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CRITICAL RADIUS AND CRITICAL NUMBER OF GAS ATOMS FOR CAVITIES CONTAINING A VAN DER WAALS GAS*

W. A. COGHLAN, Arizona State University, Terape AZ 85287
and

L. K. MANSUR, Oak Ridge National Laboratory, Oak Ridge, TN 37831

The effect of gas on void nucleation and growth is particularly important for structural materials
in fusion reactors because of the high production of helium by neutron-induced transmutation reac-
tions. Gas reduces the critical radius for bias driven growth and there is a critical number of
gas atoms, n*. at which the critical radius is reduced essentially to zero. The significance of
this is that the time interval to the accumulation of n* gas atoms may determine the time to the
onset of bias driven swelling where n* is large. In previous papers these critical quantities
were given for an Ideal gas. Recently, we presented the results for a Van der Waals gas. Here
the derivation of these relations is presented and further results of calculations are given. At
low temperatures (high pressures) the results depart from those of the Ideal gas, with the criti-
cal number affected more strongly than the critical radius. Comparisons are made with earlier
calculations.

1. INTRODUCTION

The formation of cavities in structural

materials under irradiation leads to swelling

and degradation of mechanical properties.

Understanding cavity nucleation and growth has

been the objective of extensive research.

Early it was recognized that gas is necessary

to stabilize small vacancy clusters. We now

know that the the onset of bias driven cavity-

growth may be achieved by two qualitatively

different paths. The cavity may exceed the

critical size for bias driven growth by

stochastic fluctuations. Alternatively, the

cavity may accumulate more than a critical

number of gas atoms, whereby bias-driven growth

is insured; no fluctuations are required.

These two possibilities merge continuously into

each other, since any contained gas decreases

the critical radius. A review and further

development of these concepts is contained in a

recent publication.1

Several theoretical efforts treat the gas in

the cavities as an ideal gas. Since the

most common gas treated is helium formed by

transmutation reactions, the use of the Ideal

gas law has provided valuable insight. Several

previous investigations recognized that even

for helium, the ideal gas law gives inaccurate

results at the pressures required to stabilize

cavity embryos.2-5 The obvious choice for

another gas law is the modified Van der Waals

equation of state. This equation was chosen

for our work. More complicated equations of

state are available.5-7 However, since as we

have shown,1 analytical solutions for critical

radius and critical number of gas atoms can be

obtained using the Van der Waals gas law, and

numerical refinements in these results are

expected to be small in the regimes of most

interest, this is the relation employed here.

In our previous paper we presented some com-

parisons of results using both ideal and Van

der Waals gas laws, based on both numerical

calculations and on derived analytical solu-

tions. In the present paper we describe the
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derivation of those solutions for the Van der
Wa«1s gas law. Further comparisons are made
between results for the two gas laws.
Comparisons of the present results also are
made with results reported previously.2—5

2. THEORY
The growth rate of a cavity embedded in a

material containing diffusing point defects and
other sinks can be described using the
algebraic solutions of the point defect con-
tinuity equations.8 In this framework the
growth rate of a cavity is

(1)

where rc 1s the cavity radius, n is the atomic

volume, and Z<- and Zc are the capture efficien-

cies of cavities for vacancies and intersti-

tials, respectively. The symbols D v, Dj, Cv,

and C,- are the diffusion coefficients and

defect concentrations for vacancies and

interstitials in the material. C^ (rc) is the

equilibrium vacancy concentration at the sur-

face of a cavity of radius rc,

Cv(rc)=CveXp[-("g-^] • <*>

In Eq. (2), C° is the equilibrium concentration

of vacancies in an otherwise perfect lattice,
Pc, is the gas pressure in the cavity, Y is the
surface energy of the cavity-matrix interface,
k is Boltzmann's constant, and T is the abso-
lute temperature. The role that gas plays in
promoting cavity growth is described in Eq. (2).
The gas pressure counteracts the surface
energy. For a given number of gas atoms 1n the
cavity, different gas laws predict different
pressures. For a modified Van der Waals gas
the pressure is increased above that for an

ideal gas because of the volume correction term
and equals

. . r » - (3)

The constant B has been determined as a func-

tion of temperature for helium,9

B = 6.65 x 10-27 [4.5 x 10-i* + 5.42/(1890 + T)].
(4)

The expression gives a value of 1.6 « 1Q.-29

m3/atom at 600°C.

The growth rate of a cavity containing a
fixed number of gas atoms can now be evaluated
from Eq. (1) by using the defect concentrations
described in ref. 1 alonq with Eqs. (2) and
(3). A plot of drc/dt versus rc shows the
following properties. For a f,1xed number of
gas atoms below a critical number n*, very

small cavities are overpressured and grow by
absorbing vacancies until reaching a stable
radius, r*, where r| is always somewhat above

the corresponding thermal equilibrium value,

rea., for the same number of gas atoms. Large

cavities above a critical/size, r^, also grow

because of the defect biis in the material

formed by the preferential attraction of

interstitials to dislocations. Cavities of

intermediate size shrink jto r*. Cavities con-

taining more than n* gas [atoms have positive

growth rate at all sizes.; At n* gas atoms the

critical radius r* and tha stable radius r|

coincide at the minimum critical radius rc*.

