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FOOD FOR THOIJGHT:
FIVE LECTURES ON LATTICE GAUGE THEORY

R.4JA.V GUPTAt

\fS-B285, Theoretical Division
Los Alamos National Laboratory

Los Alamos, >11, 87545

ABSTRACT

The topics covered in these lectures are the heavy ?q potential,
glue balls, the chiral transition with dynamical ferrnions, Weak interac-
tion matrix elements on the lattice and Monte Carlo renormalization
group, IZven though for the most part these lectures are reviews, many
new results and ideas are also presented. The emphaais is a on critical
analysis of existing data, exposing bottlenecks and a discussion of open
problems.



INTRODUCTION

The comparison between QCD as the fundamental theory of strong
interactions and experiments has so far been hampered by our inability
to incorporate the low frequency modes in analytic calculations. Since
quarks and gluons are not observed as asymptotic states, even the most
energetic processes require an understanding of what is happening at
the length scale of confinement. Thus the problem of strong interac-
tions has to be addressed in a fundamental way. At present, the only
technique with promise is Monte Carlo simulatioi]s of Lattice regular-
ized QCD. AS with any other calculation technique, the ingenuity lies ir
setting up the probiem. In these lectures I will try to bring through the
flavor that these calculations require the same type of cleverness, insight
and analytical skills as a good phenomenologist calculating multi-loop
Feynman diagrams. The execution of these calculations is following the
path of experiments.

The topics I will cover are

~1] The heavy q? potential.
12] The gluebali Spectrum.
~3] QCD with dynamical ferrrions: The Chiral transition.
[4] Weak Interaction Matrix Elements on the Lattice.
[15]ilonte Carlo Renormalization Group.

The attempt is to make each lecture a self sufficient unit. The style
of the lectures is critical and probably terse. I am allowed this liberty
duv to t le excellent introductions by John Kogut and Mike Creutz. So,
I will explore techniques, ideaa and their virtuee, The focus ?.t ail time
will be on physics goals and how to obtain hard numbers.

My original contributions to this set of Iecturea are a product
of many enjoyable collaborations, The support of Lo. Alamo6, DOE
(\lFE) and Pittsburgh Supercomputer Center in providing time for the
calculations is gratefully ●cknowledged. I thank Phili~pe de Forcrand,
Greg Kilcup and Steve Sharpe for a critical reading and for many dis-
cussions, ●nd Kim Maltman for helping me make the lectures readable.

These lectures are a reeult of T, D. Lee and Normmn Christ’s invi-
tation to participate in the Lattice Gauga Sympoaiurn/ Workshop Using
Parallel Computers held in Beijing, 1987. To write th~m has lead to
many sleeplae nights, mainly because I wanted to emulate their style

of clarity and depth, I hope they find them u insightful as was my
journey into a wonderful land,



I) THE HEAVY qif POTENTIAL

The very attempt to construct a potential to describe the intcwac-

tion of quarks restricts our focus to heavy fermions. It is only when the

msm m is large that we can formulate the bound state of a q? system

as a non-relativistic problem, with binding energies calculable from a

potential via the Schr6dinger equation. There exist two systems, char-

monium and bottomoniu.m that are made up of heavy quarks. The

precision to which we car already measure their levels is shown in fig-

ure 1 [1]. Our goal is to derive a potential, check it against these Ievelr,

and then with it predict the anticipated toponium spectra.

The lattice calculations are non-perturbative but the potential we

derive from them is ‘from first-principals” in a restrictwl sense only.

There are two reasons a) we ignore dynamical quarks and b) we have to

decide before hand what terms contribute to it. The lattice calculations

do not predict a functional form. We have to make a trial ansatz and

use the data from lattice calculations to h the unknown parameters.

So, if this lecture shows a certain lack of rigor, and has ● certain flavor

of phenomenology, do not be disappointed. As you will see, even with

the rnodelling it is non-trivial to extract a potential and in any case

this is the beat option we hav~ at the moment.

The discussion of the q? potential is broken into two parts. I

will start with the spin-independent part of the pctential which is also

better understood.

1.1) S pSn-Independent Potential: Phenomenology

General theoretical argumente provide the behavior of the spin

independent potential in the two extreme regions. At large repara-

tions (r + 00), confinement dorninatea and the physical picture is of

a ‘ch,rom~iectric dux tube”. The potential V(r) behavea u a linear

function of the distance:

V(r) -+ ur , (1.1)

A ~ood utimate of the string tension derived from the Regge slope is

o % (420 CeV)a,

1,1
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At the other end of the distance scale, i.e. short distances, the

running coupling constant can be evaluated in perturbation theory. To

leading order it is

(1.2)

With incre~ing q 2 it becomes weak, with a zero at q2 = m. This

property is called asymptotic freedom. In this weak coupling limit we

expect the effective potential to approach the one gluon exchange result

(Coulomb potential)

(1.3)

where $ is the color factor and a, is the QCD running coupling con-

stant.

A simple form for the full effective potential is to take a linear

combination, ar + ~, parametrized by two independent constants a, b.

Physically, these constants represent the scales at which an individual

term begins to dominate. They can be fixed using the charmonium

or bottomonium spectrum. This logic is a simple motivation for the

Cornell potential [2]

0.48
V,(r) = -— + (0.427 Geu)2r .

r
(1,4)

The constants are determined by fitting to charmonium. The predic-

tions for bottomonium are pretty good.

Richardson [3] modified the perturbative running coupling con-

stant so that it haa built into it a linear long distance part. This ansatz

restricts the number of free parametem .O one. The potential is simple

in momentum spue:

12?r
vr(q~) = -! —

1

3 33- 2rt/ q~fn(l + $) “

Again fixing A from charmonium, Vr doee a good job on bottomonium

also.

1,1



The last potential I consider is a totally heretical solution proposed

by Martin [4]

Vm(r) = 5.82GeV r0”104 . (1.6)

It too reproduces the data.

The three potentials are shown in figure 2 along with the mean

charge radius of the onium states. Do we have any chance of finding

the correct form when these tl,ree solutions, which are radically differ-

ent, work as well as they do? The answer to the question is very simple:

The range of r over which the potential has to l-e tied to reproduce

the charmonium and bottomonium spectrum is r = 0,2 to 1 fermi. In

this interval the three potentials can be made to coincide by adjusting

a single parameter as shown in the figure. They begin to deviate at

r > 1 or < 0.1 fermi. The region r > 1 is the domain of light quarks,

and there a simple potential model is hard to justify even if it seems

to work at times. The only test of these potentials is toponium. For

a top quark mam = 50 GeV, the charge radius, wavefunction at the

origin and the binding energy are significantly different for the three

cases. Estimates by Gilman [5] are shown in Table 1. The predic-

tions for the three are very different. It should therefore be easy to

distinguish between these potentials and maybe even constrain che pa-

rametem, or suggest if new terms are required. For the time being, to

extract a potential from the lattice, we shall assume the form (r + ~).

Potential (GeV) (fermi) (GeV) ~GeV3i2)
Cornell 97+1 0.028 2.2 23.3

Richardson 93,3 0,048 1,0 8,51 1 1 L

t
Martin I 98.6 I 0.084 [ 0,5 ~

Table i: Characteristics of toponium statea assuming a top quark maw

of 50 GeV for the three potentials discussed [5],

l,L
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1.2) Extracting the Spin-Independent

To 6X the parameters of the simple (r

Potential from the Lattice

+ ~) potential, I break up the
separation r between q~ into three regions: 1) Confining, characterized

by the linear term at large r; 2) Perturbative, where the $& potential.?
with a ~unning coupling constant is manifest and 3) intermediate r, for

which we don’t have a good handle. The attempt will be to work in a

given region and fix one or more parameters. Then we have fewer free

parameters when making fits in other regions. Now onto the lattice.

Let us for starters assume that we have at our disposal extremely

good data for arbitrarily large Wilson loops. Then to extract the spin

independent potential one defines

V(R) = – ~~m~ ~ lnW(R, T) . (1.7)

A quick derivation of this potential is as follows: The term in the

action representing the interaction of a scalar charge with the gauge

field is ~ jPA~. Let the current j~ be due to a heavy external charge

propagating in a closed loop, then the extra action is the path ordered

product of the gauge field along the loop, P ~ A~dz~. This is exactly

what the expectation value of a Wilson loop meaaures. On the iattice

let this loop be planar R x T. Then the physical process described by

this loop can also be thought of as to create a q~ pair, separate it by

distance R, propagate it for time T and let it annihilate. The extra

action for doing this is the potent~al energy x the time 2’ for which the

potential acts. This leads to the definition in eqn. (1.7), To get the

physical potential we have to isolate lattice art! facts, like those caused

by sharp comem etc. Thus we need a functional form for V to which

we fit the data. This is where

about what

ccmfiement

terms contribute

(Iineat potential)

one is forced to make some assumptions

to V, Let

dominates

me start with large r where

to first extract u,

,,. .. .

1.6



1.2a) Wilson String Tension uw

If the potential contains a linear term, then aw is in principal

given by the Creutz ratio

Uw = #m_ x(R, T)

~ Jmm – in
W(R, T)W(R – l,T– 1)=.

?- W(R, T– l)W(R – I, I’)

(1.8)

or by

Uw = Iim (V~(R) – VL(R – 1)) .
R- cm

(1.9)

In both methods, it is necessary to have correlated errors in the Wilson

loop expectation values for a good estimate. Otherwise a 1% error in

one of the loops would change rYby *0.01. Recall that at ~ = 6 the

value of a is N 0.05.

How large should R and T be to extract the asymptotic value?

Since the finite temperature transition is a measure of the confinement

scale, it is natural to assume that the size of the loops necessary to

isolate a, at a given value of ~, is z N;. We have very good estimates

forthis scale {:~=8at~=6, ~zs10 at~=6,2,~~12at~=6,3

and 14 at /3 * 6.4 [6][7]. For larger @it is reasonable to use asymptotic

scaling to determine f. To convert this into physical units, I use the

cumulative lattice data at ~ = 6,0 for ~, to get & x 1 fermi, a very

reasonable value for when the linear term should predominate.

If we assume this is the correct length scale then what Wilson loop

data is adequate? A t present, Phillipe De Forcrand [8] alone has good

statistics for up to 7 x 7 loops at ~ = 6.0 on a 164 lattice and 8 x 12 and

9 x 10100pa at ~ -: 6.3 on a 243 x 48 lattice (10,000 data sweeps), From

these, he extra~ta a = 0.046 and 0.0173 at /3 = 6.0 and 6,3 respectively,

There are no errom quoted by him on purpose because the systematic

errors are huge. Taking theue numbers seriously, we find a violation of

~ymptotic scaling; the scale is still changing too fast,

I would like to highlight the magnitude of systematic errors, I have

done an analysia of the global data and for illustration again pick de

1.7



Forcrand’s data at 6/g2 = 6.0. A fit using eqn(l,lO) to all loops in the

range (3, 3) to (7, 7) gives u = 0.059. Also, x(6, 6) s x(7, 6) H 0.064.

Compare these numbers with 0.046 obtained by de Forcrand using a

fit to eqn(l.7) for r between 2 and 6 (a three parameter fit to 5 points

!!). Next let me indicate the rde of statistical errors at this level of

sophistication. The 7 x 7 loop has 2% errors. This makes x(7, 7) vary

between 0.051 and 0.094. 1 hope I have made the point. The bottom

line is that we may still have 50% errors in the determination of a from

Wilson loops already at 6/g2 = 6. The data and results at ~ = 6.3 on

a 243 x 48 lattice are reproduced from (8] in figures 3a and 3b.

The results which are at least as reliable as the above are compiled

in Table 2 along with the at extracted from Polyakov loops as discussed

below. An analysis of the scaling of this data has been done by M.

Fukugita in his lectures.

6 1

~ Uw [9) (7W [10] at [11] Ow [8

5.5 0.340(15)
5.6 - 0.279(9)
5.7 0.135(5)
5.8 0.111(3) 0,099( 1)
5.9 0.061(2)
6.0 0.061(2) 0.042(3) 0.046
6.1 0.046$

/
6.2 0.036(2)*
6.3 0.0173

Table 2: The Wilson (aw) and ‘t Hooft (at) string tension from Barkai

et d. [91, Otto et al. [10], de. Forcrand et al. [111 and de Forcrand [8].

The * againat valuea indicatea that the estimate is not asymptotic.

LNote the systematic error where more than one group has extracted a

at the same coupling, and also the difference between Ow and at.

1.8
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1.2b) Does the Wilson Loop Data Support the Effective String

Picture?

An alter lative way to parametrize the lattice data in the large

r region is t~~assume a simple long distance picture of QCD; one of

chrommelectric flux confined to a tube. Under this assumption, one

can study the modes of a scalar gaussian string to derive what terms

contribute to V. It has been shown that such scalar string theories have

a roughening transition [12] arising from fluctuations p~rpendicular to

the plane of the loop. The leading behavior of a R x T Wilson loop is

–lnw(R, T) = oRT+p(R+T) + c

(l.lO)

The last term is universal and depends only on the number of transverse

dimensions (d - 2), The coefficients u, p, c depend on g. Again, to

extract o we need to know what region to trust this string picture

in. The answer is given by Alvarez [13] from a l/d expansion of the

Xarnbu-Goto string:

(1+11)

where
r(d-2) ~ 0.52

R: = —— —-
12(7

(1.12)
u

is the lower bound on r, This gives T > R > 3 at /3 = 6. An analysis

of Wilson loop data within this framework was done by F’lensburg and

Peterson [14]. They fit the then existing loop data in terrna of eqn.

(1.10) and found reasonable consistency with the xnodel independent

coeflcients. Their work is still a good d~ription of the status. I show

their results in figure 4, The only relevant new numbers are from de

Forcrand [81 for the coefllcient of the $ ferm. He gets ~ -0,34 at both

3 = 60 and 6.3 which is to be compared with the predicted universal

1,10



“’L-’-J, S.a so 0,2 6,4 p

Fig. 4: Comparison of the Wileon loop dmtmwith the effective scalar

string modal (see eqn. (1.10)) St different d [14]. t) string tension?

U/ Aa ( x 104), should spproachs corut~t. b) p, which is the coefllcient

of the perimotar tam c) l/r term with a univerd coetllcient x/12.

d) fnR term with ● univerml coe!?lcient 1/2.

Vduc -* = -0.26. Chrly, more work needs to b, done especially Ii

on. xu to distinguish between vmioua string models.

1.2c) ‘t Hooft String Tonslon

The ‘t Hooft string tension is determined from the connected 2-

1.11



point correlation function of the Polyakov-Wilson line P [151

r(r) s (~+(r) ~(o)) - (P)2 = ~cae-E”” (1.13)

where E. = et(L) L and L is the transverse size of the lattice.

In the last two years, most measurements of the string tension

have been made using Polyakov loop correlations and are usually sup-

plemented with the source method [16], While the inequality at s Ow

is true, it is believed that equality holds for all ~ and not just in the

continuum limit [17]. The only data that supports equality is from de

Forcrand 18]at 8 = 6. i.e. at = 0.042 versus Uw = 0,046, However, the

errors in the evaluation of Uw are large as discussed above, So, this

question is not yet settled.

In Table 2, I have listed the published values of at along the Wilson

axis. A remarkable feature of these calculations is the verification of

the universal finite volume term

u(m) = a(L) + & (1.14)

with a large coefficient ~, The agreement is in much better shape than

the universal term in Wilson loops.

Ther~ is a depressing side to the method too. As f3 is increased,

the transverse dimensions have to be increased to preserve the signal

out to large r, It is not clear whether this alone will guarantee that the

signal extends to the same physical distance. In present calculations,

the r~d= to which the signal extends changes from 7 to 9 in going from

0 = 585 to 6*O. This is not faat enough. Also, the aut~orrelations

grow significantly. So, to go beyond @s 6,1, new tricks will be needed,

1 discuss some in my talk on giuebslls,

A second relevant point is tha~ two such ‘t Hooft excitations can

have the quantum numbers of glueballs with energy 2c7L, Thus when

measuring glueball waea L should be selected so that 2crL > m,

1.3) The Pull Spin-Independent Pottmti-,1

The standard resumption made to extract a potential is that the

major contamination in V (r) from Wilson loop data comes from the



I*O(

0,7:

0.:

0.2s
A

I v

8
4

*CI

v

B VALUES

o 6, I
o 6,3
A 6,5
v 6,7

~~

o 0,5 1,0 1.5 2.0 2.s 3,0

x

Fig. 5: Constructing the potential using uymptotic scaling to com-
bine data ●t different valuee of ~ [181, ‘I’he curve is not universal
inspite of appearance

1.13



perimeter term. ‘Thus one parametrizes VL, defined in eqn (1.7), as

V~(R) =uR+ p+;. (1.15)

The constant p is from the perimeter term in the loops and to get V(r)

we subtract p obtained from the fit. At this stage the potential V(r)

and the distance r are measured in lattice units. To convert them in

to physical units we need a mass scale. Let me call this m, which

could be @ or a hadron mass calculated at each value of the coupling.

Then, the data at different values of the coupling (with any action) can

be put on the same plot, ~ versus rm, If scaling holds and the data

and fits are good, then all the points should fall on a single universal

curve. This is the physical potential. Note

at corresponding couplings I do not rely on

on scaling.

The problem with existing data is that

that by using m calculated

asymptotic scaling but just

we do not know the scale m

very well for ~ > 6 as shown above by the string tension measurements.

One option is to use asymptotic scaling having determined m at one

reliable point. We know asymptotic scaling doee not work for at least

@ <6.15 (see section 4 of my talk on MCRG), Second, the range of r

available go far at any given /3 is small. Flower and Otto [18] showed

that because of this, and in spite of appearances, we don’t have a

universal curve, In their data (shown in figure 5) too, the problem is

hidden by the fact that the distance scale over which the potential is

measured at any given coupling is small.

1,4) Comparing the Lattice and Phenomenological Potential

As I have already stremed, both lattice and phenomenological po-

tential have Uncwtainties, However, the phenomenological potential

is tuned to fit the spectrum, so it is meaningful to compare the lattice

and tha Cornell potential, Thi~ is shown in figure 6.

The unambiguous statement for the present is that the lattice po-

tential does a very poor job at short distances, In this a problem due to

the quenched approximation? One does not know, Certainly, we have

1.14
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LOwait for the next genemtion of d~icat~ super computers to start

addressing thaa details.

To 8~ z., the lattice cdc~’istions give the corr~t qualitative

pIctum of the opin-independent potential. However, the syscematlc and

statisticalmron sm large so quantitative comparison I, not good .+t

:his point It might be spproprlatc to define our goal. To cover [he

rtn.gg of charmonium, bottomonlum and toponium, we would like to

msp the potenual from O 02 co 1 ferrm. Let us opclrmstlca!ly ~~ume

thit scallng begins ●t 6, ga = 6 Then to schleve the god We have to
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measure V (r) for at least r = 10 all the way from 6/g2 = 6 to % 7.4.

‘I’his is a Herculean task without a breakthrough in algorithms. Let

the brave of heart proceed.
Calculating the expectation value of large Wilson loops (or the

correlation of two Polyakov lines) is central to extracting the potential.
The bottlenecks are 1) critical slowing down and 2) removing the short

distrmce fluctuations from the loops. I can only offer suggestions for

there is a desperate need for a breakthrough. To overcome the first

there are two proposals, fourier acceleration and multigrid. The sta-

tus of fourier accelerations is discussed by John Kogut in his lectures,

A proposal for a multigrid update algorithm is presented in

sect ion 7 of my lecture on .MCRG. These techniques are being tested,

For the second we need “fat” loops.

ante reduction techniques as applied

limited to achieve the final goal.

Improved actions and DLR vari-

today are some help but are too

1.5) The Spin-Dependent Potential

To go beyond the simple central potential for heavy quark systems,

it is natural to include spin-orbit and spin-spin interactions, This full

potential waa first derived by Eichtcn and Feinberg aa an expansion in

~. It is reviewed in two excellent SLAC summer school lectures by

;. Peskin [19] and F, Gilman [5] and in this lecture I shall follow their

notation and recapit~’late the parts pertinent to lattice calculations. In

exact analogy with the hydrogen atom, the spin-de~endcnt potential is

V,(r) =
[

&L iz’i 1[-dV(r) + ~dV1(r)

~
+.7 — ——

2m2 rdr rdr 1
(1.16)

Lolfl



where V (r) is the spin independent term we have already discussed.

The terms V1, Vz, and Vs are spin-orbit interactions while VAis the hy -

perfine interaction. To relate these to quantities that can be calculated

on the lattice, we start with the extra action in the path integral due

to a heavy external source with spin. This is

(1.17)

where 2MV = ?17M!7. ] is the spin operator. In the non-relativistic

limit, eqn (1.17) is

(1.18)

The functional integral (expwtation value) we wish to perform is in

presence of these extra terms. The first term defines an external current

source which is our old familiar Wilson loop. We treat the second term

in eqn(l. 18) aa a perturbation i.e. an expansion in ~. Note that the E

or B fields that are brought down by expanding the exponential can be

anywhere along the world line of the quark or anti-quark. This will give

rise to integrals over the t part of the loops since the spatial : arts of the

loop correspond to instantaneous separation. There are two types of

terms that can be generated; 1) that comes from a straight expansion

of which the only non-zero term (to lowest order) is due to the magnetic

field of the q interacting with that of ~. This is the third term below,

2) The interaction of one d o~ with the velocity operator of either the

q or the ~, This gives the first two terms below:

(1.19)

1.17



where for example ES(d, t 1) is an insertion of an electric field at ~~cation

(d, tl ). To lowest order in the lattice spacing a, the fields are defined

by

u)A,V - U.,p = 2iga2FW,W (1.20)

where UP,U is the untraced plaquette in the (A, u) plane. An example of

the insertions for the first two terms is shown in !lgure ‘?, The division

by W(R, T) removes the contribution of the spir-independent potential

to the extra action, leaving only the spin-dependent part.

,H r-=
I I

(a) (b)

Fig. 7: Examplea of insertions of plaquettee in Wilson loops that

contribute to the evaluation of spin-orbit potentialrn. a) V! and b) V2.

The first computational t~k then is to formulate these insertions

on the lattice. This is not unique and at finite P the arbitrariness

will have important couquencee for the normalization of the V~ in

addition to the prsctical concern of the statistical signal. Secondly,

these insutions on the lattice will thernzelvea consist of srrmll loops.

Thue d!bent insertions

8, I givo an example of

plaquet- ●ttached to ●

will have different mull R beh~vior, In figure

a B field inzertion. Th*re are four possible

given point F detlning the field at

1.19



Each of them individually is an inserti ‘n. A better solution is the sum,

This haa two advantage, it improves the statistical signal and second

it is the average field defined at F

Fig. 8: A B(O field insertion defined aa an average of four plaquettes

to improve the statistical signal.

The first physics question is whether all the spin-dependent inter-

actions are short ranged. Michael and Rakow [20][21] showed by lattice

calculations that the tensor (V3) and the spin-spin (V4) terms are short

ranged. This was soon confirmed for SU(3) by de Forcrand and Stack

~22] who also found that V2 wu short ranged. Their result for VI is

wrong due to an oversight. Phenomenological anaiysis of the heavy-

quark spectra indicate a need for a long range spin-orbit component

[23]. More important, Groin- [24], using simple Lorentz innriance,

derived the identity

V(r) = -V,(r) + V~(r) (1.22)

Thus, th. qu~tion now reduces to detetining which of the two, V1 or

V~ is long ~goi The anawer for SU(2), provided by Michael [25], is

VI, The rault WM con6rmed for SU(3) by Cnmputrini, Moriarty and

Rebbi [261 127], Their dat~ for th~ force, dV/dr, taken on a 163 x 32

lattice at @ = 6.0 and 6,2, are reproduced in figure 9. The norum!ization
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Fig, k Spindependent Potential [26], a) ‘~ converted to physical
units uzing aaymptotk scaling including a renormalization discuzaed
by the ●uthore. The squaru ●nd trianglee repreeent data at ~ = 6,0

and 6.2 r~pectively,
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Fig. 9b: Same as Fig, 9a but for dVz/dr, The addition symbols
represant data at B = 6. O (circles) and 6,2 (crosses) after a correction
for lattice artifacts at small distances, The lines represent the lowest
order perturbative behavior, eqn. (1.23), with a, = 0.244 (solid line)
and a, = 0,17s (broken line),
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F;g. 9C: Same u Fig. 9b, but for V3. ‘I’he solid line is the lowest
order perturbative behavior with as = 0.175.
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Fig. M: Same M Fig. 9b, but for V4.
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of V, is fixed by using Gromes relation for large r

(WI W
-F=T=U

where o is determined from the spin independent potential. The data

are converted to physical units using asymptotic scaling.

