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COMPUTING THE

EIGENVALUES AND EIGENVECTORS OF A GENERAL MATRIX

BY REDUCTION TO GENERAL TRIDIAGONAL FORM

J. J. Donga, rra

G. A, Geist

C. It. Romine

Abstract

This paper describes programs to reduce a nonsyrnnletric matrix to tridiagonal

form, cornpute tile eigenvalues of the tridiagonal matrix, improv,,_ the accuracy of

an eigenvalue, and compute tile corresponding eigenvector.
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1. Introduction and Objectives
o

A st_nda, rd approach in computing the eigenva.lues of a, ge nera,l squa, re nl;_trix is to

- reduce the matrix first to Hessenberg form by a sequence of orthogona, I tr_LIlsfornla, t;iolis,

and then to determine the eigenva,lues of the Hessenberg ma,trix tJtrough a,ll itcr_t, ive

process referred to as t:,he QR Mgorithm [2]. The reduction to ]Iessenberg form requires

O(n 3) operations, where n is the order of the matrix, all(| tile it(,ra,tive portion typic_lly

requires O(n 3) operations. The subroutine p,_cka,ge EISPACK [8] uses this scheme to

compute the eigenvMues and eigenvectors of a general ma.trix.

If the original matrix is symmetric, then that symmetry ca,n be I)reseI'ved in the

initial reduction, so tha.t the result is tridia,gonM. Although the reduction to tridiagonM

form costs O(n 3) operations, the subsequent itera.tions 1)reserve the tri(liagona.1 form

and are much less expensive, so tlaat the totM cost of the iter;_tive pha,se is reduced to

D -) -t

O(n 2) opera,tions. Again, standard software is avaihtble in LISI: ACK for implementing

this two-phase atpproach for the symmetric case.

The attra.ctively low opera, tion count of iter,_ting with a, tridi;._gona,l matrix suggests

. that the tridiagon_l form would be extremely beneficia,l in Lhe nonsymmetric (:_LSe_S

well. Such a,n appro!_ch presents two difticulties, however. First, QI{. iteratio_ does r|ot

" preserve the structure ot'a nonsymmetric tridia,gonal ma,trix, l lowew.,r, this problem

can be overcome by using LR, itera, tion [7] instea,d, which preserves tlm tridia, gona,l

form. Second, it is difl:icult to reduce a, nonsymmetric matrix to t,ridiagon;_l form by

similarity tra,nsformations in a numerica,lly stable m_nxl¢,,r. 'I'llis Second problelrl ha,s

been atddressed in a pa,per by G¢Ast [3]. tlere, we describe the softwa,re a,va,ilM_le to

reduce the ma,trix to tridiagonal forill a,nd to compute _he eigenvalues a,Jld eigenvectors

of the resulting tridiagonal matrix.

2. Initial Approximation to Eigenvalues

2.1. Reduction to Tridlagonal Form

The basic a,lgorithm used ifp the reduction to tridiagcna,1,_ fOlqn can be found irl [.'1]. For

" e_tch column from L:= 1 1,o n- 9.., this a.lgc)ritllm firs(, applies the l)(.'rlllUta,(,iOll l,ha.l,

minilnizes the rnaxilnum elcnietlt in N,7 lNc, where .N.,71N,./IN71 N,. roduces (:()lllllltl

k a,nd tlten row L: to the desired for|n by elem__Jlta,ry silnila,rity t,ra,llsl'orlIla,l,iolls. (.Iol..



umn k and row k are tiron reduced by applying these similarity transt'ornlations. The

implementation here differs from the originM algorithm in two ways.

First, unlike the original algorithm, the transforma.tions used in reducing each col-
. ,,

umn and row are saved in tile locations made available by the eliminations at each

step. These transformations are needed for the calculation oi' the eigenvectors during

the eigenvalue refinement.

Second, the reduction Mgorithm may encounter a zero (or unacceptably small) pivot

regardless of permutation. When this occurs, the original algorithm applies one of two

recovery methods. However, the first of these recovery methods interferes with the

efficient in-piace storage of the transformations, ltence, in this implementation, which

is called ATOTRI,only the second of these recovery methods is used. Thc routine, cMled

NEWSTR,applie s a random Itouseholder similarity transformation to the origina,1 matrix.

