ASSESSMENT OF POTENTIAL INCREASED OIL PRODUCTION
BY POLYMER-WATERFLOOD
IN NORTHERN AND SOUTHERN MID-CONTINENT OIL FIELDS

PROGRESS REPORT
FOR THE QUARTER ENDING SEPTEMBER 30, 1978
Contract No. EW-78-C-19-0026

Submitted to
U. S. Department of Energy
Division of Energy Technology
by
GRUY FEDERAL, INC.
2500 Tanglewilde, Suite 150
Houston, Texas 77063

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Dear Mr. McGhee:

The enclosed quarterly report details progress on the subject contract. The six tasks are proceeding at varying rates. As initially envisioned, the first three tasks would center around geological and engineering aspects of the reservoir and injection program, and an economic review of the program. It was anticipated that these three tasks would be largely completed during the first six to seven months on the project. The purchase of Kewanee by Gulf has caused some delay in work effort within these tasks. As noted in the quarterly report, if data are not forthcoming from Gulf by November 1, Gruy Federal, Inc. will recommend completion of the tasks with publicly available data.

The three remaining tasks are proceeding at an accelerated rate. Gruy Federal, Inc. now has the GE Terminal operational, and we are selectively screening fields in the Mid-Continent area for potential polymer programs.

Overall, the program is basically on schedule. We have lost time with the Kewanee/Gulf purchase, but hope to catch up on those tasks dependent on Gulf inputs.

We are also adding to our technical staff. Mr. Jerry Watson, a geologist, will be working on the project, as will Ms. Dolores Portugal, a computer programmer. Ms. Portugal previously worked at Texas A & M University on the GURC #153 project.
Gruy Federal, Inc. is pleased to be working with DOE on this project, and we welcome your comments and inputs on the study.

Sincerely,

GRUY FEDERAL, INC.

Rodney W. Pease
Senior Geologist

RWP:paw
Enclosure

cc: Mr. C. C. (Bill) Linville, U.S. DOE-BETC
 Mr. Robert Anderson, U.S. DOE, HQ
 Contract Officer, U.S. DOE-BETC
 Finance Officer, U.S. DOE-BETC
ASSESSMENT OF POTENTIAL INCREASED OIL PRODUCTION
BY POLYMER-WATERFLOOD
IN NORTHERN AND SOUTHERN MID-CONTINENT OIL FIELDS

PROGRESS REPORT
FOR THE QUARTER ENDING SEPTEMBER 30, 1978
Contract No. EW-78-C-19-0026

Submitted to

U. S. Department of Energy
Division of Energy Technology

by

GRUY FEDERAL, INC.
2500 Tanglewilde, Suite 150
Houston, Texas 77063

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
TABLE OF CONTENTS

Introduction ... 1

Progress to Date

Detailed Geological and Engineering Study of the DOE-Kewanee Polymer Augment Waterflood 4

Technical Review of the Polymer Injection Program in this Field 7

Evaluate the Results of the Polymer Augment Waterflood in this Field 8

Review Geological and Engineering Characteristics of Oil Fields Now in Waterflood as Candidates for Polymer Augmentation 8

Review Geology and Engineering Characteristics of Fields Now Under Primary Production in the Region as Possible Candidates for the Polymer-Waterflood Process 13

Determine Ranges of Future Increased Oil Production from the Polymer Water Process in the Project Area .. 15

Milestone and Status Report 17

Appendix: List of Fields Meeting Preliminary Screening Requirements 22
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagrammatic Representation of Gruy Federal's Examination of Kewanee's Polymer Augment Waterflood Project</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Diagrammatic Representation of Gruy's Analysis of the Assessment of Mid-Continent Reservoirs for EOR Potential by Polymer Augment Waterflood</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Economic Analysis of Mid-Continent Oil Fields for EOR by Polymer Augment Waterflooding</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Schematic of Economic Model</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Milestone Schedule and Status Report</td>
<td>21</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Present Screening Criteria for Polymer Augment Waterfloods
1. **INTRODUCTION**

This document is the first quarterly report on the "Assessment of Potential Increased Oil Production by Polymer-Waterflood in Northern and Southern Mid-Continent Oil Fields" under Contract No. EW-78-C-19-0026 between Gruy Federal, Inc. and the Bartlesville Energy Technology Center, U.S. Department of Energy.

Gruy Federal, Inc. submitted an unsolicited proposal to DOE to perform studies of a polymer waterflood project jointly funded by DOE and Kewanee Oil Company. In addition to reviewing the reservoir characteristics and engineering and economic aspects of the polymer program, Gruy proposed to establish screening criteria that would be applied to Mid-Continent oil fields in an effort to identify potential candidates for the polymer flood technique.

