)_ cos (A)
_sin(z)

sin (w)_ cos (A),/;/;
_sin(z)

2Q, = _ cos (w)._ sin (A)
_sin(z) '

and

)Qi = _ cos (w)_ sin (&).
_sin(z)

The analogous expressions for the relative error in the imaginary component are

/} = _- M_,_- _'1;_i- _v_ - _;_;,

where

M,_ _ sin (w)_ cos (A)m

_sin(z)
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Table 6: Bounds on Error Magnification for CSIN/CCOS Tests

Test

SIN SIN COS

_,ve(1/16,1) _.,_e(16,17) _,ve(16,17)

max lM] 0.96 0.94 0.08
max IN[ 1.00 0.08 0.94

max ]M,I 0.96 0.92 0.20

max I._/iI 0.04 0.01 0.07

max INrl 1.00 0.20 1.14

max I/Vii 0.04 0.06 0.01

max I_t_ ] 0.09 0.01 0.06

max 13_/iI 1.01 1.14 0.20
max[-_I 1.09 0.07 0.01
maxlN_ ] 0.09 0.20 0.92

_, = a sin(w)_cos(a)
_sin(z)

_, _ cos(w)_s_n(a)
_sin(z)

and
cos (w)_ sin(A)

_sin(z)

The magnitude of the error irl CCOS is estimated as the absolute value of

E = CCOS(Z)+ [CSIN(W)CSIN(D) - CCOS(W)CCOS(D)].
ccos(z)

The expressions for E,/_, and E are the same as for the tests of CSIN, except that now

sin (w) sin(&)M=
COS (Z)

cos(w)cos(/',)N=
cos(z) '

_ sin (w)_RAn (A)ltL=
_,',,s (:)

sin (w)'J sin (A),
cos(z)
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Table 7' Test Results for CSIN/CCOS

Error in Error in

Test/Machine Vector Error Real Component Imag. Component
N MRE RMS N MRE RMS N MRE RMS

vs +
w = z-5, a = (1 + i)/16

z e (1/16,1) x (1/16, 1)

Sun 3/60 Cal./SP 1104 0.98 0.00 1445 1.25 0.00 1510 1.00 0.00
Sun 3/60 DP 558 1.72 0.12 1016 1.99 0.17 1064 1.99 0.09

IBM XT, Lahey Cal./SP 1135 0.98 0.00 1466 1.40 0.00 1548 0.99 0.00
IBM XT, Lahey DP 1156 0.93 0.00 1526 1.00 0.00 1521 0.99 0.00
VAX, Cal. 1103 0.98 0.00 1498 1.79 0.00 1470 1.00 0.00

VAX, SP 296 3.38 0.70 916 2.04 0.26 625 4.93 1.68
VAX, G-DP 306 3.24 0.68 956 2.22 0.28 613 4.77 1.72

z e (16, 17) x (16, 17)

Sun 3/60 CM./SP 1088 0.95 0.00 1.518 1.00 0.00 1458 1,11 0.00
Sun 3/60 DP 557 1.90 0.12 1062 1.96 0.13 1015 1.92 0.16

IBM XT, Lahey Cal./SP 1101 0.94 0.00 1527 1.00 0.00 1461 1.11 0.00
IBM XT, Lahey DP 1142 0.95 0.00 1556 1.00 0.00 la92 1.00 0.00

VAX, Cal. 1061 0.95 0.00 1513 1.00 0.00 1421 1.11 0.00
VAX, SP 506 1.78 0.17 996 1.89 0.18 983 2.09 0.19
VAX, G-DP 385 1.92 0.33 918 2.17 0.33 849 2.20 0.34

cos(z)vs eos(w+ )
v, = z-6,6 = (1 + i)/16

z E (16, 17) x (16, 17)

Sun 3/60 Cal./SP 1085 0.96 0.00 1440 1.00 0.00 1520 0.99 0.00
Sun 3/60 DP 525 1.74 0.13 1034 2.09 0.15 994 1.98 0.16

IBM XT, Lahey Cal./SP 11§2 0.96 0.00 1437 1.00 0.00 1540 0.99 0.00
IBM XT, Lahey DP 1104 0.95 0.00 14.11 1.00 0.00 1539 0.99 0.00

VAX, Cal. 1106 0.96 l},l}ll1.1.1.1 1.00 0.00 1535 1.00 0.00

VAX, SP 504 1.79 0.18 954 1.97 0.23 1026 1.87 0.15

VAX, G-DP 394 1.87 0.32 890 2.28 0.35 897 2.09 0.32
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_,_ _cos(w)_cos(A)
cos(z)

_ = _cos(w)_cos(A).,
Rco_(z)

.A_rr _sin (w)_sin(A)
_cos(z)

2_7/i= _ sin (w)_ sin (ZX),
_cos(z)

_,. _ cos(w)_ cos(,5)--"

cos(z)
and

._ = _cos(w)_cos(,5).
_cos(z)

Bounds on the magnitudes of all of these values for the three test domains are given in Table 6.
Examination of the table shows that potentially two extraneous rounding errors contaminate test

results in the first test region, but that at most one contaminates the other test results. We expect,
therefore, that the MRE reported in calibration runs and tests of routines using higher-precision

arithmetic internally will be about 1.00, and that other MRE values will be about 2.00. The
tabulation of results in Table 7 generally confirms this expectation. Although the errors reported

for the first test on the VAX are large, they are not particularly alarming.

The test program concludes with a series of short tests of the periodicity of CSIN and of the

response to extreme or near-extreme real and imaginary components of the argument. All routines
checked passed these tests; they all accepted large real components of the arguments without

complaint, and all gave error returns for large imaginary components (the value oo + ioo on the

Sun, an underflow message on the PC, and an overflow message on the VAX).
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