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Abstract

DifferentiaL algebraic equation (DAE) boundary value problems
arise in a variety of applications, including optimal control and pa-

rameter estimation for constrained systems. In this paper we survey

these applications and explore some of the difficulties associated with

solving the resulting DAE systems.
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For finite difference methods, the need to maintain stability in

the differential part of the system often necessitates the use of meth-
ods based on symmetric discretizations. However, these methods can

suffer from instability and loss of accuracy when applied to certain

DAE systems. We describe a new class of methods, Projected Implicit
Run,ge-Kutta Methods, which overcomes these difficulties. We give

convergence and stability results, and present numerical experiments
which illustrate the effectiveness of the new methods.

1 Introduction

Differential-algebraic equation (DAE) boundary value problems arise in a

variety of applications, including the determination of optimal control pro-

files for chemical engineering processes, [15,10,17,18], parameter estimation

for differential-algebraic systems in chemical [19,20] and mechanical [7] en-

gineering, and trajectory-prescribed path control for projectiles [6]. The

solution of these problems can be numerically quite challenging, in part be-

cause often the problems are described by higher-index DAEs 1, for which
traditional numerical ODE methods such as collocation can exhibit difficul-

ties such as instability, oscillation and loss of accuracy. In this paper we will

explore these problems, and describe a new class of numerical methods which

have the possibility of resolving the difficulties in the context of collocation

methods such as those used in the ODE BVP solver COLSYS [4].

Although there is now a large body of work addressing the solution of

initial-value problems in DAEs (see for example the recent monographs [8,

13,12]), until recently relatively little attention has focused on the solution

of DAE boundary value problems. Much of the work to this date has dealt

with the solution of semi-explicit index-one systems

y' = f(y,z)
1The index of a DAE is a measure of the degree of singularity of the DAE. For systems

of ODEs subject to constraints y_ - f(y,z), 0 "- g(y,z), the index is the number of
times the constraints must be differentiated with respect to t (substituting for y_ from the
differential equation) before ariving at an ODE for y_, F. Thus, a standard-form ODE has
index 0. Higher-index (generally, this means index 2 or greater) problems pose difficulties
for numerical methods. For further details, see [8]. The index is closely related to the
order of the path constraints.
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where Og/Oz is nonsingular. Ascher[2] gives a convergenceresult for collo-

cationschemes applied to (1), where the collocation methods are applied in
such a way that the algebraic components of the system are approximated
in a piecewise discontinuous space. Bock, Eich and SchlSder [7] describe
numerical methods based on multiple shooting and collocation for equality
and inequality constrained DAE BVPs arising from parameter-identification
problems for multibody systems. Their approach is restricted to semi-explicit
index-one systems. Mgrz and Griepentrog [12] consider fully-implicit index-
one DAEs, and give some theoretical results for certain index two systems,
but it is implied that a successful numerical approach involves regularizing
the DAE to a nonsingular or index-one system and then numerically solving
the regularization. Lamour [14] develops a shooting method for index-one
DAEs. Clark and Petzold [9] extend the theory for shooting and finite-
difference methods for linear boundary value problems in ODEs to the DAE
case, including higher-index DAEs. The theory shows how stable and accu-
rate methods for DAE initial-value problems can be extended to boundary
value problems. However, the question of how to obtain stable and accurate
methods for higher-index DAE systems is not considered.

The determination of optimal control profiles often leads to higher-index
DAE boundary value problems. Examples within chemical engineering in-
clude problems in reactor design, process start-up, batch process operation,
etc. The solution of these DAE optimization problems has been considered

recently in [15,10], however much work remains to be done on the theoretical
justification of these methods for nonlinear systems, the development of sta-
ble and highly-accurate difference formulas for higher-index systems, error
estimation and stepsize control [20], etc. Following Logsdon and Biegler [15],
the problems take the form

frain _,(z(b)) + _(z(t),u(t))dt
_(_),_(_)

subject to
t
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gj(z(b))< o
z(a)'- Zo

z(t)L< z(t) <_z(t)U
_,(t)L<__(t)< u(t)U

where ¢(z(b)) is the component of the objective function due to the final con-
ditions, f_ ¢(z(t), u(t))dt is the component of the objective function due to
the integral of state and control vectors, g is the inequality design constraint
vector, z(t) is the state profile vector, u(t) is the control profile, g] is the
final conditions inequality constraint, z0 is the initial condition for the state
vector, and z(t) L, z(t) U and u(t) L, u(t) u are the state and control profile
bounds, respectively.