Development of the subject field, the Stanley Stringer Field, located in Osage County, Oklahoma, T27N, R6E, was commenced in 1926. Production is from Lower Pennsylvanian sands at depths of 2900-2950 feet. Secondary recovery operations by waterflood techniques were initiated in the late 1950's. Kewanee Oil Company and the United States Energy and Research Development Administration (ERDA) entered into a joint agreement in 1975 with the objective of demonstrating the efficiency and economics of recovering tertiary oil from this highly heterogenous reservoir (which has been successfully waterflooded, but is nearing the economic limit) by injecting a polymer slug of tapered concentration to improve sweep.
efficiency in the reservoir. The reservoir was flooded with polymer solution over a 372-day period ending June 22, 1977. The subsequent year's results were reported in Kewanee's third (and final) annual report.

Gruy Federal, Inc. entered into an advance agreement with the Department of Energy for this study effective June 10, 1978. A fully executed copy of the final contract was received by Gruy Federal, Inc. in September 1978.

The Scope of Work and Objectives of the project are included here for reference. Subsequent sections will address each of the tasks described in the Scope of Work.

SCOPE OF WORK

The Contractor shall:

1. Conduct a detailed field study of the Burbank-Bartlesville sand reservoir, located in the north half of the Stanley Stringer Field, Osage County, Oklahoma. Contractor will give special attention to: (a) reservoir features and characteristics, well histories, and production through the waterflood stage; and (b) a study of the reservoir rock fluid system, including clay mineral content and distribution.

3. Evaluate the results of the polymer-waterflood program with respect to (a) increased recoverable oil, and (b) overall cost effectiveness, including the effect of oil price.
4. Review the geological/engineering characteristics of oil fields now in waterflood in the northern and southern Mid-Continent regions, based on (a) results of the North Stanley polymer-waterflood program; and (b) all basic screening parameters for polymer injection.

5. Review the geological/engineering characteristics of oil fields now in primary production in this region with regard to parameters for polymer-waterflood injection.

6. Determine ranges of future increased oil productivity from applications of the polymer injection process for waterflood mobility control in the region as functions of technology and price.

OBJECTIVES

The objectives of this program are:

1. Appraisal of relationship between reservoir characteristics of the field and results of the polymer waterflood.

2. Quantitative assessment of relationships between reservoir characteristics and results and costs of polymer injection.

3. Definition of parameters for screening and selecting reservoirs for the use of polymers in improving waterflood mobility ratio, including relationship between reservoir characteristics and necessary pilot projects.
4. Evaluation of future potential enhanced oil recovery from polymer waterflood, with special attention to near-term payoff for the northern and southern Mid-Continent regions.

II. PROGRESS TO DATE

A. Detailed Geological and Engineering Study of the DOE-Kewanee Polymer Augment Waterflood (Task 1)

As initially planned, this task was to be performed in the following sequence:

• Choose format of field study.

• Gather data from operator, BERC, and other sources (GURC, etc.).

• If samples exist and it is deemed necessary to develop further understanding of clay-polymer-fluid interactions, obtain these studies.

• Perform study.

• Extract all information meaningful to further development of the screening criteria for polymer-augment waterfloods.

This portion of the project was initiated with a thorough review of the background material contained in the annual project reports. To date, three annual reports (the third
being the final report) comprise the available data on the Stanley Stringer project. These reports deal primarily with the engineering aspects of the polymer-augment waterflood. Information on the geology of the field is quite sparse.

Prior to the purchase of Kewanee by Gulf Oil Company, an agreement had been reached between Gruy Federal, Inc. and Kewanee whereby Kewanee would provide electric logs, core analyses, and sections of cores to Gruy Federal, Inc. With the subsequent purchase by Gulf, the situation is somewhat unsettled. Kewanee personnel familiar with the project have left the firm, and Kewanee's files are currently stored in a warehouse. Gulf may release some data in the near future.

In the event additional information on the reservoir cannot be obtained from Gulf, Gruy Federal will use the existing annual reports, supplemented by data from the scientific literature (primarily AAPG publications on the Burbank and Stanley Stringer fields), geologic maps prepared by the Bureau of Indian Affairs, and data obtainable (if no longer proprietary) from electric log service companies and core analysis firms. In this case, however, a less detailed geologic study will result.