The values of r| and rf can be determined by

finding the roots to the equation10

2Y
(5)

Equation (5) results from >q. (1) when thermal
vacancy emission negates radiation-induced



growth, drc/dt =• 0. The quantity Z denotes
d, where Zd and Z<i denotes the disloca-/zz

tion capture efficiencies for vacancies and
interstitials. Further restrictions are neces-
sary to obtain the simple form of the argument
of the logarithm in Eq. (5): dislocations,
cavities, and mutual recombination are the only
modes of point defect loss; and dislocations
are the dominant of the two sinks. Using the
definition f = (kT/n)m[(l - Z) Cv/C° + Z],

and substituting Eq. (3) for Pq, Eq. (5) may be

written

(kT - Bf) 3yn B
• _ » r + « . » 0

(6)

Equation (6) has four roots, two of which are

r| and rj:. The remaining roots are non-

physical. An important special cass is where

r| and rj: are equal. This occurs when

g' = dg/drg * 0. Taking the derivative of Eq.

(6), setting it equal to zero, solving it for

ng and substituting into Eq. (6) gives the

quadratic

+ 3(kT - Bf) - 3 f rc -

The roots of Eq. (7) give the minimum critical

radius rc*

(8)

where

_ 4-13fJ„ , ,/f, j,
* f(kT - Bf)/[(kT -Bf)

The critical number of gas atoms is obtained
from Eqs. (8), (9), and dg/drc = 0 from Eq. (6)
as

g 3(kT-Bf)
(3Y-2fr£*) . (10)

This solution for r£* and n* approaches the

ideal gas solution as B approaches zero. For

finite values of B, however, care must be taken

to choose the correct root. For high tem-

peratures the positive sign is taken but, as the

temperature is lowered to the conaition where

kT * 3Bf, a singular point is reached where the

correct root becomes the negative one.

3. RESULTS

In order to examine the effects of a Van der

Uaals gas on the critical radius, Eqs. (8) and

(10) have been plotted for several different

sets of conditions. In all cases, the dif-

fusion coefficients, radiation parameters, and

sink strengths are the same and are listed

in Table 1. The curves shown are for a dislo-

cation density of L * 1 x M o l s nr2 unless

otherwise specified. The remaining parameters ;

are varied as described in the figure. The

equivalent results for an ideal gas are also

shown. Figures 1 and 2 show the iMnimum criti-

cal radius, r£*, and the critical number of gas

atoms, n*, as functions of temperature for two

different dislocation densities.

We also have evaluated rs, the stable cavity

radius under the same conditions. This was

done by evaluating Eq. (1) for a range of gas

contents, nfl, and finding the corresponding

root r* numerically. Figure 3 is a plot of r|

for several cases. Since the number of gas

atoms changes from zero to n* and since ng

varies several orders of magnitude, results

were normalized by plotting

For this normalization all the plots for an

ideal gas fall on the same master curve. This

is shown dashed Figure 3. The Van der Waals

* vs n_/n*.



TABLE 1
used for example calculations

Atomic volume, a
Surface energy, v
Displacement rate
Recombination radius, r0
Diffusion pre-exponential,

D°, DO
Vacancy formation

energy, Ej
Vacancy migration

energy, Em

Interstitial migration
energy, E^

Sink efficiencies

1.095 x 10-" m3

J/m2
x 10-s dpa/s

10-1° m
1 x lu-6 m2/s

1.6 eV

1.2 eV

0.15 eV
Zd = 1.05

1.00 550 600 650
TEMPERATURE CC)

plots show some dependence on temperature and

dislocation density.

4. COMPARISON WITH PREVIOUS RESULTS

Several other investigators^ have evalu-

ated r|* and n* for a Van der Waals gas or for

more complicated equations of state. We com-

pare our results with others by evaluating both

results for the same set of parameters.

Parker and Russell2 evaluated the effect of

a Van der Waals gas on the kinetic analog of

the free energy to form a void. The result was

based on an earlier calculation by Russell**

for a cavity containing an ideal gas. If we

use the appropriate expressions for point

defect arrival rates the effective vacancy

saturation, Se, in Russell's Eqs. (17) and (18)

is (1 - 2)CV/C° + Z. With this equation our

results for an ideal gas agree with those of

Russell. The Van der Waals result reported by

Parker and Russell has the same general depen-

dence on temperature but differs from ours

throughout the range by a factor of about 40%.

In addition, the minimum critical radius of

Parker and Russell is independent of the Van

<ier Waals constant and neither the minimum cri-

tical radius nor the critical number of gas

FIGURE 1
The minimum critical radius versus temperature.
The solid curves are for an ideal gas while the
dashed curves are for a Van der Waals gas.

atoms extrapolate to the Ideal gas result as B
approaches zero. The critical' number of gas
atoms normalized to that found for an ideal gas
is plotted as a function of temperature for
several cases in Figure 4.

