TECHNICAL PROGRESS REPORT

The Development of Precipitated Iron Catalysts with Improved Stability

REPORTING PERIOD: 7/1/90 - 9/30/90

CONTRACT NO: DE-AC22-87PC79812

PERIOD OF PERFORMANCE: 9/16/90 - 9/16/91

INTRODUCTION

Precipitated iron catalysts are expected to be used in the next generation of slurry reactors for the large-scale production of transportation fuels from synthesis gas. These reactors may operate at higher temperatures and lower \(\text{H}_2: \text{CO} \) ratios relative to the Sasol Arge reactor. The feasibility of iron catalysts has been demonstrated under relatively mild Arge-type conditions but not under the more severe slurry conditions.

The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. The program consists of four tasks. Three of these tasks have been the subject of previous reports:

- Under Task 1, the existing fixed-bed catalyst testing plant was upgraded so that it has the capability of testing slurry-bed and Berty reactors.
- Under Task 2, MSCG-4, a precipitated iron catalyst, was acquired from Mobil corporation and tested in the fixed-bed reactor.
- Under Task 3, an iron catalyst preparation plant was constructed.

This report covers testing an iron catalyst under Task 4. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1,250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275°C. The conversion levels were varied by

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1,996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained.

TARGET PERFORMANCE

The target performance for this program is to achieve 88% CO + H₂ conversion with less than 1% deactivation per day for 1 month. Methane + ethane selectivity was originally targeted for no more than 7% at a space velocity of at least 2 normal liters/hour-gram iron (nL/h-gFe) using a synthesis gas with H₂:CO ratio 0.5-1.0 in a slurry reactor. This target performance has been revised to a more stringent methane + ethane + ethylene selectivity of no more than 7%.

EXPERIMENTAL

Catalyst Preparation Procedure

Metal was not used as a material of construction for any wetted section in the iron catalyst preparation plant to avoid catalyst contamination that may occur through the dissolution of metallic components in contact with acidic solutions. The iron-containing solution and the base solution were kept in two separate 15 gallon feed tanks. The weights of these solutions were continuously measured during precipitation. The feed solutions were pumped separately to a precipitation reactor. The precipitate slurry was then pumped to a centrifugal filter, where the catalyst was washed with a separate water feed stream. The precipitate that passed through the centrifugal filter was collected in a drum and allowed to settle. The solution was later decanted, and the concentrated slurry was pumped back to the centrifugal filter, resulting in a high collection efficiency. The catalyst was finally dried, calcined, and crushed to 140-400 mesh-size range before being impregnated with
additional components. This procedure was followed by a final calcination and
an in situ reduction in the Fischer-Tropsch synthesis reactor.

Catalyst Testing Procedure

For the test, 95 g of calcined iron catalyst was loaded into a 1 L autoclave
along with 380 g of C_{32} n-paraffin wax at 130°C. After the wax melted, the
autoclave was sealed and pressure tested with N\textsubscript{2} at 25 atm. After a successful pressure test, the pressure was lowered to 14 atm, the stirring was
initiated at 1,100 rpm, and the catalyst temperature was raised to 280°C in 3
hours under nitrogen flow. A thermocouple inserted in a thermowell inside the
slurry was used for temperature control. The temperature control point was 3
cm above the bottom of the autoclave. After 280°C was achieved, the N\textsubscript{2} feed
was cut out and synthesis gas with an H\textsubscript{2}:CO molar ratio of 0.7:1 was intro-
duced at 1.6 \times 10^{-1} \text{ nm}^3/\text{h}. After a 12-hour pretreatment, in situ, new test
conditions were established, and the test was continued.

Two 0.5 \text{μm} filters (Mott Corporation, Farmington, CT) were placed at 6-5/8 in.
from the bottom of the autoclave so that the liquid products could be drained
periodically. During the first 420 hours, one of the filters was continuously
back-flushed with 0.2 nL/h-gFe of N\textsubscript{2}, and the other filter was used for
draining the liquid products.

Although this procedure prevented the filter from plugging, it is more than
likely that some catalyst was lost through the filter during the run period.
The reported catalyst activities are based on the initial catalyst inventory.