Figure 1 depicts the study plan as envisioned by Gruy Federal, Inc. The "Primary" and "Secondary" inputs of Figure 1 represent the basic log/core data and annual reports, respectively.
FIGURE 1
DIAGRAMATIC REPRESENTATION OF GRUY'S EXAMINATION OF KEWANEE'S POLYMER AUGMENT WATERFLOOD PROJECT
B. Conduct Technical Review of the Polymer Injection Program in this Field (Task II)

Data for this portion of the project are to be obtained from:

- BETC - quarterly and annual reports
- Operator - information not filed
- Dow Chemical - with permission of operator

This task also requires inputs from the operator. Kewanee's three annual reports have been reviewed and a literature search conducted covering both laboratory and field data to provide the background necessary for such a technical review. Significant areas of concentration in this background study are:

- Effect of cation exchange on polyacrylamide solutions.
- Effect of soluble minerals on polyacrylamide solutions.
- Effect of resident and makeup water composition on polyacrylamide solutions.
- Absorption of polyacrylamides on clay surfaces.
- Retention of polyacrylamides in porous rocks and the effects of clay on retention.
- Protection of polymer solutions from shear degradation.
This review of the technical literature ensures that Gruy Federal's understanding of polymer-augmented waterflooding techniques is absolutely current.

C. Evaluate the Results of the Polymer Augment Waterflood in This Field (Task III)

Evaluating the results of the polymer augment waterflood depends in part in sorting out the additions to production caused by well repair, channel block treatments, and the polymer-augmented waterflood. As can be seen from Figure 1, the results of the polymer waterflood, the reservoir interpretations, and cost data must be brought together to accomplish a complete evaluation of the process. We will begin this evaluation as soon as sufficient results from Tasks I and II are obtained.

D. Review Geological and Engineering Characteristics of Oil Fields Now in Waterflood as Candidates for Polymer Augmentation (Task IV)

We have made significant progress toward this goal. A GE time-sharing computer terminal has been installed in our Houston office, providing Gruy Federal with immediate access to the data base maintained by the Petroleum Data Service (PDS) at the University of Oklahoma. Raj Kumar attended the orientation program given by GE on August 8, 1978. The logic has been developed to query the data base for this specific section of the project. The basis for that logic is outlined below.

For an existing waterflood to be considered a good candidate for the polymer-augment technique it should meet four general criteria:
1. It should be a reservoir within the technical limits of the process (see Table 1).

2. It should be in an early to medium stage of depletion. This is in part a function of field size.

3. It should be large enough to support the added expenditures and necessary geologic and engineering studies.

4. Wells should be sufficiently closely spaced so that the project lifetime is reasonable.

Reservoirs will be screened under the four general criteria above, as follows:

Under general criterion 1:

Established technical screening criteria will be applied to ensure that only those fields currently under waterflood which meet those criteria are included in the remainder of the study. This can be done with automated processing of the data. Table 1 lists generally accepted screening criteria based on previous studies.

Under general criterion 2:

Several tests of the current status of a field have been developed, using numbers that are easily available from the International Landman and Oil Scout Association's annual compilations and from documents filed with state regulatory agencies. To be considered a current waterflood (one worthy
TABLE 1

PRESENT SCREENING CRITERIA FOR POLYMER AUGMENT WATERFLOODS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, cp</td>
<td><200</td>
<td><200</td>
<td><200 (5-125)</td>
<td><200 (5-125)</td>
</tr>
<tr>
<td>Gravity, °API</td>
<td>>18 (>16)</td>
<td>>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>Temperature, °F</td>
<td><100</td>
<td><225</td>
<td><200</td>
<td><160</td>
</tr>
<tr>
<td>Permeability, millidarcies</td>
<td>>20</td>
<td>25- 30-</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>1500</td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of oil in place before EOR (P.V.)</td>
<td>50</td>
<td>50 >50r</td>
<td>>25</td>
<td>>10 (mobile)</td>
</tr>
<tr>
<td>Water oil mobility</td>
<td></td>
<td>>1</td>
<td></td>
<td>>1</td>
</tr>
<tr>
<td>Water-oil ratio</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
</tbody>
</table>

The preferred lithology is sandstone.

Reservoirs with strong water drives, large gas caps, and gross channeling or major natural fractures should be avoided.
of further consideration as a prospect for polymer water-flood, a field should meet the following criteria:

a. The number of abandoned wells is less than half the total. (In old floods there are many abandoned wells.)

b. The ratio of cumulative production to the number of current wells is less than some yet-undefined limit. As waterflood projects near the end of their lifetimes, this ratio becomes very large since only a few wells are still producing and they produce ever-decreasing amounts of oil.

c. The current water/oil ratio of produced fluid is within acceptable limits. This ratio is obtainable in some states in the project area but not in others. Where data are available, they will be used in conjunction with the above specific tests of current status of the field.

d. The total recovery to date is less than 60% of original oil in place. The figures required for this test may not be in the data bank, however.