2.2. Eigenvalues of a Tridiagonal Matrix

One of the most efficient methoQs of cMculating all the eigenvalues of a nonsymmetric

tridiagonal matrix is LR iteration. An implementation of the LR. iteration has been

developed that is spedficMly tailored to the tridiagona,l structure.

In this so-called "ILR implementation, the user supplies the tridiagona,l nlatrix as

three vectors. In the tirst step the superdiagonM elements are scaled to one. Since this

scaling is preserved by the LR iteration, it decreases the operation count. Moreover, it

frees up one vector for use as a working array.

Most of theimprovements that have been incorporated into the QR iteration over

the years can also be used in the context of the LR iteration. In particula,i', implicit

double-shift iterations, deflation, and arbitrary shifts are used in TLR.

Double-shift iterations and deflation are implernented.just as they are in EISPACI(

for HQR, with the exception that two consecutive small subdiagonals do not trigger a

deflation as they do in HOR(although this can be added to TLR.)

Arbitrary shifts are invoked in two different contexts in TLR. I _rst, if _tn eigenwdue

has not converged in 20 iterations, then the iteration is assumed to be stuck in a cycle,

and one arbitrary (random) double-shift is at)plied. Second, if the LI{, iteration, which

does not pivot, encounters a zero (small) diagonal element, their the itera, l.ioll breaks

down, and one arbitrary shift is applied to change the va,lues of tile diagona, l c,lolllellts.
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Up to 10 consecut, iw, a,rbitrary shifts will be tried if tl!e breakdowl_ conditiozl persists,

. . after wliich tile a,lgorithln a.borts wit.h a.n error condition, lIowever, a single arbitrary

shift proved sufticient during all our tests.

" Because of the potential for breakdown and the need 1.o resta.rt a,n iteration with
, , ,

a different shift, a copy of the matrix is nlade before the st_Lrt of each iteration. This

requiresa,t most.2n storage. OneTz vector must be supplied by the user for l.llis l)Urpose,

A second rt vecl.or, whiclt initia, lly holds the superdiag,_nal, is also us¢,d.

3. Improving the Accuracy of an Eigenvalue and Computing its Eigen-

vector

Approximations to the eigenvMue s of A are obtained by reducing t.he matrix to tridi-

agonal form T (with ATOTRI) and then cMculating the eigenvalues of 'l' (wittl 2'LP,).

In many'cases , p_rt, icula.rly for small matrices, these computed eigmlwt.lues closely ap-

proximate the eigenvalues of A. floweret, for la.rger Jnatrices, or for l_a.trices whose

eigenvMues are ill conditioned, the rounding errors introduced during tile reduction of

A to tridiagonM form, coupled u,ittl the errors introduced I)y I,R il,eratioll, (:ali ill(luce

significa,nt errors in vhe computed eigenvalues. Hence, we assume th,tt the reduction

, to tridiagonal form T a,nd the subsequent calculation of the eigenvalues of T yield ap-

proximations to the eigenvahles of A that are then improved in a.sul)se(luent l)ha,s(_of

the computation ....

3.1. Inverse Iteration with Rayleigh Quotients

One sta, nda.rd techJlique for i_nl)roving t.he a,ccura,cy ot"1.1..11eigellw.du,, a.lld a.t l,ll(' SiLlilY

time computing l,he associal;ed eigellvect()r is to a.t)l)ly inverse iteratioi_ COul)l(_dwil,ll

ca.lculatillg the l/ayleigh quotielll,. If only a few eigenpa.irs at(: des_r(_d, l,h(,ll ii_vers(_

iteration is fairly al,tractive, siT_(,eit is a.(:curat(, and reasonably rapid, lI(.)wev(._r,if the

complete ,' ", ' ,s , (.lell ll_c_g(._s),t<:_ of a r_e affix is required, i_verse itera, tio_l becolnes quil,c'

costly, sit,ce a ((litFc,rent) full linear sysl,en_ _nusl, be solved for c!_tcl_oig;e!_pair, for each

iteration, an_olinl, ing I,o ()(_t 4) operation,s. Such a_t olmralio_ c()_ll, is l)ml_i[_il.iv_!,

" particularly sit,ce tll(_ EISPA('I*/ roul.i_e HQR2 is I girly accl,r;_l(, a_(l r_(ltlir(,s _l_l.v