The data show a clear distinction between the long range term V1

and the short-range pieces V2, V3, and V.. Also evident is the problem

at small r due to the discreteness of the lattice. The lattice artifacts

give large differences between different definitions of the insertions. The

raw lattice data does not explain ti,e observed spin splittings and they

provide phenomenological arguments which change things in the right

direction. For a discussion of these I refer you to their paper [26].

The data for V2, V3 and V4 agrees qualitatively with the leading order

perturbative behavior

2?zVz(r) =
32%

V,(r) = -~ a, 43(r)

(1.23)

though at r where the lattice artifacts are small, the fits are not very

sensitive since the signal for the short range potentials has large errors

Let me describe some computational tricks which were also used

in ~27]. For each meuurement they fixed the lattice to the temporal

gauge, Then 1) < parts of the loope do not have to be calculated. 2)

They use the DLR variance reduction trick for the spatial links. 3) They

averag~ the ineertion.s over t be!ore calculating the expectation values

~ie, do the T integral before the Monte Carlo average, This reduces the

statistical errors but also hidee any 2’ truncation effects that may exist.

de Forcrand informs me that these in fact are substantial especially for

the long range piece. For VI alone they are under control, as shown in

figure 10 where the integrand in qn (1.19) is plotted directly,
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The final goal is to be able tocompute the spectroscopy of heavy

quarks from the lattice derived potential, Over and above statistical

and systematic errors, the problems facing the extraction of the spin-

dependent potential at tile moment are 1) the normalization factors

for the various terms and their scaling with g and 2) the need for

large ioops meaaured at weaker coupling so that the small r distortions

are pushed to small physical r. 3) The small r behavior is expected

to be modified by the presence of dynamical quarks and we need to

understand it better,

To conclude, I believe that the qualitative prediction that VI is

long ranged is a major triumph of lattice calculation.

L,Jfl
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2) GLUEBALLS

The existence of glueballs are a major untested prediction of QCD,

We have not been able to reliably calculate the masses (let alone the

mixing with q? states), or understand in detail the production and de-

cay mechanisms, What we can do is group theory and determine, if

QCD is the correct theory, the quantum numbers of the vast number

of glueball states, The predictions for the masses from various models

(bag models, flux tube model, sum rules etc.) were compiled by Sharpe

[1] in 1984 and are summarized in figure 1. There has been no signifi-

cant improvement in these estimates and even today they Lre al] over

the map, This does net help the experimentalists who hawe to isolate

glueball states from the myriad of meson states in the 1 to 2.5 GeV

region, Future progress will depend on a combined effort: theorists

have to calculate the mass spectrum and understand the production

and decay mechanisms, while experimentalists must do very high pr~

cision measuren:ents, Clearly, the &at goal facing Lattice alchemists is

to calculate the spectrum in a world in which the nixing with quark

states is turned off,

Experimental Status:

Let me first look at the problem donning the hat of an experimen-

talist, A good place to look for the lowest maeu candidates is certainly

in the radiativ~ decays of J/~

J/+ ~ qgg * TX with X + gg,

The production of glueballs in hadron collisions is not very well under’

stood, Improved understanding will presumably come with input from

the decay modes of glueballs, So for starters let’s proceed by elimina-

tion, First we tabulate all the states in the 1 -2,5 GeV region and fill

up m-on noneta Since tlavor sU(3) tells us that once one member ex-

ists, all exist, [f we are lucky, only filled (and well understood) nonets

and a single glueball candidate will exist, To be convinced that it is

not the tlmt member of the next higher excited nonet, we must check

that it haa the “right” properties, A reasonable hypothesis is that its
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Fig, 1: Glueball rnaua predictions [1]: B1 and B2 are bag modei

estimates; FT is from flux tube; MC ia from ma.aaive gluon model; and

SR is sum rules estimate.

decays should be flavor symmetric since a giuebtll ~tate s~,ould have

equai coupiing to u, d,s quarkm above threshold, In fact, this is vioiated

by one of the favorite candidate; the /a (1720) has ● * ‘/0 % branch-

ing ratio for decay into KY. Second, it ehould not be produced in

yy scattering. Flavor singlet meaoru, on the other hand, should $ave a

signi6cantly largw branching ratio through qq. On the buis of such an

analysis we must furthar convinco oursalva that the candidate state is

not a q? or a moro exotic pouibility like q~g or qa~a. We then sanctify

it and start tho Iabimious procas of providing proof.

Candldatom

Ther9 etist At preaont two prim, giuaball candidatu below 2 GeV

and ● possibie signal in the s-wave XT ph~a shift data for the elu-

2
++
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2.1) Lattice Calculations of the Glueball Spectrum

‘The mass of any state in Euclidian lattice calculations is deter-

mined from the exponential fall-off of the connected 2-point correlation

function. Let 0 be any interpolating field operator with the coirect

quantum numbers. Then

r(r)= (O(r) o(o)) - (0)’ = x c~e --mar (2,1)

where the sum is over all states that couple to O. To get the best esti-

mate for the lowest state we need to 1) optimize O to get a large overlap

with the wave function by making c 1 large and the rest small, and 2)

have the signal extend for large r to kill any remaining contamination

of higher statea. I will refer to these as necessary criteria.

The first calculations of the glueball spectrum were made by an-

alyzing the behavior of the 2-point correlation function of the 1 x 1

plaquette. In this approach, the maximum separation r that could be

measured WM < 2. E~timates of mass from these calculations were

dominated by higher excitation. Further, ae g is decreaeed, the over-

lap of the plaquette operator with the physical glueball state also de-

creases, and the correlation fmction at small r is dominated by spin

waves. Thus, even for the O++state (which has the best signal), this

brute force approach did not and will not work.

To incorporate the growing size (in lattice units) of the glueball,

Wilson suggested we use the variational method, In this approach, the

glueball operator is taken to be

where Od are in principal all poeeible Wilson loopII and Ca are the

variational coeflicienta to be determined. This method is one way to

implement the necessary criterion one, The method works as follows:

The c~ are determined at time separation r = 1 by solving a general=

ized eigenvalue problem; A* = A13@, where A and B are the 2-point



sive 0++, A lot more high statistics data with spin-parity analysis is

necessary to establish them.

[ii The (0++) state at ? Mev: This state is not seen directly. The

evidence for and against comes from an analysis of the 1=0, s-

wave TT phase shift b:. By a study of the data below the KK

threshold, Sharpe, Jaffe and Pennington [~j excll.~de a glaebail un-

less it is very narrow (r ~ 2&feV) or intrinsically very broad,

of mass s 650 McV and appearing very narrow because of mix-

ing with q2~2 through unitarity, Recently, Au, Morgan and Pell-

nington [31 made a coupled channel analysis of the data for A:

obtained from pp ~ ppTm(K~ up to 1.6 GeV. They conclude

that there is a glueball candidate state at WIMeV. The anal-

ysis uses a highly complex seven pole solution to fit four reso-

nances! So one could be a little doubtful of it. Well, this is the

only serious number we have. The correspon,ling meson nonet is

(X; (1350), aO(980), ~o(975), ~0(1300) ). A pv blem for lattice

calculation, for which this channel is the moat msil~” rnmmred, is

mixing with meson statea. There is no argument to exc]wie a large

mixing because of the trace anomaly [4], Thu~ any prediction from

quenched calculations can be off by say 500 ld~ V.

:2] The q(1460) or the old ~(0-+): There is evdence for three states

in a narrow energy region; both a 0-+ a aon and a 1+ * 4 ~K’

meson at ss 1420 seen in hadron collisions and a wider 0-~ -A

‘ao” n at 1460 seen in radiative J/@ decays. T}l~Y regj,on needs to

be sorted out by very high statistics runs,

[3] The ~z(1720) or the old 4(2++) state: The 2’r~ meson nonet

(K~(142S), aa(1320), ~2(1270), /2(152S) ) is complete, well estab-

lished and reasonably well understood. The ~a(1720) is produced

copiously in J/@ decay, It is at present the best glueball candidate

even though ● m 70% decay into K~ violatefi fiavor symmetry. If

th~ 2++stata is & relatively pure glueball stata then lattice calcula-

tion have another prediction, The m- ratio ~~~$should specify
the location of an unmixed 0++, giving us im e~tixnate of the size

of the mixing in the 0+ ‘channel,

2,1



correlation matrices r(1) and 17(0) respectively. Then with 0 defined

by these coefficients, the best estimate for the mass is given by

_ln r(~-t I)
m= r(r) (2.3)

where r + 1 is the largest separation at which a statistically significant

signal exists. Notwithstanding the fact that this method is mostly used

half-heartedly (a single loop with the best signal is chosen rather than

solving the generalized eigenvalue problem), it is clear that a few loops

are not suiflcient and supplementary tricks are needed,

A second embellishment, due to Parisi, replaces non-overiappi ~g

links in large planar loops with the mean in a fixed environment i.e.U ~

V [s]. Using these ‘DLR variance reduced loops”, bought us at best

one additional time-slice in the correlation function. Unfortunately, the

mass estimate so obtained was not independent of r and the magnitude

of the error was not known.

I would summarize the status of glueball calculations up to 198s as

one of exploring techniques. We had learnt how to construct operators

of various spin and parity using the cubic group and the rudiments of

such glueball calculations, For hard numbers we had nothing reliable

even for the O++state, For all other states, there was essentially no

signal. For details and references I suggest the review by Berg [6],

But what had we learned from these calculations? With 20/20

hindsight, I can say the following:

[1]

[21

The short distance fluctuation in WiIson loops are killing the sig-

nal. It is necessary to use renormalized operators, One way to do

this is through tha Monte Carlo Renormalization Group, This pre

gram, firsteepoused by Wilson, has not been carried through for

fear of the computer time required, The DLR variance reduction

technique does not work well at small g because in the modified

Wilson loops the averaging is too local,

The gheballa are not local objects, but most likely are spread

out over a complete time slice, ‘1’hus any attempt at a variational

calculation will need too many loops and even given sufllcient loops

2,5



[3]

the calculation will not address the issue that these loops are thin

(unrenormalized).

A source is needed to enhance the signal at large time separations,

I will now briefly describe the ideas proposed and tried to overcome the

above problems

2.2) Technical Points

a) Finite Size Scaling

Lattice calculations will always require extrapolation of results cal-

culated on finite lattices to the infinite volume limit. In certain models

and under certain assumptions finite size scaling relations can be pre-

scribed. They are not “truths”, but should be used as phenomenologi-

cal guides until verified.

[1] For the string tension calculated from correlations of Polyakov-

Wilson liner, the finite size scaling form suggested by integration

of string fluctuation modes is [7],

o(L) = - ~- + (7( L-3).a(m) 3LZ (2,4)

where L is the transverse size of the lattice.

[21 The glueball data can be checked against the finite size scaling

form [8]

where ~GGG ~ +(+~) 2 is the three scalar glueball coupling

constant, This relation is derived under the assumption that finite

volume effecte come from multigluon interactions and that nccc

is small, As 1 will show later!, the finite size errors in glueball

measurements seem to be much too large for eqn. (2.5) to be valid+

2.6



Thus, we need very careful runsat one valueof the coupling for

many L to get a phenomenological understanding of these effects,

Otherwise we will have no predictions.

b) Sources for Glueballa

A simple calculation of the mass from a connected 2-point corr~

Iation function picks out of the statistical sample those configurations

with a glueball in them. These glueballs are created as fluctuations

of the QCD vacuum, and so are damped by their Boltzmann factor.

Thus the measurements are inefficient. With an external source at time

r = O, the system near T = O is no longer in the vacuum state. Unlike

vacuum fluctuations, the source is strongly coupled to many different

states, exciting large number of quanta of each. The time evolution of

these states is still given by the unperturbed transfer matrix. Thus,

a given excitation with energy Ea will die out M C-E”’, Far from

the source we then make the standard aaaumption that only the lowest

state of given quantum numbers survivee. The mw is then measured

from an exponential fit to the decay of the operator i.e.

(O(r)) - (0) s ce-mr (2.6)

where (0) is the vacuum expectation value meaaured at r ~ m, In

figure 2, I show a typical fit [9].

The simpleet source for measuring nao.~ and u is to set all spatial

links at r = O to the identity, The preeent statua of the signal with

such a source is that with 50000 sweeps one can follow the signal out

to r s 9 at 6/g2 a 6,0 on ● 103 spatial size lattice. Thereafter one has

the usual bottleneck; the errors fail as ~, where N is the number of

indepmd~nt configurations. The DLR variance reduction technique is

not applicable in the presence of the source, but smeared operators (to

be discussed later) should be used. Aleo, theee calculations should be

supplemented by the variational method. At present no good source is

known for the 2++state.

‘7I.,
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Fig. 2: A typical fit to the responme of Polyakov loop operator,

(F’(r)), to a cold wall source with periodic boundary conditions [9].

The exponent at large r,
tension.

c) Variational method

in

in

the exponential fall-off,

praaence of ● source

gives the string

The standard variational method to estimate the wavefunction W
by solv&g the equation [9]

,
(Oi(r)Oj(r + l))~wj = A(ei(~)Oj(r))e*J (2.7)

for the low-t eigenvdue can alao be used in the premnce of a source.

The e,(r) are the varioua loops (they could be blocked or smeared loops



to be defined later) measured on time slice r. Eqn. (2.7) follows from

the same assumption u in eqn (2.6), t.c. at time slice t the eigenstaces

of the transfer rntrix are simple and ordered and the lowest state

dominatea the exponential fall oH. .4 check that the solution W is not

dominated by the source is that the results be stable at a few successive

time ‘ices.

2.3) Large Lattice, High Statistic- Results

The sto~ of these calculations changed with the availability of

Supercomputers. In this lecture I will focus only on this large lattice

data, which is collected in table 1 and figure 3,

de Forcrand et al. did the first large scale calculation with a source

for the O*+-state [10] and the string tension [11]. The source they used

wu to 6X all space-like links ~t tim~slice zero to the identity. The

string tension was determine.i from a me~urement ~f the Polyakov-

Wilson line while the gluebdl maan waJ determined from the 2 x 2

Wilson loop, They detetined the value for the ratio ~ to be

1.96(7), 2.45(12) and 2.65(18) at the three -lu~ of the coupling along

the Wilson axis taken to be 6/gz= 5,5, 5.7 and 5.9. (These ratios

are slightly different from those in Table 1 becauae here I hsve quoted

their infinite volume extrapolations for 0++ ), These results show scal-

ing violations, It is therefore not pmsible to deduce the continuum

value. Their second result is that calculations on different spatial size

latticee ●re in very good agr=ment with the presence of the universal

Liischer finite size comction to the string tension, ic. ~~. A third

(even though negative) r~ult of their calculation is thst simple source~

for the 2++ state don’t work M well. Lutly, their cmlculationu sug-

gest thst even with the source, the method saturates at 6/g2 = 6,0

baaun tho numbur of points remaining ●re not suf!lcient to fit to a

reliabb ~onentia.1. This is aftel the initial time-slicm dominated by

the tmadan~ sre discarded.

Tha improved action calcul~tion [9] wu motivated by an under-

standing of the cause of scaling violations in the calcul~tions of de

Forcrand et al, md the ●xistence of ● ,MCRC inspired method to avoid
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Tabh= 1 : Monte Carlo data for the O+ + glueball mass and the string tension a. The first—

5 en!ries are for the improved action, (eqn. (2.8)),caJculaLions [9,21]. Entries 6 to 12 are

from de Forcrand et a~ I1O,15], 13 to 1S are from the APE collaboration 120] and *6 to 18

are from IkGrand ~[8]. All of these correspond to coupling along the Wilson ak.



them, The r~ason for the scaling violations is a lattice artifact: the lat-

tice theory pose.eaaea ●xtraneous critical point.a in the vicinity of which

the univemdity of the g + 0 theory is violatd. One such known critical

point is praent in the fundamental-ad joint plane and Iiea cloee to the

\Vilson axis. A naive extrapolation of the sp~ific heat data suggests

that its mtimum influence along the Wilson tie will be at 6/gz = 5,5.

At this critical point the O++glueball mue vanishea. This in based on

the specific heat dsts [12] and a measurement of O++state, in SU(2),

cloue to the criticsl point [131. On the other hand the string tension

remains finite [14], Thin expluation is consistent with de Forcrand et

al. data. To ●void thin singularity we chooa a Iinetr trajectory in a four

coupling space consisting of the pl~quette in the fundamental, 8 and 6

reprurntatioru u well u the 1 x 2 rectangia in the proportion :

KO Ke K1. g = _,O,
— = –0.12,
KF

— = -0!12,
KF ~’

(2,8)

when the trscas are nornmlized to unity, This trajecto~ is ● MCRG

●stim~te of tha renonnalized trajectory (RT) in this trtmctted s~ ice.

Since the RT in principle pr~wa tho ~rati~ of tha continuum

theory, working slong it is s way of ●voiding lattic~ Irtifacts. The

second motimtion hu to do with using ranormalizd block operstors.

There are two wsys to do this, On~ is to gm~rato lattices with ●ny

action, block a rewormbla number of timu snd calculat~ obcervsbiee

on thee. blocked Iattica, This approuh h~ ● problgm for QCDi The

correlation length < for recut ohcmablw (proton, rho, glu~balls t:ci)
on th. Iargut Iattica acc~ibia to todsyu suparcomputam ~r~ at b-t

● (OWIattico spacinm. Thus uiny blocklng mah f ~ 1, Since ●ll BST

● r. ●pproximau, tham i~ no gtmrantot th~t the flow from s starting

action will be ~ttruti to tha wd coupling RT for such small {,

Tho d~tlv~ is te work along tha RT, The price on, pays is * rnora

compi.iti ution in tht update. Howwor, in this CM we csn simulate

in a r@oQ whgrg ~ > I ●nd thus mtiofy s besic requiram~nt of lattice

caicul~tions. I’hc million doilar qumtion (Iitcrdly) is how elaborstt

~oa th~ ~tion hava to b such that tha simpla o~mtorm with improved

●ction.t arc quivalmt to th, ranorumliz.d onu obtaind by blocking

! !1,,



con figuratioru generated with a simple action- We decided to test the

~-parameter action given in eqn(2.8), and the results are entries 1 to 5

in table 1.

The new r~ult is ~= 3.0(3). ~~’eagain confirm the Ltischer

term & but find much smaller finite size correctio~ for the glueball

than de Forcrand et al. 110]. To later compare results from imprcved

actions with those with the Wilson action, let me define 3,~~ as the

coupling on the Wilson uis which gives the same string tension as a
given improved action calculation.

Last October, de Forcrand analyzed data from more extensive cal-

culations at 3 = 5.9 on L = 8, 10, 12 Iatticea [15]. His new result is

+a 3, in agr~ement with the improved action calculation. This

immediately raisea the question, how much better is the improved ac-

tion? I Will discuss this in the conclusions. Second. in his results, the

finite size effects for glueballs do not show a monotonic growth with

L, so We cannot use LGscher’s result, eqn (2.5). Again, I will have

more to say ●bout the finitesize effects after di~cuming how to improve

operatom.

Declgnlng better oporators

I trace through m idea Which goes beyond MCRG to ~educe the

high-frequency nom in operators. Tha prasontation styla is evolution-

ary rather than chronological.

DeGrsnd ~18) presented ● cslcuhtion with “f~t” operston. Rather

than the stand~rd blocking with ● change of seal., he just usw Swend-

sen”s b = 2 transformation to ddln. fat Iinh connecting OVety ●lternsto

site. This operation iti pcrformod only on spatkl links and gluabtll op-

erstom m. mad. out of thaw fat links of length 2. Not, that in rhim

construction th.ro it no changa of Kale. u distinct from MCRG ideu.

From his calculation, th.r~ i~ widenco that glu~ball operators ~re f~r

moro txmndd thsn thooo ud b~foroi I haw shown his results In

Tablo 14 (entri.s 16 to 18) but 1 h~v. oomo minor reaematloru ●bout

the dst~. Tho statistical errors ●re Iargc ud tho glu. ball ITMJSshows
no vaflatlon betwmn d = 6,6 OS ●nd 6,1. Second, the calculhtlons ●re

I ,’
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x = rnotbl,

Th~ van Daal-Kollm plot [22], a(L)L/me*+ versus Z ~

me++ L showing the high statistics and large lattice rmulte (with

sourcu). Tho straight lines ●re two pomiblc infinite volume extrap
ol~tioru, Tha difference shows the l~ck of control over finite volume

cormctioru,
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done on one lattice size. Therefore, finite size effects and statistical

errors are mixed up. For the present I would conclude that this data

provideo corroborative support for the previous result ~=s 3 once

we take crm measured from elsewhere,

A similar idea of using fat loops has also been proposed by Teper

;19]. He uses the same construct as DeGrand, but does not project the

averaged link back onto SU(3). This leads to a small gain in CPU time

but should be irrelevant for the results provided the extra part does

not have larger short distance fluctuations. The more important idea

incorporated is to carry through the blocking procedure recursively to

produce very fat loops,

The APE collaboration [20] move away from MCRG ideae alto-

gether by their use of “smeared” operators. They replace the field at

each link by some average of the field in a neighborhood and study the

behavior as the neighborhood is enlarged. In practice, this is done as

follows: Each link L’ on the lattice is replaced by

where UUUt is a staple, and t is the smearing coefficient. This procese

is carried out recursively, so the gauge field on the link represents a

smeared average over larger and larger neighborhoods, The sequence of

plaquette operatora so formed is labeled by the number of the recursive

step in defining ● link by eqn(2.9). They calculate the glueball maas

using jut ● simple plaquette on each level sep~rately, If we examine

the plaquetto obtained ●fter ● number of smearing steps in terrna of

original links, it consiste of ● very Iargc number of thin Wi180n loops

which form ● glob, Thue, the oporator i~ smeared over the physical

gluabdlo

Th~ singl. puamct.r c is insufikient to match onto the wavefunc-

tion of th gludmll, Thera ar~ two possible extemions: One is to im-

plemant a variational calculation with the set of operaton taken to be

100pa of different aiza, meuured ●t dif?eremt smearing step, and with

different c ●t each level, Another pasibi]ity is to first flx to Coulomb



L

-o 0.2 0!4 0,0 0.0 1
(Sm*artng)-l

Fig. 4; The effective string teruion c(L)L for L = 12 u ● function

of the number of smearing operations [20] ●nd for variouJ r. The best

estimate is given by where cumes r = 2 snd 3 intersect,

gauge and then replace each link in ● spstial loop by a weighted sver~ga

over parallel links, The reuou for Mng to the Coulomb gaugo is that in

this “averaging* tha link is not gsugo inwr{ant i.e. ●il paths do not start

and end ●t tho au. point, If tho Coulomb gaug~ dxing Is re~nsbly

smooth, then the optimum weighting will prov{da Information tbout

the glu.h,ll wavofunction, Again, wc would Iikt to play with the size

of th, Imp. Ckrly, to ●vwt tat the umfulnaa of th~e enhancement

requiru -m computa power thsn is currently svsilablo, Howavar, they

should ba kept in mind, Mpwia” V tho notion that ~lucball opcratom

do not ham to h~v~ ● simplo rep. ~ntation in tsrm of Wilson 100pa.

Tho calculation with smeared op~ratom -y b, furth.r improved

by using ext.ndd ●ctiou, Thi~ is bud on tttc following oboomtion:

>-,1’)



The average plaquette with the action in eqn. (2.8) at an /?alj = 6.0

is =s 0,63 in contr~t to 0.594 with the Wilson action. Thu.a the short

distance fluctuations are reduced with such improved actions.

I now return to discussing the results for ~, The source used

by the APE collaboration is to set Ii.ti in only two spatial directions

to the identity. In figures 4 and 5, I show their results for a and O*+.