Conversion and Selectivity Calculations

Argon was present in the synthesis gas feed at about 6\% (by mole) and was used
as an internal standard to determine conversions and the carbon atom
selectivities of light hydrocarbons according to the following expressions:
CO Conversion, \(\% = \frac{(CO/Ar)_{\text{feed}} - (CO/Ar)_{\text{product}}}{(CO/Ar)_{\text{feed}}} \times 100 \)

The CO + H\(_2\) conversion was calculated in a similar manner:

\[\text{C}_n \text{ Selectivity, } \% = \frac{(C_n/Ar)_{\text{product}} \times n}{(CO/Ar)_{\text{feed}} - (CO/Ar)_{\text{product}}} \times \frac{100}{100 - \text{CO}_2 \text{ selectivity}} \times 100 \]

where \(n \) is the number of carbon atoms in one molecule of hydrocarbon \(C_n \). The calculation of selectivity of CO to CO\(_2\) was done in the following manner:

\[\text{CO}_2 \text{ Selectivity, } \% = \frac{(CO_2/Ar)_{\text{product}}}{(CO/Ar)_{\text{feed}} - (CO/Ar)_{\text{product}}} \times 100 \]

RESULTS AND DISCUSSION

The performance of the new precipitated iron catalyst between 1,250 and 2,250 hours on-stream is summarized in Figures 1-29 and Table 1. The following data are shown: CO, H\(_2\), and CO + H\(_2\) conversions; outlet H\(_2\):CO ratio; selectivities to methane, ethane, ethene + ethylene, ethanol, and carbon dioxide; ratios of propylene to propane and butylene to butane; and the autoclave temperature.

Last quarter, the catalytic performance was reported to be stable at 83% CO + H\(_2\) conversion between hours 452 and 1,250 at 275°C, 21 atm with a synthesis gas having a H\(_2\) to CO ratio of 0.7 at a space velocity of 0.9 nL/h-gFe. The selectivities were 6.9% to methane, 2.5-3.0% to ethane, 5-6% to ethene + ethylene, 2.5-3.0% to ethanol, 48-55% to CO\(_2\). The olefin to paraffin ratios were 5.5-6.0 at a carbon number of 3 and 4.0-4.5 at a carbon number of 4.
Effect of Conversion Level on Reaction Rate

Starting from 1,260 hours on-stream, the space velocity was gradually increased, typically every 48 hours, from 0.9 nL/h-gFe to 4.0 nL/h-gFe, by increasing the feed rate (Figures 1-7). At 1,510 hours on-stream, the temperature was lowered to 265°C, and the catalytic performance at different conversion levels was evaluated (Figures 8-15). At 1,640 hours on-stream, the space velocity was brought back to 1.2 nL/h-gFe and maintained there until 1,740 hours on-stream. These latter test conditions were identical to those between 280 and 420 hours on-stream. Further space velocity and temperature changes were made between 1,740 and 1,950 hours on-stream (Figures 16-23). The run was shutdown at 1,996 hours because of a power outage. Catalyst performance after the shutdown is discussed in a later section (Figures 24-31).

The effect of reciprocal space velocity \((nL/h-gFe)^{-1}\) on the \(\text{CO} + \text{H}_2\) conversion at 265°C and 275°C is illustrated in Figure 32. These data were later used to determine the effect of conversion level on reaction rate in Figure 33. Here, the reaction rate, is expressed as the product of space velocity and \(\text{CO} + \text{H}_2\) conversion. The results, which are summarized in Figure 33, indicate that the reaction rate is adversely affected by the conversion level at conversion levels greater than 50%. The decrease in reaction rate with an increase in conversion level is caused by the decrease in the partial pressure of the reactants, and possibly by the increase in the partial pressure of some of the reaction products. This effect, also, is likely to occur at lower conversions but to a lesser degree. However, insufficient data was available at low conversions to determine the relation of reaction rate with conversion at low conversions.

Catalytic Performance After Return to Early Test Conditions

The \(\text{CO} + \text{H}_2\) conversion between 1,640 and 1,740 hours on-stream was about 70%, which is 2% higher than that observed between 280 and 420 hours on-stream under the same test conditions (Figure 8). This result indicates that the catalyst did not deactivate during the first 1,740 hours on-stream. Between
1,640 and 1,740 hours, the selectivity to methane was about 4.5%, the selectivity to ethane was 1.5-2.0% and the selectivity to ethane + ethylene was 4.5% (Figures 9-11). These selectivities were 6.1%, 1.4%, and 5-6% during 280-420 hours on-stream. These results indicate that catalytic selectivity was improving with time on-stream. Also, the olefin to paraffin ratio and the water gas shift activity of the catalyst did not noticeably decrease (Figures 13-14).