O('n:_) op(:ratiol_s for l;l_(,full t,igt!_sysl,(_,

" Anotlher all,(!rl_ativ_, is to apply invers(, il_,ration wit,l_ llaylc, ig]l quol, iellts 1,(_ I1_('
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tridi_gonal matrix T ol)ta.ined from A by ATOTKI.Again, the solution of a. different llnl.

car system for each iteration is required, but the linea,r systems now have a. tridiagona,l

coefficient matrix and therefore can be solved in only O(n) steps. Thus, inverse itera-

tion with Rayleigh quotients applied to the matrix T is a very Fast mettns of obtainil_g

accurate approximations to the eigensystem of T. Unfortunately, to obtain the eigen-

vectors of the original matrix A, one rnust apply the inverse of the tra.nsform_tions tha, t

reduced ,4 to tridiagonal forth to the (:omputed eigenvectors of 7', and the eigenve(:tor,s

of A may suffer from _tny resulting roundoff error. Moreover, tile eigenva,lu(',,_of 7' lna,y

differ from those of A for the same reason. The results giwm in Section 4 indicate the

degree of inaccuracy stemming from these roundoff errors.

In summary, i_vverse iteration can give a, useful rapid initial a,pproxili_ation to tl_e

eigensystenl of A. ltowever, if inverse itera, tion is applied to the original n_atrix A

rather than the tridiagona,1 matrix T,, the cost for computing the complete eigensysteln

is prohibitive. Finally, if [_pplied to the tridiagonal matrix, there may be izla.ccu.racies

introduced by rounding error either in cMculating tlm eigenvalues or in obta.illing tl_c,

eigenvectors of A from the eigenvectors of T.

3.2. Iterative Refinement

b

It has long been known that Newton's method for the solution of nonlinea, r systenls

can be applied to the problem of calculating the eigensystenl of a, ma.trix[6], Moreover,

in [1.], Dongarra ct al. describe an algorithm for iznproving the ll.(:(:tll'al:yo['a,ii eigelll)a:ir

based on Newton's method. The m_tin drawba,ck of l,}leir a,pproa('ll is tlla,t it is costly,

in geileral. In this section, we describe a less costly variallt of the algorithnl given in [1]

that takes advantage of rh(.' tridiagonalization of A wtiile still ol)t.ailling a. hig!l degree

of accuracy. Tlle software in_ph,menting this a.lgorithnl is descrit)ed in some (letail in

Section 5, bu.t a short motivating description is given below.

Assume tha.t (A,x) is an al)l)roximate eigenpa.ir of the matrix A m_(l tl_a,t A + 6,\

and x +/_a: are a near t)y eigenl)air such tha, t tile relat.iollship

A + = (a + ,s.X)(:,,+ :,:),

is exact. Thus. _A an(t 6x represent the errors associated witll tile co_nl)ute,d wflues A
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and x, respectively,

" Rearranging the equation, we haw.'.

" (A- Al)_x _Ax = Ax A:r +,_A_:r,

where the last term on the right will be of second order ill the errors ill A,x.

If we let, r = Ax - Ax and assume that tilt second-order term 6At_x is negligible, wt,

can 'rewrite the equatio, in tl m form

e_' 0 _A (I

where e_'6x = 0 is a normalization api)lied to x such tha,t the ,s ('omI)Olmnt of x eqtlaJs

one, implying _x_ = 0 (see [1] for deta,ils).

When the original ai)t)roximate eigenvalue is found t)y using the reduction to tridi-

agona,1 form, this yields a. mat, fix N such that

A N-1TN.

- Using the transformations from 'he reduction to tridiagonal fornl, we h;rve

x)(N)(N )(,), 1 ei_" 0 1 ' 1 6A 1 0 '

which can be rewritten as

,7'N -_ 0 5A 0C s

where 'i' = Nr a.d bx = Nbx. Tile solutioll to the resultiiIg liIlem' ,;ystenl will l)ro(lu(:(_
, _. ,' . . a'

,q)l)_OXlIll,l,_noHstO the errorl_ 6A and 5x, yieldil_g r_(:;w_ll)l_roxinla,,ti(:)nsto t,h(_ (,ig('_-

p,dr. The lilloa,r system is ea,isily solved by tra.nsfornling il, irlto a, tri(liagonal syst('Xll of

equations by _t ra,nk-erie modifi(:atioll. Tl_e soft,war(; we ha,re i1111)l(,incllteda,l)l)lies the