More recently Townsend^ evaluated both rc*

and n* in an Implicit solution contained in two

equations. The solution was somewhat limited
by the assumptions of no recombination of
vacancies and interstitials. We compared our
results for the same physical parameters and
the agreement was very good (within a few
percent). However, when the damage rate is
increased or the dislocation density is lowered
the solutions began to diverge. This is
expected since, for these cases, defect recom-
bination becomes more important.

A third approach to use a more accurate qas
law was published by Stoller and Odette.4.5

They recognizedthe difficulty in depending on
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FIGURE 2
The c r i t i c a l number of gas atoms required to
nucleate a bias-driven cavity plotted as a
function of temperature.; The solid curves are
foe an ideal qas and the dashed curves are for
a <"in der Waais qas.
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FIGURE 3
The stable bubble radius normalized to the
minimum critical radius as a function of the
rumber of qas atoms normalized to the critical
number of gas atoms.
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FIGURE 4
A plot of several different, expressions for the
ratio of n* for a Van der Waals gas to that
for an Ideal gas as a functiptuof temperature,
(a), (c), and (e) are for a dislocation den-
sity, L - 10'"• m-2 while (b), (d), and (f) are
for L * 1015 m-2. Curves (a) and (b) are !;he
results of the present work, lc) and (d) are ,
those for Parker and Russell,2 and (e) and (f)
are those for Stoller and Odette.4

implicit functions or numerical solutions and

devised empirical expressions which could be

used for a reasonably wide set of parameters.

The published version of their results contains

a typographical error.^ After making correc-

tions, results using their expressions were

plotted in Figure 4. The results agree very

well for high temperatures where they approach

ideal a?s behavior. The results begin to

deviate at lower temperatureswhere it is

reasonable to expect differences between the

Van der Waals equation of state we used and

the different equation used by Stoller and

Odette. Trinkaus? has given expressions for

r£* and n* in terms of a parameter which

expresses the power law dependence of gas

pressure on contained number of gas atoms.

Evaluating the expression for a = 1, denoting

an ideal gas, gives the identical results we

obtained for an ideal qas.



S. DISCUSSION AND CONCLUSIONS

This piper 1s concerned with the more

accurate evaluation of the minimum critical

radius, r£*. and critical number of qas atoms,

n*, for bias driven cavity growth, and related

quantities. A significant Impetus for accurate

evaluation of n* Is that at high temperatures

or other conditions where n* is larqe, and

where residual qases are not sufficient, the

time Interval to the onset of bias driven

swelling may be closely related to the time to

accumulate n* helium atoms in a cavity.

Analytical epressions have been derived for the

minimum critical radius and for the critical

number of qas atoms. For cavities containing

less than this amount of gas, numerical methods

are used to find the stable cavity radius and

the critical cavity radius.

We found previously that the minimum criti-

cal radius 1s exactly 2/3 of the qas free cri-

tical radius for the ideal gas.l In the

present case, this ratio is retained approxima-

tely for much of the ranqe. At pressures so

hiqh (temperatures so low) that the Van;der

Waals solution for r£*, Eq. (8), is about to

break down, the ratio of rj* to rj°. the qas-

free critical radius, is approximately 0.9,

Therefore the present work shows that the ideal

gas r£* is always a reasonable estimate of the

critical radius. Another result we found pre-
viously for an ideal qas is that a cavity at
the minimum critical radius containinq n* gas

atoms has an internal pressure exactly 1/3 of
the thermal equilibrium pressure for a cavity
of the same size.* Aqain this ratio is pre-
served for a Van der Waals qas over much of the
range of interest. For lower temperature, say
500°C for example, near where where Eqs. (8)
and (10) break down, this ratio is decreased to
0.15. This means that for a cavity that has
just enough qas to change from bubble growth to

bias driven qrowth the pressure Is just 15S of
the equilibrium pressure. This result should
be considered when determining the helium
inventory 1n irradiated materials.

Comparison of results with numerical calcu-
lations has demonstrated considerable advantage
in working with the present analytical results,
particularly for examining a wide ranqe of
cases of interest. Some siqnificant differ-
ences with earlier calculations for Van der
Waals qas stem from more restrictive approxima-
tions in the earlier work.

The strong dependence of critical radius and
critical number of qas atoms on dislocation
density, as Illustrated 1n Figures 1 and 2
deserves hiqhHghting. This sensitivity
Implies that the time to the onset of bias-
driven swelling will vary significantly from
point to point in a given material during Irra-
diation. This would be expected to lead to
patchiness of cavitation, especially in the
early stages of swelling, a result often
remarked in experimental studies.

It may also be of use to suggest that these
analytical solutions may be extended to eva-
luate the effect of other more complex equa-
tions of state for which direct analytical
solutions for rjj* and n* are not available.5-7
If such an equation of state can be cast in
terms of a generalized Van der Waals equation
with variable B, where B can be specified
accurately over a certain range as a function
of system parameters, then the minimum critical
radius and the critical number of gas atoms can
be obtained analytically from the present
results.
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