The three cumes in figure 4 are for the effective ‘a(r)” with r = 1,2,3,

The great hope present~ for such calculations (especially glueballs) is

that m(r) for r small, agree with the ~ymptotic mane derived from

the standard l-row exponential! fit to r > 4 after a sufficient number

of smearin~ operations. They find that this is true at - = 3 for both

the string tension and the glue bane. However, we neec lome caution

here. By themnelvea, m(l) and m(2) with smeared operatora do not

lead to a reliable estimate. The entimatea m(3) and m(4), for the no

smearing cue, are by themselv~ within 10% of the ●ymptotic result

quoted. Also, we [9] hsd found that the sourca method supplemented

by the vtriationd calculation giva th, asymptotic valua from r = 3 at

a similar coupling, So, ●t 6/ga = 5,9 tha only ncw thing tha nme~ring

method is redly giving u it confidence.. W. nead a tast St weaker

couplings,

Let me now focu on the hnita siza dfects. For u they again find

re~nable agreement with ~. Tho gluoball is ● new sto~. The 0-

nite size effects are hug. (~ Tsblo 1). This is completely consistent

with the gluebdl being ● very extondd obj~t, but it ●lso maku pre-

dictioru for infiitg volunM raults ditlicult because such Isrgc effects

mako L Gsch@r’sderivation incomplcto.

In figure 3, I show the globl data on tha w Bul-Keller plot of

‘~ v.nus s - me.. L, Soma of thg points am Itbkl by tho ent~

n;mk in table 1 md tho ●rror bara ●ro .uppm.ml, Th~y sra large

and caa b cvsluttod from th~ data in table 1, If s.ctling holds, then

for sukidly lsrga ~, th. dsta should colispoo on to s single line with

a paitiva dopo A in tho vwisblc ~, In th~t caJo, ~is given by ~,

I leavQ out points 1,6,7,0 sinc~ they ●rc St strong coupling ●nd show ~

deviation from th~ univcmd bghvior, The preferred tit, so far, is the

:,15
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0.2

Oa I I 1 I , A I b.-
0 O.a

Fig, 5: Estimate of

fit with r~in = 4 u h

solid line which giva

0.4 0!4 on 1
(sm@sria@-’

the 0++ glueball mu. obtainad from ● l-ma-as

function of the numbar of smearing etepe.

~- 3.1 sinca point 15 has large errors. On
the other hand just 6ttin-g the data ●t 6/g2 = S.9, the dottad li~e, gives

~= 4.6! This ●gain highlights the uncertainty in the rmdts due to

finite size effects. To sumwriza, WQnod mor~ data ●t 6/92 = 5,9 for

varicu lattices siza to

Berg, BilloirQ md

undcmtand hits aiza dhctt.

2.4) Tho 2++ #tato

Vohw{nkol [161 have, over th~ Iut two years,

devotd coddarablo ●17Qrtto taming tha 2++stata. The bmis of

th~ir hdy h s 8n1to voluma rault derived by Ltichcr [al, The an-
alytic calculation for SL/(3) hs~ recently boon don~ 17], and predicts

~+u 1.2. This calculation is valid only for small s whore z is the di=

m~nsionk Kded variablos = mo+ + Lt. BQrg tt d. advocat~ tho use of

x to isolate the !3nitovolume correctiotu from tkitc g scaling violations,



If scaling exists, then the finite volume corrections have a simple form

and all data should eventually collapse onto a single universal cume.

Berg et al. work on L3 x m “.~ttices and measure the 0++, 2++,

mazsea and CT.To determine the masaes of the O++ancl the 2++states

they measure correlation of Polyakov lines in the adjolnt rcipresenta.

tion without a source, The signal in this channel exists only when (p)

is large and 6/g2small. Their cumulative estimate is ~~-~= 1 + ,2,

based on the data shown in figure 6. There has been a tot of contr~

versy over whether, in a small box with 2cr(L) L < m, the states they

measure are O++and 2++or some bound state of color electric excita-

tions. Looking at the errore in the data for z > 2 and the lack of an

asymptotic value, ~ think we should wait for calculations in a large box

for a reliable number, Meanwhile, what should be taken seriously from

their calculations is to question whether the 2++state is really much

heavier than 0++,

A question relevant to the ~b o’w diacumkm is the connection be-

tween the finite box transition at z s 1 and the Euclidian finite tem-

perature transition at z ss 5 [22]? The tnoet probable scenario is that

there exists a single Z(3) syrnnmt~ n“eaking transition that moves

from Liischer’s predicted answer in a smaii volume to ~ =s 5 ae the

lattice is changed from Lo x 00 to ao3 x fVt An additional possibility

is that the z s s transition leaves its signatura (maybe M a croescwer

involving level crossing ) on the L3 x 00 system at z zs 5. The only

relevance of this detail for continuum physics is whether to trust an ex-

trapolation of the small box data, especially ft r the ratio ~, from

srcudl z, However, if the preeent trend of large ‘Inita size correc~ions to

0++ is not ● statistical fluctuation, then ther~. i:, no re=on to expect

the 2++ or the maae ratio wiH be better behavp~, We therrkwe need

to explore the Iarg. s region with dedicated super~wnputen like the

APE.

FW 2++, the ni~al in tho APE calculation ex!ats only up to r = 4

and their atimtq m(s), is preliminary because c’; la~ge st~tistica.1 and

uncontrolled Mite siz~ efktt, Other than t~iat fhey (MI that m(3) is

a retuwnablc ettimat~ of the asymptotic value becaum of tha smearing

‘,1$,,
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Fig, 6: *MC reeults for SU(3) mass ratioe versuz z [161, The straight

iine at = 1.2 indicates the perturbative result by Weisz and Ziemann

~171for m(O++)/m(2++). Th~ current status of the large z results for

fi~m is given in Fig, 3. For details of Berg et al. data me ref. [16b].

method, Their present conclusion is ● light 2++, with ~= 1 within

20% errors,
a

2.5) Concludons

[n b lot of tho following ●nalysis I will probably be guilty of mak-

ing im of trends that UU statistical fluctuations, So the re~der is

cautioad in advance.

hi all cam for which 2uL ~ ~++, the stati~tical erron ●re large

and tha dw are comp~rstivdy not u good. Thu the physical picture

that these string statd strongly influence the glueball channels is rea-



sonable. Lesson: Avoid working on small lattices which don’t satisfy

20L > me++

The finit-size correction works well for the string tension. How-

ever, it should also be pointed out that in many cases the statistical

errors are large and the number of diRerent L used are small. So it

should not be considered de f“to yet.

Both de Forcrand and the Rome group have made a finite size

analysis on three different lattice sizes. On L = 10, 12 their results

are in agreement. Neglecting L = 8 (for which 2t7L < nao++ ), one

notices a large finite size effect for the 0++ glueball. If true, it is

too large for Liischer’s formula to be valid. Taking all the results in

table 1 into account, let me propose a phenomenoiogical finite size

behavior shown in figure 7. In region A, the glueball mass is large

due to mixing with the string statea and from being squashed into a

small box. In region B, the dominant effect is multi-gluon interactions,

which if the three gluaball coupling is small may be handled by eqn

(2.5). The intermediate region haa a dip (at leaat non-monotonic) as

all the data seem to show. Thus, unleaa we understand how to do finite

size extrapolations, glueball calculations will requi~c Iatticea with very

large transverse dimensions.

L

Fig, 7: A heuristic finite size behavior of glueball mass, Region A is

dominated by string mod-, ‘I’he infinite volume extrapolation has to

be made from region B with ● form which is not known yet,



To decide whether the improved action program is working, con-

sider the new point at XF = 9.2 [21], which on the van Baal-Keller plot

is marked # 1. It corresponds to /3~Jf s 5.67 based on u, It should be

compared with Wilson axis results at 6/g2 = 5.7 (# 7 and 8), I think

the data has much too large errors and in light of uncontrolled finite

size errors it is not possible to make a confident statement about an

improvement.

The evidence is in favor of a light 2++ glueball. The objections

against the work of Berg et a~.extrapolating from small z values for

a theory with a first order transition—have to be reexamined in light

of the result af the Rome Group, At present the results are still too

preliminary to decide details such as which state is lighter and by how

much.

Right now the smearing method of the Rome group needs to be

explored further. A crucial test is to repeat the calculation with some

of the variations mentioned at say ~ = 6.2 and check whether it lives

up to its promise.

In conclusion, iet me say what I would do if I had a year of dedi-

cated X-MP time. I would do a high statistics finite volume study on

L = 14,18 and 22, using the variational method with smeared loops,

1 would use a source that couples to O++and 2++ (maybe the one the

Rome Group used) at effective coupling 6/g2 = 5,9 befcre moving on

to 6.2,

> ‘LL.. *
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3) QCD WITH DYNAMICAL FERMIONS:

THE CHIRAL TRANSITION

‘i’he partition function for QCD with dynamical fermions in Eu-

clidean space can be written in a number of equivalent forms:

~. JD@Dti~tDU CZP(SG + ~(o + m)w) (la)

z=1 DU det(@ + m) exp(Sc) (lb)

SC is the gauge action (possibly an improved action). @ is the fermion

covariant derivative, and m the quark mass. For staggered fermions,

the form (lc) applies in which the scalar psuedofermion (PF) field p.

lives only on even lattice sites.

Including fermions in the theory makee the action non-local. This

non-locality is manifeat in the determinant or in the inverse of the

Dirac op~rator. Efficient algorithms to include dynamical fermions in

numerical simulations are very important in Condensed Matter Physics,

Statistical Mechanics and ~ .ttice Gauge theories. In the l~t four years,

considerable effort has been devoted to algorithm development. The

five classes of algorithms that have been explored so far are?

Pseudo Fermions (PF) ~1],

Exact Algorithm (EA) /2][3][4].

Nlolecular Dynamics (MD) ~5],

Langevin (1.G) [6].

Hybrid (HY) [7].

The details of these algorithm have been covered in the lectures

by Mike Creutz, John Kogut and M, Fukugita. I will discuss some

-pati of the exact algorithm, By and large, I will concentrate cm the

status of the :wuults for the chiral transition, The status of the hadron

spectrum with quenched and dynamical fermions is reviewed by \l.

Fukugita,

1 ,:



3.1) The CMral and the Deconflnement ‘hansition

Chiral symmetry plays an important role in modem theories of

particle physics, Thi~relies on the observation that theu and dquark

-names are very small or equivalently the pion is light. Thus chiral

yrnmetry is regarded as an almost exact symmetry of nature.

Even if the u and d quarks were exactly rnauslesa, the zero tem-

IJerature QCD vacuum would not preserve handedness a,e. the ferrnion

number would not be individually conserved for left handed and right

handed particles. This is because in addition to the mass term

FL+fi + T’RtiL9 ~ ~~ fluctuations (instantons) in the QCD vacuum

do not respect handedness. Chiral symmetry is spontaneously broken,

The order parameter in this limit is (Tti). A non-zero value gives the

amplitude for a left handed quark to move in a closed loop and end up

as right handed.

The chirally symmetric state has higher energy. However, experi-

ence with such symmetry broken ground statea suggest that at some

high enough temperature the symmetry is restored. So, the questions

we would iike to answer ar~: Given the physical quark masses and

QCII, 1) does the system gc into a symmetric state at high tempera-

ture, 2) is the nature of the transition discontinuous, continuous or just

a cross-over and 3) can we calculate ●nd predict the signatures of this

transition,

In addition, our theoretical prejudice ia that hadronic matter at

high temperature And density undergoes ● transition to quark-gluon

plasma. This deconfinerncnt transition ie important to understand be

cause it will be investigated by the present planned heavy ion experi-

ments if the transition temperature is be!ow ● few hundred MeV. Suc-

cess depends on the nature of the transition and our ability to predict

the transition temperature.

Tha only quantitative tool available at present to address these

non-puturbativc phenomena is the numerical simulation of Lattice

Gauge thaory, Since we have ● technique (Monte Carlo simulations)

that is still in the ntage of algorithm development, it ia naturaj to pick

a q~lalit-tiva god. TIM one I will focus on is: What is the order of

1,!!



these two transitions and are these two transitions related?

3.la)Status of the Pure Gauge Theory

Simulations of pure gauge SU(3) show a strong first order transi-

tion at a temperature T, = Am [8][9]. At this transition the global

2(3) symmetry of the theory is spontaneously broken. This is charac-

terized by a non-zero expectation value of the Polyakov line (L.) in the

high temperature reconfined phase. This non-zero value of the order

parameter implies a finite free energy for the quarks, The scaling of

the TCdata is discussed in section 4 of my lecture on MCRG, A second

order parameter, the chiral condensate (~x) measured in the quenched

approximation, is also discontinuous at the transition. (Xx), when ex-

trapolated to m~ = O, changes from a non-zero value at low 2’ to zero

in the high T phase.

3,1b) Introducing Dynamical Quarks

Dynamical quarks act M external fields and explicitly break the

X(3) symmetry. (L) is still ~ meaaure of the quark free energy but

it is non-zero for all temperature due to vacuum polarization, (XX)

remains a good order parameter to study chiral symmetry. The only

theoretical understanding of the realization of chiral symmetry comes

from a renormalization group ●nalysis of an effective spin model in 4- c

dimensions [10][11], The prediction depends on the global fhvor group

and on whether inatantons are important i.e. whether U( 1) is broken

down to Z(nl), In case the symmetry is U(l), their analysis suggests

that QCD hu a fluctuation induced 6rst order chiral symmetry tran-

sition for A/f z 2, For n~ = O, 1, if the transition is second order then

it is in same universality clam M 0(2n/) vector models, The same is

true for n! = 2 if inatantorm are important i,e. the symmetry is Z(ral),

For n~ = O, 1 there are no predictions, while for n~ = 3 the transition

should be first order which changes to fluctuation induced first order

for n~ ~ 4, Thaeo predictions are not very firm ●nd there are the usual

raveate of the c-~xpansion, So we should proceed without any strong

bias.

!,1



For T < Tc, one expects (Ty) #O when extrapolated tom~ = O.

For T >7’, thechiral symmet~ is restored, consequently (Yx) = mq
for smallmq, This needs to be verified. Also, if, as in the pure gauge

theory, there is a discontinuity in (L), then we expvt to bee interesting

thermodynamical properties of the quark-gluon plasma ~12] created in

heavy ion collisions.

The expected phase diagram for QCD is as follows: The confine-

~ment transition at m~ = cm extends to some finite mq in the m~ – T

phase plane, and similarly the chiral transition at rnq = 0 extends to

some non-zero mq. The questions to settle are whether the chiral tran-

sition with two physical light flavors and heavier s quark is first order,

and whether the two transitions are connected.

3.2) Staggered Fermions

Staggered fermiona have a remnant continuous chiral symmetry

on the lattice. This is sufficient to guarantee that (Yx) calculated on

the lattice does not need any subtractions and that the chiral limit is

at m~ = O, For this reaaon, meet of the calculations have been done

using staggered fermions, However, for each flavor one puts in by hand,

the theory actually haa four flavore, Th~~ the flavor symmetry on the

lattice is 4nfl This accounts for why, until recently, most results are

for 4 flavors.

A technical point: In the continuum, the flavor symmetry at

zero temperature is 2(nl) x SU~(n~) x SU~(nl) which breaks spon-

taneously to SUv (n~), Since the lattice regulator destroys some

of the continuum symmetries, the lattice symmetxy group is only

V( l)A x U(l)v entangled with ● complicated mess of discrete sym-

metries, which we expect breaks spontaneoudy to U( I)v piua discrete

bits [13], It is only in the continuum limit that one recovers 4 degener-

ate flavors, Can this difference in symmetry lead to ● spurious result

in our calculations considering how sensitive the predictions from the

(-expansion are on the flavor symmetry? Wn don’t know and will have

to proceed on with a nagging suspicion, On the brighter side, calcula-

tions of the quenched hadron spectrum show that for 6/g~ ~ 62 this



symmetry is restored dynamically to a very good approximation ~14].

Another check on this subtlety is to simulate both an effective spin

model that has the continuum symmetry and one with the discrete lat-

tice symmetry and to compare the results. We, at present, don’t have

a spin model with the lattice symmetry and therefore cannot perform

the test.

The discussio~ of the chiral transition should be restricted to small

quark masses, This is because for m~ comparable to the cut-off,

is expected to vary simply as l/m, The gauge dynamics comes in

through k ‘ ~ and does not contribute in the limit of heavy quarks.

Thus, for mq above some value, the simulation is essentially quenched,

3.3) Results for 4 Staggered Flavore

Prior to the summer of 1986, the status of the chiral transition

waa not clerm, This waa primarily due to short data runs at large mq

where the signal is weak, Also, there were doubts about thermalization,

or confidence was lacking due to the evolving nature of approximate

algorithms with uncontrolled systematic errors. The most detailed cal-

culation were by Kogut et a/, [15] using the MD and hybrid algorithm,

Their conclusion was that while the order could not be pinned down,

the system showed a very rapid croaeover for m~ = 0,1 and 0,05, Simi-

larly, Gavai [16] ruled out evidence for a first order transition, He used

the pseud~fermion algorithm with ●n acceptance rate of 70%

C)n the other hand, Fucito ●nd Solomon 117] used perturbation

theory to write down a 3 fl~vor pseud~ferrnion algorithm and claimed

evidence for a first order transition, Their remit suffered from poor

statbtics, eepecialiy since they were using time history of the two states

an tha prob., They could not rule out the pomibiiity that the signal

waa due to incomplete thermalization.

Fukugita and Ukawa [181 used the Langevin technique and made

hysteresis rune, They found a hysteresis in their runs at m~ = 01, for

3,5



.}’, = 4, in the interval 6/g2= s.05 to 5,15. Their best estimate for a

transition coupling was 6/g2a 5.1. Their conclusion was that the tran-

sition is first order. The chief criticism against their calculations was

again that the runs are not long enough for complete thermalization.

3.3a) Present Status: 4 x 43 Lattice

The popular consensus is that the transition for 4 staggered flavors

is first order, This was first demonstrated by extensive runs using an

exact algorithm on a 4 x 43 lattice [19]. The small volume was dictated

to us because we wanted to llse an exact algorithm. Only then could we

work at any mq with control over systematic errom and biau. This way

one could investigate the chiral limit. Furthermore, the exact algorithm

is not limited by the small step size approximation. A 4 x 43 lattice

is not as ridiculous as it seems. The system is at finite temperature

except that there is no preferred direction i.e. the Boltzmann dwnping

of higher statee (definition of temperature) is valid for propagation in

all four directions. The effect of a small volume can be a wauh out of the

transition, but it ia much less likely to generate one. The disadvantage

of EA is also obvious: We have no quantitative predictions for 1’~,

We have used a mixture of two approaches; for a given 6/gato find

a m~ at which the transition occurs or for a given m~ to find the corre-

sponding ge, The location of the transition is fixed by requiring that at

that g the discontinuity in (~~) be maximum, To get the value of (~~)

in the two statea, we firstmake runs away from the t msition or take a

peek at existing hysteresis data from other calculations, Then we make

a crude scan in g till we can obeerve flipflope with this discontinuity

(or au close to it u pcwible), In the data you will notu that on either

side of ge we observe jumps with much smaller discontinuity,

The next part of tho talk is a picture gallery of our ciata. 1 he
attempt is to show how the obeervabiee behave near and at the trar,si-

tion. Since ●ll the obemvablee, (~~), (L), Wilson Ioope are correla~,ed

and show the traruition we plot (Yx) versus Monte Carlo sweep num-

ber to demonstrate the transition, In the data the convergence of the

conjugate gradient algorithm is specified by the number of iterations,
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JVC~,as it will be relevant to a later discussion,

~11At 6/g2= 4.8, mq = 0,025 and with NCP= 60 there is a small jump

indicating a transition at smaller g (figure 1),

[2] At 6/g2= 4.9,m, = 0.1, we find only thermal fluctuations with
&r

~.’. = 60 (figure 2),

~3] At form~ = 0.05 (figure 3) we do not see a two state structure, but

compared to m~ = 0.1 the fluctuations are larger (again indicating

a poesible transition at smaller g)

14] The situation changes at mq = 0.025. The runs with NC9 =: 90 aret
shown in figure 4a. We see metastability and a 2 state behavior

characteristic of a first order transition. To protect against inadc+

quate thermalization, we ran long enough to see flip-flop between

the states, The discontinuity is the maximum expected (compare

with figs. 1 and 6), In Figs. 4b and 4C we also show the data for

1 x 1 Wilson loop and (L) in one of the 4 directions (all 4 direc-

tions show similar behavior), There is a clear correlation between

all observabhss, We regard this aa evidence that at small m~, QCD

has a firet order transition with a discontinuity in (XX), (L) and

in Wilson loops. While the chiral and thermal transitions need

not have been related, the data shows that for 2’ > TC, the system

is reconfined and chiral symmetry is restored. Having shown the

transition, we continue the search for the end point by increasing

rnq .

(,5] At 6/ga = 4,95, mq = 0,05 and with N,g = 60, we again see the

transition with the characteristic flip-flop (fig, 5) and the expected

discontinuity [20],

[6] At 6/g~= 4,95 and m~ = 0,025 (fig. 6), the transition exists but the

systsm spends more time in the XS phase. Also, (XX) in the x SB

pka is only m 0.3, We estimate the transition for mq = 0.025 at

qg~= 4.91(3),

[71 For mq = 0,02 (fig, 7a) and mq = 0.015 (fig. 7b) the system is in

the high temperature phase, so the transition has to be for 6/92<

4,95,

‘H! At 6/gz = S,02, m~ z 0,1 and IVcv = 30 the system is predom-
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inately confined with hints of an approaching transition in the

sharp spike (fig. 8a).

[9] At 6/g2= 5,o4, m, = 0.1 and NC, = 30 (figure 8b) the system

shows a clear two state structure with the expected discontinuity

(see figure 9).

~10] At 6/g2= 5.07, mq = 0.1 with NC9 = 30 (figure 8c), the system

shows fluctuations but there is no clear signal of metastability, We

are, at present, extending this run. At 6/g2= 5.1, m~ = 0.1 and

NC~ = 30, we again see flip-flops as shown in figure tld. However,

the discontinuity is small i.e. the value of (Yx) in the ~SZ3 phase

is only x 0.3 due to the rounding effect. Thus 5.10 is > 6/g$. At

6/g2= 5.13, the system is already in the XS phase (figure 8e). We

estimate the transition to be at 5.04(3).

Evidence for a first order chiral transition was found on exploring

the small mq limit. At 6/g2 = 4.9 for m~ = 0.025, the discontinuity

is very large in the order parameter (zx) and flip-flops provide clear

evidence for a firstorder transition. If it is a genuine first order transi-

tion, the discontinuity should decreaaea (inc*eaae) with m~ increasing

(decreasing). We have provided evidence of this at m~ = 0.0s and

0.1. Locating the transition at m~ = 0.1 has been much harder for

a very simple reason. Due to the large finite size rounding, the two

states exist over a large range of 6/g 2. But over most of this range, the

discontinuity is small and it is hard to distinguish fiipflops (genuine

metastability) from fluctuations. I believe this is a general property

of first order transitions -- the width over which one can observe

metsstability decreaeeu with a decrease in the discontinuity,

Our goal is to confirm whether there really exists a range of 6/g2

over which there is no transition, Preliminary evidence shows that even

at mq = 0,2 there is metastahility, Thus, at present, we support the

picture that the transition goes over from a chiral dominated one to

the doconbernent transition without a region of analyticity,

TO further aualyze the transition we study (xx) u a function of

m~. The eetimates for (Ex) in the two phaaes are shown in figure 9.