Sllerman-Morrison forn_.la [5] to solve the syst,enl of (_(llla,tio.s,

. The a,l)l)roacl_ des(:ribed tmre will _ot o_ly llnl)rove t,]_ea,(:cura(:y of t]_e a l)l)ro×ill_a,t(,

n. p, i.l[llll lr '_r[llO _n "nlrsn ''11 " ... r.n _ IIl_l _'' II .n_. .vnll_ll.lupnn.ln_lll'¢llU.U_. . wp t. II. _.. _ _ ..._ 'lnlllqF-II_
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1

Table : ComI)arison of the accuracy of tile new routines to the I);ISI'ACI< routtne, RG.
Residual is m_xl[Ax- Ax[Ioo and'ex is max IAi-- All, (Ai is the elgenvalue obt_dned

from RG,and Xi is the computed eigenvMue.
Accuracy of Routines

on dense random matrices

problem ATOTRI-TLR RG INVIT REFINE

::ize e,_ residuM residual e,x residuM
10 8.7E-14 1,8I{;-14 6.9E.14 4,4E-15 4,2E,.16

100 7,2E-06 5,3E-12 1,6E-09 2,7E-13 ,5.11';-13

500 1_2E-02 4.4E-09 3.0E-07 4.3E-12 2.2E-!2

eigenvalue A but will also ¢:ompute the eigenvector, Tile convergence theoren_ for this

iterative proce(ltlre can be foulld in [1],

During the imt)rovement phase, the subl)rogram REFINE is called, with the origina,l

da,t,a matrix A, the reduced tridia,gonal matrix T, the transformation N, and an a,pprox-

imate eigenvalue (WR,WI) as parameters. A single inverse iteration step is l)erfornled

with the tridiagonM matrix T (using INVIT) to obtain an initiM approxima.tion to the

eigenvector associated with the given eigenvalue, On returll t'roxn REFINE the improved

eigenvalue is stored in (WR,WI) and the improved eigenvector in (XR,XI).

4. Examples and Performance '

We present two test suites to illust_ ._te the speed and _ccuracy of the new a.lgorithnls.

Tlm performance .of HOR2is included for comparison. Ali experiments were executed

on an IBM RS/G000 rnodel 5:10, using the Fortra,ll ('Onll)iler xlf without ol)timiza, tion.

Tables 1 and 2 show the results fronl three (litt'er(,.nt size ran(lonl lnatri(:es. Tile

entries ill e_ch matrix are unifornlly diatributed on [-1.0, 1.0]. "_ "e• I aDl .. ] SHOWS tile lD.[rx-,

_'" t', 2: ' ) ' ) _ ,,ine RG,.la ne Com I arlsoll of the speed of the new routines to tile EISI ACK ro_

Time for INVIT _md REFINE are per eigenpair.
P(:rforman (.:(:of Rou tines

O11 (J.ellser_l,n(lOIll nl_ttl'iC(._s

problem ATOTRI-TLR RG INVIT REFINE

size (EISI)A ,l_) (per A x) (p(_r ,\ :,:)
10 .00,1 .(}28 ,002 .005

100 2,fl2 15.27 ,056 .277
500 ,193 2127 1.0S 11.15
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hntnn difference between the etgenwdues computed by ATOTRI-TLR a,lld those ca,lct]latcd

" by HQR. Irt add,;tion, the m_tximuna difference of the improved elgenwdues is giw_n, li'i-

nally, the residt, a,I is given for the results from inverse itcra,tion, iterative reflnemetlt_

" and HI,R2. tlere, inverse iteration is l)erforme(l by the routine INVIT api)lied to the

' .1.he eigen-tridi_gona,1 matrix 7' untll convergence to the desired etgenl)air is,a,chieved. _'

vectors of A are then obtnineit by a,i)plylng the inverse of tlm tr_tllst'orm_ttiotl ula,trix