The variational conditions for this problem are

0¢ OF A Og
O----_+ -_u + -_uM = O (2a)

0¢ OF A
0--"_+ -_z + az M + £(t) = 0 (25)

g(u(t),_(t))<__o (2_)
M(t)g(z(t)) -- O, M(t) >_0 (2d)

k(t) = F(z(t),u(t)), z(a)= zo (2e)

[0¢ 0g_ ]A(b) = "_z + "_z Mf (2f)
tl-b

where M(t) and h(t) are adjoint functions of the constraint g(u(t),z(t)) < 0
and the ODE model, respectively. These conditions form a DAE syztem,
which can be higher index when the constraints (2c) are active. After dis-
cretization by collocation methods, the nonlinear programming problem can
be solved by techniques such as successive quadratic programming [15,10].
Biegler et al. [15,20] use this approach, but they note difficulties in the
solution of index-2 and higher problems, including loss of accuracy of the
formulas and difficulties with error estimation and stepsize control. Param-
eter estimation problems in differential-algebraic equations lead to a set of
equations similar to (2), and are efficiently solved by a boundary value DAE
numerical approach[19,7].
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In this paper, we will consider the solution of index-2 Hessenberg DAE
systems. These are systems of the form

x' = gl(x,y,t) (3a)

0 = g2(x,t) (3b)

0 = b(x(O),x(1)) (3c)

The system is index-two if (Og2/Oz)(Ogl/Oy) is nonsingular. The methods
we propose are easily extended to accomodate semi-explicit DAE systems of
mixed index one and two. These systems arise naturally when a system of
ODEs is subjected to constraints. In (3), the variable y plays the role of a
Lagrange multiplier. Higher-index Hessenberg DAEs [8] can be brought into
this form by differentiating the constraints and adding additional Lagrange
multipliers to satisfy the new constraints [11]. Although the index-two sys-
tems can be transformed into index-one systems through an additional con-
straint differentiation, numerical methods applied to the resulting systems
no longer preserve the original constraints.

We will first develop an analysis of the conditioning of problems (3),
which is an important tool for understanding the stability both of different
formulations of DAEs which have the same analytical solutions (such as the
formulations which involve differentiation of the constraints discussed above),
and of numerical methods applied directly to (3). Because a well-conditioned
boundary value problem may have both fast increasing and fast decreasing
modes, it is important to be able to use symmetric schemes such as Gaus-

sian collocation. However, previously defined symmetric schemes [13,8] have
been shown to be unstable [3] for some well-conditioned DAEs of the form

! (3). 2 In addition, there is a loss of accuracy which is particilarly severe for
symmetric methods applied to higher-index DAEs [13]. We will describe a
simple modification to implicit Runge-Kutta methods which resolves these
difficulties. Application of this idea, to collocation methods yields a class of

methods which are stable and achieve superconvergence order for (3), and
are potentially implementable in a code such as COLSYS [4]. We present

_Strictly speaking, the instability wasshown forfully-implicit index-one systerr_, flow-
ever, the example in [3]can be trivially modified to create a Hessenberg index-2 system
exhibiting the same instability.



a numerica!example showing the effectiveness of these methods, and finally
give some conclusions and directions for future work.

This paper gives an overview of problem_, recent results and future plans; .
for a detailed examination of the methods and their analysis, see [1].

2 Problem conditioning

It is well-known (see e.g. [12], [2]) that DAE problems with index exceed-
ing one are in a sense ill-posed. Hence it is important to investigate the
conditioning (stability) of such problems carefully. Such a conditioning anal-
ysis enables the evaluation of stability of the various possible formulations
of the DAE, as well as of the stability of numerical methods for its solution.
Consider the linear index-two Hessenberg boundary value problem

x' = GllX+ G12y+ql (4a)

0 = G21x+ q2 (4b)

= Box(0)+B x(1)

where GI1, G12 and G2_ are smooth functions of t, 0 _< t _< 1, Gll(t) E
Tt mxxm*, G12(_) ETt m*x'_, G21(t) E TC_*x''*, my < ms, G2_GI2 is nonsin-
gular for each _ (hence the DAE is index two), and B0, B1 E T_('_*-'_)xm*.
All matrices involved are assumed to be uniformly bounded in norm by a
constant of moderate size. The inhomogeneities are ql(t) e _mx, q2(t) e
7"¢m_,/3 E 7_m_-m_.