The data hsa been compiled from the runs given above. In the confined

3,13
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phase we estimate ((xx) –0.3) a m~, In the reconfined phase the data

at small rn~ agrees with the expected behavior (YX) a mq. Thus,

with large lattice data we can eventually determine the value of rnq at

which the linear chiral behavior breaks down. The observed behavior

though significant is not sufficient proof of the order of the transition. A

corroboration on lattices with larger N: and with N, > N: is necessary,

A technical point about locating the transition: The usual hys-

teresis run is very useful to locate the region of the transition, it is

not a very good method to confirm a first order transition, The best

tool we have at the moment is to either show a flip-flop (tunneling on

a finite lattice) or use two starting configurations prepared in the two

states and show that they coe~ist M such for runs much longer than

thermal ization time (barring tunneling which can be distinguished by

its abruptness), In figure 10 one such run is shown from [21!. [n the

second case one need~ a good measure of the thermalization time,

3.3b) Comparison of the 44 Data with Var!ous Algorithms

The results with the exact algorithm have been reproduced bv the

hybrid algorithm [21][22] and the Langevin algorithm [23], These 44

results would have been meaning!em without the confirmation on the

the 4 x 83 lattices ~21ii22][23~. It turns out ths.t for the actual numbers
. -. the discontinuity in obrmrvablea, etc --- there iJ good agreement

between the 4 x 43 and the 4 x 83 !attice data, So, it is meaningful to

continue pushing 44 calculation to explore the ph~e transition,

I feel that it is very important to b the power law, CV 1+*+7, by

which the computation time for producing independent configurations

grows for a given small step size algorithm . Here V is the lattice

volume, a is the exponent due to step size limited slow movement

through phaae space, T is the exponent due to critical slowing down

aa the coupling g is decreaeed and c is the prefactor, Both a and q

are ● function of g and mq, 1 present a crude estimate of the prefactor

baaed on the Monte Carlo time for producing flip-flops in the exact

v~rsun e*ep size limited algorithms, Within factors of five, it looks

like r =s 5 corresponds to a single sweep of the ex~ct, Since most

1,17
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algorithm on a

history showing co-existence for a run with the hybrid

4 x 83 lattice with 4 staggered flavors[21],

of these algorithms have been run at #r ss 0.01 we should keep the

large number of sweeps, 500 to 1000, in mind when worrying about

st.ati~tics in serious calculations of say the hadron spectrum, These

estirnatee depend on the parameter and at weaker coupling and smaller

rnq the step size will have to be decreased further [241, An a posterior

justification for our use of the exact algorithm on the 44 Iatticg is that

it is no dower than the small step size ●lgorithms once you fold in the

decorrelation tinm, To ●rrive at this conclusion 1 have used update

timw of 002, 1 to 2, and 450 seconds for a 44 lattice on a Cray X-YIP

for tb puro g~ug., Langevin and exact algorithms, The limitation of

the aact algorithm used so far is thst the lattice volume cannot be

mad. My biggar with the current computer power.

Another feature to study using the 44 data is the shift in the crit-

ical couplir~g u ● function of c or #r, The preeent status is shown in



mq EA HY 1 HY 2, LG 1 LG 2
0.025 4.91(3) 4.94(4) 4.96(3) =5.02
0.05 —%4,95 5.05(5)*
0.1 5.04(3) 5.13(3) =5,1

Table 1: The estimates for the transition coupling on Nt = 4 lattices

and for 4 flavors, The points with * are estimates based on the midpoint

of the hysteresis curve. The data is from: Exact - [19][20][25]; Hybrid

1- [21][26]; Hybrid 2- [22], Langevin 1- [18] and Langevin 2- [23],

table 1. The hybrid simulations are, within statistical errors, in agree-

ment with the exact algorithm at light quark masses. The Langevin

algorithm gives a much larger shift than can be explained by the first

order correction in c, which is = 0. 14cP. The Brookhaven group is

working hard to understand this effect, The discrepancy increases for

the HY also at na~ = 0,1, It is not clear whether this is just due to sys-

tematic errom in fixing the precise location of the transition especially

as the rounding gets large or because of something more serious. The

various estimates do lie within the width of the hysteresis,

3,3c) Going from Nt = 4 to (3

Kovacs et of, [26] find evidence for a flint order transition at 6/g2=

5,125, m~ = 0,025 on a 6 x 103 lattice for 4 flavors, They also tind large

fluctuation in addition to the metaatability. So they propose that the

end point of the first order line lice very clooe to this value of mq.

Using their data for /Vt = 4 and 6, they calculate the value of

Tc/A~ using asymptotic scaling. The ratio changea from 2,8(2) at

Nt = 4t0261(l)WV~ = 6, ‘rhis is clone to the pure gauge theory result

(2.6(1) chang~ to 2,12(1)), and this behavior is not surprising since

gluoaa are the major contributors, However, we should be cautious

in pushing this agreement because we don’t know what scaling to use

(asymptotic scalirq maybe violated by aa much M a factor of 2 at these

g), What is clear is the need to go to larger Aft to get a prediction,

‘! ,1’)



The jump in the gluonic and ferrnionic energy density at the tran-

sition is iarge, The results from [261are shown in figure ha. The errors

are !arge, and there is still some overshooting of the gluonic contribu-

tion at the transition. To predict a hard number for the latent heat, we

need to further remove finite volume effects. Meanwhile, knowing that

a large discontinuity exists is certainly a help to the experimentalists.

In figure llb, I show the time history of ( ~). A total of 180,000

sweeps were required to show a flip-flop! This should again serve as a

warning for the slowness of the algorithm coming from a large prefactor,

3.4) Results for 2 and 3 flavors

Let me for the following ignore the fact that staggered flavor sym-

metry is broken on the lattice. Then to change the number of staggered

flavors in many algorithms is easy. In MD, hybrid and Langevin al-

gorl (.hms the ferrnions are incorporated through a bilinear noise term

with a prefactor n!. This can be adjusted to any value. In the exact

algorithm one can take an appropriate power of the ratio of the deter-

minant. A number of groups are using this technique to explore 2 and

3 flavor cases [22][231[25][27].

3.4a) 3 flavors

The result for 3 flavors from the Brookhaven group [23] is evidence

of a first order transition at mq ==0,025 at 6/ga * 5,09. A lot more

data are needed to get an estimate of Te,

3.4b) 2 flavoro

The published results for 2 flavors are controversial. Fukugita et

of, [27] show a hysteresis cycle but more important a flip-flop signal

at mq = Oil, 6/g2 = 5.3725, br = 0,0025,. The flips are not quick

in Monte Carlo time but nevertheless there, In figure ]2, I show their

results for variance in the (L) with m~ = 0,2 and 0,1. The large flue.

tuations (variance in (L)) at mq = 0,2 compared to 0.1 are indication

ti~at the transition at m = 0,1 is not the reconfining transition. What
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is worrisome in this study is that the system does not spend much time

in a given phase. A careful study at m~ = 0.05 showing an increase in

the discontinuity would be nice for a confirmation.
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Gafi et al, [23] ●nd Gottlleb et al, [22] do not ~nd a convincing

signal for ● 1“ order transition St m~ = 0.02S and 0.012S. This is
sllrprislng considering the result of Fukugita C, al,, since we expect the

(illcontinuity to grow with clccreuing m~, III figure 13, the data from
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/22] for (xx) is shown. A clear statement from this calculations is that

for small quark masses the transition is very rapid.

We have preliminary results at m~ = 0.02, 6/g2 = 5.28 which are

shown in figure 14. There is again the characteristic presence of flip-

flops. However, the fluctuations in the chiraily broken phase are very

large. IS this a signature of a fluctuation induced first order transition

when approached from the broken phase? We need more data to answer

this question.
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Fig, 14: Evolution of (XX) for 2 flavors on a 4 x 43 lattice uzing the

exact algorithm at m~ s 0.02 [25].

Figure IS is from the Brookhaven group. Up to now it shows

preliminary evidence of coexistence at mq = 0.025, 6/ga = 5.32 on a

4 x 8* lattice, However, Potvin et af. would like to finish a longer run

so M to rule out slow thermalization,

To conclude, ae this evidence accumulate, we shall be able to ftx

the order of the chiral transition for the case of 2 light flavors and the
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strange quark. Looking ahead, we face a much harder challenge. We

have to repeat these calculations with non-zero baryon density (non-

zero chemical potential). Unfortunately, in this case the determinant

is intrinsically a complex number and we don’t yet have a way for

including it as part of a probability distribution.

3.5) Wilson Fermions

Forcrand et aJ. [28] measure (YX) and look for a discontinuity using

an exact and an improved ( “bush-factorized”) PF algorithm. They find

a discontinuity for Nt = 4 at a larger Wilson quark mass than for the

staggered fermions. ‘I’here are two possibilities: 1) they were assuming

the transition for staggered fermions occurs only for m~ < 0.025 and

2) due to the explicit chiral symmetry breaking in Wilson ferrnions,

there is no obvious connection between the mass for the two kinds of

fermions, In fact, our quenched hadron spectrum calculation at much

weaker coupling [14] shows that for constant physics, the bare Wilson

mass is a factor of two heavier than the staggered fermion mass,

It would be interesting to push this calculation to see whether near

~,(g) (defined by zero pion mass) Wilson fermions have dynamicall~

regained sufficient chiral symmetry and show the expected continuum

chiral properties,

3,6) Systematic Bhwi In the Exact Algorithm

[n the exact algorithm, the ratio of determinants R s det ( 1 t

M- 1r5&f) is calculated at each link update. Since we use staggered

ferrnions (4 flavors), the algorithm requires a calculation of a 6 x 6 block

of fU - L, Because Al-i is calculated with the conjugate gradient (C(i)

iterative algorithm to some approximation, even in an exact algorithm

there can be a systematic bias. In a Metropolis update, a link cun

be chMged many times without having to recalculate &f-1, The faat

multi-hit algorithm waa first described in detail by Gavai and Gocksch

~4]. Most of the results we obtained are with antiperiodic boundary

conditions in all dire~tions. We made some checks with the bounda, ry



con ~itions switched to periodic in three directions [19]. W’e update

each link with 50 hits and the acceptance is adjusted to s 3070. In
+

solving Az~Ven = .if 1.~fzct,tn = b, we define the convergence by C =
(b– Az/b-Az)

\zlz] 3 which depends on the number of CG iterations (~~eg).

We now present an analysis of the systematic biases in our simu-

lation at J = 4.9. Our implementation of the CG algorithm tends to

underestimate the effects oi the fermions, i.e. it tends to give too small

a value for S s llrz(R) 1. We have studied this by changing a single

link and comparing the exact R with that calculated with a variety

of CG sweeps. The exact R is obtained by calculating the determi-

nants, before and after changing the link, using gaussian elimination.

At mq = .;, Nrg = 60 suffices to give the exact answer, while, for
-Y‘Cu= 30, S is underestimated by a few percent. For mq = .025, the

00 to get s good to a few percent, while foralgorithm requires ~YCg= .

Avc~ = 30 the estimate of S is poor. These estimates remain valid when

we make r.ultiple hits on the same link.

To study if there is an accumulation of the bias, we compare the

product of the accepted determinant ratios (A s /nR.CC) with the ex-

act answer (T). The data for mq = .025, NCU= 90 is sh~wn in table 2,

together with ln(dct) and (C). In the high temperature phase (1-10 and

T, with only small deviations from equality. On36-41) one finds A <

the other hand, the confined phase (11-35) haa A significantly less than

T, though these are correlated. This phase also shows a marked deteri-

oration in (C), suggesting that ,M has small eigenvaiues not present in

the high temperature phase, The difference between A and T is large,

but it has been accumulated over x 20 x .3 x 50 x 4 x 44 iink changes+

and so corresponds to a tiny bi~ in R for each change.

The disagreement between A and 1’ gets progressively worse with

decreasing Nc~, but C is consistently a factor of x 20 smaller in the high

temperature phase. Cci~versely, the biaa decreases as m~ increases. It

is unobumble for m~ = .1, Ncg = 60.

From such ●n analysis one can determine ~V,p required to avoid

a bi~ at b given 6igaand m~. Lome af our best data does not quite

meet this requirement, but the presence of the transition for a number
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of values of AVC~makes it very likely that the trr.nsition would remain

for .VCJ= 00.

Conclusions

Let me conclude by mentioning what I think is the most promising

approach to simulations with dynamical fermions right now. It is to

use the algorithm of Scalatter, Scalapino and Sugar [29] in which one

uses an approximate update algorithm (say LG or HY with fourier

acceleration) to evolve the system through a certain number of link

changes and then to make it exact by a N’ptropolis accept or reject of

the whole step, The key point here IS to trl ; the input couplings in the

hybrid update as free and to optimize them to get a large acceptance

in the Metropolis step. The couplings in the Metropolis step define the

!lnal Boitzmann distribution. There are some recent very encouraging

results by Duane et al, [30] using this approach,
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4) WEAK INTERACTION MATRIX
ON THE LATTICE

Thepseudoscalar octet is, lthink, the key to

ELEMENTS

our understanding a
significant fraction of modem particle physics. The light pion is a man-

ifestation of a nearly exact chiral symmetry. The kaons are a periscope

to the unknown world of CP violation, How well we can explain the

large enhancement of AI = ~ amplitude in K decays reflects our abil-

ity to calculate strong interaction corrections to any process involving

low energy gluons. In all these phenomenon, the Achilles’ heel is our

inability to calculate the non-leptonic matrix elements at the hadronic

scale, Once the machinery to calculate matrix elements (ME) on the

lattice is established, the list of problems one can address is large, I

will only discuss the Al = ‘~ rule and ~ in this lecture. By these

examples I hope I can convay some of the excitement of the field to

you.

In writing this lecture I realized that it would be impossible for

me to cover the subject in any detail, Therefore what I will do is

to motivate you, make the connection between phenomenology and

lattice measurements, mention the important isnues

results, For details, I have no option but to direct you

literature,

4.1) The AI = ~ Rule

and summarize

to the publiqhed

The phenomenoiogy of the AI = } rule is very simple, The ismpin

deco, msition of the two pion final state in Kaon decays is

/,,1



This rauo can be unde~tood if we assume that the weak Harn.iltonian

is essentially S1 = + . A further corroboration is provided by the ra[lo

r[~, – T+T-I = 2.1s5 * 0.10 (43]
r(~, -+~’~~cj

since a value of 2 is obtained from tne Clebsch’s alone assuming the

decay has no AI = 3.2 part. Thus these decays provide strong evidence

(or the Al = ~ rule. The question we would like to answer is where

does it come from?

If the electro-weak interactions are described

broken SLr (2) x U ( 1)Y Glashow-Weinberg-Salam

the fundamental interactions at scale MW and

AI = ~ enhanc~ment sufficient to explain the

by the spontaneously

theory, then we know

these do not give a

experimental results.

The final state in all decays is 1~~1, so there is no erihar,cement from

phase space factors. Finally, we don’t know of any other selection rule

that enhances one over che other. There is only one possible culprit,

QCD, that sneaks in to produce the 31 = ~ rule. And it does it in an

insidious way. The part of the theory we understand (large momentumj

is innocent. It is the par~ Lhat is hidden under the shroud of a large

coupling constan L that we probe by non-perturbarive methods. So we

are forced to unravel the mysteries of one black box with another -

\f~nte Carla ralculatlonn.

4.2a) [~cmstructlng the &ferIdon Effective Hamilton!an

The full :arlge of momenta inv,.lved in these calculations Is O to

,tfw~ We divide it into two regions: call one L, for lattice, which ran~es

from O to P and the other called P, for perturbation theory, which

rangea from u to JWW. The point ~ IS taken to be z 2 GcV for two

re~ns, Fint, the lattice scale $ in any mioua calculation WIII be large

enough to satisfy this condition and, second, the wil~on coeffic~~nts

(couplings) at M can be computed reliably using perturbation theory

~lnce the QCD coupllng constant throughout P IS small.

lfencefort. h, I shall label the ME of an operator (~, hy .\f, AII,I

[tl~ir \~l19(Jn Coemcients by C’l. The initial and final statc~ for whlrh



the ME are calculated will be clear from the context, L (R) is the

projection operator 1 – q5 ( 1 + yj).

The weak interaction Ham.iltonian density for the charged current

in the hadronic sector is jl] :

(4,4)

with the W-boeons interacting with the quarks through the current

(4.5)

Here V is the 3 x 3 Kobayashi-Maskawa (KM) matrix [21 that connects

the quark mass eigenstates with the weak eigenstates. It is parametri-

zed in terms of four angles 81, 02,03 and 6

(
c1 –S1C3 —81s3

v= 81C2 C1C2C3 - 8283e t6 CIC2U3 + 82c3et6

81s2 C182C3 + c2u3e 16 C182U3 - c2c3e i6
(4.6)

where c, = cosfii and ~~ = sino~ for i = 1,2,3.

The lowest order procedure to conntruct the effective theory at p

consists of the following steps [3] :

/1) [nteg~at~ out the W from the theory, The AS =. 1 Hamiltonian

then consists of the 4-fermion operators, Ok(u), Ok(c) and Ok(t)

with say Of(c) defined ae

O* = 30~~ Lda

“rhe 0 + transforms aa a

.’$~(3)L while ~- is pure

linear combination of 27 and 8 under

8. It is the enhancement of the octet

opemtor we meek since it contributes only to Al = } , The coeffi-

cients (G’+ = C- valid at Mw) are evaluated by matching X,fl at

the boundary, At Mw, the effective 4-ferrnion theory is

M,ff =
GjF
--@(o+(u) t-o ..(u)) - f:,(~+(~)

. ct(o+(l)+(x(t))]

+ () .(c))

(4,8)



with

(2)

~c
= S1C2(C1C2C3 -szsselfi) (4,9a)

c~ = t?lS2(C~S2C3 –cQssets) (4,9b)

c. = c, + ct . (4.$JC)

To scale the coefficients C~ down to rnt one uses the renormal-

ization group (RG) with the l-loop running coupling constant and

the l-loop anomalous dimensions, Since the operators 0+ are mul-

tiplicatively renormalized this is straightforward. On scaling C_

increases with respect to C’+ because of a difference in the anoma-

lous dimensions, This gives some AI = ~ enhancement, (a 2),

but it is not sufficient to explain the rwquired factor of = 22.

Integrate out the top quark from the effective theory at rnt. In tree

level matching, one sim~ly sets C+(t) to zero and equates C* (u)

and C* (c) below m: to their value above watt More important, in-

tegrating out the t quark generates additional 4-fermion operators

o~,..08.These operators arise from mixing with the so called

‘penguins” diagrams shown in figure 1, Their coefficients start

out being zero at m: and their evolution down to m~ is governed

by the 8 x 8 anomalous dimension matrix calculated by Gilman

and Wise /3][4] (with corrections by Buras and Gerard [5] ) in the

basis 01,,,(28defined as

/,
*4, *



(3)

the

o, =~a?P(l–?5)(f0 ~eqqb?p(l”+%)gb

~

Os =F.’y@(l - %)db ~eq?b~~(l+%)% (4.10)
q

where q is summed over u,d, S,C, b quarks; a and b are color indices,

and e~ = 1(-1/2) for charge 2/3(–1/3) quarks. The operators 01

and 02 are linear combinations of O*. These eight operators do

not renormalize multiplicatively, and the scaling is easiest done by

numerically diagonaiizing the anomalous dimension matrix. The

final values of C, and consequently our estimates will depend on

what we choose for the unknown top quark mass.

Repeat step (2) i.e. integrate out the b quark and scale down to A >

m,, Integrating out the b quark changes the anomalous dimension

matrix and the running of the coupling constant and the b quark

drops out of the sum over q in eqn (4.10),but it generates no new

operators,

The eight operators 01 , ,,08 and their coefficient functions define

effective Weak Harniltonian )/@fj at scale p.

GF 8 co
Ueff = — z2ti, =* ‘ ‘

(4.11)

where the KM angles and the dependence on a, and anomalous dimen-

sion fac~ors is lumped into the C,, I have purpr ely chosen ~ > m~

so that the c quark is not integrated out, This rn.ans that we have to

explicitly implement GIM cancellation on the lattice by doing all cal-

culation with both c and u quarks propagating in internal loops and

doing the (u - c) subtraction, The matrix elemmts of ~t~~ are evalu-

ated on the lattice because the region t is inherently non-pert urbative.

Only one LL operator contributes to the Al = ~ amplitude. It

is a linear combination of 01,02 and 03 and transforms as 127,1,3i2\

under [SU(3)~, Sfl(3)~, f]:

():,;2 = JdYPL(fa (i’iyyPLUh – ~b7MLdb + YaqpLua fz)ypf.db (ti’i!)

.’J, ‘)
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Fig, 1: The diagrams that give rise tea) strong penguins 05 and 06

and b) the em penguins 07 and Oa. The vector interaction at the lower

vertex gives rise to both LL and LR operators.

The operators

gluon mediates the

OS ., .06 (called the strong penguins because a

interaction in the original penguin) are LR in dis-

tinction to 01 “o“04 and transform as [8,1,1/2]. They contribute only

to the AI = 1~ amplitude. The magnitude of the enhancement depends

on the Ci and the ME. The coefficient functions for these operatom

are large only if we integrate out the charm quark and evolve below 1

GeV. Originally, Shifrnan et al, [6] proposed that the &fJ3 are large due

to the LR structure of the penguin operators. They calculated the ME

using factorization and vacuum insertion and found that C5 ~W5+ cei~ffj

is large enough to explain a substantial part of the enhancement. That

analysis is wrong; they derived a wrong chiral behavior for the matrix

elements in the vacuum insertion approximation, The correct chiral

behavior of the matrix elements of 05 and 06 is the same ~ for the

LL operators i.e. they vanish in the chiral limit as m.m~ [7] [8] . The

present status of results from numerical simulations is that these ,JfE

are small, Also, it is not kosher to run th~ C, down to scales below rnC,

for there one h~ vary little confidence in perturbation theory. The real

parts of C8 and Ce above me are small. Thus it seerm unlikely that

thtma operators are the cause of the Al = i~ enhancement. So for a
choice of scale M > m~, the AI = 1~ rule h= to come from the enhance-

ment of the octet part of the operators 01 , , , 04 over the 27p/et. On

the other hand the. inmginwy part of Co is dominant, Thus ,$fo will



figure prominently in the analysis of ~ .

The em penguins 07 and O* have pieces that transform as ~27,1],

[8,1] and [8,8] and contribute to both AI = ~ and AI = ~ amplitudes.

The real part of their C, is too small, so these operators are ignored in

the analysis of the AI = } rule. However, the imaginary part, which

contributes to ~ , competes favorably with the contribution from the

strong penguins. The suppression of their Ci by cr.~ is compensated
,.

by the fact that in the chiral limit, the (8,8] part of MT and M8 does not

vanish as rnTm K, but goes to a constant, Thus, as discussed later, their

contribution to ~ may be M large as that from the strong penguins.

All the A4J3 we calculate on the lattice are real. The same ME

contribute to both AI = 1~and~. The coefficients C~ are complex due

to the CP violating phase e’s in the KM matrix. So when one refers to

the real and imaginary parts of the amplitudes, the distinction comes

from the Ci. The imaginary part will be proportional to sin 6.

4,2b) Relating K + mm to K -+ z:

All the ME we are interested in involve K -+ mn. This requires

calculating A-point functions on the lattice with two particles in the

final state. This poses the following problems for lattice calculations at

present

(1) The momentum of the two final state pions. T!,e lowest non-zero

momentum on the lattice, *, is too large to allow the decay to

proceed on mass shell, For off-ah amplitudes, we have to make

~d subtractions similar to the ones discussed below, At present

theee are not under control even for 3-point functions.

(~) The f~ctional form neceesary to fit the data for the 4-point cor-
relatora is complicated au can be seen by drawing all the diagrams

(for an example see figure 2), Thus to get reliable fits and extract

the ME we will need a tery large numb~r of configurations,

(3) We need two calculations of quark propagator with sources at

different points as shown in figure 2, This, unlike the first two

issuee, is not a significant drawback for it only doubles the amount
!,. , of computer time required,

4,;



Fig. 2: a) A 4-point diagram and
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to the amplitude K ~ rn on the lattice.

The present approach is to use chiral

b) its subtraction that contribute

perturbation theory (CPTh)

to relate the K - rn amplitude to K ~ n and K ~ vacuum, This

is an additional approximation and for Kaons may not be any better

than 50’% [9]. Thus, one has to clearly demonstrate the expected chiral

behavior in the ME before reliable results can be extracted.

The lowest order CPTh relates the three matrix elements [10]

(4.13C)

where A is a constant that includes Ci and Z factors. Our goal is

to extract the value of -y from the last two off-shell ME which can

be calculated on the lattice. However, on the 1.:ttice, these operators

mix with operators of different chirality (true only for Wilson fermions

which explicitly break chiral symmetry) and lower dimension operators,

The A4J!lof iheae lower Jimension operators have their own factor~ of 6

and q analogoum to eqn. (4,13), For example 3d contributes to (4,13b)

hut not to (4,13c) and vic~versa for ~q~d but with different 6 and q,

‘rhus, one cannot extract the pbysicaJ ME i.e. ~ from eqn (4,13b) ana

(4.13c) by just using the bare operators of eqn. (4.10). One has to

tlefine renormalized o~eratdr~’(~hich have the correct chiral behavior)

by making subtractions, ‘Thek arediscussed next.