N. Table 2 shows the time in seconds to reduce the. nl_trix to tridiagona.1 t'orul a.tld

calculate its eigenwdues, Also shown is the average time per eigenwlue to improve tlm

eigenvalue and calculate the corresponding eigenvector with eittler reverse ltera, tion or

iterative refinemen _,

The results of running the EISPACK general m_trix test suite _re sltown in Table

3. The accurzLcy a,nd robustness of the new algorithms a,re dispbtyed by this tc.st where

we compare the residual froln HQR2to INVlT a,nd REFINE.

a
d
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Ta_ble3: Maximum residual for the three methods of calculating eigenv,_lue/eigenvcctor
pairs for dense ma.trices. m

EISPACK Test Suite of Real Generul M_trices

marx Ax- £z[l_
problem inverse iterative EISPACK
number iteration refinement (RG)

1 2,5E-12 2,9E-13 1,2E-12
2 9,2E-07 2,1E-07 6.3E-06

3 9,0E-13 1,3E-14 4,6E-06
4 1,8E-14 2.7E-13 1,0E-13
5 i.7E-07 9.4E-09 9,4E-07
6 1,5E-07 1,2E-09 2,4 E-08

7 3,8E:08 2.9E-10 8,5E-09
8 0.0E-00 0,0E-00 0.0F,-00

9 2,9E-15 1 7E-13 5,3E-09

10 1.2E-10 9 5E 11 1,8E-08
11 1,7E-14 1.3E-14 1,7E-13

12 2.9E-15 1.7E-15 2,4E-14

t'_13 1.7E-13 9.2L-16 1,7E-14

14 3,3E-12 1,9E-16 2,4E-14
p15 5.2E-14 4.8E-15 1.61,-14

16 7.5E-15 0,0E-00 1,1E-49
17 4 4E-15 0,0E-00 1.2E-30
18 6.3E-15 0,0E-00 0,0E-00

19 9,0E.15 8.8E-09 2,7E-08

20 1,4E-14 1.0E-15 9,7E-15
21 6 3E-15 2.2E-16 6,0I.,-15

22 1.0E-13 7,1E-16 2,1E-14

a3 2,0E-10 3,2E-17 2.9E-14
24 2.5E-06 6.2E-09 1,1E-02

25 8.7E-07 2,2E-15 6.0E-14

26 4.3E.13 3.6E-14 2.2E-15
'? 'P /27 3,6L.01 9,0E-10 2,6L-C6

p28 4.8L-14 1,2I,]-14 5,7E-14
29 2,4E-14 2.8E-l,1 4,0E-12

¢ p30 5,2E-14 2,3E-13 _1,2L-13
31 5.7E- 14 1.8E- 15 o. bI:,-1,1

32 1.4E-14 1,4E-05 4,4E-,07

33 5,41_3-01 1,9E-04 1,1I/',-08
34 ,1.,lE-02 9,1E-l,l 1.5E-08
35 1.8E-12 1.8E-05 2.7E-13
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5, Descripti,_n of tile Software and Programming Details

o

In tills section we desc.ribe tile so ftw_tre iml)len-mnting the. new _lgortthms,

SUBROUTINE ATOTRI( LDA, A, N, PIVOTS, INFO )

c Purpose:

c This subroutine reduces an n-by-n real general matrix A to

c tridiagonal form using elementary similarity transformations'

c

c At each step k the permutation that minimizes the maximum entry

c in the transformation matrix which reduces coltu_n k "then row k

c is applied.

C

c Arguments:

c LDA -integer

c LDA is the leading dimension of A.

C

c A -double precision array of dimension (LDA,N)w

c On entry A contains the matrix being reduced.

c On exit A is overwritten by its tridiagonal form,

c

c N -integer

c N specifies the order of the matrix A.

c N must be nonnegative.

c N is not modified.

C

c PIVOTS -integer array of dimension (LDA)

c On exit pivots contains the pivot sequence used during

c the reduction (permutation vector).