Effect of Conversion Level on Catalytic Selectivity

The selectivities to methane and ethane + ethylene at 265°C as a function of conversion are summarized in Figure 34. Because selectivity improved with time on-stream, only relatively more recent data are illustrated in this figure. These data indicate a noticeable increase in selectivity to light ends at conversions greater than about 65%.

Predicting Catalytic Performance in a Slurry Bubble Column Reactor

Because the most likely candidate for a commercial-size slurry-phase reactor is a slurry bubble column reactor, an attempt was made to predict the performance of the new precipitated iron catalyst in a slurry bubble column reactor based on the slurry autoclave data obtained here. The following assumptions were made:

- The slurry bubble column reactor could be modelled as 11 slurry autoclave reactors-in-series operating at 0-8%, 8-16%, 16-24% ... 78-80%, 80-80% CO + H₂ conversions.
- The reaction rate and selectivity did not change below 35% conversion because data at 265°C were not available at less than 35% CO + H₂ conversion.
- At 275°C, reaction rate and selectivity at <50% conversion were equal to the rate and selectivity at 50% conversion.

The calculations made using these assumptions are summarized in Table 1.

These calculations indicate that the selectivity to methane + ethane + ethylene is estimated to be about 8.9% at 265°C and 11.8% at 275°C, in a
slurry bubble column reactor. At 265°C, the selectivity to methane + ethane + ethylene is about 2% higher than the revised selectivity target. At 275°C, the C₁ + C₂ hydrocarbon selectivity was about 5% higher than the revised selectivity target.

The space velocity required to reach 88% CO + H₂ conversion was 1.1 nL/h-gFe at 265°C and 1.6 nL/h-gFe at 275°C. These results appear to indicate that the new precipitated iron catalyst may be short of the activity target by a factor of 1.8 at 265°C and by about 1.3 at 275°C. However, actual specific activities are likely to be closer to target because of unknown catalyst inventory loss across the filter during the run and also because the catalytic activities were probably underestimated at low conversions, as discussed previously.

Catalytic Performance After Restart-Up Following Cold Shutdown

The run was shutdown at 1996 hours on-stream because of a 24-hour power outage. The shutdown involved lowering the temperature to 125°C and maintaining a feed space velocity of 1.2 nL/h-gFe. At 125°C, the synthesis gas feed was cut out, the reactor was blocked at a pressure of 21 atm, and the stirring was stopped. The feed was cooled to room temperature. Twenty-four hours later, the reactor was first heated to 90°C, stirring was initiated at 1,100 rpm and, the feed was cut in at 1.2 nL/h-gFe to maintain a pressure of 21 atm. Then, the temperature was raised to 265°C, and the catalyst was maintained at these conditions for another 250 hours. These test conditions were the same ones that prevailed at 280-420 hours and 1,640-1,740 hours.

The product wax drained from the reactor daily through the 0.5 μm filter during the test period of 2,000-2,250 hours was initially black in color and gradually attained its typical brown color. The same phenomenon was also observed during the initial part of this run. These results indicate that the new precipitated iron catalyst is undergoing substantial attrition following a cold start-up and some of the catalyst was lost from the reactor during these periods. The determination of catalyst loss across the filter in this current run is now in progress.
The catalytic performance after the restart-up is summarized in Figures 24-31. A slight deactivation of about 0.5% per day was observed during this period. This conversion loss was partly caused by catalyst loss across the filter. After the restart-up, methane selectivity did not increase noticeably. The \(H_2:CO \) ratio at the outlet was slightly less than earlier in the run. This result may be partly caused by the lower conversion level during this period rather than a loss of water gas shift activity of the catalyst. Because of problems associated with the analysis of \(CO_2 \) by gas chromatography (GC) making a definite conclusion about the status of water gas shift activity after the restart-up was not possible. Similarly, fluctuations in the propylene to propane ratios were too large to reach conclusions concerning the state of the olefin to paraffin ratios after the restart-up relative to their values before shutdown.

