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COMPUTING THE
EIGENVALUES AND EIGENVECTORS OF A GENERAL MATRIX
BY REDUCTION TO GENERAL TRIDIAGONAL FORM

J. J. Dongarra
G. A. Geist .
C. H. Romine

Abstract.

This paper describes programs to reduce a nonsymmetric matrix to tridiagonal
form, compute the eigenvalues of the tridiagonal matrix, improve the accuracy of

an eigenvalue, and compute the corresponding eigenvector.



1. Introduction and Objectives

A standard approach in computing the eigenvalues of a general square matrix is to
reduce the matrix first to Hessenberg form by a sequénce of orthogonal transformations,
and then to determine the cigenvalues of the }-l(’.ssm‘lbérg matrix through an iterative
process referred to as the QR algorithm {2]. The reduction to Hessenberg form requires
O(n?3) operations, where n is the order of the matrix, and the iterative portion typically
requires O(n®) operations. The subroutine package EISPACK [8] uses this scheme to
compute the eigenvalues and eigenvectors of a general matrix.

If the original matrix is symmetric, then that symmetry can be preserved in the
initial reduction, so that the result is tridiagonal. Although the reduction to tridiagonal
form costs O(n3) operations, the subsequent iterations preserve the tridiagonal form
and are much less expensive, so that the total cost of the iterative phase is reduced to
O(n?) operations. Again, standard software\is available in EISPACK for implementing
this two-phase approach for the symmetric case. |

The attractively low operation count of iterating with a tridiagonal matrix suggests
that the tridiagonal form would be extremely beneficial in the nonsymmetric case as
well. Such an approach presents two difficulties, however. First, QR iteration does not
preserve the structure of a nonsymmetric tridiagonal matrix. However, this problem
can be overcome by using LR iteration [7] instead, which preserves the tridiagonal
form. Second, it is difficult to reduce a nonsymmetric matrix to tridiagonal form by
similarity transformations in a numerically stable manner. This second problem has
been addressed in a paper by Geist [3]. Here, we describe the software available to
reduce the matrix to tridiagonal form and to compute the eigenvalues and cigenvectors

of the resulting tridiagonal matrix.

2. Initial Approﬁimation to Eigenvalues

2.1. Reduction to Tridiagonal Form

The basic algorithm used in the reduction to tridiagonal form can be found in [4]. For
cach column from & = 1 to n — 2, this algorithm first applies the permutation that
minimizes the maximum element in N7'N ., where NJINANZUN, reduces column

k and then row £ to the desired form by elementary similarity transformations. Col-
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umn k and row k are then reduced by applying these similarity transformations. The
implementation here differs from the original algorithm in two ways.

First, unlike the original algorithm, the transformations used in reducing each col-
umn and row are saved in the locations made available by the eliminations at ecach
step. These transformations are needed for the calculation of the eigenvectors during
the eigenvalue refinement. ‘

Second, the reduction algorithm may encounter a zero (or unaccéptab]y small) pivot
regardless of permutation. When this occﬁrs, the original algorithm applies one of two
recovery methods. However, the first of these recovery methods interferes with the
efficient in-place storage of the transformations. Hence, in this implementation, which
is called ATOTRI, only the second of these recovery methods Is used. The routine, called

NEWSTR, applies a random Householder similarity transformation to the original matrix.

2.2. Eigenvalues of a Tridiagonal Matrix

Cne of the most efficient methoas of calculating all the eigenvalues of a nonsymmetric
tridiagonal matrix is LR iteration. An implementation of the LR iteration has been
developed that is specifically tailored to the tridiagonal structure.

In this so-called TLR implemestation, the user supplies the tridiagonal matrix as
three vectors. In the first step the superdiagonal elements are scaled to one. Since this
scaling is preserved by the LR iteration, it decreases the operation count. Moreover, it
frees up one vector for use as a working dr‘ray.

Most of the improvements that have been incorporated into the QR iteration over
the years can also be used in the context of the LR iteration. In particular, implicit
double-shift iterations, deflation, and arbitrary shifts are used in TLR.

Double-shift iterations and deflation are implemented just as they are in EISPACK
for HQR, with the exception that two consecutive small subdiagonals do not trigger a
deflation as they do in HQR (although this can be added to TLR.)