These four tests should provide an adequate measure of the current status of an ongoing waterflood project. The limits proposed are quite arbitrary and subject to refinement as we work with the data base.
Under general criterion 3:

Several tests of field size have been developed.

a. First and most direct, if the quantity of oil originally in place is included in the PDS data base, this number, less the cumulative production, establishes the amount of oil remaining. Only a small portion of this remaining oil is accessible by the polymer-augmented waterflood process, the amount depending upon the field's characteristics and history. At any rate, provided the field passes the proposed current status tests (general criterion 2 above), then some fraction of the oil should be accessible to the process. Therefore, we will estimate the total potential of the field by polymer-augment; if it is less than one million barrels the field will be rejected at this time. This figure (1mm) is tentative and may require some adjustment.

b. If the quantity of oil originally in place is not known, but enough information is in the data bank to estimate it using established correlations, we will estimate this number and proceed as above.

c. If original oil in place cannot be estimated, then we will use cumulative production as an indicator of future production, and all fields which have produced less than one million barrels as of 1976 will be rejected as candidates for this process.
Under criterion 4:
Only one test will be employed to estimate project lifetimes. Since project lifetime is related to permeability (injectivity) and well spacing, a factor incorporating these two parameters will be developed. However, field experience with the polymer-augment process shows that generally no drastic decrease in injectivity is noted when polymer solution is injected. Therefore, if a waterflood has acceptable well spacings for sufficiently short total project life, it will probably be acceptable for the polymer-augmented waterflood process as well. Exceptions to this general rule of thumb occur, but at present they cannot be systematically predicted.

As the screening process on the PDS data base has proceeded, candidates for potential polymer-augment waterflood have been identified and are discussed in Section E below.

E. Review Geology and Engineering Characteristics of Fields Now Under Primary Production in the Region as Possible Candidates for the Polymer-Waterflood Process (Task V)

Gruy Federal has screened all oil fields currently in production in the Mid-Continent region as candidates for the polymer-augmented waterflood process. The screening program has been adjusted for differences in record keeping in different states. The result of this first screening is a master list of all fields for which enough information exists in the PDS data file to identify potential candidates. In general this list contains:

- those fields where the gravity of the crude oil is known to be in the range 20°-40°API. (The incremental benefit of
polymer augment waterflood over an ordinary waterflood decreases with decreasing oil viscosity.)

- those fields where the number of producing wells is greater than five and the cumulative production is greater than 1,000,000 barrels of oil.

Removed from this list are:

- Reservoirs which are known to have strong water drive or large gas caps,
- Reservoirs producing from carbonates or shale,
- Reservoirs whose permeability is low,
- Reservoirs with temperatures in excess of 200°F,
- Reservoirs less than five feet thick.

This procedure should select those fields that are potential candidates. The list obtained, however, will contain many fields which would not be considered good candidates if more information were available; for example, those for which permeability is not in the PDS file but is known from other sources to be too low, or those for which the lithology of the producing formation is not labeled in the PDS file but is known to be other than sand. The list will also contain many fields already under waterflood, many of which will be too mature (see criterion 2, Section D).
The bulk of the work toward objectives IV and V will consist of selecting the very good candidates, both those under primary production and those under waterflood, from this list to be used with the Kewanee data and with cost data (see Figure 2) in order to provide a realistic economic evaluation under Part F of this contract.

The highly preliminary list of fields obtained to this point is contained in the Appendix.

F. Determine Ranges of Future Increased Oil Production from the Polymer Water Process in the Project Area (Task VI)

This part of the project has begun. Raj Kumar is developing a model which will use the following information:

- $K + Kh$
- Spacing/total acreage
- Amount of oil left in place
- Fraction of oil left in place accessible to the polymer-water technique
- Cost data (assuming water source is available)
- Depth
- Reservoir volume
Diagrammatic representation of Gruy's analysis of the assessment of Mid-Continent reservoirs for EOR potential by polymer augment waterflood.

- **PDS List**:
 - REJECT
 - CURRENT WATER FLOOD
 - NEVER FURTHER DATA
 - STUDY
 - GOOD CANDIDATE
 - NO REJECT
 - YES GOOD CANDIDATE LIST
 - ASSEMBLE PACKET RESERVE EST. ETC.
 - FINAL PACKET
 - WATER FLOOD (RESERVES AT ANY PRICE)
 - FINAL PACKET
 - WATER FLOOD (RESERVES AT ANY PRICE)

- **GOOD CANDIDATE**
 - NO REJECT
 - YES GOOD CANDIDATE LIST
 - ASSEMBLE PACKET RESERVE EST. ETC.
 - final packet
 - not WATER FLOOD (RESERVES AT ANY PRICE)

Figure 2
Part of this information can be extracted directly from the PDS data base; part of it is highly interpretive and can only be generated after a more detailed study is made of each reservoir (see Figure 3).