Product Distributions

The approximate product distributions based on the total amount of hydrocarbons and oxygenates recovered during 300-324 hours and 660-684 hours on-stream at 265°C and 66% \(CO + H_2 \) conversion and at 275°C and 83% \(CO + H_2 \) conversion, respectively, are summarized in Tables 2 and 3. These product distributions are still approximate chiefly because the determination of oxygenates by GC has not yet been completed.

The results indicate that with increases in temperature and conversion, the selectivity to light ends and to gasoline range increases and the selectivity to middle distillates and to wax decreases. The hydrocarbon products are 45-47% liquid fuels. The LPG and gasoline fractions are olefinic. Linear \(\alpha \)-olefins make up 83% of the LPG hydrocarbons. The linear \(\alpha \)-olefin content is 43% in the gasoline-range hydrocarbons. Forty-one percent of the hydrocarbons in the gasoline range have not yet been identified but are most likely to be internal olefins.

CONCLUSIONS

The new precipitated iron catalyst is predicted to perform reasonably close to
performance targets in slurry bubble column operation. Stability targets appear to be achievable. Compared to the revised selectivity target, an excess of $2\% \text{ C}_1 + \text{ C}_2$ was formed at 265°C. Based on the initial catalyst inventory in the autoclave, the catalyst seems to be short of the activity target by a factor of 1.8 at 265°C and 1.3 at 275°C. However, actual specific activities are likely to be closer to target because of catalyst inventory loss across the filter during the run and because catalytic activities were underestimated at low conversions.
Table 1

Performance of Precipitated Iron Catalyst in 11 Autoclave Reactors in Series at 21 ATM, 0.7 H₂: CO Feed (wt-%)

<table>
<thead>
<tr>
<th></th>
<th>265°C</th>
<th>275°C</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>4.3</td>
<td>5.8</td>
<td>--</td>
</tr>
<tr>
<td>C₂ (Ethane + Ethylene)</td>
<td>4.6</td>
<td>6.0</td>
<td>--</td>
</tr>
<tr>
<td>C₁ + C₂</td>
<td>8.9</td>
<td>11.8</td>
<td>7</td>
</tr>
<tr>
<td>Sv, nL/h-gFe</td>
<td>1.1</td>
<td>1.6</td>
<td>≥2</td>
</tr>
</tbody>
</table>
Table 2
Approximate Product Distribution (Wt-%) at 68% Conversion, 265°C, 300-324 Hours

<table>
<thead>
<tr>
<th></th>
<th>N-Paraffin</th>
<th>α-Olefin</th>
<th>Alcohol</th>
<th>Aldehyde</th>
<th>Unidentified</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>5.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5.5%</td>
</tr>
<tr>
<td>C₂</td>
<td>0.9</td>
<td>5.0</td>
<td>2.9</td>
<td>0.2</td>
<td>--</td>
<td>9.0%</td>
</tr>
<tr>
<td>C₃₋₄</td>
<td>3.0</td>
<td>11.7</td>
<td>2.0</td>
<td>1.5</td>
<td>--</td>
<td>18.2%</td>
</tr>
<tr>
<td>C₅₋₁₁</td>
<td>3.8</td>
<td>8.9</td>
<td>2.9</td>
<td>1.1</td>
<td>7.3</td>
<td>24.0%</td>
</tr>
<tr>
<td>C₁₂₋₁₈</td>
<td>-3.0</td>
<td>-6.0</td>
<td>0</td>
<td>0</td>
<td>-4.0</td>
<td>13%</td>
</tr>
<tr>
<td>C₁₉₋₂₅</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>9.9</td>
<td>9.9%</td>
</tr>
<tr>
<td>C₂₆+</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20.4</td>
<td>20.4%</td>
</tr>
<tr>
<td></td>
<td>16.2</td>
<td>31.6</td>
<td>7.8</td>
<td>2.8</td>
<td>41.6</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>N-Parafin</td>
<td>α-Olefin</td>
<td>Alcohol</td>
<td>Aldehyde</td>
<td>Unidentified</td>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>C_1</td>
<td>6.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6.2%</td>
</tr>
<tr>
<td>C_2</td>
<td>2.4</td>
<td>4.1</td>
<td>4.6</td>
<td>0.3</td>
<td>--</td>
<td>11.4%</td>
</tr>
<tr>
<td>C_3-C_4</td>
<td>3.3</td>
<td>16.5</td>
<td>2.6</td>
<td>1.0</td>
<td>--</td>
<td>23.4%</td>
</tr>
<tr>
<td>C_5-C_{11}</td>
<td>4.0</td>
<td>11.1</td>
<td>2.1</td>
<td>0.8</td>
<td>10.6</td>
<td>28.6%</td>
</tr>
<tr>
<td>$C_{12}-C_{18}$</td>
<td>3.0</td>
<td>6.3</td>
<td>0</td>
<td>0</td>
<td>-1.9</td>
<td>11.2%</td>
</tr>
<tr>
<td>$C_{19}-C_{25}$</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4.7</td>
<td>4.7%</td>
</tr>
<tr>
<td>C_{26}^+</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>14.5</td>
<td>14.5%</td>
</tr>
<tr>
<td>C_{26}+</td>
<td>18.9</td>
<td>38.0</td>
<td>9.3</td>
<td>2.1</td>
<td>31.7</td>
<td>100.0</td>
</tr>
</tbody>
</table>
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C
PRESSURE, PSIG
N₂ FEED, SCFH
FEED, SCFH
FEED, ML/H g Fe
H₂/CO FEED RATIO