Arbitrary shifts are invoked in two different contexts in TLR. First, if an eigenvalue
has not converged in 20 iterations, then the iteration is assumed to be stuck in a cycle,
and one arbitrary (random) double-shift is applied. Second, if the LR iteration, which
does not pivot, encounters a zero (small) diagonal element. then the iteration breaks

down, and one arbitrary shift is applied to change the values of the diagonal elements.
I 8
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Up to 10 consecutive 5ri.)itrary shifts will be tried if the breakdown condition persists,
after which the algorithm aborts with an error condition. However, a single arbitrary
shift proved sufficient during all our tests.

Because of the potential for breakdown and the need to restart an iteration with
a different shift, a copy of the matrix is made before the start of cach iteration. This
‘requires at most 2n storage., One n vector must be supplied by the user for this purpose.

A second n vector, which initially holds the superdiagonal, is also used.

3. Improving the Aceuracy of an Eigenvalue and Computing its Eigen-

vector

Approximations to the eigenvalies of A are obtained by reducing the matrix to tridi-
agonal form T (with ATOTRI) and then calculating the cigenvalues of T (with TLR).
In many cases, particularly for small matrices, these computed cigenvalues closely ap-
proximate the cigenvalues of A. However, for larger matrices, or for matrices whose
eigenvalues are ill conditioned, the rounding errors introduced during the reduction of
A to tridiagonal form, coupled with the errors introduced by LR iteration, can induce
significant errors in the computed eigenvalues. Hence, we assume that the reduction
to tridiagonal form 7" and the subsequent calculation of the eigenvalues of 7' yield ap-
proximations to the eigenvalues of A that are then improved in a subsequent phase of

the computation.

3.1. Inverse Iteration with Rayleigh Quotients

One standard technique for improving the accuracy of an eigenvalue and at the same
time computing the associated eigenvector is to apply inverse iteration coupled with
calculating the Rayleigh quotient. If only a few eigenpairs are desired, then inverse
iteration is fairly attractive, since it is accurate and reasonably rapid. However, if the
complete cigensystem of a dense matrix is required, inverse iteration becomes quite
costly, since a (different) full linear system must be solved for cach eigenpair, for cach
iteration, amounting to O(n*) operations. Such an operation count is prohibitive,
particularly since the EISPACK routine HQR2 is highly accurate and requives ouly
O(n*) operations for the full cigensysten,

Another alternative is to apply inverse iteration with Rayleigh quotients to the
ppil yleigh q
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tridiagonal matrix T obtained from A by ATOTRI. Again, the solution of a different lin-
ear system for each iteration is required, but the linear systems now have a tridiagonal
coefficient matrix and therefore can be solved in only O(n) steps. Thus, inverse itera-
tion with Rayleigh quotients applied to the matrix 7" is a very fast means of obtaining
accurate approximations to the eigensystem of T'. Unfortunately, to obtain the eigen-
vectors of the original matrix A, one must apply the inverse of the transformations that
reduced A to tridiagonal forin to the computed cigenvectors of 7, and the eigenvectors
of A may suffer from any resulting roundoff error. Moreover, Ule cigenvalues of T may
differ from those of A for the same reason. The results given in Section 4 indicate the
degree of inaccuracy stemming from these roundoff errors.

In summary, inverse iteration can give a useful rapid initial approximation to the
eigensystem of A. However, if inverse iteration is applied to the original matrix A

rather than the tridiagonal matrix 7', the cost for computing the complete eigensystem

- is prohibitive. Finally, if upplied to the tridiagonal matrix, there may be inaccuracies

introduced by rounding error either in calculating the eigenvalues or in obtaining the

eigenvectors of A from the eigenvectors of 7',

3.2. Iterati\)e Refinement

It has long been known that Newton’s method for the solution of nonlincar systems
can be applied to the problem of calculating the cigensystem of a matrix[6]. Moreover,
in (1}, Dongarra et al. describe an algorithm for improving the accuracy of an cigenpair
based on Newton’s method. The main drawback of their approach is that it is costly,
in general. In this section, we describe a less costly variant of the algorithm given in [1]
that takes advantage of the tridiagonalization of A while still obtaining a high degree
of accuracy. The software implementing this algorithm is described in some detail in
Section 5, but a short motivating description is given below.

