Developments in tokamak transport modeling

PDF Version Also Available for Download.

Description

A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the ... continued below

Physical Description

Pages: 21

Creation Information

Houlberg, W.A.; Attenberger & Lao, L.L. January 1, 1981.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements.

Physical Description

Pages: 21

Notes

NTIS, PC A02/MF A01.

Source

  • ANS/ENS joint topical meeting on mathematical methods in nuclear engineering, Munich, F.R. Germany, 27 Apr 1981

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-810415-7
  • Grant Number: W-7405-ENG-26
  • Office of Scientific & Technical Information Report Number: 6451615
  • Archival Resource Key: ark:/67531/metadc1211033

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1981

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Oct. 22, 2018, 1:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Houlberg, W.A.; Attenberger & Lao, L.L. Developments in tokamak transport modeling, article, January 1, 1981; United States. (https://digital.library.unt.edu/ark:/67531/metadc1211033/: accessed March 24, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.