CO CONVERSION
H₂ CONVERSION
CO + H₂ CONVERSION
AUTOCLAVE TEMP

HOURS ON STREAM

250 255 260 265 270 275 1250 1275 1300 1325 1350 1375 1400 1425 1450 1475 1500
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET TEMP, °C</td>
<td>275</td>
</tr>
<tr>
<td>PRESSURE, PSIG</td>
<td>290</td>
</tr>
<tr>
<td>N₂ FEED, SCFM</td>
<td>0.0</td>
</tr>
<tr>
<td>FEED, SCFM</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>FEED, NL/10⁶ g Fe</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>H₂/CO FEED RATIO</td>
<td>0.7</td>
</tr>
</tbody>
</table>

CO CONVERSION

H₂/CO OUTLET

CO₂ SELECTIVITY

HOURS ON STREAM
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, °C	275
PRESSURE, PSIG	390
N₂ FEED, SCFH	0.0
FEED, SCFH	1.9 < 2.2 < 2.6 < 3.3 < 4.4 < 5.9
FEED, NL/H g Fe	0.9 < 1.1 < 1.2 < 1.6 < 2.1 < 2.8
H₂/CO FEED RATIO	0.7

HOURS ON STREAM

-15-
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C
PRESSURE, PSIG
N₂ FEED, SCFH
FEED, SCFH
FEED, mL/h g Fe
H₂/CO FEED RATIO

CO
CONVERSION

ETHANE + ETHYLENE
C₂H₄, C₂H₂
SELECTIVITY

RUTOCRVE
TEMP

H₂/CO
OUTLET

HOURS ON STREAM

-16-
FIGURE 5
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Target Temp, C</th>
<th>275</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure, PSIG</td>
<td>290</td>
</tr>
<tr>
<td>N₂ Feed, SCFH</td>
<td>0.0</td>
</tr>
<tr>
<td>Feed, SCFH</td>
<td>1.0
2.2
2.6
3.3
4.4
8.9</td>
</tr>
<tr>
<td>Feed, NL/H g Fe</td>
<td>0.9
1.1
1.2
1.6
2.1
2.8</td>
</tr>
<tr>
<td>H₂/CO Feed Ratio</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- CO Conversion -
- C₂, C₃ Selectivity -
- Autoclave Temp -
- H₂/CO Outlet -