Assume that (A, ) is an approximate eigenpair of the matrix A and that A 4 6A

and & + da are a near l)y eigenpair such that the relationship
Alx 4 62) = (A + 6X)(x + b2),

is exact, Thus. 6A and éa represent the errors associated with the computed values A



and z, respectively,

Rearranging the equation, we have
(A= Albx — 6Ax = Aw — Az + dAox,

where the last term on the right will be of second order in the errors in A, x.
If welet 7 = Az — Az and assume that the second-order term dAéz is negligible, we

can rewrite the equation in the form

A=A -z ba r
el 0 6A 0

8

where el'6z = 0 is a normalization applied to z such that the s component of 2 equals
‘one, implying éz, = 0 (sce [1] for details).
When the original approximate eigenvalue is found by using the reduction to tridi-

agonal form, this yields a matrix N such that
A=N"'TN.
Using the transformations from *he reduction to tridiagonal form, we have

N A-=Al -z N-! N bx N r
1 el 0 1 1 EA 1 0

1
H

which can be rewritten as

T —-A —Nu oz r
e’'N-V 0 EA 0

where # = N7 and éx = Néx. The solution to the resulting lincar system will produce
approximations to the errorg 8\ and bz, yielding new approximations to the cigen-
pair. The lincar system is casily solved by transforming it into a tridiagonal system of
equations by a rank-one modification. The software we have implemented applies the
Sherman-Morrison formula [5] to solve the system of equations.

The approach described here will not only improve the accuracy of the approximate

o AR TN T '

AW N e L T VR T R RN TR TR R IR A TR T TR TR

rorne
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Table 1: Comparison of the accuracy of the new routines to the EISPACK routine RG.
Residual is max ||Az ~ Az||e and ey is max |A; — ;| (A; is the elgenvalue obtained
from RG, and A; is the computed eigenvalue.

Accuracy of Routines
on dense random matrices
problem | ATOTRI-TLR RG INVIT REFINE
size ey residual | residual | . e | residual
10 8.7E-14 1.8E-14 | 6.98E-14 || 4.41-15 | 4.215.16
100 7.2E-06 53E-12 | 1.6E-09 || 2.7E-13 | 5.1E-13
500 1.2E-02 4.4E-09 | 3.0E-07 || 4.3E-12 | 2.2E-12

eigenvalue A but will also compute the eigenvector. The convergence theorem for this
iterative pr()(:(!(lﬁ:"(-} can be found in (1].

During the improvement phase, the subprogram REFINE is called, with the original
dala matrix A, the reduced tridiagonal matrix T, the transformation N, and an approx-
imate eigenvalue (WR,WI) as parameters. A single inverse iteration step is per['ormcd‘
.with the tridiagonal matrix T (using INVIT) to obtain an initial approximation to the
eigenvector associated with the given eigenvalue. On return from REFINE the improved

eigenvalue is stored in (WR,WI) and the improved eigenvector in (XR,XI),

4. Examples and Performance

We present two test suites to illustiate the speed and accuracy of the new algorithms,
The performance of HQR2 is included for comparison. All experiments were executed
on an IBM RS/6000 model 530, using the Fortran compiler x1f without optimization,

Tables 1 and 2 show the results from three different size random matrices. The

entries in each matrix are uniformly distributed on [-1.0,1.0]. Table 1 shows the max-

Table 2: Comparison of the speed of the new routines to the EISPACK rociine RG.
Time for INVIT and REFINE are per eigenpair.

Performance of Routines
on dense random matrices
problem | ATOTRI-TLR RG INVIT REFINE
size (EISPACK) | (per A,z) | (per A, x)
10 004 028 002 005
100 2.G2 15,27 506 277
500 493 2127 1,08 11,15
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imum difference between thé elgenvalues computed by ATOTRI-TLR and those calculated
by HQR. In addition, the maximum difference of the improved eigenvalues is given. -
nally, the residual is given for the results from inverse iteration, iterative refinement,
and HQR2. Here, inverse iteration is performed by the routine INVIT applied to the
tridiagonal matrix 7' until convergence to the desired elgenpair is achieved. The eigen-
vectors of A are then obtained by applying the inverse of the transformation matrix
N. Table 2 shows the time in seconds to reduce the matrix to tridiagonal form and
calculate its eigenvalues. Also shown is the average time per eigenvalue to improve the
eigenv;ﬂue and calculate the corresponding eigenvector with either inverse iteration or
iterative refinement,.