4.2c) Subtractions and Contractions

As stated above, we have to include the mixing of operators

01...08 with lower dimension operators. There are two such oper-

ators relevant to this discussion: The dimension 5 operator 3opu FJ’vd

and the dimension 3 operator ~d . Both are present in calculations

with Wilson fermions, while for staggered ferrnions, the remnant chiral

symmetry guarantees that there is no nixing with YoPVF~ud . There

is only one lower dimension operator for staggered ferrn-ions [1II :

08”6 ~ t~~~(l ‘75)(%A – ~K)d = (?_I’Id~m~)~(f + (md–m8)~?5d

(4.14)

which is a total derivative and so absent on-shell. The equality (due to

the equation of motion) between the two terms on the right hand side

is still valid on the lattice. It, is this form that we transcribe on to the

lattice [11].

The subt;acticms necessary to define the physical A4Jl are handled

differently by different groups doing the calculations so I will discuss

them later with the results,

There are two types of diagrama that arise in the Wick contraction

of these operators in the transition K+ ~ n+. The one in which all

four Dirac operators are contracted with external quarks are called

‘figure 8“ diagrams, while in the “eye” diagrams two of the operators

are contracted to form a clcsed loop, The Al = ~ transition has

only eight contraction for degenerate u and d quarks while the AI = ~

octet operators have both eight and eye contractions. The eye diagrams

require subtractions ae illustrated for W in figure 3,

In present calculations, the magnitude of the A4E of all the eight

diagrama is comparable, Thus the AI = 1~ rule haa to corr” from a large

contribution from the eye diagrams, These diagrams are, at p[csent,

hard to calculate because they involve two kinds of subtractions: (u -

c) to Impoee the GIhl mechanism and the subtractions due to mixing

with lower dimension operators. One of the bottlenecks in present

lattice calculations is a lack of control in the calculation of these eye

dia’grarrls,

4,9
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Fig. 3: a) An eye contraction and b) the corresponding subtraction

diagram.

4.2d) Vacuum Xnsertion Approximation (VIA)

A phenomenological method to calculate the ME is the WA. In

this approximation, the 4-fermiori operators are factorized into 2 sepa”

rate bilinears and a complete set of states is inserted in between. Fur-

ther, the sum over intermediate statea is saturated by just the vacuum.

With this method one can only calculate those contractions of the eye

and eight that have 2-color loops. These diagrama

joint parts aa shown in figure 4. The l-color loop

in by hand by using the continuum approximate

loop) =z3 x M(2-color loop) i.e. MS = Mo/3.

breaks into two dis-

terrns can be added

relation; .%4(l-color

Figure 4: 2-color loop diagrama that contribute to VIA

The utility of Vu is twofold. First, ,WEV /* can be calculated

etdly on the lattice and second, they have the same chiral behavior

as the physical ME, The wcond fact ttates that they have the same

factom of mK and m, au the ,%fi!?,eo ona poadble way to reduce iattice



artifacts is to consider the ratio, B, of the two calculated on the lattice

i.e.

\%’euse this approach to reduce systematic errors and to check

for the chiral behavior in both ME. We also hope that the statistical

errors in the two measurements are correlated and cancel in the ratio.

4.2e) Connection between the Lattice and Continuum Results

Putting the theory on the lattice does introduce an approximation;

the momentum integral is replaced by a discrete sum and the disper-

sion relation for the propagators is modified from p to sin p. The two

approximations can be systematically improved by taking a larger box

size Na, since the allowed momenta on the lattice are + ~.

The ,Wll are calculated on the lattice at a given value of the bare

charge g. The lattice scale a-1 is set by some dimensionful quantity like

the rho mass. Given a-1 and the lattice size, we can determine the lat-

tice momenta. Since the lattice dispersion relation differs substantially

from the continuum behavior for the gluon and quark propagators ?-t

large momenta, we cannot a priori define the renormalization point M

to be ~. It is customary to choose ~ = ~. This is just an assumption

and the definition of p for a given g is still an ope,l problem,

The anomalous dimension matrix used to scale the coefficients is

evaluated with a continuum regularization scheme, The .44E are cal-

culated on the lattice. Therefore we have to relate the lattice and

the continuum operators at scale ~, These l-loop Z factors are being

calculated in perturbation theory [12] !131 ,

Given the scale B in physical units, the evolution of the coefficients

procd M in the continuum with the experimental values for .tfw

and the qwk masaes, The only lattice action dependent quantity is

the value of the coupling g at say .Mw or quivalently the value of

i\L. This can be related to say Am by l-loop pert~lrbation r,heory

at~d then fixed by taking the value of Am from experiments, The



evolution of the coefficients has strong dependence on the value of .i.

For lattice actions with small AL (like the Wilson action) the evolution

is small. The corresponding matrix elements (and the Z factors) have

to be larger than in the continuum to give a scheme independent result.

4.39 RESULTS

I will discuss the results for the Al = ~ and AI = # amplitudes

from the three groups separately.

4.3a) UCLA group:

Their goal has been to first verify whether the ME show the correct

chiral behavior for Wilson fermions [14] . To check this they look at

the simplest operators, the LL AS = 2 operators arising in KO~

mixing and the A1 = # one. Their results show a deviation from the

expected chiral behavior m~m K as shown in figure 5. Both amplitudes

cross zero for 500 < naw < 700 MeV and change sign. The issue of

whether this is due to finite size effects and a large coupling g has not

been resolved, Given that CPTh is central to the lattice calculation,

we need to understand this feature.

Tile other results for the LL matrix elements are 1) they agree

with VIA at large quark masses, 2) the ME show reasonable scaling

behavior between i3 = 5.7 and 6.1, 3) the magnitude of the Al = #

amplitude is comparable to the Al = 1~ eight , so eye diagrams are
essential to e~plain the enhancement and 4) the finite size effects are

significant at small m~ and a large statistical samk!e is necxled to get

a clean signal.

To calculate the eye diagrams they implement the GIM cancella-

tion on the lattice. The Fd operator then has the form

(4.16)

whjch in qu~dratically divergent ( I/aa ver~us l/’a3) due to GIM, They

calculate the leading term for & using perturbation theory, Sirni-

Iar!y, they also calculate the coefficient of the dimension 5 operator
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Fig. 5: The ~“~matrix element, ~C~, 8s a function of the kaon maaa-

squared. Tho cram sre the raults d /3 = L7 on a ld x 20 lattice

with 18 con9guntlons whil. quaru ●re frem 8 = 6.1

Imttice with 18 conflguratioru [14].

~upHF~ud in perturbation thmry. Tho hops is thst

on a 123 x 33

there ●xists a

r- d couplings over which this perturbative estimate is valid ●nd

●I* in thh inteml tha lattice rmd~ scale so thst one is extracting

continuum physic-. The prelimirmry radta for Af = ~hs ow that ●

lot more work is necessmry before one h- control over the 3 separate
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subtractions, so conclusions are lacking. The erlcouraging feature is

that the magnitude ~f these .’LfE is large and there is room to explain

the AI = ~ rule.

4.3b) CERN Group:

The CERN group ,15;

the same operators as the

they fit the data to extract

test for the chiral behavior of eight by ding

UCLA group. The two groups differ in how

the .WE. Nfartinelli et al. sum over the time

position of the operator keeping the location of the T and K fixed at

some large separation r, which on their lattices is 10. They assume that

the R and K correlators are dominated by a single particle for all posi-

tions of the source. Since tests a;e not made for different separations r,

this process cannot reveal whether the separation between the mesons

is large enough, Indeed there is preliminary evidence from the UCL.4

group that it is not. .Martinelli et d. do not show any check for such

systematic errors and their paper doee not give enough information for

me to judge fairly. The result, however, is in good agreement with the

chiral behavior as shown in figure 6. This is in direct contradiction

with the results of the LTCLA group, so both groups are working hard

to resolve the discrepancy,

The scheme proposed by Maiani et d, ~16] to calculate the sub-

tracted eye diagrame is ae follows: Consider the two ,WE for a generic

operator O (here the subscript refers to the dimension of the operator)

~: IV06 +6606 AJ3051K> = 62 + y2 p“k ,,, (4,17a)

<#3dl K> =6, + ~,psk .s. (4,176)

where 4606 are the dimension 6 operatora of different spin-parity which

are induced by the chiral symmetry breaking Wilson term and 05 is

the dimension 5 operator given above, They calculate both 65 and 6B

in perturbation theory, The physical ME is then given by

Iim
-16

ZL (72 – 62# (4.18)
m., m~-o 9

where the factor ZL relatee the !attice and continuum operators, So,

(hey use one extra ME to do one non. perturbative subtract i[~n, The

“4.1”4
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Fig. 6: The KO~matnx element, ALL, aJ ● ful,ction of the kaon

m~s-squared. The curve shown is the fit; ALL = (o,05(2)Gev7 m: -
0.07(5) m; jlS], Tht raujta sra on R Id x 20 l~~tice at ~ = 6,(3 and

with 1S c ~nfiguratioru.

abovo mbtrwtion is in practice done ●t finite quark rnaJ~, so one needs

VerY ~ dats to cancel ●ll term on the right h~nd side and get just

the comect ch.ird b.hsvior, We have to wait for the fimt results to see

how well it works.

The present limitation to muu.ring $ using Wilson fertions IS

i15



the operator ~oPvFPud . \Vith the GIM mechanism this is

c~
05 = (p,+ $%, - m.) m7#vF”vd (4.19)

u u

with the C defined in eqn. (4.9). The multiplication by GIM mass

term makes it a dimensicn 6 operator. However, in the calculation of
c’
7$ there is no GIM cancellation after integrating the t quark so the

operator h= a linear divergence. Thus to determine its coefficient one

has to calculate more A4E than shown in eqn (4.17), and then do the

subtraction. Alternately, we need to measure K + rn directly.

4.3c) Los Alamos Group (Staggered F’ermions):

The machinery necessary to calculate the Ml? with staggered

fermions is spelt out in detail in refs. [11][17] . Here I shail just state

the main ideas and results. To transcribe ~~ft on to the lattice re-

quired more work because of the mixing of spin and flavor degrees of

freedom. Since these 16 degrees of freedom are spread out over a hy -

percube, the quark bilinears in the operators can be split by up to 4

links that span the hypercube. Our first calculation indicates that the

noise introduced by these extra gauge links in the correlators is not

significant compared with the noise intrinsic to staggered fermicms.

Calculations with SF automatically involve 4 staggered flavors.

These flavors are degenerate in the continuum limit and our recent

calculation of the

namically restored

assume that these

four.

hadron spectrum shows that the symmetry is dy -

to a good approximation at. $ * &2 i18\ , Thus we

flavors can be ●ccounted for by an overall factor of

There is only one lower dimension operator

Ooub
= (m~ + m,) W + (m~ - rn,)3q5d (4,20)

that mix- with the dimension 6 operators. The physical operator can

be dotiad aa O - aO’ub with the unknown parameter a deternuned

non-perturbatively by requiring 111]

~010 - aO ‘“*’K} == o (4.21;



for each operator 0 in eqn. (4.10). The test that this subtraction

procedure works is that the Ml? of the subtracted operators show the

correct chiral behavior. This is verified for the penguin eye diagrams

for which we have a stable signal. For the LL eye contractions we don’t

yet have a clean signal to draw any conclusions,

Some of the eight contractions for the LL operators do not show

the correct chiral behavior, The reason is not yet understood.

We believe there are large ‘wrap around” contributions due to

(anti-) periodic boundary conditions that afflict our correlators (see

example in figure 7). These have to be isolated from the signal in ail

calculations which have (anti-) periodic boundary conditions in any of

the four directions.

A
I 5

Fig, 7: An eye diagram and its corresponding “wrap-around”

bution,

I

I

I

contri-

[n most casea, where we can extract a signal, the lattice VIA works

very well. As shown in the discussion of ~ , MO is smaller than its

VIA value. This irnpliez that penguha are irrelevant to explain the

large AI = ~ enhancement since VIA does not. There is always ~he

possibility that ths behavior we are seeing is just an artifact of large m~

and that things will change when simulations are done with physical u

and $ quarkz. A tezt of this will have to wait for some time.

To wnrnarize, the technical machinery necessary to calculate illE

with staggered fermions is set up but the statistical signal is not under

control. The penguins are too small to explain the Al = } rule, but

their signal iz good enough to rzmke a preliminary statement about < .

4.17



4.4) E’IC : CP Violation in K Decays

The parameter c measures the amount of CP violation in K“@

mixing:

-(1 +t) KO >KL)=$ +(1-t)’r>’ (4.22a)

Ks) = ; :(1-++KO > -(1-c) !r’>1 , (4.226)

where N is the normalization. The standard KM model, predicts a

second independent CP violating parameter, c’ :19!. This arises in the

decay of neutral kaons, The simplest characterization of it is if we

choose a basis in which the AI = } decay amplitude AO is real; then

c’ is non-zero if the Al = ~ amplitude has an imaginary part.

Let me briefly introduce the notation. Consider the two amplitudes

< nm(I = O))/w ,KO> = Aoe’60

< 7r7r(I = 2)!~w ~KO > = A2et6’ (4,23)

and the corresponding ones for ~, Here Jo and 60 are the fir phase

shifts for isospin O and 2 respectively and the exponential factor in-

corporates the final state interaction of ‘he two piom. In the lattice

basis both A. and .4z are complex. The two CP violating parameters

measured in experiments are

Now using eqns, (4.1,4,23,4.24), one can express q+- and qoo in terms

of c and t’ as

Q+- ac+e’

mo=~-ac’ (4,26)

with d deOned u

i ImA2 lmAo
t’ = {

_ ~~(&-$o)

ReAo } (4.27)
V2.40 - u ReAo



where
ReA* 1

kJ=—
ReAo ‘z

(4.28)

is obtained from Al = $ enhancement. At present we also use the

experimental value for c

15= 2.27 x 10-3 ei=14 (4.29)

and calculate only E’ on the lattice. Later we hope to measure c and w

from the lattice.

At P * 2 CeV, Im N.ff is dominated by the 3 operators 06,07

and 08,

Im M,ff =
GF
@,s2s3c2s5) ~ Cioi (4.30)

i=6

where the KM angles have been isolated to define ~ from C.

In lattice calculations, A. is not real, In fact the dominant con-

tribution to eqn. (4.27), with ~~~~ de6ned in eqn. (4.30), coraes from

ImAo since only em penguins contribute to both Im A. and Im A2.

Using the experimental value for c and writing all A411as ratios to their

VIA value, one gets the master formula [20] [21] [22]

I$i= 3 x 10-31 ‘;’;’::::’ I lf+(a)2.
Be(1 + n.mp - flq – l-lqt) (4.31)

where

(~.32)

and the B are detied in eqn. (4.15). The ME are calculated using the

physical opemtom defined by eqn. (4.21), The factor, Uem, has been

taken out of 57 tihd ~a. The factor flq + Qvj is due to is~pin breaking

and ita present eihimate is -0,27 [5] to 0,4 [21]. It is the BI alone that

we cdcu]ate on the lattice.

In the lattkd calculation with staggered fermions [221[23] , we have

1,’as~= 1.7 GeV. Using m~ = 4.5 GeV, the coefficients are: ~tj =

4.19



0.08 – 0,09 (0.12 – 0.15), ~7/cz,m = 0.15 – 0.22 (0.11 – 0.18) and

~8/~em = 0,01 – 0.02 (0.01 – 0.03) with the ranges corresponding to

mt = 30 to 70 GcV, A = 0.1 or (0.3) GeV. we assume that AL = Am

for the improved action used.

The calculation was done with 2 values of the quark mass; one a

little heavier than the s quark and the other a factor of 8 lighter. With

this data, GIM subtraction cannot be done on the lattice. One can

regard it as one of two approximations: 1) The c quark m=s is equal

to the lattice scale. l/a, and we take ~.~f just below threshold with c

integrated out or 2) the contribution of c graphs is small. In fact the

second poi It is demanded by consistency if one assumes the first.

The 4-link part of the operators (fermion bilinear in Xeff split by

4 links) are left out. They were either too noisy to fit or for eight

contractions were not calculated due to an oversight. Indications are

that for our mq, these are small and to first approximation can be

neglected.

The ME of eight contractions do not fall as mwmK for either the

physical operatora or their V 1A. We don’t have a good explanation

and for the moment aasume that the estimates for the ratios, B, are

reasonable. The ‘penguin” contractions do show the chiral behavior

at heavy masses (heavy-heavy and heavy-light combination of quark

propagators), but the signal is too poor at the small mass to confirm

it. These results are summarized in figures 8a and 8b [24] .

Given all the uncertainties mentioned above (and some more), we

can only point at trends observed in the data; 1) the strong penguins

are suppressed with respect to their VIA value. This decreases the

estimate for $ . 2) The electromagnetic penguins are enhanced wrt

to VIA and they increases $ . 3) The magnitude of the em penguin

contribution maybe comparable to iW6.

Putting in nurnbera for the ratioa 13, the final estimate for $ is still

(1 -2) x 10-3 ( 0.6 to 0.7 of the VIA value) compared to the present

experimental value of 0.0035 * 0.003 k 0.002 [25] . Our goal is to

p~h the accuxy of the lattice calculation of ME below the combined

uncertainty in the coefficient functions due to Amj mt and the KM
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angles. We hope to realize this in the next generation calculation.

Conclusions

The subject material necessary to understand how to calculate .Mll

from the lattice is extensive. The above discussion should convince you

that not all the issues are fully resolved. We have come a long way

from the first lattice calculations [26] [27] 128] , however the status of

numerical studies is still preliminary. Yet, the prospects of solving some

of the fundamental problems is sufficient lure for a sustained effort. I

hope that a similar review few years from now will have some definite

results.
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MONTE CARLO RENORMALIZATION GROUP

The development of Monte Carlo Renormalization group method

(.WCRG) was essentially complete in 1979 with the work of Wilson

~11 , Swendsen 121 and Shenker and Tobochnik [3] , Prior to this Ma

~~] and Kadanoff [s] had provided key ingredients. The method is

therefore relatively new, and furthermore its application to field the

ories has been carried out only since 1932. In this short period there

has been considerable activity and I shall review the methodology and

summarize the status with emphasis on 4-dimensional gauge theories.

There already exists extensive literature on MCRC and I direct the

reader to it [1][3][6] [7] for details and for a wider exposure. Similarly,

the reviews (8] [9] are a good starting point for background on Lattice

Gauge Theories and on spin systems. The topics I shall cover are

1) Introduction to MCRG and its methodology.

2) Renormalization Group Transformation for d = 4 lattice gauge

theories.

3) U(l) Lattice Gauge Theory,

4) p-function and scaling for SU(3) Lattice Gauge Theory,

5) [reproved Actions and Methods to calculate them.

6) Improved Monte Carlo Renormalization Group.

7) Renormalization Group inspired Nfultigrid update,

8) Measuring aut~correlations with block operators,

9) Effective Field Theories,

The main results in QCD from iWCRG are 1) the determination

of the p-function and the consequent prediction for the value of the

coupling at which ~ymptotic scaling sets in and 2) an estimate of

the improved gauge action [10] These results are not spectacular

in the sense of confirming that QCD is the correct theory of strong

interactions, however they have led i,o a deeper understanding of the

lattice theory and provided a quantitative estimate of the approach to

the continuum limit. I shall attempt to show that this method is as yet

in its infancy and should be used to tackle a number of problems.



1) INTRODUCTION TO MCJ?G

Renormalization Group ~111[12] [13] is a general framework for

studying systems near their critical point where singularities in ther-

modynamic functions arise from coherence at all length scales. This
1 .

phenomenon occurs in Statistical Mechanics near and on the critical

surface (defined by a divergent correlation length) and in the strong

interactions of quarks and gluons. The AICRG method was developed

to handle this problem of infinitely many coupled degrees of freedom

so that sensible results can be obtained from finite computers. There

are two central ideas behind &.fCRG: One is to average over these in-

finitely many degrees of freedom in discreet steps preserving only those

which are relevant for the description of the physical quantities of inter-

est The interaction between these averaged (block) fields is described

by an infinite set of couplings that get renormalized at each step. In

QCD this discrete reduction is carried out until the correlation length

is small enough so that the system can be simulated on a lattice with

control over finite size effects, The second idea is that singularities in

the coupling constant space are much softer even though the correla-

tion length diverges on the critical surface. In section 6,1, I show that

some of elements of the linearized transformation matrix diverge, But

this happem only in the limit of infinite range couplings, Thus these

elements should not be important if the fixed point is short ranged.

The .MCRG methods discussed here have a fundamental assump-

tion that there exists a fixed point of the transformation and that this

is short ranged, Thus, even though an infinite number of couplings

are generated under renormalization, WQshall assume that only a few

short range ones are sufficient to simulate the system at a given scale

and preserve the long distance physics, Present results suggest that

,,,, the tied point for QCIl is short ranged,l,,

1,1) Standard Monte Carlo:

t Consider a magnetic system cqnaiating of spins {s} on the sites

.. of 6 d - dtmensumnf lattice L deqribad by a Iiarniltonian H with all

‘) , ,!



possible couplings {Ka}. Ail thermodynamic quantities can be found

from a detailed knowledge of the partition function

(!.1)

where Sa are the interactions. In Monte Carlo, configurations of spins

on the original lattice are generated by the Metropolis [14] , heat bath

[15~ , molecular dynamics alias Microcanonical [16] or the Langevin

[17] [18] algorithm with a Boltzmann distribution e-H s eKas”. All

thermodynamic quantities are given as simple averages of correlation

functions over these “importance sampled” configurations. The accu-

racy of the calculations depend on the size of the statistical sample and

the lattice size L used. Both these quantities depend on the largest

correlation length f in the system. Near the critical temperature, T’c,

associated with second order phase transitions, the correlation length

and thermodynamic quantities like the specific heat diverge as functions

of (T - ‘Tc) with universal critical exponents that have been calculated

for many systems either analytically or by Monte-Carlo using finite size

scaling [19] or by the &fCRG method. Becauae ~ diverges at T’e, long

runs are needed to counter the critical slowing down and the lattice size

has to be maintained at a few times (, The problem of critical slowing

down is addressed by ana!yzing update algorithms (Metropolis vs. heat

bath -/s, Microcanonical vs. Langevin with acceleration techniques like

multi-grid 120] , fourier acceleration [21] etc), The optimum method is,

of course, model dependent and has to take care of metastability (local

versus global minima) and global excitations like vortices, instantons

etc that are not efficiently handled by local changes, Thin last feature

has not received adequate attention, To control the second problem in

standard Monte Carlo, effects of a finite lattice especially as ~ + cm,

finite size scaling [19] haa been used with succew, In this review I shall

concmtrate on iWCRG, First I shall describe how universality and

scaling are expla; ned by the renormalization group,

The renormalization group transformation ( Rc7’) is an operatm

R detlrted on the space of coupling constants, {K.}, In practice the

RGT is a prwription to a,vel age spins over a region of size b, the scale



factor of the RGT, to produce the block spin which interacts with an

effective theory lY1 = R(H). The two theories H and lY1 describe the

same long distance physics but the correlation length in lattice units

(+ $. If this RGT has a fixed point H* such that H“ = R(l!f”),

then clearly the theory is scale invariant at that point and < is either

O or 00. An example of a trivial fixed point with ~ = O,is T = m,

The interesting case is < = 00, close to which the theory is governed

by a single scale ~. I will discuss this assumption of hyperscaling,

i.e. a single scale controlling all physics, later. If this fixed point is

unstable in 1 direction only (this direction is called the Renormalized

Trajectory (RT) ), then non-critical H close to H“ will flow away from

H* along trajectories that asymptotically converge to the RT. Thus

the long distance physics of all the trajectories that converge is identical

and is controlled by the RT. Similarly, po!nts c away from H“ on the

cm-1 dimension hypersurface on which ~ = 00 (the critical surface) will

converge to H“, The fact that the fixed point with its associated RT

control the behavior of all H in the neighborhood of H“ is universality,

,Next, consider a non-critical H that approached H“ along the RT.