HOURS ON STREAM
Figure 6

EVALUATION OF PRECIPITATED IRON CATALYST 6616–18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Temp, °C</td>
<td>275</td>
</tr>
<tr>
<td>Pressure, PSIG</td>
<td>280</td>
</tr>
<tr>
<td>N₂ Feed, SCFM</td>
<td>0.0</td>
</tr>
<tr>
<td>Feed, SCFM</td>
<td>1.0 → 2.2 → 2.6 → 3.3 → 4.4 → 5.9 →</td>
</tr>
<tr>
<td>Feed, NL/h g Fe</td>
<td>0.3 → 1.1 → 1.2 → 1.6 → 2.1 → 2.6 →</td>
</tr>
<tr>
<td>H₂/CO Feed Ratio</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Graphs showing CO conversion, CO₂/CO, autoclave temperature, and H₂/CO outlet over hours on stream.
TABLE 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Temp, °C</td>
<td>275</td>
</tr>
<tr>
<td>Pressure, PSig</td>
<td>290</td>
</tr>
<tr>
<td>N₂ Feed, SCFH</td>
<td>0.0</td>
</tr>
<tr>
<td>Feed, SCFH</td>
<td>2.2, 2.6, 3.3, 4.4, 8.9</td>
</tr>
<tr>
<td>Feed, NL/1 g Fe</td>
<td>0.9, 1.1, 1.2, 1.6, 2.1, 2.8</td>
</tr>
<tr>
<td>H₂/CO Feed Ratio</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Figure 7

Evaluation of Precipitated Iron Catalyst 6616-18 in Slurry Reactor 700B Run 19

- CO Conversion
- C₄⁻/C₅⁺ Ratios
- Reactor Temp
- H₂/CO Outlet

Graphs

Hours on Stream: 1250 to 1500
FIGURE 8

EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C	279	265
PRESSURE, PSIG	280	290
N₂ FEED, SCFH	0.0	
FEED, SCFH	2.6	1.9
FEED, ML/MM²Fe	1.2	0.7
H₂/CO FEED RATIO		

CONVERSION

CO

H₂

CO + H₂

AUTOClAVE

TEMP

HOURS ON STREAM

1500 1525 1550 1575 1600 1625 1650 1675 1700 1725 1750
FIGURE 9
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C | 275 < 285
PRESSURE, PSIG | 290
N₂ FEED, SCFH | < 0.0
FEED, SCFH | 7.0 < 5.0 < 7.0 < 6.4 < 4.2 < 2.6 < 1.0
FEED, NI / g Fe | 2.8 < 2.8 < 3.0 < 4.0 < 2.0 < 1.2 < 0.9
H₂/CO FEED RATIO | < 0.7

CO CONVERSION

H₂/CO OUTLET

CO₂ SELECTIVITY

HOURS ON STREAM
FIGURE 10
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C	270	285					
PRESSURE, PSIG	270	290					
N₂ FEED, SCFH	0.0	0.0					
FEED, SCFH	7.0	8.9	7.0	8.4	4.2	2.6	1.9
FEED, NL/H g Fe	3.0	2.8	3.0	4.0	2.0	1.2	0.9
H₂/CO FEED RATIO	0.7	0.7					

-22-
FIGURE 11

EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Temp, °C</td>
<td>275</td>
<td>295</td>
</tr>
<tr>
<td>Pressure, PSIG</td>
<td>250</td>
<td>290</td>
</tr>
<tr>
<td>N₂ Feed, SCFH</td>
<td>7.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Feed, SCFH</td>
<td>8.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Feed, N₂/N g Fe</td>
<td>4.2</td>
<td>2.0</td>
</tr>
<tr>
<td>H₂/CO Feed Ratio</td>
<td>1.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

CO conversion vs hours on stream

C2/C2 selectivity vs hours on stream

Autoclave temp vs hours on stream

H₂/CO outlet vs hours on stream

-23-
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET TEMP, C</td>
<td>265</td>
</tr>
<tr>
<td>PRESSURE, PSIG</td>
<td>280</td>
</tr>
<tr>
<td>N₂ FEED, SCFH</td>
<td>0.0</td>
</tr>
<tr>
<td>FEED, SCFH</td>
<td>7.6 → 8.8 → 8.4 → 4.2 → 2.6 → 1.9</td>
</tr>
<tr>
<td>FEED, NL/l H₂ Fe</td>
<td>2.8 → 3.0 → 4.0 → 2.0 → 1.2 → 0.9</td>
</tr>
<tr>
<td>H₂/CO FEED RATIO</td>
<td>0.7</td>
</tr>
</tbody>
</table>