The results of running the EISPACK general matrix test suite are shown in Table
3. The accuracy and robustness of the new algorithms are displayed by this test where

we compare the residual from HQR2 to INVIT and REFINE.



Table 3: Maximum residual for the three methods of calculating cigenvalue/cigenvector
pairs for dense matrices.
EISPACK Test Suite of Real General Matrices
max |[Az — Az|le

problem | inverse | iterative EISPACK
number | iteration | refinement | = (RG)

1| 2.5E-12 | 2.9E-13 1.2E-12
9.2E-07 | 2.1E-07 6.3E-06
9.0E-13 1.3E-14 4.6E-006
1.8E-14 2.7E-13 1.0E-13
1.7E-07 9.4E-09 9.4E-07
1.5E-07 1.2E-09 2.4E-08
3.8E-08 2.9E-10 8.5E-09
0.0E-00 0.0E-00 0.0E-00
9| 2.9E-15 1.7E-13 5.3E-09
10 | 1.2E-10 9.5E-11 1.8E-08
11| 1.7E-14 1.3E-14 1.7E-13
12 ] 2.9E-15 1.7E-15 2.4E-14
13 | 1.7E-13 9.2E-16 1.7E-14
14 | 3.3E-12 1.9E-16 2.4E-14

o 3O O N

15| 5.2E-14 | 4.8E-16 1.6E-14
16 | 7.5E-15 | 0.0E-00 1.1E-49
17 | 4.4E-15 | 0.0E-00 1.2E-30
18 | 6.3E-15 | 0.0E-00 0.0E-00

19 | 9.0E-15 8.8L-09 2.7E-08
20 | 14E-14 1.0E-15 | = 9.7E-15
21 | 6.3E-15 2.2E-16 6.0E-15
22 | 1.0E-13 7.1E-16 2.1E-14
<3 | 2.0E-10 3.2E-17 2.9E-14"
24 | 2.5E-06 6.2E-09 1.1E-02
25 | 8.7E-07 2.2-15 6.0E-14
26 | 4.3E-13 3.6E-14 2.2E-15
27 | 3.6E-01 9.0E-10 2.6E-06

28 | 4.8E-14 1.2-14 5.7L- 14
20 | 2.4E-14 2.8E-14 4.0I%-12
30 | 5.2E-14 2.3E-13 4.215-13
31| 5.7E-14 1.8E-15 5.615-14
32 | 14E-14 1.4E-05 4.4L-07
33 | 5.4E-01 1.9E-C4 1.1E-08
34 | 4.4E-02 9.1E-14 1.51-08

35 | 1.8E-12 1.8E-05 2.7E-13




- 0.

5. Descripticn of the Software and Programming Details

In this section we describe the software implementing the new algorithms,

SUBROUTINE ATOTRI( LDA, A, N, PIVOTS, INFO )

¢ Purpose:

c This subroutine reduces an n-by-n real general matrix A to

¢ tridiagoﬁal form using elementary similarity transformations.

c

¢ . At each step k the permutation‘that minimizes the maximum entry
c in the transformation matrix which reduces column k then row k

c is applied.

¢ Arguments:

c LDA -integer

c LDA is the leading dimension of A.

c

c A -double precision array of dimension (LDA,N)

c On entry A contains the matrix being reduced.
o On exit A is overwritten by its tridiagonal form,
c

c N -integer

c N specifies the order of the matrix A.

¢ N must be nonnegative.

c N is not modified.

c

¢ PIVOTS -integer array ot dimension (LDA)

c On exit pivots contains the pivot sequence used during
c the reduction (permutation vector).

c

¢ INFO -integer

c On exit, INFO is set to
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0 normal return.

1 if NEWSTR should be executed before ATOTRI.

