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Heat transfer and fluid flow over circular tubes have wide applications
in the design of heat exchangers and nuclear reactors. However, it is often
difficult to accurately calculate the detailed velocity and temperature
distributions of the flow because of the complex geometry involved in the
analysis, and a lack of an appropriate coordinate system for the analysis.
Boundary conditions on the surfaces of the tubes are often interpolated. This
interpolation process introduces inaccuracy. To overcome this difficulty, the
present study used the technique of the boundary-fitted coordinate system .
In this technique, all the physical boundaries are transformed into constant
coordinate lin&s in the transformed coordinates. Therefore, the boundary
conditions can be specified on the grid points without interpolation.

The coordinate transformation technique used for the present analysis is
based on the numerical solution of a set of elliptic partial differential
equations (PDE)1"3. The transformed coordinates (£, n, 5) are independent
variables; the physical coordinates (x, y, z) are dependent variables.
Constant values of one of the curvilinear coordinates (5, n, ?) are specified
as Dirichlet boundary conditions on each boundary. Values of the other curvi-
linear coordinates are either specified by a monotonic variation over a
boundary as Dirichlet boundary conditions, or determined by Neumann boundary
conditions. In the latter case, the curvilinear coordinate lines can be made
to intersect the boundary according to some specified conditions, such as
being normal or parallel to some given directions. Also, the spacings of the
curvilinear coordinate lines can be controlled. The specific PDE used for
coordinate generation in the present analysis of an infinite square array of
tubes with parrallel flow is
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where ?. is a specified monotonic function of x and y, n, is a specified
constant, P and Q are functions for controlling spacings and T is the physical
boundary. P and Q were set equal to zero for the analysis presented here. The
computational meshes so generated are shown in Fig. I for the case of pitch-
to-diameter ratio (S/R) of 1.05. The inlet conditions of the flow and the
geometry are also given in Fig. 1. All the physical properties are assumed to
be constant. Once the curvilinear coordinates are generated, the conservation
of mass, momentum, and energy equations in terms of the transformed coor-
dinates are solved.

A computer code (B0DYFIT-1FE)3 based on this procedure was developed at
Argonne National Laboratory. B0DYFIT-1FE is a three-dimensional, steady-
state/transient single-phase thermal-hydraulic code for rod-bundle applica-
tions. It solves the complete Navier-Stokes and energy equations by a cell-
by—cell numerical procedure. It uses a modified staggered-cell arrangement
where velocity, energy, and mass-balance cells are all staggered at different
locations* Detailed descriptions of the code are given in Ref. 3.

Several cases of different S/R ratios with the same hydraulic diameter
and inlet conditions were studied. Water with the uniform velocity of 1 cm/s
is flowing parallel to the axis of the cylindrical tubes arranged in a square
pitch. Uniform heat flux was used to simulate the reactor fuel rod-bundle.
Both the velocity and the temperature profiles were developing along the
tubes. Since the analytical solution in the developing rigion for this con-
figuration was not available, only the velocity and the temperature in the
fully developed region were compared. For the axial velocity, Figs. 2(a) and
2(b) give the comparison between the BODYFIT results and the analytic solu-
tions by Sparrow and Loeffler1*. The agreements are in general very good. The
total number of computational grid lines between tubes is fixed to be nine for
all cases of different S/R ratios. In the case of large S/R ratio where tubes
are far apart, the number of grid lines used in the present analysis may not
be fine enough to resolve the detailed velocity profile. This slight inac-
curacy can be seen in Fig. 2(a) for the case of S/R = 4.

For the comparison of temperature distributions, Table 1 gives__the
UODYFIT-calculated Nussult number as a function of the dimensionless Z =
(Z/De)/(RePr) for various S/R ratios. The Nusselt number at Z = » Is given by
the analytic solution5 for the case of constant heat flux. Reference 6 gives
the similar analytic solution for the case of constant peripheral temperature.
In the case of large S/R ratios, the two cases are very similar. In the case
of small S/R ratios, the two cases differ quite a bit. However, the constant
heat flux case is closer to the condition in reactor application than the
constant peripheral temperatures case. The same information in Table 1 is
plotted in Fig. 3. It is observed that the temperature profile reaches fully
developed profile more slowly as the S/R ratio gets smaller. For the case of
S/R ™ 1.05, the temperature profile did not fully develop at the length of 156
times of hydraulic diameter, De. This phenomena also effects the comparisons
shown in Fig. 2-

From the study, it is concluded that BODYFIT-1FE can provide detailed
velocity and temperature distributions with good accuracy. This information
is valuable for designing a mechanical heat transfer component. Furthermore,
the code is very flexible and can provide analysis of the complicated
geometries in most nuclear reactor applications.
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Fig. 1. Computational Mesh for a Unit Cylindrical Tube

Arranged in a Square Pitch
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Fig. 3. BODYFIT Calculated Nuselt Number as a Function of Z for Various S/R ratios



Table 1. (BODYFIT Calculated) Nusselt Number

As a function of Ẑ  for Various S/R Ratios
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* Analytic Solution (Ref. 5)
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