-24-
FIGURE 16

EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C	285
PRESSURE, PSIG	290
N₂ FEED, SCFH	0.0
FEED, SCFH	7.4 ➔ 8.9 ➔ 7.6 ➔ 8.4 ➔ 4.2 ➔ 2.6 ➔ 1.0
FEED, mL/H g Fe	5.6 ➔ 2.8 ➔ 3.6 ➔ 4.0 ➔ 2.0 ➔ 1.2 ➔ 0.9
H₂/CO FEED RATIO	0.7

![Graphs showing conversion, CO₂/CO, temperature, and H₂/CO outlet over hours on stream.](image-url)
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C
PRESSURE, PSIG
N₂ FEED, SCFH
FEED, SCFH
FEED, NL/H g Fe
H₂/CO FEED RATIO

SHUT DOWN & RESTART

100
80
60
40
20
0

0.5
1
1.5
2
2.5

CO CONVERSION
H₂/CO OUTLET

60
50
40
30
20
10
0

CO₂ SELECTIVITY

1750 1775 1800 1825 1850 1875 1900 1925 1950 1975 2000
HOURS ON STREAM
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, °C 265 275 265
PRESSURE, PSIG 290
N₂ FEED, SCFH 1.9 1.2 6.2 8.4 <1.9
FEED, SCFH 0.0
FEED, NL/H g Fe 0.90 0.57 2.9 4.0 <1.2 <1.2
H₂/CO FEED RATIO 0.7

CO CONVERSION

6C₂ Cl SELECTIVITY

AUTOCRANE TEMP

H₂/CO OUTLET

HOURS ON STREAM

1750 1775 1800 1825 1850 1875 1900 1925 1950 1975 2000
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th></th>
<th>1750</th>
<th>1775</th>
<th>1800</th>
<th>1825</th>
<th>1850</th>
<th>1875</th>
<th>1900</th>
<th>1925</th>
<th>1950</th>
<th>1975</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET TEMP, C</td>
<td></td>
</tr>
<tr>
<td>PRESSURE, PSIG</td>
<td></td>
</tr>
<tr>
<td>N₂ FEED, SCFH</td>
<td></td>
</tr>
<tr>
<td>FEED, SCFH</td>
<td></td>
</tr>
<tr>
<td>FEED, NL/H g Fe</td>
<td></td>
</tr>
<tr>
<td>H₂/CO FEED RATIO</td>
<td></td>
</tr>
<tr>
<td>CO CONVERSION</td>
<td></td>
</tr>
<tr>
<td>ETHANE + ETHERS</td>
<td></td>
</tr>
<tr>
<td>C₃₁ C₂ SELECTIVITY</td>
<td></td>
</tr>
<tr>
<td>AUTOCLAVE TCHR</td>
<td></td>
</tr>
<tr>
<td>H₂/CO OUTLET</td>
<td></td>
</tr>
</tbody>
</table>

SHUT DOWN & RESTART
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, °C
- 265 - 275 - 265
PRESSURE, PSIG
- 290 -
N₂ FEED, SCFH
1.8 1.2 8.4
FEED, SCFH
<1.8> 8.2
FEED, NL/h g Fe
.90 <.71> 2.0
H₂/CO FEED RATIO
0.0 0.7

DI CONVERSION

C₅₂, C₂ SELECTIVITY

AUToclave TEMP

H₂/CO OUTLET

HOURS ON STREAM
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C 265 275 285
PRESSURE, PSIG 290
N₂ FEED, SCFH 1.9 1.2 8.4 2.6
FEED, SCFH 0.0
FEED, NL/100 g Fe 0.90 0.57 2.9 4.0
H₂/CO FEED RATIO 0.7

CO
CONVERSION

C₃/C₅

AUToclave
TEMP

H₂/CO
OUTLET

HOURS ON STREAM

SHUT DOWN & RESTART
FIGURE 2.3

EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>TARGET TEMP, °C</th>
<th>285</th>
<th>275</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE, PSIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂ FEED, SCFM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEED, SCFM</td>
<td>1.8</td>
<td>1.2</td>
<td><1.8</td>
</tr>
<tr>
<td>FEED, NL/Hg Fe</td>
<td>0.90</td>
<td>0.57</td>
<td><0.7</td>
</tr>
<tr>
<td>H₂/CO FEED RATIO</td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>