The economic model itself is a separate segment of the total contract effort and can be constructed in advance of the time when it is needed (See Figure 4).

III. MILESTONE AND STATUS REPORT

Figure 5 shows the significant milestones and principal tasks of Contract EW-78-C-19-0026. This chart was given in the first progress report submitted after the effective starting date was received. (Gruy received a final, fully executed copy of the contract on September 21, 1978.)

As discussed in the preceding sections, work to date has progressed without delay in areas where Gruy Federal has had access to basic data. Such is the case with Tasks IV, V and VI, which for the most part have involved developing screening criteria and querying the Petroleum Data Service. Economic modeling efforts have also moved ahead on schedule.

Problems have developed with Tasks I, II and III as a result of inevitable delays caused by the purchase of Kewanee by Gulf. If Gulf cannot provide the requested data by November 1, Gruy Federal will recommend to DOE that the geologic portions of Tasks I, II, and III be conducted using available data, to include:

- Annual Kewanee reports
- Data from the open literature
ECONOMIC ANALYSIS OF MID-CONTINENT OIL FIELDS

FOR EOR BY POLYMER AUGMENT WATERFLOODING

FIGURE 3

PRICE VS. RESERVES

(FROM) SIMPLE MODEL

ECONOMIC

FLOOD

WATER

FINAL PACKET

NESS STUDY

EFFECTIVE COST

DATA COST

FLOODS WATER

FINAL PACKET
ECONOMIC MODEL

- $K + K_h$
- SPACING
- AMOUNT OIL LEFT IN PLACE
- ESTIMATE OF OIL ACCESSIBLE (FRACTION OF ABOVE)
- COST DATA (ASSUME WATER AVAILABLE)
- DEPTH
- RESERVOIR VOLUME

FIGURE 4
SCHEMATIC OF ECONOMIC MODEL
Geologic maps from the Bureau of Indian Affairs
Possible extrapolation of Burbank Field studies (adjacent to the Stanley Stringer Field)

Overall, the project is on schedule. Where efforts have been slowed (Tasks I, II, and III), redirection has allowed Tasks IV, V and VI to develop somewhat ahead of schedule. With the decision by November 1 concerning availability of geologic data, the project should move ahead as originally scheduled.
SUMMARY OF PRINCIPAL TASKS AND TIME COMMITMENTS FOR CONTRACT

EW-78-C-19-0026

1. DETAIL STUDY OF RESERVOIR REVIEW
 - TECHNICAL DATA GATHER
 - PERFORM DETAIL STUDIES
 - RENEW TECHNICAL DATA
 - STUDIES
 - ON PROJECT
 - NECESSARY GEOLOGIC + ENGINEERING

2. TECHNICAL REVIEW OF POLYMER INJECTION PROGRAM
 - STUDY PERFORM TECHNICAL
 - POLYMER ASSESSMENT
 - INJECTION HISTORY
 - OF POLYMER INJECTION PROGRAM

3. EVALUATION OF POLYMER WATERFLOOD PROGRAM
 - DEVELOP PERFORM EVALUATION FINALIZE
 - TECHNIQUES FOR COST EFFECTIVENESS
 - CALCULATING RESULTS
 - EVALUATIONS INCREASED RECOVER

4. REVIEW OF FIELD UNDER WATERFLOOD AS CANDIDATES FOR POLYMER-WATER PROCESS
 - DETERMINE OBTAIN SCREEN AND VERIFY DATA
 - WHICH FIELD ARE UNDER WATERFLOOD

5. REVIEW OF OTHER FIELDS IN CONTRACT REGION AS CANDIDATES FOR POLYMER-WATER DISPLACEMENT PROCESS
 - DETERMINE OBTAIN SCREEN AND VERIFY DATA
 - WHICH FIELDS DATA TO OBTAIN DATA ON

6. MAKE PREDICTIONS ON RANGE OF INCREASED OIL PRODUCTION FROM POLYMER-WATERFLOOD PROCESS AS FUNCTION OF TECHNOLOGY + PRICE
 - MAKE PREDICTIONS DRAFT
 - ON FUTURE PRODUCTION FINAL REPORT
 - DUE TO POLYMER WATER