We seek conditions under which this BVP is guaraateed to be well-
conditioned (stable) in an appropriate sense. Since G21G12 is nonsingular,
GI_ has full rank. Hence there exists a smooth, bounded matrix function

R(t) E _(,_,-,_)×m, whose linearly independent rows form a basis for the
nullspace of G T. Further, R(t) can be taken to be orthonormal [1]. Thus,
for each t, 0<t < 1,

RG12 = O. (5)

We assume, more strongly, that there exists a constant K1 of moderate size
such that

_ (6)



' Then [1] there is a constant K2 of moderate size such that

11 a_, II-<g_. (7)

Multiplying (4a) by R we have

Rx'= n(C,_x+ q,). (8)
Let

v Rx 0 < t < 1. (9)

Then, using (4b), the inverse transformation is given by

x = G21 --q2 -- Sv + £1 (10)

where S(t) _ TC"_,×(m_-m_) satisfies

RS = I, G21S = O. (11)

Differentiating (9) and substituting (8), we obtain the essential underlying
ODE

v'= [(RG,_+ R')S],,+ Inn,+ (RG,I+n')_], (12)
which is subject to mx - m N boundary conditions, obtained from (4c) using
(i0):

(BoS(0))v(0)-I-(B_S(1))v(I) -/9- Bo_(0)- BI_I(1). (13)

Now, if the ordinary BVP (12), (13) is stable, i.e. if its Green's function is
bounded by _ constant of moderate size, then a similar conclusion holds for
the DAE. We obtain the following stability theorem:

Theorem 1 Let the B VP (4) have smooth, bounded coefficients, and assume
that (6) holds and that the essentialunderlying BVP (12)-(13) is stable. Then
there is a constant K of moderate size such that

[[x[[ _ K( q_[I + [[q2 [+ /_1) (14a)

IY[[ -< K([[q_[. ][ql[[ + [[q2[[_" 1/_[) , (14b)

p
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Proof: • ',

Our assumpiAons guarantee the well-conditioning of the transformation
(9), (10). Hence, the inhomogeneities appearing in (12), (13) are bounded in
terms of the original ones. The stability of the BVP (12), (13) guarantees a
similar bound for Iv I' Conclusion (14a)is then obtained using (10).

Now, given x we obtain y through multiplying (4) by G21, yielding

y = ax x- q,). (15)

Differentiating (45) we substitute G21x' = -G_lx - q_ in (15). The bound
(14b) is obtained from this expression using (14a) and (6). =

3 Projected IRK methods

Consider the DAE problem (3). Let b = (bx,...,bk) T, c = (cl,...,ck) T, A =
(aij k)i,j=l be the coefficients of a k-stage Implicit Runge-Kutta (IRK) scheme
(see, e.g., [8]). We assume that 0 <_ cl _< c2 _< ... _< ck < 1 and that.A
is nonsingular (which excludes Lobatto schemes but leaves in ali other IRK
schemes of practical interest). Denote the internal stage order by k/(kx>_ 1
for consistency) and the nonstiff order at mesh points by kd (kd < 2k). For
collocation schemes, in particular, kt = k and the ci are distinct.

Given a mesh

7r'0=t0<tl <...<:tN= 1

h_'=t_-t,__l (16)

h := max{h., 1 < n _ N}

a projected IRK method for (3) samples (3c), requires

0 = g_(xo,0)

and approximates (3a),(3b)on each mesh subinterval [t,,__,t,_], 1 _<n _<N,
by

X'i = gl(Xi,Yi,ti) (17a)

0 = g2(Xi, t_), i= 1,2,...,k (17b)



, k

j-1

° 0 = g_(x.,t,,), (17d)

where ti t,_-i + h,ci, X; xn-a + hn k , °-_(x,,, y_, tri).-- = _"_j=l aijXj and G_'2= oy
(We are using i as a local index at each step n. Also, y, is the value of the
polynomial interpolant of Yi, i = 1, .., k, at t,,.)

Observe that if we drop the :equirement (17d) and set A_ = 0 then an
IRK method is obtained as discussed in [8,13]. Thusl if _,, is the result of
one IRK step starting from x,-1, then x,_ is given by

x. = + (iS)

and can be viewed as the projection of _,, onto the algebraic manifold at the
next mesh point t,_.