Thermodynamic quantities depend on a single variable a,e. the distance

along the RT, This is scaling. Corrections to scaling occur when H

does not lie on the RT, These are governed by the irrelevant eigenvalues

of the RGT which give the rate of flow along the critical surface towards

H ● and, for H not on the RT, the rate of convergence towards it, The

relevant eigenvalue gives the rat~ of flow away from the fixed point along

the unstabie direction (RT) and is related to the critical exponent v,

This teme expos4 ends with a word of caution; all these statements

have validity “close” to Ho,

I,>) standard MCRG Mathod

In the MCRG method, configurations are generated with the

Boitamann factor eK”s” M in standard ,N40nte Carlo, The RGT,

P(sl, s), ia ● prescription for averaging variab[es over a cell of dimension

6, Tlla’blocked variables {sl } are defined on the sitee of a sublattice

L’ with lattice spacing b times that of L, They Interact with a priori

undetmnined couplings {K,:}, and the configurations are dis~ributed



-H’ ieaccording to the Boltzmann factor e . .

e-’’’(”)=~ WA ~-H(’) o (1s2)

All expectation values, with respect to the Hamiltonian H 1, can be cal-

culated as simple averages on the blocked configurations. The blocking

is done n times to produce a sequence of configurations distributed

according to the Hamiltonian~ H“. They all describe the same long

distance physics but on increasingly coarse lattices. The fixed point

H“, the RT and the sequence of theories, Hn, generated from a given

starting H depend on the Z?GT,

The RGT should satisfy the Kadanoff constraint

(1.3)

independent of the state {s}. This guarantees that the two theories

H and H1 have the same pa. tition function. The RG?’ should also

incorporate the model’s symmetry properties; a notable example is the

choice of the block cell in the anti-ferromagnetic Ising model. Usually,

there exists considerable freedom in the choice of the RCT. In fact

many different RGZ’ can be used to analyze a given model. In such

cases a comparison of the universal properties should be made and

the RGT dependent quantities isolated. I defer discussion on how to

evaluate the efficiency of a RGZ’ to section 2.5.

1.3)

There

Methods to Calculate the Critical Exponants:

are three methods to calcuiate the critical exponents from

expectation values calculated ae simple averages over configurations,

In both there is ●n implicit assumption that the sequence H’ stays

Clw to H*. The more popular method is due to Swendsen [21;7~in

which the critical exponents are calculated from the eigenvalues of the

linearized transforrzmtion matrix 7’~d which is defined as

(llt)
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Each of the two terms or~ the right is a connected 2-point correlation

Here (S~) are tlw expectation Values on the ntk renormalized lattice

and K: are th~ corresponding couplings. The relevant exponent v is

found from the leading eigenvaiue ACOf 7,~fl as

(1.7j

where b is the scale factor of the RGT. The magnetic exponent is given

by replacing ~t by Ah in Eqn. ( 1.7) where .~h is the hrgeat eigenvalue of

7’ constructed from odd interactions. I have restricted the discussion to

the special c~e of one relevant eigenvalue. In general, systems can have

multi-critical points with more than one relevant interaction. Next, the

eigenvdues which are smaller than one (called irrelevant) yield expo-

nents that control corrections to scaling. An eigenvalue of exactly one

is called marginal. Lastly, there is an additional class of eigenvalues,

the redundant eigenvaluea, that are not physical, Their value depends

cm the RGT, so one way to isolate them is to repeat the calculation

with a different RGT, 1 shall return to these in section 2,5,

The accuracy of the calculation of exponents ~snprovea when they

are evaluated close to the fixed point. This can be achieved by start-

ing from a critic~ point and blocking th~ lattice a sufficient number

of times i.e. /fm for Ia:ge n, In this case the convergence is limited by

the starting lattice size and how close the starting He is to H’, This

method can be improved if the renorndized couplings {Kn } are de-

termined startinc from a known critical Hamiltonian, We assume that

the couplln~ fall off expanential[y with the range, so th.~t H“ can be

approximated by s small number of shor~ range couplings. For calcu-

!at!ons in modela) for which the critical coupling is not known exactly,

i, f-1



when using a truncated R” the system will flow away from H* under

blocking. This flow away from, H” can be avoided by first putting H

back on the critical surfac J by Wilson’s 2-lattice inethod described in

section 1.4. In sections 5 and 6, I describe a few methods to calculate
the renorrnalized coupiings.

A second pomible improvenient is to tune the J2GT so that the

convmgence to H ● from a starting Hc take; fewer blocking steps. This
,, is discussed in section 2.5

The practical limitation to the calculation ~f the exponents is that

the two matrices V and D can ordy be deter mined in a twncated sub-

space. Further, in order to set up T, the matrix D has to be inverted.

Thus the determination of exponents has two types Gf truncation e;-

rors: The truncated 2’ differs f.am the true T due to the inversion of a

truncated D and because we diagcmalize a truncated T, These errors

will be analyzed in detail in section 6.

The second method to calculate the leading relevant exponent is

due to Wilson 16]. Consider once again the 2-point connected corre-

lation function (the derivative of an expectation value) (S&S~). with

j > i. Expand S: in term of the ei~enoperators 0~ of the RCT.

Clase to H“ the level dependence in O: (equivalently in the expansion

coefficients c~p) can be neglected. Then to the leading order

(1.8)

where At is the leading relevant eigenvalue and corrections are sup

pressed by (~)~-’i Thus for each a and $, the ratio &j gives

an estimate for the leading eigenvai~~e At, This method wordks even

when the starting coupling is not exactly critical. The accuracy of the

method improves if j - i is large (since nori-leading terms are suppressed

geometrically) ●nd if used CICMCto the ilxed point,

I have compared the resultrn for the two methods in the d = 2

[sing model [221 l~ing a 642 lattice and blocking 3 times start-

ing from a 44 term Hamiltonian If a. For i = 1 and j = 2, 3, 4,

At = 2,00(3),2,01(2) and 2,0!(1), while Ah = 3,658(5),3,660(5) and

3,663(5), Swendsen’s method gave 1,998(2), 1,993(3), 1,990(3) and



3.666(l), 3.662(2), 3.66. {2) respectively andthus seems slightly better.

However, the trends leave room for Wilson’s method Imcomingbetter

forlarge.j. So, further tests in other models need to be made.

The third method - Wilson’s 2-lattice method - is described in

section 4around eqn (4.3).

The calculation ofwfrcXntha Ieading eigenvalue does not assume

hyperscaling. The relation betweenv and the specific heat index a

i.e.a=2- ud does. A’known cause of hyperscaling violations are

dangerous irrelevant operators [19]. In the presence of these, universal

scaling functions have apower-law singularity T* in the limit u 4 b

where u is l--elwant scaling field and P is the corresponding scaling

exponerit ,’enormalizztion group approach is presemed but the

hypersca!i, w is modified to a = 2-vd + ~[ql. However, to predict a

we need ~, the power with which the scaling function diverges. It is not

known how to caiculate this with &fCRG. A side remark: in applying

finite size scaling analysis to this case (with an enhanced definition of

the scaling functions for the specific heat data), we need to specify u

to study the divergence in the limit u - 0, But scaling fields are a

function of the RGT. So a A4CRG calculation is necessary to identify

it. Thus at present it is an open problem.

On the critical surface the 2-point correlation functions (like in

Eq. (1.5) and (1.6)) diverge in the thermodynamic limit. However,

their ratio is the rate of change of couplings and these are well behaved

provided one considers only short ranged correlation functions as will be

shown later, The reason that iWCRG is assumed to have better control

over finite size effects is that if H“ is short ranged then a truncated

7’~@is sufficient to determine the leading eigenvalue. Also, the finite

size contributions to the elements T~~ fall off like the couplings i.e.

exponentially. Thus reliable estimates may be obtained from small

lattices,

QCD: At the tree level, the coupling g in QCD does not renormal-

ize and the 6A point is at g5ap, = 0. At l-loop the leading operator

h= eigenvalue equal to onet is relevant and the fhrcd point changes

from simple gaussian to being asymptotically free and non-trivial. A



special feature of asymptotic freedom is that even though the leading

eigenvalue is one there is a flow away from the fixed point at a con-

stant rate. At 2-1ooP, this operator becomes truely relevant i.e. with

eigenvalue > 1. Perturbation thmry also tells us that leading scaling

violations are ~ l/k2, so the second eigenvalue should be - 1/62 for a

RGT with scale factor b. Present studies [23] show that the leading

eigenvalue is close to 1 and the second near I/bz. However, the statis-

tics are poor and the calculation was done at iarge gba~e. Thus reliable

quantitative results are lacking.

1.4) Wilson’s Z-1attice Method to Find a Critical Point:

The critical temperature is not known analytically for most mod-

els. Also, couplings calculated after blocking may not be critical due

to truncation and statistical errors. The following method can be used

to put H on to the critical surface.

Consider A4CRG simulations L and S with the same starting cou-

plings K: but on lattice sizes L = bn and S = W-1. If K: is critical

and after a few blockings the 2 theories are close to H”, then all corre-

lation functions attain their fixed point values. For non-critical starting

H, expand about H* in the linear approximation

(L:} - (Sp) = a {(L&) - (S$-l)} AK:
~

= {( L$L$)C - (W’-l$)C} A~E (1.9)

to determine AK:. To reduce finite size effects the comp~red expecta-

tion values are calculated on the same size lattices. The critical coupling

is given by

K: = K: - AK: (1.10)

and this eetirnate should be improved iteratively,
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2: RENORMALIZATION GROUP TRANSFORMATIONS

IN 4-DIMENSIONS

It has been mentioned before %hat there is no unique RGT for a

given model. There are at present fotir’ different transformations that

have been proposed for 4dimensionti lattice gauge theories. In each

of them the block link variable is’ tomitructed from a sum of paths

z s ~ puths. This sum of SU(N) matrices is not an element of

SU(I$T),and the new block link miitrix’ is selected with the distribution

P(ub) = t?p “ “E . (2.1)

where p is a free parameter to be optimized. The advantage of taking

the sum is that such a RGZ’ preserves gauge invariance. The 4 RGZ’

are (in cronulogicai order)

Fig. 1: Wi180n’s b = 2 transformation. Four of

connect two hypercuhu are shown, The lattice is

the eight links that

locally transformed

into the Landau gauge since the ends ,of the links are not tied.

2.1) b = 2 by Wilson [1]: The ~eometry of the transformation,,
is shown in Fig. 1, The block cell haa 24 sitee of which any one can be

defined to be the block site. There Me’6’ links between two block sites,. i’-!,
in any given direction of which 4 are shown in the ?dirnensional projec-

tion. [n this method the gauge has to ‘be fixed on the 15 sites that are
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Fig. Z: Swendsen’s b = 2 transformation. a) The original transforma-
tion that connects sites A and 1? by the average of the straight 2 link
path and the six staples. b) The generalized transformation which in-
cludes paths of arbitrary size with corresponding strength parameters
~i that have to be determined by optimization,
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Fig, 3: The gam~try of the b = V transformation, The 4 block
links originating ~rom each block site are the body diagonals of the
four 3-cubes. The six path used in the constmction of the block link
between (0,0,0,0) and (0,1,1,1) are shown, Path U7 is ignored.
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not the block site. This local gauge iixing is done to take into account

the fact that the ends of the 8 links M at different sites. The ansatz
~~ilson used was to transform the hypercube locally into the Landau

gauge. The process of fixing the gauge is slow and a disadvantage of

the method. The gauge fixing can be avoided by extending the 8 links

into 8 paths that run between the block sites and include those links.

This modified construction violates cubic rotational invariance because

of the particular choice of the ordering of the paths within the cell. In

32 degrees of freedom are used in this approximateeither form only ~

averaging at each level. Since Wilson’s preliminary investigation, this

method has not beexl used because the next two methods are simpler.

2.2) b = 2 by Swendsen [24] : The transformation in its initial

form is shown in Fig. 2a. The more general veraion is shown in Fig. 2b

where the parameters ~i have to be determined. In this construction all

paths start and end at the block sites. Thus no gauge fixing is necessary

and arbitrarily complex paths can be included. However calculations

show that an optimization of the parameters has to be done to improve

the convergence, I shall discuss this tuning later.

2.3) b = W by Cordery, Gupta and Novotny [25] : This

transformation is specific to gauge theories in 4-dimensions and is based

on the fact that the body diagonals of the 4 positive 3-cubes out of a

site are orthogonal and of length W, The geometry is shown in Fig,

3 and under one RGT the new lattice is still hypercubic but rotated

with respect to the old basis, Also, the box boundary becomes jagged,

This can be undone by a second application of the J?G7’ with different

basis vectors. So the original box geometry is recovered after every

scale change by a factor of 3. The construction of the paths requires

no gauge ting, all paths are of qual length (no free parameters to be

tuned) and # degrees of freedom are used at each step, Further, the

block cell consists of the block site and its 8 nearest neighbors. This

provida ●n easy and natural way to include complex matter fields and

block them simultaneously, This makes it the transformation of choice

to study the sL’(2) x L’(I)Y theory, It is also better suited to the



termion block diagonalization processor Miitter and Schilling 126] as

is explained in section 5.10. In practice, for both SU(2) and SU(3), this

RGT has consistently shown good convergence at strong and at weak

coupling. It is therefore recommended.

2.4) b = W by CallaWay and Petronzio [27] : The construc-
tion of paths shown in Fig 4a is based on a planer structure i.e. z – y

and z – t planes are treated separately at all blocking steps. No gauge

fixing is required but only 2 paths are used in the averaging i.e. in Eq.

(2.1). This drawback of using only 2 planar paths can be improved

by including nonplanar paths as shown in Fig. 4b. Because this RGT

has the advantage that b = W is the smallest scale factor possible, a

serious test should be made.

Fig, 4: The geometry of the b = W transformation, a) The two

paths in the original propoeal. b) Additional 4-links paths to make the

transformation non-planar,

2,5) Optimization of the J?GT: In addition to the freedom of

:he choice of the RGZ’, there are the free parametem p and a, intro-

duced above. Haaenfratz et al. [28] have shown that the convergence

of the original b = 2 Swendsen tranzforrnation is improved if p is tuned,

I will give a qualitative description of how this works, Consider a set of

RC~ that are a function of the continuous parameter p :,e, RP, Start-

ing from ● given point H, the blocked theories generated are described

by H’(p), They all have the same long distance behavior as can be

checked by meaauring expectation values of large Wilson loops, In fart



there is an effective Wilson action H~jf which will have the same long

distance behavior for one observable. The short distance behavior of

Hi(p) will be different and for some values of p, the (plaq)P will be

larger than the (pJaq)w corresponding toll,tt. I have checked that

this is the case for the original Swendsen transformation when p= 00

2 ~ 1 Lowering p reduces the blocked (plaq)P, making it agreeandg . .

better with H,ff. Thus, the tuning makes the short and long dis-

tance behavior correspond better to the same approximate ~,~~. This

leads to improved matching (using small loops) in the 2-lattice method

to calculate the ~-function. Hasenfratz et af. [28] estimate p using

perturbation theory and by Monte Carlo using the criterion of early

matching of block expectation values in Wilson’s two lattice method,

They found that the best value at ~ = 6.0 given by Monte Carlo (- 35)

does not agree with the value found using perturbation theory (- 15).

So M of now this optimization is still by trial. Also, pOPt depends on

the coupling g. This implies that the RT camot be pulled close to tb ~

Wilson axis globally by this optimization. So the usefulness of such

optimization is limited to the &function calculation. The parameters

a, can similarly be optimized using the same improvement criterion.

Gupta and Patel [23] used p = m in the V~ RGT. This is

equivalent to choosing the matrix U such that Tr U ~ is maximized

(the c5-function construction), They find that even with this choice

the small block Wilson loops are more disordered than for an H8JJ

determined using large loops, Thus p = cm is optirnd by the above

criterion, The v’~ RG7’ hsa shown good convergence properties and

provided reliable results with p = 00.

The freedom to choose the RCT and further tune the parameters

a, and p leada to the question: What are the criteria by which to decide

what i. the best RGM’? 1 will first address the question -- what is the

effect of changing the JZ57’ on the fixed point and on the RT? Postulate

:29] [301 : Changing the RG?’ moves the fixed point on the critical

surface but only along redundant directions, A simple argument is as

follows: Consider two different RGT, RI and R2, and th+4r asmciat.d

fixed points Hi and H;, There are no ncm=analytic corrections t~l



scaling at either fixed points and the associated RT. If these two points

are distinct, then H; flows to H; under RI. Consequently there are

no scaling violations along the flow. This is by definition a redundant

direction. This implies that the associated RT differ by redund~nt

operators.

The presence of redundant operators does not effect the physics,

but it can obscure results. The redundant eigenvalues are not physical,

depend on the RGT, and can be relevant or irrelevant, If a relevant

redundant operator is present then the flows will not converge to the

H* or to the RT. Thus it is desirable to pick a RGZ’ for which the

redundant eigenvalues are small [31] . Similarly, the coefficients of

the leading irrelevant operators should be redv.ccd. To some extent

the irrelevant basis vectors are a function of the position of H”, so

it is possible to simultaneously reduce the two coefficients. In QCD,

there is an additional freedom -- all possible Wilson loops form an

overcomplete set. Therefore, in order to tune the RGT and to find an

efficient improved action, it is necessary to determine the operators that

can be eliminated because of the overcompleteneae and the redundant

combinations.

Swendsen [32] has conjectured that the fixed point can be moved

anywhere on the critical surface by tuning the RGZ’. In particular, if

the simulation point is made Ho, then that RGZ’ is optimal. There is

some support for this in spin systems, where by Adding terms to the

RGZ’, one can successively kill terme in the renormalized Hamiltonian,

There am two things to check here: first whether the coefficients of ~he

RGT terms fdl off like the couplings, i.e. exponentially, and second

whether the long range untuned couplings continue to fall off at least

as faat aa before, In the d = 2 Iuing model we find that all the couplings

(other than the nearest-neighbor) in a 3 x 3 square of spins can be made

small without affecting the long range cmlpiings [33] , We have yet to

test whether this is true in more complicated models which have nolI-

analytic corrections to scalingt

The quantity to optimize ir~ numerical simulations is the updmtc

complexity (embodied in the l?GT or the hamiltonian) versus the tle-



crease in the coefficient of the leading irrelevant operator. Swendsen

~32] found that the eigenwdues for the d = 3 Ising model are signifi-

cantly improved with a tuned 10 term RGT. A simulation that used

a 10 term truncated renormalized hamiltonian determined by him did

not work as well. I believe (based on tests in the d = 2 Ising model

:22]) that this occurred because the Harniltonian had large truncation

errors and was not much closer to the H“ for the simple majority rule

RG?’. There is one additional anomaly in this approach: Tuning the

RGT improved the thermal expoilent but the results for the magnetic

exponent deteriorated in quality. This is surprising because the fixed

point is at zero odd couplings and these remain unchanged in tuning

the RGT. The previous postulates (movement in redundant directions

only versus killing all long range interactions), if true in general models

are in conflict and the present results are ambiguous. Consequently,

this subject is being explored further [33].

The criterion for an optimum RG7’ is to make the H* and the RT

as short ranged as possible, In critical phenomena, the improvement

can be quantified by measuring the convergence of the exponents as

a function of the blocking level. In QCD we are interested in contin-

uum mass-ratios etc. These have so far been hard to measure so the

improvement cannot be judged. The behavior of the RT for QCD is

discussed at the end of section 5, For the moment 1% me conclude

this section with the statement that we don’t know how to optimize

,\lC’RG systematically and this subject is under investigation,

3: U(l) LATTICE GAUGE THEORY:

Thie model is ● trivial limit of an eventual goal: To understand

spontaneous symmetry breaking in the S[1(2) x [1( l)Y theory of weak

interutions, U(1) haa many of the technical complications one expects

in the full theory, for example, large finite size effects, weak let order

transitions with a possible tri-criticd point (TCP) etc. SO it is good

starting place to tent methods,



Thephase diagram of the theory defined by the action

(3.1)

where @ (-y) is the charge 1 (charge 2) coupling is known to have a

ph~~e boundary separating the confining (strong-coupling) phase from
the spin-wave (QED) phase [34] [35] [36] , The order of the transition.
along the boundary DXZ in Fig. 5 is not resolved. In particular it is

not known if the gradually weakening first order transition along CD

ends in a tricritical point, and if so what is its location, !2vertz et al. \35~

claim that the location of the Z’CP is at 0 = 1.09*0 04 and q = .-O.11*

0,05 on basis of a scaling analysis of the discontinuity in the energy AE.

The mechanism driving the transition are topological excitations 137]

138] , a.e. closed loops of monopoles, whose density is observed to change

at the transition [39] [40] . This change in density is caused by a growth

in the size of the largest monopole loop which begins to span the finite

lattices used in the calculations [39][41] . Thus, the usual difficulty of

finite size effects near a Z’CP in determining the location of the 7’(7P

b} an extrapolation of the latent heat AE along the phase boundary

is here compounded by the presence of monopole current loops that

are closed due to the lattice periodicity [39][41]. These contribute a

f~ke piece to the AE which makes the extrapolation unreliable. One

solution is to calculate and then subtract the contribution of these loops

from A E before making the extrapolation. The more reliable method

is AfCRG and in particular the 2-lattice method discussed in section

1,2 should be used to locate the TCP. A word of caution for the U(1)

model when using this method: There is a large shift in the critical

coupling u a function of the lattice size [391 and consequently in the

contribution of the fake monopole loops, One should therefore use a

starting coupling for which both lattice simulations are on the same

sida of the tramition,

The status of the order of the transition from ,&fCRG calculations

using the T matrix is as follows: Along the Wilson axis ~39] only one

relevant exponent is found using the V? RGT, Furthermore, the value

of the exponent showed a variation with /3, At 0 -= 1,007S, u s (l,;~’J

‘1 ,i7
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Fig, 5: The phase diagram of the U(I) gauge theory in the two
“ ‘“” coupling plane, ‘I’he order of the transition along the line D.YZ needs

‘to be resolved,



and this value changes to v s 0.43 (or even the classical value 0.5)

at ~ = 1.01, One explanation is that the TCP lies above the Wilson

axis and in simulations along the Wilson axis one measures first the

tricritical exponent and then the critical one after going through the

cross-over. The same conclusion is also reached in two b = 2 A4CRG

studies [42] f43~ which extended the calculation to non-zero 7. Thus

the only discrepancy between the MCRG studies and 6nite size scaling

analysis is the precise location of the Z’C’P.

The present status of the nature of the transition is confused. In
all MCRG calculations in which the exponents are derived from the T

matrix, one finds evidence for a second order transition on and below

the Wilson axis. However, recently Becker et al. [44] have used the

2-lattice method (see eqn 4.3 in section 4) to Ci Iculate the leading

exponent for a number of values of y along the transition line and find

the transition to be first order. We need to resolve this ci,screpancy if

for no other reason but to understand the methods.

Our goal is to know whether there exists a non-trivial fixed point

for the SU(2) x U(l) y model at which a continuum field theory can be

defined, As the previous discussion shows, understanding even a simple

limit model has been hard. To settle the important physics question

requires considerable more work.

4: &FUNCTION AND SCALIN6 FOR SU(3)

LATTICE GAUGE THEORY

The non-perturbative o-function tells us how the lattice spacing

goes to zero aa g~@,@+ O. Since on the lattice all dimensionful quanti=

tiee, like maaee, are meaaured ir~units of the lattice spacing a, we rleed

to know how a scalee in order to take the continuum limit. One op-

tion is to use the 2-loop perturbative result provided it is demonstrated

that this is valid at valuee of gb~rt where the calculations are done, The

other is to meaeure the non-perturbative %function. Since the Vaiue

of gbapt at which asymptotic scaling sets in is not a priori known , the
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Fig, 6: The ●volution of actions under a RGT, Due to long-distance

matching, the correlation length on the two starting actions {KA} and

{KB} diffem by the scale factor b of the RGT,

calculation of the non-per turbative ~-function is necessary.

There are two methods for calculating the non-perturbative 3-

function directly.

