J/psi physics at BEPC

PDF Version Also Available for Download.

Description

J/psi physics is discussed which will be of interest at T > 1988, the period of operation of the Beijing Electron Positron Collider. Emphasis is placed on the gluonic states which are best studied in radiative J/psi decay. The difficulties of these studies are discussed and the need for very high statistics is stressed. In particular it is essential to partial-wave-analyze the hadronic final states produced in J/psi ..-->.. ..gamma..X. An estimate using fixed target data suggests that 0(10/sup 8/) J/psi decays are needed to do an unambiguous partial wave analysis for hadron masses up to about 2 GeV. This ... continued below

Physical Description

Pages: 54

Creation Information

Chanowitz, M.S. June 1, 1984.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

J/psi physics is discussed which will be of interest at T > 1988, the period of operation of the Beijing Electron Positron Collider. Emphasis is placed on the gluonic states which are best studied in radiative J/psi decay. The difficulties of these studies are discussed and the need for very high statistics is stressed. In particular it is essential to partial-wave-analyze the hadronic final states produced in J/psi ..-->.. ..gamma..X. An estimate using fixed target data suggests that 0(10/sup 8/) J/psi decays are needed to do an unambiguous partial wave analysis for hadron masses up to about 2 GeV. This requirement is an excellent match to the BEPC design parameters, which imply production of 0(10/sup 8/) J/psi's per year. With a J/psi production rate an order of magnitude greater than other electron-positron storage rings, BEPC will be a unique world facility for these studies. 58 references.

Physical Description

Pages: 54

Notes

NTIS, PC A04/MF A01; 1.

Source

  • 1. workshop on colliding beam physics in China, Beijing, China, 12 Jun 1984

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE84016897
  • Report No.: LBL-17930
  • Report No.: CONF-8406184-3
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 6445935
  • Archival Resource Key: ark:/67531/metadc1212036

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1984

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Oct. 29, 2018, 11:06 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Chanowitz, M.S. J/psi physics at BEPC, article, June 1, 1984; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc1212036/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.