SUBROUTINE NEWSTR( A, LDA, N, W, IFLAG )

Purpose:

This subroutine géherates a random Householder transformation and

applies it to the matrix A to scramble it. The matrix A is

assumed to be in dense format.

| Arguments:

A

LDA

IFLAG

-double precision array of dimension (LDA,N)
On entry A contains the original matrix.

On exit, A contains QAQ, where ( is defined by W below.

-integer

LDA ir the leading dimenszion of A.

-integer
N specifies the order of the matrix A.
N must be nonnegative.

N is not modified.

~double precision array of dimension (N)
On exit, W contains a random Householder vector defining

a Householder transformation Q=I-2WW’.

-integer
On exit, IFLAG is set to one, indicating that NEWSTR

has been called.

SUBROUTINE TLR( N, DIAG, SUB, SUP, SAV, INFO )

Purpose:



This subroutine determines the eigenvalues of a general

tridiagonal matrix by applying implicit double-ghift LR iterations.

The eigenvalues are ‘returned with the real part on the
diagonal and the imaginary part on the subdiagonal.
INFO equals 1 on exit if TLD} is unable to determine all

the -eigenvalues.

Arguments:
N -integer
N specifies the order of the tridiagonal matrix.

N is not modified.

DIAG ~-double precision array of dimension (N)
On entry DIAG contains the diagonal of the tridiagonal
matrix.

On exit DIAG contains the real part of the eigenvalues.

SUB  ~-double pracision array of dimension (N)
On entry SUB contains the sub-diagonal of the
tridiagonal matrix.

On exit SUB contains the imaginary part of the eigenvalues.

SUP  -double precision array of dimens: »n (%)
On entry SUP contains the super-diagonal of the
tridiagonal matrix. It is used as a work array

during the iteration.

SAV  -double pracision ar-ay of dimension (N)
SAV is a work array used along with SUP to save a copy
of the previous iteration matrix in case the present

iteration breaks down and an arb.trary shift is required.

w
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IN/O -integer
On exit, INFD is set to
0 normal return.
1 failure to converge to one or more eigenvalues.

User should revert to EISP. 7K routines in this case.

SUBROUTINE REFINE( N, A, LDA, AORG, WR, WI, XR, XI, IPVT, W,
$ IFLAG, WORK, LDWORK )
Purpose:

This routine uses an iterative refinement technique to
improve the'accurécy of the eigenvalue approximation
(WR,WI) and to compute the corresponding eigenvector
(XR,XI). It is assumed that the user has reduced the
matrix to tridiagonal form (see routines ATOTRI and TLR
for details). The matrix A contains information about
the reduction to tridiagonal form. AORG is the orginal
matrix, required in the residual computation for the

rafinement.

Arguments:
N -integer
N s?ecifies the order of the matfix A.
N must be nonnegative.

N is not modified.

A -double precision array of dimension (LDA,N)
A contains information about the reduction to

tridiagonal form.

LDA -integer

LDA is th» leading dimension of the array A.
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LDA >= max(1,N).

AORG  -double pr--ision array of dimension (LDA,N)

AURG contains the original matrix.

WR -double precision

On entry, WR is the real part of the approximate
eigenvalue.
On exit, WR is the improved real part of the

approximate eigenvalue.

Wl -double precisioﬁ
On entry, WI is the imaginary part of the
approximate eigenvalue.
On exit, WI is the improved imaginary part of the

approximate eigenvalue.

XR -double precision array of dimension (N)

The real part of the computed eigenveétor.

XI -double precision array of dimension (N)

The imaginary part of the computed eigenvector.

IPIV  ~-integer array of dimension (N)
IPIV contains the pivot sequence used during the

reduction to tridiagonél form.

W -double precision array of dimension (N)
W may contain information if a restart was
performed in the tridiagonal process as

indicated by IFLAG.
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¢ IFLAG ~integer

c IFLAG signals if a restart was required during

c reduction té tridiagonél form.

c IFLAG = 1 signals a restart was taken.

[

¢ ' WORK -double precision array of dimension (LDWORK,19)
c WORK is used for workspace.

. ‘

c LDWORK -integer

c LDWGRK is the ieading dimension of the array WORK.
c LDWORK >= max(1,N+1). |

c
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