4.1) .tfCRG using Wilson’s 2 lattice method [1][3]: There

are 2 grou~ who hAve used this method for SU(3); one with b = v~

RGT [45] and the second [28] with b = 2 prop~ed by Swendsen

,24]. Tha outlin. of tha mathod is: First a system of size L = (bn)d

is simulti with couplings Kg and the eyp~tation valuea of Wilson

loop ~ dCdbtd on the originsl lattice and the n block lattices, A

s~cmd syutom of size S = (b’’-i)d is then simulated with couplings

Kg chtin judi~ioualy, Agsin the expectation values are calculated

on the n lattic~. The expect~tion valuea from the two simulations

are then comp~red on the ssme size lattices, t.e. the ones fromi the



larger starting lattice L blocked one more time than those from the

smaller lattice. The couplings I(: are adjusted (which requires a new

simulation) until there is matching at the last, ntk, level. In practice

it is sufficient to do two simulations S1 and S2 which bracket L and

then use interpolation, The test for convergence of the two theories L’”

and S’”-l is that the expectations values shouid match simultaneously

at the last few levels. The idea; situation is shown in the coupling

constant space in Fig, 6. At matching, the correlation length on L

(starting couplings Kg) is larger than on S (K:) by the scale factor

6. If the starting trajectory is taken to be the Wilson axis (or any 1

parameter line specified by K) then the value of the &function, A~,

for a scale change b is (KA - KB). Note that finite size effects are

minimized since the comparison is on approxicnately the same physical

size lattices when matching occurs,

There is a one to one cor.ws;:~~ndence between the value of the

couplings and the expectation valuea of Wilson loops, Under the as-

sumption that the fixed point action is Iuct ~ (at, any scale a few short

range couplings are sufficient to characterize the action) matching the

expectation values of a few small Wilson loops is sufficient to guarantee

that the two actions are equal. Finite size effects in expectation values

are irrelevant on blocked lattices that match because then the two the-

ories are approximately identical and under further blocking continue

to converge to a common trajecto~, ‘Thus it is suiilcient to require

that matching first take place on Iatticw which are large enough to

accommodate the important couplings, Thereafter, the check can be

on a 14 lattice too! It is the range of the couplings that controls finite

size effects in A4CRG and not the correlation length and this range

falls off exponentially even on the criticai surface. This is why &fCRG

has good control over finitr size effects and is a powerfui method.

For the simpie piaque~te SU[3j action with KF s $, asymptotic

scaling ia defined by the 2-lcop perturbativc ,ti-function,

(4.1)

‘) ‘1. .,



The quantity calculated using A4CRG is,

8(69-2) ./rib ,
A@ = -—

i3(lna)
(4.2)

i.e., the discrete d-function at KF evaluated for a scale change b.

This 2-lattice method also gives the thermal exponent u for tran-

sitions governed by a fixed point k*. Let the RT be parameterized by

K, then under a RGT

(K2 - K“) = b+ (K’ - K“) (4.3)

where the flow is from Ki to K2, So, from a sequence of matching

couplings one can determine u and K“.

The results for LO from the 6 = W calculation [4s] are shown

in Table 1, while those for o = 2 are shown [28] in Table 2. The

global data is shown in figure 8. There is clear evidence of a dip at

~~ 6.0 which is caused by the end point of the phase transition line
in the fundamental-adjoint coupling space. The conclusion cf these

calculations is that there is no asymptotic scaling below 6/g2 = 6.1.

Second, even though the results for 6/g2 > 6.75 have large statistical

errors, they consistently fall below the 2-loop value.

For the W transformation we have made a finite size test [461.

The matching is done for a starting (9@4 lattice at 6/g2 = 6.75 with

94 lattices. The results for A/3 are 0.42(2), 0.47(1), 0,42(1), 0.44(2) for

matching on the 3fi, 3, W and 1 block lattices respectively. These

values are consistent with previous numbers and show that the ob-

served mcillations are a function only of the number of times blocking

has been done and not on the starting lattice size. Also, note that the

result on the 4** and additional step falls roughly in between the pre-

vious two, This eupports our claim that convergence is oscillatory and

~ymptotic. For this reason, when using 94 starting lattices, we quote

the mean value from matching on the (V~)4 and the 14 lattices as our

best estimate, end for error we give the spread, This is much larger

than the statistical ●nd systematic errors in matching a few small loops

on a given level,



Starting I Ylatching .Matching .Matching 2-loop ~
94 KF on 34 on (Ji)4 on 14 A9

6,0 .337(5) .323(5) .308(6) .489
6.125 .387(5) ,376(5) .351(6) ,488
6.25 .421(4) .424(5) .401(5) .488
6,35 .431(4) .452(5) .445(9) .487
6.45 .432(4) .464(6) .423( 12) .487
6,S .435(4) .464(6) .449( 15) .487
6.75 .430(4) .48S(5) .443(9) .485

6.75* .42(2) .47(1)’ .42(1) .44(2)*
7,0 .42(2) .49(1) .42(2) .484
7.25 .41(2) .51(2) .46(2) .483
7.50 .38(3) .49(2) .42(2) .482k

Table 1: The va!ws of A/3 for b = W RGT

levels of blocking [46] . ‘.~he couplings are

from matching at different

for the starting94 lattice

along the Wilson axis. The matching Kr on (3fi)4 were determined by

linear interpolation and the errors are based on a la fit. For Kr >6,75,

the systematic errors may be larger than the eetimates. Also shown are

the valuee of A@ corresponding to asymptotic scaling. The results at

6,75* are using a 9fi starting lattice, so there is an extra level of

blocking for which the result is shown in the last column,

The results using the 6 = 2 RGT proposed by Swendsen and em-

bellished with an optimized kernel are shown in table 2. For compari-

son, the 2-loop result is A~ ~ 0,61. The matching lattices used in the

calculation are L = 164 and S = 84.

Wilson’s 2-lattice method can also be used to meaeure the AP for

a theory with dynamical fermions, All the steps are the same once the

configurations are generated with’ the full action. There are two impor-

tant difhrencea: 1) in this case the couplings are not expected to fall off

as fact u for the pure gauge theory, so larger loops may be necessary

to obtin reliable ~tc~ng [31], 2) there is a second parameter, the

quark w that hea to be fixd to the same physical value on the 2

lattices. A naive solution would be to’ use perturbation theory which



[ Kp b = 2 \fCRG method b = 2 l-ioop Ratio method ~

6,0 0.35(2) 0.36(3)

6.3 0.43(3) 0.45(3)1
6.6 0.55(9)
6,9 0.51(6)

/ 7.? 0.51(7)

Table 2: The values of A9 for a scaie change of b = 2. The results

are from Bowler et al. ~24]. The 2-loop perturbative result is 0.61, The

matching is done on starting lattices 164 versus 84.

unfortunately does not work well at g s 1. The other possibility is to

match a physical quantity like the r ~~o m= extrapolated

mass. This is beyond our present computational power

to zero quark

4.2) Loop ratio method [47] [28]:

This method is baaed on the fact that the raticm of Wilson loops

that cancel the perimeter and corner terms like

W(k,l)
R(i, j,k, f) = — wherei+j =ktl . (4.4)

W(i, j)

satisfy an approximate homogeneous renormalization group equation

R(2i,2j,2k,2(, g,,,2L) = R(i, j,k, f,gb, L) . (4,5)

Using Nfonte Carlo data for ratioe calculated on 2 lattices of size 2L

and L, with couplings ga and g~ respectively, givea the the desired

answer A/3 = (6/g~ - 6/g~) for b = 2, Caveats: Eq, (4.5) is correct

only aa i, j, k,l + cm, otherwise there are corrections due to lattice

artifacts. The quality of numerical results for large i, j, k, I are limited

by statistia, To confirm the reliability of the results, we should show

that the value of A~ converges to a constant as a function of loop size.

The contribution of lattice artifacts can be reduced in perturba-

tion theory, To do this consider Eq, (4,5) for a linear combination

5,24



of loop ratios with coefficients ~i. To determine these ~i, use the ex-

pectation values of loops calculated in perturbation theory and require

that A~ = O (tree-level), 0.579 (1-loop) . . .. Having determined ~~ per-

turbatively, use the monte carlo data for Wilson loops to calculate the

non-perturbative A/3. The limitation of this improvement approach is

that if two (or more) ratios representing different scales (say i = 1 and

4) are used then the difference in statistical errors becomes a prob-

lem. Second, at weak coupling each ratio roughly satisfies Eq. (4.5)

so there is a loss of sensitivity y in determining ~8. At strong coupling,

perturbation theory calculation of ~i breaks down. So, at best, there

exists a window in g where reliable results can be obtained. Hasenfratz

et al. 128] claim that this is true for $ in the range [6,6.3]. In this

interval their results are in agreement with their b = 2 A4C12G results

as shown in Table 2. A high statistics calculation of large loops in

SU(2) by Gutbrod [48] shows that stability with respect to loop size

is reached rather slowly. Therefore one has to be cautious of apparent

convergence.

4.3) Results and Discussion:

For # >6.4, the two MCRG results are consistent and fall about

10% below the 2-loop value. This situation seems to persist up to 7.5.

It is very important to determine whether even at ~ > 7.0 we are =

10% below the 2-loop behavior. If the observed behavior is correct,

then we should stop thinking in terms of asymptotic scaling. We need

to perform a consistency check that demonstrates that the results for

AO have converged and that the MCRG method is not limited by finite

size effects,

It is hard to compare directly the results in the region of the dip

of the b = W study with thu b = 2 ones because of the different scale

factor of the RGT. One check is to take the W data and fit it to a

smooth function with the correct asymptotic behavior. This function

can then be used to determine the discrete change AO in the couplings

for any other scale factor 6. Petcher [49] has carried out the follcwing

analysis: he constrains the function by a fit to the b = m data with

matchir, ~ on the m lattice (note that our preferred values are the

5,25
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mean of the matching value on the VT and 1 lattices). As shown in

Fig. i the smooth function he finds from the h data, resealed to

b = 2 compares well with the b = 2 ,$fCRG data. Another test, which

addresses the problem of finite lattice size effects, is for us to repeat

the 9v5 calculation in the region of the dip.

Next we would like to check if the AD calculated from .MC deter-

minations of different physical observable are identical and agree with

the .\fCRG calculations, This comparison tests two things; 1) whether

there exists scaling (constant mass ratios) before (larger g) asymptotic

scaling and 2) whether the \fC measurements are reliable, The lat-

tice value of a mass ma calculated at two values of the coupling, ~

and ~, gives the AP for a scale change ~, Unfortunately the val-

ues of couplings are not selected to give the AP for a given constant

scale change. This again introduces the problem of resealing data, In

Fig. 8 we only use pairs of data points with a scaie factor close to

v~. On close scrutiny of the data between $ = 5.9 and 6.3 one sees

two curves, the b = ti~ MCRG data agrees with a while b = 2 MCRG
data is consistent with the T’, data. If this discrepancy is not due to

finite size effects or our inability to measure long distance observable,

then it implies that even scaling is violated until ~ x 6.2, We need

more reliable data to settle this point. At $=6.0, the 0++ glueball

mass ,50] string tension a ~5!] and the reconfinement temperature T,

’52 531 represent scales of 2,5 and 8 lattice units respectively, Thus

identical AJ would be a reasonable test of scaling even though there is

the problem of resealing data, Unfortunately, there is no point at the

moment from glueball data due to large uncontrolled finite size effects

as discussed in my lecture on glueballa.

The onset of asymptotic scaling has also been checked by plotting

~ where m is the reconfinement temperature 7’Cand ,i is the 2-loop

perturbative scale, The two groups doing this calculation i52jj53\ use a

different criteria to fix the transition coupling, Their results for ,Vf

10, 12, 14 coincide when the same criterion is used by both and give an

,~ccurate measurement of T,;, However, the r~sults show a very broad

transition r~gion so more careful finite size studies are needed to (ix the
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infinite volume transition point. In figures 9a and 9b, I show the data

for Tc/A with A defined both with the the l-loop and 2-loop formula.

[n both cases this ratio is roughly constant for N, = 10, 12, 14 and

different from the value at .V, S 8. A closer inspection shows a small

consistent decrease even at Nt = 14. The range of g between Nt = lC

and 14 h too small to deduce to better than 10% whether the curves

have reached their asymptotic behavior. Even so, we cannot distinguish

whether there is scaling for # > 6.15 according to l-loop or the 2-loop

behavior, This exposes one kind of 0(g2) problems. Second, there are

possible large, i.e. (1 + 0(g2)), regularization scheme dependent terms

in the 2-loop A for g - 1. Because of these uncertainties, it is not

possible to test asymptotic scaling to better than 10% by this method

yet, l?hus these calculations should be used as a guide and the goal

should always be to attain constant mass-ratios.

To conclude this section: MCRG calculations have provided us

with a definitive statenient on the approach to the continuum limit.

This is non-trivial. The present MC determination of a and the glueball

messes need improvement before a definite statement of scaling can be

made. The largest lattice calculation of u by de Forcrand [54] show

deviations from asymptotic scaling i.e. /U = 92 (79) AL at -# = 6i0

(6.3). Since these calculations have already taxed the power of a Cray

XNIP-48, it leads us to the question whether improved w :ions can help,

This is discussed next.

5: DETERMINATION OF THE IMPROVED ACTION.

The advantage of using an improved action in MC simulations is

to reduce the effect of operators that lead to scaling violation~i In

QCD this means that corrections to mass-ratios determined from stntll

Iatticaa can he reduced, Second, we want to uvoid regions near singul&r-

itiee where universality (continuum mass-ratios) is violated, A known

~xample is the end point of the phaue structure in the fundanwntal.

wljoint plane,

‘,, ,“)
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There are at least 11 methods in existence to calculate the renor-

malized couplings. All, except for those using perturbation theory (and

therefore only valid near g = O where scheme dependence is negligible),

are baaed on MCRG. In fact, since the fixed point and the Renormal-

ized trajectory is a function of the RGT, an improved action is content-

free unless the RGT is specified. I shall briefly describe the methods,

state their advantages and disadvantages and mention results obtained

with them, The generic problem of systematic errom in the estimate

of the couplings due to a truncation in the number of couplings kept

in the analysis will be r~ferred to as “truncation errors”. This is a

serious drawback beta the errom can be very iarge and there is no

way of estimating them without a second !ong simulation. In order to

consider this truncated ansatz to be the best “fit”, a criterion to judge

the improvement has to be established [31]. This is discussed after a

brief description of the methods. To fix the notation, the pure gauge

SIJ(2) action is written aa

+ ~} ~{2(TrUp)3 - TrUp} (5.1)

while the SL’(3) action is

(,5,2)

Here the higher representations have been constructed from UP, all

the tracee are normalized-to unity and the sums are over all sites and

positive orientations of thg Ioope,

S.1) Symanzik Program [56] : ‘rhis is a perturbation theory

method to remove all O(ai) corrections in physical observable. At

tho tree level, ●t l-loop [56] and in the Icading log :57] analysis, the

0(a2) correction- are removed by inc

strength
K~P ,

G

uding the &link planar loop with

0,05 > (:),3)

‘1. 1.!



There have been some SU(3) calculations [F9] done with this action,

but they are inconclusive and no statement for an improvement in

mass-ratios can be made as of now.

5.2)

theory):

down the

1310ck Spin Renormalization Group (perturbation

The first work in this direction is by Wilson [1] who wrote

ansatz (for details see [31])

‘6P ~ Ket
-0.0576 , –0.0388 ,

K %=
(5.4)

where ~e: is the twisted 6-link coupling. No calculation of physical

observable has been done with this action. The group of Iwasaki et al.

~59] have made a large independent effort in this direction of improve-

ment. They find that near g = O the action after 3 RGT can be

approximated by including ~he &link planar loop with strength

~= 0.331-—
KF 3,648 “

(5.5)

They show that for both the Wilson ansatz, Eq. (5.4), and for this

action instantons are stable on the lattice. Since this is not true of

the simple plaquette action, they regard it aa another criterion for

improvement, They have recently calculated the string tension and

the hadron masses in the quenched approximation using the improved

gauge action of Eq. (5.5) and the standard Wilson action for the quark

propagator on a 123 x 24 lattice at an effective -$ z 5,9, Their results

for maza ratioe arc very good. We need to aacertain if these impressive

results are really due to the improved action.

5.3) Migdal-Kadanoff Recursion Technique: This calcula-

tion [601 is limited to the plaquette in the fundamental and higher

rep~ntations. The integration over links is done by expanding the

action in terms of the characters ●nd then using the recursion formula,

In the improved action, the effect of the singularity in the fundamental-

ad joint plane Is reduced but the leading irrelevant coupling KeP is not

included, For SU(2) [601, the convergence in the character expansion



was good, the recursion was stable on keeping 20 characters. The im-

proved action is dominated by the spin 1 and 3/2 representations, and

the K-M improved trajectory was approximated by

~=

KF
-0.24 . (5,6)

It was later shown by Bitar et’’af. ‘[61] that the heat Kernal action

works very well in the recursion scheme and in fact is the solution in

the pertu~bative limit. For a SU(2) calculation of the /3-function along

the K-M improved trajectory ~A = –0.241fF, and for an analysis of

the improved action see Ref. [23].

5.3b) Plmnamencdogical (Lines Of Coriotant String Ten-

sion): The continuum limit is taken along directions perpendicular to

the lines of constant string tension in the negative fundamental-adjoint

plane, Rebbi et af. [62] have meaaured the qij potential, while Samuel

:63] has promoted a calculation with scalar quarks. The effective cou-

pling for comparison on the Wilson axis is defined by using the large

N resummation technique [64] [65] . Since no direct comparison has

been made it is hard to state if better mass ratios are obtained,

5.4) Swendsen’s method [66] using the Callen represen-

tation: The block expectations values of Wilson loops are calculated

in two ways. First as simple averages over block configurations, and

second using the Callen representation [67] with a, guess for the block

couplings, From these two estimatae, the block couplings are deter-

mined iteratively, The method in fast and e~y to implement. It does

have undetermined truncation errors. Lang [66] haa used this method

to show that the quartic coupling ~~’ in the self=interacting scalar field

theory renormalizes to zero, Recently Lang [421 and Burkitt [43] have

used it to map the fiow of the action under the 6 = 2 RG7’ (section 2,2)

for tha U(1) model. From a difference in the flows they can estii,~ate the

traruition point on the Wilson axis. It would be instructive to extend

the U(I) analysis to ~q coupling valuee along the ph~e transition line

and check if there exists a TCP,



5.s) Callaway-Petronzio-W Hson method [69] [70] of fixed

block spins: This method is useful for discrete spin systems like the

Ising model and models in the same universality class. A ~WCRG cal-
rlllation ig modified by fixing sI1 the block spins except one such that

only a controllable few block intemctiom are non-zero. The system is

simulated with the RGT used as an additional weight in the Metrop-

Iis algorithm. The ratio of probability of this unfixed spin being up

to it being down is equal to a determined function of a certain num-
ber (depending on how many block interactions are non-zero) of block

couplings. By using different configlwations of fixed block spins a sys-

tem of linear equations is set up from which the block co~ )Iings are

determined, Tho drawback of this method, even for the Ising model,

is that it is hard to set up the block spins so that only a few (s 10)

block interactions are nonzero. Wilson showed that this can be done if

one uses the lattice gas representation i.e. O or 1 for spin values. The

couplings in the + 1 representation are then given by an expansion in

the lattice gan r,o~plings. The second improvement due to Wilson is

that instead of a MC determination of the ratio of probabilities, the

exact result can bc obtained in the transfer matrix formalism. In the

) ‘ht convergence of the *1 couplings in terms of thed = 2 Ising mode,, ~

lattice g= couplings is slow [70]. About a 1000 lattice gaa couplings

were necessary fc,r an accuwxy of w 10- 4, Hovtever, the calculation is

non-statistical a?~d very fast.

5.6) Character ExpcmQimJ method of Mtar [71] : I will
dmcribe this method with a restriction to simple plaquette actions,

The character expansion for r% action is ~P ~, Af,x,( UP) where X,

is the character in the reh rt, ~esentation and KP is the corresponding

coupling. Similarly the Boltzmt :.i~ [actor FP for each plaquette p can be

expanded in a character expanuoh J_’p= ~, d,~,~,(uP) where d, is the

dimension And ~r the coefficient for r~~ r~presentation. The couplings

K, am given by

(s!7)

The crucial etep is that the ratit d, ~r~\l ran be calculated as a ratio of



expectation values over block con figuratiul.s. From this the Bo!tzrnann

factor FP and consequently ~, can be determined. The method is

sensitive to the convergence of the character expansion i.e. the number

of terms in r needed to determine Fp accurately. After this there are no

truncation errom in determining ~~. The method grows in complexity

if larger loops are to be included in the analysis. The first results [711for

the simple plaquette action in SU(2) are encouraging.

s.7) The Schwinger-Dyson Equation method [72] [73] : In

this method the lattice Schwinger-Dyson equations (equations of m-

tion for expectation values of n-point functions) are used to write down

a set of inhomogeneous linear equations for the couplings. The coeffi-

cients and the inhomogeneous term are given in terms of expectation

values of n-point functions. In deriving these equations the action has

to be truncated to the subspace of couplings to be determined. Thus

the method has truncation errors. Preliminary results fc; the abelian-

higs models and the O(3) nun-linear a-model in d = 2 are encouraging.

6.(3) 2-Lattice A4CRG method [74] [7]: The calculation steps

are the same as Wilson’s 2-Lattice method to determine the ~-function,

The method consists of expaading the block expectation values (with

unknown couplings) shout those from a simulation with known cou-

plings. Keeping just the Iine*r term in the expansion gives the differ-

ence between the two sets of couplings. The main advantage is that

this comes free with the calculation of the ~-function. The method

has a statistical drawback that it requires two different simulations so

there is no possibility of cancellation of statistical errors. Also, far

from the RT, only the 6mt renormalized couplings can be determined

accurately. Them exist extensive calculations for both the SU(2) and

tile SU(3) models using the tit RCT, The estimate for the improved

action in a 4-parameter space for SW(2) is {231

KJp KA
— = -G,06 , — = -0.19 , EL . (),()3
KF KF KF

(fi,!i)



and for SU(3) is [4.5]

Kf3P = _(-J 04 ‘s = Ke

%“ ‘~
-0,12 ,

~=
–0,12 . (5.9)

The truncation errors are known to be large and thereliability of the

results is being tested by using the estimated improved action in the

update and repeating the calculation of the /3-function and the im-

proved action [31]. The results for the ratio me++ /a with this action

are given in my lecture on glueballs. At present it is hard to evalu-

ate the improvement because we do not have control over finite size

effects in glueball masses. A detailed comparison of the renormalized

action obtained with this method and with the microcanonical method

is made in table 3,

5.9) Microcanordcal (Creutz’s Demon) Method [75] : This

method is very efficient if from a previous M CRG calculation expec-

tation values of n block Wdson loops at each of the f block levels are

determined. To determine the corresponding couplings at the /~h level,

a microcanonical simulation is then done (on a same size lattice as on

which the block expectatim values were calculated) with the corr~

spending n energies fixed and with one demon per interaction. The

desired n couplings are then determined from the distribution of de-

mon energies. P. Stolorz [76] used the block expectations values for

SL’(2) obtained after two applications of the ‘fi RGZ’ for a starting

184 lattice, From these he obtained the second, (f = 2), renormal-

ized action in a truncated coupling constant space (four couplings of

Eq(5. 1)). The reaultz are shown in Table 3 and compared with the fimt

renorrnalized couplings obtained from the 2-Lattice MCRG method

described above. The reeulta show a rapid convergence of the action

to the RT consistent with the estimates given in Eqs (5,8). This is

evidence that the W RG?’ transformation haa good convergence prop-

erti~ after two stepe, [n this calculation it was easy to thermalize the

four energiee. The simulation is faster than the 2-Lattice method and

has better statistical properties, Also the block couplings at all levels



~ Initial
Action KF K~ / KF K31z/KF K6P/KF

\ KF
2.50 (w) 2.57(1) -0,195(01) 0.043(01) -0.004(3)

2.06(1) -0.186(06) 0.038(03) -0.01(2)
/ 2,75 (W) 3.16(1) -0.199(03) 0.042(02) -0.02(2)

2.82(4) -0,214(11) 0.044(06) -0.02(4)
3.00 (w) 3.69(1) -0.190(04) 0.040(02) -0.031(7)

3.47(5) -0.211(12) 0.039(04) -0.03(3)
3.25 (W) 4.12(2) -0.160(05) 0.025(03) -0.037(4)

4.00(4) -0.182(10) 0.032(06) -0.04(3)
3,50 (w) 4,71(2) -0.168(05) 0.028(03) -0!040(4)

4!40(7) -0.150(15) 0.007(06) -0.05(2)

4.35 (.MK) 3.42(1) -0.211(02) 0.044(01) -0.03(1)

I 3,10(3) -0.235(12) 1 0.055(04) -0,03(3) J

Table 3. Projection of the renormalized SU(2) action onto the

[K~, ~A, ~sJZ, ~eP]space forseVeral starting actions, For each start-
ing action, the first row shows the couplings after one b == W RGT

with starting lattica of size 94 calculated by the 2-lattice method [23],

The second row shows the couplings after two RGZ’ calculated using

the microcanonical demon method [76]. The last set, HF = 4,35, is

with the action given by the MK trajectory Eq. (5.6).

can be determined once the block expectation values are known. The

truncation errors are the same ~ in the 2-Lattice method.