<table>
<thead>
<tr>
<th>Month</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 10</td>
<td>Received fully executed copy of contract</td>
</tr>
<tr>
<td>July 10</td>
<td></td>
</tr>
<tr>
<td>Aug. 10</td>
<td></td>
</tr>
<tr>
<td>Sept. 10</td>
<td></td>
</tr>
<tr>
<td>Oct. 10</td>
<td></td>
</tr>
<tr>
<td>Nov. 10</td>
<td></td>
</tr>
<tr>
<td>Dec. 10</td>
<td></td>
</tr>
<tr>
<td>Jan. 10</td>
<td></td>
</tr>
<tr>
<td>Feb. 10</td>
<td></td>
</tr>
<tr>
<td>Mar. 10</td>
<td></td>
</tr>
<tr>
<td>Apr. 10</td>
<td></td>
</tr>
<tr>
<td>May 10</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5 - Milestone Schedule and Status Report. Original Task/Time Schedule shown along with work completed to date (dashed lines represent portion of tasks completed).
APPENDIX

LIST OF FIELDS MEETING PRELIMINARY SCREENING REQUIREMENTS

ARKANSAS

Waterfloods Not Removed

- Buckner - Travis Peak
- Center - Hogg
- El Dorado, East - Old
- El Dorado, South - Nacatoch
- Falcon - Tokio
- Fouke - Paluxy
- Fouke - Tokio
- Fouke N. - Paluxy
- Garland City Old - Paluxy
- Genoa - Paluxy
- Gum Creek - Nacatoch, Blossom, Tokio
- Hibank - Meakin
- Hibank - Nacatoch
- Hillsboro - Nacatoch
- Irma - Tokio
- Lewisville Old Town - Paluxy
- Lisbon Old - Nacatoch
- McKinney Bayou - Paluxy
- New London - Cotton Valley
- Nick Springs, West - Meakin
- Pace City - Glen Rose
- Smackover - Travis Peak
- Snow Hill - Cotton Valley
- Stamps - Paluxy
- Stephens - Buckrange
- Stephens - Hogg
- Stephens - Smart Area
- Urbana - Gregory and Urbana
- Urbana - Travis Peak
- Wesson - Buckrange-Blossom
- Wesson - Travis Peak
- Woodley, West-Nacatoch

COLORADO

Waterfloods Removed

- Adena-D
- Badger Creek-J
- Bison-J
- Border-J
- Cimarron-J
- Darby Creek-D
- Elm Grove-D
- Hiawatha-Wasatch
- Iles - Sundance
- Kjer-D
- Nile-D
- Park-D
- Pawnee-J
- Redwing-J
- Roderick-J
- Rush Willadel-J
- Third Creek-J

KANSAS

Waterfloods Not Removed

- Ash Creek-Arbuckle
- Burkett-Bartlesville
- Cabin Valley-Layton
- *Cahoj - Lansing, Kansas City
- Colony, West-Squirrel
- **Donald-Mississippian
- Moran-Bartlesville
- Muddy Creek-Bartlesville
- Oro-Pennsylvanian
- *Schadel South-Mississippian
- *Sharon-Mississippian
- Smock-Sluss-Bartlesville
KANSAS (continued)
*Dubois-Burgess
*Elsmore Shoestring-Bartlesville
*Fralick, West-Mississippian
*Garnett Shoestring-Cherokee
*Ironclad-Lansing, Kansas City
*Sunny Slope-Marmaton
Thrall-Agaard-Bartlesville
*Vavoch-Lansing, Kansas City
*Wilhelm-Lansing, Kansas City

* Lithology is not contained in PDS file.
**Lithology labeled as chert.

NEBRASKA

Waterfloods Not Removed
Ackman - Lansing, Kansas City
Ave - Griffin-J
Battensperger-J
Bed Canyon - Regan
Bridgeport - D
Brush Creek-Lansing, Kansas City
Dry Creek-Lansing, Kansas City
Enders-J
Ferquist-J
Ittner-J
Johnson-Dakota
Kimball-Dakota
Midway - Lansing, Kansas City
Midway, North-Kansas City
Olsen J
Potter Southwest Muddy - D&J
Silver Creek-Lansing, Kansas City
Simpson-J
Singleton-J
Sleepy Hollow-B-Pennsylvanian
Sloss-J
Spearow D-G-J
Torgeson-J
Vendene-D
Waitman-J

NEW MEXICO

Waterfloods not removed. Some may not be sand.
Bisti Lower - Gallup
Caprock - Queen
Cave - Grayburg
Cha Cha - Gallup
Corbin - Queen
Devils Fork - Gallup
Dollarhide - Queen
Double L - Queen
E-K Seven Rivers - Queen
Hackberry-North
Hare - Simpson
High Lonesome - Queen
Hobbs-Blinebry
Hospah South - Lower
Hospah South - Upper
Langlie Mattix-Seven Rivers
Many Rock - Gallup
Mesa - Queen
Midway - ABO
Pearl - Queen
Saywer - West
Square Lake Grayburg-San Andres
Tres Papalotes-Pennsylvanian
Turkey Track Queen-Grayburg
Vacuum - Glorieta
Young-Queen
GRUY FEDERAL, INC.