We now give a basicexistence, stability and convergence theorem for the
linear case:

Theorem 2 Given a stable, semi-explicit, linear Hessenberg index two sys-
tem (4) to be solved numerically by the k-stage projected IRK method, then
for h sufficiently small

i. The local error in x is O(h_n(kd+l'kI+2)).

2. There exists a unique projected IRK solution.

3. The projected IRh" method is stable, with a moderate stability constant,
provided that the B VP has a moderate stability constant K.

4. The global error in x is O(hmin(kd'k_+l)).

5. The errors in the intermediate variables X_ and Xi are O(h min(kd'k_))
and O(hmin(kd'k1+l)), respectively.

In the practically important case where the unprojected IRK scheme is a
collocation scheme, (17) defines a class of projected collocation methods. For

. these methods, we can give a much sharper order result, namely

9



Theorem 3 Under the assumptions of Theorem 2, the projected collocation
method satisfies for 0 <_ t <_1

X,_(t)-x(t)l = O(h'_in(k+l'kd)) ' (19a) '

x_(t) - x'(t)l = O(h k) (19b)

y,_(t)- y(t)l = O(hk). (19c)

Let the coefficient functions and the inhornogeneities in (4) be in Ckn+l[O, 1].
Then the nonstiff superconvergence order holds for the projected collocation
method,

Ix,,-x(t,)l O(h kd) 0 < n <_N. (20)

The proofs of these theorems can be found in [1]. The basic approach in
the proofs is to show that adequate approximations for the essential under-

lying ODE (12) are (implicitly) obtained by the projected methods.
Finally, the results from Theorems 1-3 can be combined using standard

arguments to yield a convergence theorem for projected collocation methods
applied to nonlinear problems.

Theorem 4 Let x(t), y(t) be an isolated solution of the DAE problem (_)
and assume that gx and g2 have continuous second partial derivatives and that
the smoothness assumptions of Theorem 3 hold for the linearized problem in
the neighborhood of x(t), y(t). Then there are positive constants p and ho
such that for all meshes with h <_ho

1. There is a unique solution x_(t),y_(t) to the projected Collocation equa-
tions (17) in a tube S0(x,y ) of radius p around x(t), y(t).

2. This solution can be obtained by Newton's method, which converges

quadratically provided that the initial guess for x_(t), y_(t) is suffi-
ciently close to x(t), y(t).

3. The error estimates (19)-(20) hold.

4 Numerical Experiment

To illustrate how well the projected implicit Runge-Kutta methods work,
gs compared with their non-projected counterparts, we solved the following
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' linear problem

, 2-t x+ y+
-i A-I 2

t-2

0 = (t+2 t2-4)z-(t2+t--2)e t, A>0

with initial value xi(0) = 1. This problem has the true solution

--e t

z = ( et ct), Y - 2 - t

In Table 1, we present the results of solving this problem, with A = 50,
with the projected and unprojected forms of the 3-stage Gaussian collocation
method, with various uniform meshes. The error shown is the error in'xi
and x2. Behavior of the methods for other positive values of A and for other
Gaussian collocation methods was similar.

Method Mesh size Errorx Error2

lhrojected 10 :26e:3 .18e-3
Projected 20 .71e-7 .59e-7
Projected 40 :74e29 :45e-9
Projected 80 .i0e-9 .59e-10

"Unprojected 10 .19e+9 .18e+9

Unprojected ........20'' .6 le+10 .59e+ 10

Vnprojected 40 .18ee+8 .18e+8
Unprojected 80 .79e.6 .78e+6

Table 1' Errors for projected vs. unprojected Gaussian collocation

The results clearly show that the projected methods overcome the insta-
bility problem and achieve a high rate of convergence.

5 Conclusion

We have introduced a new class of numerical methods, Projected Implicitw

Runge-Kutta Methods, for the solution of index-two Hessenberg differential-
algebraic systems. The new methods appear to be particularly promising
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for boundary value problems, and overcome many of the difficulties associ-
ated with previously defined methods for this class of problems. We h_ve
developed some important tools for stability analysis and ir, groduced the
essential underlying ODE, which enable the understanding of numerical sta-
bility behavior for linear systems and numerical methods applied to various
formulations of the DAE. Future work is planned to include a nonlinear sta-
bility analysis, unified numerical methods for index 0 - 2, and methods for
inequality constraints and singular segments. A robust general-purpose code
is planned, based on collocation methods. It is expected that the new meth-
ods and software will ultimately lead to the solution of a wide variety of
applications from control and parameter estimation.
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