C

c INFO -integer

• c On exit, INFO is set to
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c 0 normal return.

c I if NEWSTR should be executed before ATOTRI.

c

SUBKDUTINE NEWSTK( A, LDA, N, W, IFLAG )

c Purpose :

c This subroutine generates a random Householder transformation and

c applies it to the matrix A to scramble it. The matrix A is

c assumed to be in dense format.

c;

c Argur_ent s :

c A -double precision array of dimension (LDA,N)

c On entry A contains the original matrix.

c On exit, A contains QAQ, Where Q is defined by W below.

c

c LDA -integer

c LDA i_ the leading dimension of A.

c

c N -integer
w

c N specifies _he order of the matrix A.

c N must be nonnegative.

c N is not modified.

c

c W .-double precision array of dimension (N)

c On exit, W contains a random Householder vector defining

c a Householder transfoz_ation Q=I-2WW'.

c

c IFLAG -integer

c On exit, IFLAG is set to one, indicating that NEWSTR

c has been called.

c

SUBROUTINE TLR( N, DIAG, SUB, SUP, SAV, INFO )

c Purpose :



L
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c This subroutine determines the eigenvalues of a general

" c tridiagonal matrix by applying implicit double-shift LK iterations.

c

c The eigenvalues are _'returned with the real part on the

c diagonal and the imaginary part on the subdiagonal.

c INFO equals i on exit if TLD, is unable to rletermine all

c the eigenvalues.

c

c Arguments:

c N _ -integer

c N specifies the order of the tridlagonal matrix.

c N is not modified.

c _

c DIAG -double precision array of dimension (N)

c On entry DIAG contains the diagonal of the tridiagonal

c matrix.

" c On exit DIAG contains the real part of the eigenvalues.

c

c SUB -double pr,_cision array of dimension (N)

c On entry SUB contains the sub-diagonal of the

c tridiagonal matrix.

c On exit SUB contains the imaginary part of the eigenvalues.

c

c SUP -double precision array of dimens" _n (,'::)

c On entry SUP contains the super-diagonal of the

c tridiagonal matrix. It is used as a work array

c during the it_'ation.

c

c SAV -double precision ar-ay of dimension (N)
,,

c SAV is a work array used along with SUP to save a copy

c of the previous iteration matrix in case the present

. c iteration breaks down and an arb'__ary _hift is required.
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c

c IN70 -integer

c On exit, INFO is set to

c 0 normal return.

c I failure to converge to one or more eigenvalues.

c User should revert to EISP._UK routines in this case.

• c

SUBROUTINE REFINE( N, A, LDA, AORG, WR, WI, XR, XI, IPVT, W,

$ IFLAG, WORK, LDWORK )

c Purpose:

c This routine uses an iterative refinement technique to

c improve the accuracy of the eigenvalue approximation

c (WR,WI) _id to compute the corresponding eigenvector

c (X_,XI). It is assumed that the user has reduced the

c matrix to tridiagonal form (see routines ATOTRI and TLR

c for details). The matrix A contains information about

c the reduction to tridiagonal form. AOKG is the orginal

c matrix, required in the residual computation for the

c refinement.

c

c Arguments :

c N -integer

c N specifies the order of the matrix A.

c N must be nonnegative.

c N is not modified.

c

" c A -double precision array of dimension (LDA,N)

c A contains information about the reduction to

c tridiagonal form.

c

c LDA -integer

c LDA is thz leading dimension of the array A.

s



c LDA >= max(l,N).

c

c AOKG -double pr'_islon array of dimension (LDA,N)

c AuKG contains the original matrix.

c

c WR -double precislon

c On entry, WR is the real part of the approximate

c eigenvalue.

c On exit, WR is the improved real part of the

c approximate eigenvalUe.

c

c WI -doub].e precislon

c On entry, WI is the imaginary part of the

c approximate eigenvalue.

c On exit, WI is the improved imaginary part of the

c approximate eigenvalue.

C
m

c XR -double precislon array of dimension (N)

c The rea].part of the computed eigenvector.

c

c XI -double precislon array of dimension (N)

c The imaginary part of the computed eigenvector.

C

c IPIV -integer array of dimension (N)

c IPIV contains the pivot sequence used during the

c 'reduction to tridiagonal form.

c

c W -double precision array of dimension (N)

c W may contain information if a restart was

c performed in the tridiagonal process as

" c indicated by IFLAG.

C
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c IFLAG -integer

c IFLAG signals if a restart was required during b

c reduction to tridiagonal form.

c IFLAG = 1 signals a restart was taken.

C

c WORK -double precision array of dimension (LDWORK,19)

c WORK is used for workspace.

c

c LDWORK -integer

c LDWORK is tileleading dimension of the array WORK.

c LDWORK >= max(1,N+1).

c

J
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