OKLAHOMA

Waterfloods not removed.

Agra, West - Cleveland
Alabama - Pennsylvanian
Alden, NE - Bromide
Allen Dist - Cromwell
Almeda - Bartlesville
Apache - Pontotoc
*Agra - Dornick Hills
*Agra, N - Deese
Arcadia, NE - Second Wilcox
Ardmore - Pennsylvanian
Arno, W - Prue
Atlantic - Wayside
Bold Hill - Glen
Bandwheel - Various Pennsylvanian
Barker - Pennsylvanian
Barnsdale - Bartlesville
Bearden, Northwest - Booch
*Beaver - Hoxbar
*Beggs District, North - Youngstown
Bethel, North - Cromwell
Bethel, West - Cromwell
Birch Creek - Bartlesville
*Bixby - Glenn - Taneha - Dutcher - Mississippian - Wilcox
Blackland - Burgess
Blackwell - Pennsylvanian
Bowden - Bartlesville
Bowlegs - Gircrease
Boynton - Leidecker
*Bradley, North - First Bromide
*Bradley, Southwest - Bromide
Britton - Second Wilcox
Brock - Pennsylvanian
*Brock, West - Pennsylvanian Deese
Broken Arrow District - Bartlesville
*Bruner - Vern - Burgess
Buchner - Booch - Cromwell
Bulldog - Peru
Burbank - Layton
Burton, Southwest - Morrow
*Butler - Pennsylvanian - Wilcox
Cache Creek - Pontotoc
*Camp - Deese

*Camp, Southwest - Dornick Hills
Candy Creek - Bartlesville
Carthage, Northeast - Morrow Sand
*Cary - Pennsylvanian
*Cement - Permian
Chitwood, Northwest - Deese Sand
Civic, Northeast - First Deese
Dykeman
Cleveland - Layton
Cole District - Pennsylvanian
Como, Southeast - Upper Morrow
Conservation - Deese
Coon Creek - Second Wilcox
Corn, South - Second Wilcox
Council Hill District - Dutcher
Country Club - Various Pennsylvanian
Coweta District - Dutcher
Coyle - Layton
Coyle, South - Layton
Crescent - Layton
Cromwell - Various Pennsylvanian
Cromwell, East - Cromwell
Cromwell, South - Cromwell
Cushing - Layton
Davis - Bromide
Davis, Northeast - Oil Creek
Denver, Southeast - Bartlesville
Dewey - Wayside Pennsylvanian
Dill - Cromwell
Dill, Northeast - Cromwell
*Domes - Pond Creek - Stray
Dora - Thurman
*Dover & Hennessey - Cleveland
Duncan, West - Pennsylvanian
Earlsboro - Earlsboro
Earlsboro, East - Earlsboro
Earlsboro, South - Calvin
*Edmond, East South Unit - Bartlesville
Elgin, South - Ramsey
*Eöla - Simpson
Eola - Robberson - Pontotoc
Essaquannahdale - Pontotoc
OKLAHOMA (continued)