5.10) Block Diagonalization method of Miitter and

Scbilling [26]: This is at present the only method that attempts to

ireprove both the gauge and the fermion action. The main idea is that

quark propagator ue calculated on blocked gauge configurations using

a blocked fermion action. The blocked fermion action is calculated as

follows: Let the starting action be the Wilson action

Vfu* , (5,10)

where ,tf is the interaction matrix. The lattice is now divided into



,,

blocks which for the W RGT contain 9 sites each. The site action is

then cast into a block action

~rs (5.11)

where ~ is a 9 component Dirac fermion field and r is the interaction

matrix set up to. reproduce Eq. (5.,10). The part of r that corresponds

to the mass term, l_’~, is diagonalized to provide the mm-interacting

fermion basis vectors. For the m RGZ’, the 9 eigenvalues of I’~ are O

and 8 degenerate ones with value 9/a. Only the light mode is kept on

the blocked lattice. The interaction between the light and heavy modes

is calculated in perturbation theory and these terms are added to the

W’ilson action to give the improved fermion coupling matrix for the light

mode. This is like the standard construction of effective field theories.

This fermion diagcmalization is approximate. Thus lattice masses will

not a priori change by 1he scale factor 6 between the original and the

blocked lattice. It is th,~refore necessary to first check how good the

transformation is in preserving m-s-ratios of the unblocked system.

The results on a twice blocked set of configurations using b = 2 are

encouraging [771 , Results of a teat of preservation of mass ratios under

blocking ~hould be available soon for both the b = 2 and b = W RcT,

At this point it is worth mentioning that the following advantages were

observed in the diagonalization procese for the fi Z?GZ’in comparison

to b=2,

(a) The separation between the light modes m --0 and the heavy

modes is better i.e. 9/a versus 2/a, so the perturbative corrections

are more reliable.

(b) Rotational invariance is not broken aa is in the b = 2 transformat-

ion.

(c) No closed gmuge loops which manifest themselves as additional

contact terrna in the ferrnion operators arise. This implies that

the value of the Wilson parameter r does not get modified and ICc

remaina the same on the blocked lattice for Wilson fermions if the

exact fermion coupling matrix is derived,

(d) The blocking of gauge links is the same as defined in section 2.3.



Discussion: There aresorne features of theimproved action that

seem common to the various analysis done. The details will certainly

depend on the specific RGT.

(a) The leading irrelevant operator is dominated by K6p. the G - link

planar Wilson loop. Thus a RGT that kills it is an improvement.

(b) From the W RGT analysis, one gets an estimate of KA/ KF -

~~j~F * –0.12. Thus near ~ = 6., the phase structure in

the {~F, ~A } plane is avoided. This is necessary because in

the vicinity of the end point of the phase structure universality is

violated.

(c) The RT for the b = \ ~ RGT shows significant deviations from

linearity in the region accessible to Monte Carlo. The ratios given

in Eqs. (5.8) and (5,9) are an estimate of the asymptotic behavior,

(d) The RT out of the fixed point is local i.e. dominated by small loops.

The Wilson axis is tangent to the strong coupling RT at the trivial

fixed point at K. = O. The change from the weak coupling RT

to flow close to the Wilson axis takes place in the region where

current Monte Carlo calculations have been done i.e. between 5,7

and 6.5. This feature needs to be investigated since current mass-

ratios show a behavior that is in between strong coupling and the

expected continuum one,

It is still necessary to evaluate whether constant mass-ratios in

the quenched approximation are obtained significantly earlier with an

improved action. The results have to justify the factor of * 5 by which

the gauge update slows down when the above four couplings are used.

The key lies in improving the fermion sector, For dynamical quarks, the

gauge update is a small fraction of the update time, So, an investment

in improving the gauge action is justified.

(3: IMPROVED MONTE CARLO RENORMALIZATION

GROUP METHOD [78]

I shall describe the Gupta-Cordery MCRG method (l,!f(7R(;) in



some detail, In this method too, the Renormalized Hamiltonian and

the Linearized Transformation Matrix, T, are determined in some trun-

cated space of interactions. However, in this sub-space they have no

additional truncation errors i.e. the determined quantities have their

infinite component values. Second, there are no long time correlations

even on the critical surface and the block n-point correlation functions

like ~S~s~) – (S:) (S&) am calculable numbers. Because of these prop-

erties, the method allows a careful error analysis in the determination

of the exponents from a truncated T.

In the I.WCRC method the configurations {s} are generated with

the weight

P(sl, s)e -~(d) +~”($’) (6,1)

where H~ is a guess for H*, Note that both the site and block spins

are used in the update of the site spins. In analogue to Eq, (1,2), the

distribution of the block spins is given by

If HP = 111, then the block spins are completely uncorrelated and the

calculat inn of the n-point functions on the block lattice is trivial,

(6,3)

~vhcre for the Ising model (and most other models) the integer n(l is

simply a product of the number of sites times the multiplicity of the

interaction type Sm. l~hen }JO # Hi, then to first order

{s;, = (SL\Sj)M, -HI (K’ - K“)p . (6,4)

[’sing Eqs, (,6,3,6,4), the renormalized couplings {K:} are determined

with no truncation errors

6,5)

This procedure can be iterated -- use H“”’ M the spin }{ in Eq.

(6, I ) to find Ifn, If the irrelevant eigenvalues are small, then after two

“,,,]



or three repetitions of the RGT, the sequence Hn converges to the

fixed point Harniltonian H* which is assumed to be short ranged. For

the d = 2 Ising model, the method has been shown to be extremely

stable [79] , The linearity approximation, Eq. (6,4), is under control.

An iteration process using a few thousand sweeps suffices to determine

successively improved H9 up to an accuracy of 0(10-4). Beyond that

the errors fail as v’~ and the number of interactions that have to be

included grows rapidly,
,!1 The one remaining approximation is in the use of a truncated

Hn-l for the spin Hamiltonian in the update tc find H“. This is

solved formally in a straightforward manner: In Eq. (6.1) use H9 as

the guess for H“. The update now involves the original spins and ail

block spiris up to the n ‘h fevel in the Boltzmann weight

P(sn, sn-’) !....0 P(3’, s)e-H@~+H’(’”) . (6.6)

The four Eqs. (6.2-6,5) are unchanged except that the level superscript

is replaced by n, i.e. the n ‘h level block-block correlation matrix is

diagonal and given by Eq, (6,3), With this modification, the Hn

is calculated directly, The limitation on n is the size of t,he starting

lattice, The oth~r practical limitation is the complexity of the computer

program, 1 have made the following comparison in the d = ‘2 lsing

model 22/; Ifz was cal~ulat,ed using Eqn (6,2) and by iterating i,e,

l{,. + //’ -- H2 in which case all interactions of strength >5 1 10-4

~re retained in H 1. The statistical accuracy in both caees is 0(10-3). I

find that the iterated answer is good to only 10-4, Thus the truncation

errors do conspire and get magnified, The Iesaon learned from the

simple caue of’ d = 2 [sing model is that in order to get couplings

correct to one part in 10-$ at n = 2, it is necessary to include all

couplings of strength ‘ 10-6 in H’,

The calculation of the T matrix proceeds exactly ag in the standard

.! ,VCRG i.e, Eqs, (1,4) to (1,6), However, in the limit Ilg -= /1’, the

block=block correlation matrix L) is diagonal and given by Eq, (63) ~
,, Thus it h~ no truncation errors, can be inverted with impunity arl~i

the find elements of 7’ are free of all truncation errors, This is the koy

‘\,4.!



feature of lMCRG. Theorly error cornesfrorn finding theeigenvalues

from a truncated T matrix. These errors can be estimated and the

results improved perturbatively as explained in section 6.1.

In addition to the advantages mentioned above, simulating with

I.WCRG, the system does not have critical slowing down. The cor-

relation length < can always be made of 0( 1), so finite size effects

are dominated by the range of interactions, which by assumption of a

short range l?- fall off exponentially. Thus, critical phenomenon can

be studied on small lattices with no hidden sweep to sweep correlations

that invalidate the statistical accuracy of the results, LTsing 1-1”as the

known nearest-neighbor critical point K:m = 0,4406868, I find that the

f MCRG results [79] for H 1 are independent (within the statistical ac-

curacy % 10‘5) of finite size effects for Iatticc sizes 16, 32,64 and 128.

Again, only those couplings that fit into a 3 x 3 square were included,

A technical point, When H9 = H 1, the block spin configurations

arc such that all values of the field variable become equally likely. For

Ising like systems this poses no problems because near criticality all

discrete values are equally likely, For non-abelian gauge theories, the

important configurations in the continuum limit are fluctuations about

the identity, Thus liWCRG will be inefficient. This can be fixed by

adding an integrable factor in addition to Ifg in qn. (6.1) that restricts

the block variable to near the identity. What this factor is has to be

worked out depending on the model.

f,\fCRG is in practice very similar to &fCRG though a little more

complicated because it requires a simultaneous calculation of a many

term }/(s) and H9 at update, However, conceptually it is very different

i~nd powerful,

6.1: ~uncatlon Errors In The ,L7’,M

((;,7)

‘;,’!\



where D1 1 and L’l1 are the 2 derivative matrices calculated in some

truncated space of operators that are considered dominant. The elt=

ments of the sub-matrix 7’11will have no truncation errors provided we

can calculate

Tll = D;,l {(;,~ - D,2T2~} . (6.!3)

in tie l,$fCRG method the matrix D is diagonal and known, so D12

is O. Thus elements of TI 1 determined from U11 have no truncation

errom. The errors in the e;genmlues and eigenvectors arise solely from

diagonalizing Tl ~ rather than the full matrix T. Calculations in the

d = 2 [sing model have shown that these errors are large (of order

10%), and the convergence is not systematic i.e. the result fluctuates

about 2, This may be because all operators of a given range are not

included. An open problem therefore is a robust criterion for classifying

operators into sets such that including successive sets decreases the

truncation error geometrically by a large factor,

The errors arising from using a sub-matrix T11 can be reduced

significantly by diagonalizing

Tll t T,7T12T21 = D:i’ U,l + {- D;,’D12 + T~’T,2} T~*

(6,9)

as shown by Shankar, Gupta and Murthy \80] , The correction term

T1-liT12T21 is the 2“d order perturbative result. It is valid for all eigen-

values t}~at are large compared to those of Z’a2, The matrix T12T21

is Approximately equal to (T2)11 - (7’11)2 and can be calculated ap-

prt)ximately in I,\fCRG, The errom which I have ignored are due to

the RG flow, i,e, 7’2 is evaluated at a different point than T, These

priors depend on how close to H“ the calculation is done, For the

d = 2 Ising model I find that the perturbative correction significantly

riecraams truncation errorn in the relevant eigenvalues !22], Second,

when multilevel lMCRC is used, Eq, (6,6), the exponents have much

wdler fluctuations ●t ●ariier ieveis ●nd are ciose in value to those

from MCRC, SO J’WCRG results (abtained with with far iem effort)

Are of”the same quaiity u f,\ fc*RG with the perturbative improvement.

Another thing we have learned from this study is that the difference



between the calculated eigenvalue at n = 1 (1.97 k .01) and the exact

result, 2, does not seem to be due to truncation errors or statistics. The

reason is that with the same subset of operators one gets the correct

exponent after one blocking. Thus the deviation is most likely due to

irrelevant operators causing corrections to scaling.

In ?tandard MCRG, the calculations with T

shown good convergence once few operators, 0(5 –

The reason for this is an approximate cancellation

types of truncation errors. To show this use Eq,

with T22 and approximate T11 by D~llU1 1. Then

in eqn. (6.9) is

–D;11D12 + T1-l’T1l - -L7’D12 +

10), are included.

between the two

(6.7), ignore terms

the correction term

In most calculations, the derivative matrices are roughly proportional,

t,e. U - Atll with corrections that fall off u the ratio of non-leading

e.igenvalues to the leading one At. This statement can be checked by

expanding operators in term of eigenoperators. Thus Swendsen7 by

calculating just D;ll U11 and ignoring all truncation problems waa in

effect canceling a large part of the truncation error (2nd term in Eq.

(6,9) ) against the error arising from diagonalizing a truncated matrix

(perturbative correction, 3fd term in Eq. (6,9)). This explains the suc-

cess of his method. Shankar [81] has found a correction term to further

decrease the truncation effects in h4CRG, Given the assumptions, the

!Iow under a RG and the success of the procedure as it exists, an im-

provement may be hard to evaluate. However, the check needs to be

made for the d = 3 Ising model.

To summarize, the best way to get accurate results is to use

1,’LfC RG to calculate the renormalized couplings

.$fCRC method to calculate the eigenvalues,

Let me ●lso summarize some of the other rem

the study of the d = 2 [sing model and the open pro

and Swendsen’s

ts obtained from

)hmls.

[1] In models examined so far we can arrange T to look like

()Al?

CD



with A the minimal truncated n x n block matrix that sh~. !d be

calculated. The case J = O is simple; there are no truncation er -

rom in either .tf CRG or IitfCRG and diagonal izing A gives the

n Iargeat eigennlues. Otherwise, the truncation error depends on

the dot product of terms in c and El. From a study of the d = 2

Ising model we know that the T rmtnx hu elements that grow

along we and fall along columns :80] An estimate of the rate of

growth in the elements aiong the rows of the T matrix is given by

the elements of the ieading left eigenvtitor. For two spin interac-

tions in the d = 2 Ising model, these grow like Z3~4. Therefore, a

priori, the matrix T is badly behaved Furthermore, the require

ment of abso!ute convergence in the dot product of elements in c

and B only guarantees that this product is finite but it may be

arbitrarily large I,C, 0(1), The re~on one gets s~nsible results is

because the elements along the colurrms are observed to fall off

faster (presumably exponentially). So, for each model a careful

study of the signs and magnitude of the elements in c M a func-

tion of the RGT is necessary. This should also give a handle on

the generation of long range interactions with bad RGT, So we

need to develop a theory for how the elements along the colurnm

fall-off,

2 The non-leading ●igennluea are not ve~ accurately dcternined in

either method. The matrix T starta developing complex eigenval.

ues after s 8 opergtors ●re includdm

3 The res~lts for H’ using l,\fC/?C converged up to an accuracy

of a few parts in 10-5 provided the couplings in Ha were correct

to 0(10-3). Thit initial accuracy can be kchieved ~79i with a few

thousand sweeps on a 128J lattice,

4, The statistical errom in I,VCRC can be evaluated very reliablv

:79), Detsiled binning &nalysis showed that each sww!p ISapprox -

itmteiy ~ndapandent ●nd sn ●ccuracy of 10-S is obtained in all

coupii~ with - 2 106 sweeps on a 64Z lattice, This could b?

achievad with 3W3 Vax 1] 780 houm, In .tf CRG, we find that th~

•rr~rt In the leading ●igenm]ue show no critical slowing down In



fact they are smailer than in lAfCRG. Thus there is a remarkable

cancellation of errors in the construction of T from U and D.

:5] A reliable classification scheme for interactions into complete sets

is needed so that we have control over truncation errors.

:6] A quantitative understanding of the tuning of the RGT is lacking,

To conclude, I believe that MCRG and lA4CRG provide a com-

plete framework to analyze the critical behavior of spin and gauge mod-
els, With the increased availability of supercomputer time we shall have

very accurate and reliable results.

7: RENORMALIZATION GROUP INSPIRED

MULTIGRID UPDATE

A multigrid update algorithm is aimed at overcoming critical slow-

ing down in lattice gauge theori= and critical phenomenon. The

method described here wee the critical 2-dimensional Ising model aa a

test case, Once it is shown to work, the next model to try is the O(3)

non-1 inear sigma model in 2-dimensions. This model haa many features

in common with non-abelian gauge t heoriee for which we desperate y

need an e%cient update algorithm.

For a mutigrid cycle to work, there are three essential ingredients,

1 list them and a proposed solution,

1‘ Fine to coarse grid operator P: This operator should preserve the

long distance, Ylowly varying part of the field distribution, The

solution is a renormalization group block spin transformation, Let

this be defined ~

where ~s is the block average of spins in the block cell and the s’

can, be restricted to have unit norm like s, The strength A is a free

pammeter ●nd needs to b, dQterrnined by numerical optimization.

For meet models, unlike ● gaurnaian model, the couplings on the

blocked lattice are not known ● priori, The success of any multigrid

“),;/’



algorithm will depend on our ability to calculate a simple truncated

action that preserves physics at many length scales simultaneously.

~2] The Hamiltonian on the coarse lattice H’(s’): In principal the

blocked Hamiltonian includes all possible couplings. However if

the fixed point is local, then these couplings fall off exponentially

(essential ~~umption of the renormalization group), The precise

fcrm of the H’ depends on P. If we restrict ourselves to preserving

only one correlation length (which we will choose to be the largest

one), then we can work with a much simpler action, the nearest

neighbor action with temperature as the single coupling. To find

the sequence of If, we can use Wilson’s 2-lattice method (which

preserves a single correlation length) or use scaling. Let me ignore

scaling violations and assume that the temperature IS the relevant

field. Then (t2 - t’) = b: (tl - tc) gives the relation between

the coup:ings on two successive lattices. The restriction, if we

use perturbation theory, is that the coareest lattice coupling haa

to lie in the weak coupling region where scaling holds. The ideal

situation is to know the sequence of H along the renormalized

trajecto~, However, in this caae the correct mass-ratios are given

on the coarsest lattice and multigria is not needed. One could

improve the scaling behavior by using ● ttuncated approximation

to the RT. This will allow more than one correlation length to be

held fixed. Such an approximate renormalized trajectory has been

worked out for gauge theoriee (see eection 5, especially eqns, 5,9

and 5,9), the O(3) model by Shenker ●nd Tobochnik i3~and in more

detail by A. Hamnfratz and A, Margaritas ~82\ , etc. Again, the

couplings along thirn trajecto~ ●t two successive points differing by

one biock transformation can be calculated by Wilson’s 2-lattice

method for the /3 function.

31 Tho coarse to fine grid inverse operator l?: This is the crucial

step in the algorithm. Given ● configuration on the coarse lattice,

we would like to generate the spins on the next finer level which

preserve the Icmgeet correlation length, The solution is to generate



spins on tl,e fine grid w-ith r~e prol.m?i!ity weight

R(.9’. S) = C-’’’’ -x’” = eHr’~

where H(s) the Hamiltonian (m action) cm the fine lattice and

calculated aa described aoov~. Said another way, given a distri-

bution of spins {s’}, the lew fine spins a-e generated according

to R. Even if the initial {s} are random, therrnalization will be

fast since R forces strong carrelaticm wit!~ {s’}. To guarantee that

the distribution of spirs on th. fine Iatticc are distributed accord-

ing to H(3), a certain number of standard updates should be done.

Here I anticipate using fourier acceleration to improve convergence.

For Ising like systems (few discrete states) a heat bath algorithm

car be written for ~’. F’-” other: one can use either heat-bath or

Yfetropolis depending on the ease in implementation.

0 ne met hod for generating inde~endent configurations is as fol-

lows: Thermal ize on the coarseet lattice Z* and then use R to generate

configuration on L“ -1. Now, da a few sweeps to equilibrate the high

frequencies on La-’ since all correl-.tion lenghts are not preserved by

the interpolation. Repeat this pr~.c~ recumivaly until the finest scale

is reached. To generate the next decorrelated !atti:e. start again on

ttle coarsem scale with an independent lattice. The method is useful

If at ●ach Iev@ln the number of smoothing sweeps necessary to pro-

duce the correct dintributicm do not grow as f ~. This is because the

autocorrelation length for standard update algorithm grows roughly

as (1

If H’ were chosen along the exact renormalized trajectory, then

none of the above would be neceaaary. Calculation of the physics on

the cowaest grid would give the continuum rnaa~ratios. What we are

propoeing is to us. simple local actiom ●t all level. and preserve only

the Iargat correlation l~ngth. The final srnoo?hing sweeps on the finest

grid thm give the correct distribution.

This mmhod deviatca from standard mul:g~id used, for example,

III solving differential cquationm which have ● unique solution. In that

(ase It IS the ●rror vector, which h~ long range correlations. that IS



processed on increasingly coarse grids and the corrections are boosted

to correct the iterate at the next fine level. In update, we want to gen-

erate statistically independent configurations, so the method proceeds

from coarse to fine grid alone and then starts all over again. We don’t

want to transfer long wavelength information from fine to coarse grid.

For the matrix inversion problem in Lattice gauge theories, the

standard V cycle [20] can be used. However, one has to determine

the Wilson (or Staggered) action on the block lattice derived for the

particular block spin transformation used to project the gauge fields.

Also, the coarse to fine grid interpolating operator has to be constructed

carefully to preserve the long wavelength properties of the background

gauge fields. A step in this direction is the “block diagonalization”

scheme of Mtitter and Schilling [26].

8: MEASURING AUTO-CORRELATIONS

The method we propose is to use block operators, The process of

blocking explicitly gets rid of the high frequency components. After a

sufficient number of blocking steps, the long correlations are discernible

by eye in a Monte Carlo time history of simple obaervables - Wilson

loops. In figure 10, we j83] show the plaquette as a function of the

sweep number on a sequence of blocked lattices Qfi + 9 + 3fi +

34fi~latP = 6.75 for our 20 hit Metropolis algorithm. Note, it is

only on lattices 34 or smaller (6x 0 renorrnalized loops) that one begins

to see the long aut=orrelation. Methods like binning or measuring

autcxorrelation coefficients on the original lattice would have failed to

expoee the auto-correlation length of u 500 from a measurement of

6 x 6 unblocked loops over 5000 sweeps. The MCRG method is also

faster than meauuring large unrenormalized loops because Mocking and

measuring the plaqwtte are trivially vcctorized, Lsatly, the method

highlights the amount of ultra-violet contamination that exists in lattice

ftwasurements.
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Fig, 10: Demonstration of aut~correlations using block loops. a) Pla-
quette on (9@4 lattice shows random behavior. b) Blocked plaquette
(BP) on 94 lattice shows random behavior, c) Twice BP on (3fi)4 lat-
tice shows almost random behavior, d) Thrice BP on 34 lattice starts

to show correlations. e) Four times BP on (V6)4 lattice shows correlat
tiorw. f) Five times BP on 14 lattice shows an auto-correlation length
of a 500,
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9: EFFECTIVE FIELD THEORIES

The point of effective field theories is that physical phenomena at

some given length scale can be described by some effective/composite

degrees of freedom. The couplings between these variables are deter-

mined by the underlying microscopic theory. Thus we would like to

know these effective degrees of freedom and the corresponding cou-

plings. So far the discussion of MCR 3 has focused on the change of

scale without a change of variables. To make full use of its power, a

transformation of variables at the appropriate scale should be added

i.e. in addition to a RGZ’ that just averages over degrees of freedom,

consider a change from the microscopic theory to an effective theory

with new variables at some give length scale. These variables can be

composite (as is the case in going from QCD to a theory where the

degrees of freedom are hadrons) or represent a freezing as in SU(2) at

high temperatures where the interaction between the Wilson lines is

described by an effective d = 3 Ising model. Here one transforms from

link variables to Wilson lines to Ising spins.

Once the effective theory hae been constructed, it is important to

know the universality class to which it belongs. This would provide a

detailed knowledge of the critical/long distance behavior. Little work

has been done in actually exploring universality classes by mapping

flows that incorporate a change of variables.

The way to do this in standard iMC is to define the composite de-

grees of freedom and their n-point functions in terms of the microscopic

variables. From the expectation values of these n-point correlation

functions calculated as simple averages, the corresponding couplings

can then be determined by a Microcannonicai simulation as described

in ~tion 5.9. One such calculation is by Ogilvie and Gocksch ~841

in which they determine the nearest neighbor co~lplings between the

Wilson lines in SU(2),

In A4C12G’, the transformation from the microscopic degrees of

freedom to the composite variablee is made on the original lattice (same

u in A4C), The RGT is defined cm the composite variables and the
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critical exponents of the effective theory are calculated from the LT.tf.

The couplings can be determined by one or more of the methods of

section 5, but keep in mind that these methods have truncation errors.

The optimum way to determine the effective couplings is IMCRG with
Hff a guessed Hamiltonian for the effective theory. This process maps

Ihe universality class of the moLJ.

One of the goals of this approach is to fix the parameters of the

effective chiral lagrangian.
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