CO CONVERSION

CH₄/O₂ RATIO

REACTOR TEMPERATURE

H₂/O₂ FEED RATIO

HOURS ON STREAM
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C | 285
PRESSURE, PSIG | 290
N₂ FEED, SCFM | 0.0
FEED, SCFM | 2.6
FEED, NL/MMg Fe | 1.2
H₂/CO FEED RATIO | 0.7

CO CONVERSION

H₂ CONVERSION

CO + H₂ CONVERSION

RUTICLE TEMP

HOURS ON STREAM

-36-
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARGET TEMP, C</td>
<td>285</td>
</tr>
<tr>
<td>PRESSURE, PSIG</td>
<td>390</td>
</tr>
<tr>
<td>N₂ FEED, SCFH</td>
<td>0.0</td>
</tr>
<tr>
<td>FEED, SCFH</td>
<td>2.6</td>
</tr>
<tr>
<td>FEED, NL/H g Fe</td>
<td>1.2</td>
</tr>
<tr>
<td>N₂/CO FEED RATIO</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Graphs showing CO conversion, H₂/CO outlet, and CO₂ selectivity over hours on stream.
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C
PRESSURE, PSIG
N₂ FEED, SCFH
FEED, SCFM
FEED, NL/N g Fe
H₂/CO FEED RATIO

CO CONVERSION

C₂H₂ Cl.
SELECTIVITY

AUTOCLAVE TEMP

H₂/CO OUTLET

HOURS ON STREAM

-38-
FIGURE 27
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C	265
PRESSURE, PSIG	290
N₂ FEED, SCFH	0.0
FEED, SCFH	2.6
FEED, ML/H g Fe	1.2
H₂/CO FEED RATIO	0.7

- CO CONVERSION -

- ETHANE + ETHYLENE -

- 6C1 C2 SELECTIVITY -

- AUToclAVE TEMP -

- H₂/CO OUTLET -

HOURS ON STREAM
FIGURE 28

EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Temp, C</td>
<td>285</td>
</tr>
<tr>
<td>Pressure, PSIG</td>
<td>290</td>
</tr>
<tr>
<td>N₂ Feed, SCFH</td>
<td>0.6</td>
</tr>
<tr>
<td>Feed, SCFH</td>
<td>2.6</td>
</tr>
<tr>
<td>Feed, Ni/Fe g Fe</td>
<td>1.2</td>
</tr>
<tr>
<td>H₂/CO Feed Ratio</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Graphs showing CO Conversion, ethylene selectivity, reactor temp, and H₂/CO outlet over hours on stream.
FIGURE 29
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, C 285
PRESSURE, PSIG 280
H₂ FEED, SCFH 0.0
FEED, SCFH 2.8
FEED, NL/M g Fe 1.2
H₂/CO FEED RATIO 0.7

90 75 60 50 40 30 20 10 0
CD CONVERSION

2.5 2.0 1.5 1.0 0.5 0.0
GCI C2

275 270 265 260 255 250 245
AUToclave TEMP

1.3 1.1 1.0 0.9 0.8 0.7 0.6 0.5
H₂/CO OUTLET

HOURS ON STREAM
EVALUATION OF PRECIPITATED IRON CATALYST 6616-18
IN SLURRY REACTOR 700B RUN 19

TARGET TEMP, °C	285
PRESSURE, psig	250
N₂ FEED, SCFH	0.0
FEED, SCFH	2.8
FEED, ML/N L g Fe	1.2
H₂/CO FEED RATIO	0.7

- CO CONVERSION -

- C₄+/C₄- -

- AUTOClave TEMP -

- H₂/CO OUTLET -

HOURS ON STREAM
CONVERSION VS. CONTACT TIME
PRECIPITATED IRON CATALYST
21 atm., 0.7 H2:CO in feed

% CONVERSION, CO + H2
FIGURE 33

EFFECT OF CONVERSION LEVEL ON REACTION RATE WITH PRECIPITATED IRON CATALYST

21 atm, 0.7 H₂:CO IN FEED

275°C
265°C

UNIT = CONVERSION × SPACE VELOCITY

-45-
EFFECT OF CONVERSION LEVEL ON SELECTIVITY

265°C, 21 atm, 0.7 H₂:CO IN FEED

CO + H₂ CONVERSION, %

SELECTIVITY, %

methane
ethane & ethylene