Evansville, Northwest - Bartlesville
Falls, Northeast - Second Wilcox
Fish - Booch
Fitts, West - Cromwell Pennsylvanian
Frederick, South - Canyon
Fuhrman - Gilcrease
*Garber - Pennsylvanian
Gar Creek - Gilcrease
*Garden Grove - Prue
Garr - Cleveland
*Greenville, Northeast - Dornick Hills
Grief Creek - Upper Booch
Hallett - Cleveland
Hamilton Switch - Glenn
Happy Hill, East - Prue Sand
Harwin, East - Cottage Grove
Haskill - Dutcher
Hawkins, Northwest - Second Booch
**Hawley - Mississippian Chat
Haydenville District - Gilcrease
Healdton - Pennsylvanian
Helsel, West - First Bromide Simpson
*Henderson - Cisco
*Henryetta District - Pennsylvanian
Hewitt - Pennsylvanian
Hewitt, East - Deese
*Hewitt, Northwest - Tussie Sand
*Hickory Creek District - Oswego
Hickory Creek, South - Wawsie
Hobart, Northwest - Springer
Holdenville - Booch
Holdenville, East - Booch
Holdenville, West - Booch
*Homer, Southwest - Springer
*Hoyt - Skinner
Hubbard - Pennsylvanian
Hucmac, North - Morrow
Ingalls - Skinner
Isom Springs - Stray
Jackson - Booch
*Jenks - Perryman - Red Fork - Bartlesville -
Taneha - Dutcher - Mississippian
Jesse - Deese
Jones - Cleveland
Keokuk - Misener
Keyes District - Keyes Sand
*Komalty District - Pennsylvanian
Konawa - Earlsboro
Konaws - Thurman
Konawa, West - Earlsboro
Laffon, Southeast - Dutcher Sand
Langston - Misener
Lauderdale - Layton
Leonard District - Layton
Lewis - Simpson Bromide
Little Cheif, Northeast - Red Fork
Little River - Cromwell
Little River, East - Cromwell
*Loco - Ponotoc
*Loco, West - Pennsylvanian
Lone Grove, Southwest - Deese
Lovell - Hoover
Lyons & Quinn - Senora
Madill, North - Third Bromide
Mammoth, Northeast - Skinner
Maramec - Layton
Marshall - Tonkawa
Maud - Misener
Maysville, East - Bromide
Midwell - Morrow
Milfay - First Wilcox
Moore, Northwest
Morris District - Upper Booch
Mount Hope, NW - Red Fork
Mt. Veron - Red Fork
Mt. Veron, SW - Lower Skinner
Natura District - Glenn
Naval Reserve - Bartlesville
Navel Reserve, S - Second Wilcox
*Nellie, SW - Hoxbar
*New Cushing - Prue
*New Hope - Deese
New Noble - Bromide
Norfolk - Prue
Norfolk, W - Prue
Okemah - Deaneer
Okemah, N - Gilcrease
Okmulgee District - Bartlesville
Olympic - Senora
OKLAHOMA (continued).

*Oneta - Dutcher
Orchard City - Misener
Overbrook, S - Deese
*Palacine, S - Hoxbar - Arbuckle
*Panther Creek, SW - Deese
Pauls Valley, SE - Oil Creek
Pawhuska - Bartlesville
Payne - Hart
Payson - Lower Skinner
Payson, E - Lower Skinner
Pearsonia - Layton
Peck - Viola
Pollyanna - Glenn
Ponca City - Pennsylvanian
Ponds Creek - Pennsylvanian
Praque - Senora
Prairedale - Hoxbar
Purdy, SE - Springe
Ralston District - Skinner
Randett, SW - Pennsylvanian
Ringwood - Prue
Robberson - Pontotoc
Rosanna - Booch
Rosenwald - Cromwell
Royal - Rose Pennsylvanian
Sacred Heart - Earlsboro
Sasakwa - Booch
Schlegel, N - Red Fork
Searlight, N - Wilcox
Seminole - Calvin
Shawnee - Earlsboro
Shawnee, NE - Wilcox
Sholem & Alechem, NW - Pennsylvanian
Sivells Bend - Pennsylvanian
Soldier Creek - Pontotoc
Sooner Trend - Layton
Sparks, E - Prue
Spaulding - Booch
Spencer District - Red Fork
Saint Louis - Calvin
Stillwater - Red Fox
*Stone Bluff - Pennsylvanian
Sylvia - First Wilcox
Tatums, NE - Goodwin
Terlton - Layton

Terlton, N - Prue
Tidal Osage - Ordovician
Tiger Flats - Senora
Tonkawa, E - Red Fork
Transco, NW - Lower Calvin
Trimue, N - Canyon
Tuskegee, E - Dutcher
Velma, W - Deese
Victory Hill - Earlsboro
Weleetka, W - Booch
*Wellston, N - First Wilcox
West Point, S - Bartlesville
Wetley - Hunton
Wewoka - Booch
Wewoka Townsite - Pennsylvanian
Wildhorse - Pennsylvanian
Wilzetta - Prue
Witcher - Bartlesville
*Woodrow - Arbuckle
Woolaroc - Skinner
Woolsey - Pontotoc - Glenn
Yale & Quay - Prue
*Yale, SW - Prue
Yeager - Pennsylvanian
Youngstown - Glenn

*Lithology is not contained in PDS file.
**Lithology labeled as chert.
TEXAS DISTRICT 10

Waterfloods Not Removed

Bechthold - Tonkawa
Bradford - Tonkawa
Farnsworth Morrow - Upper
Follet, West-Cherokee
Hansford, North-Cherokee
Kiowa Creek Morrow Oil - Upper

Panhandle (Osbourne Area)
Panhandle - Red Cave
Panhandle (Carson Co.)
R.H.F. - Morrow
Shane Southeast - Morrow