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COOLANT MIXING IN LMFBR ROD BUNDLES AND

OUTLET PLENUM MIXING TRANSIENTS

Contract AT(11-1)-2245

Quarterly Progress Report

The work of this contract has been divided into the following

tasks:

TASK I: BUNDLE GEOMETRY (WRAPPED AND BARE RODS)

TASK IA: Assessment of Available Data

TASK IB: Experimental Bundle Water Mixing
Investigation

TASK IC: Experimental Bundle Peripheral
Velocity Measurements
(Laser Anemometer)

TASK ID: Analytic Model Development - Bundles

TASK II: SUBCHANNEL GEOMETRY (BARE RODS)

TASK IIA: Assessment of Available Data

TASK IIB: Experimental Subchannel Water
Mixing Investigation

TASK IIC: Experimental Subchannel Local
Parameter Measurements
(Laser Anemometer)

TASK IID:  Analytic Model Development - Subchannels

TASK III: LMFBR OUTLET PLENUM FLOW MIXING

TASK IIIA: Analytical and Experimental Investigation
of Velocity and Temperature Fields

TASK IV: THEORETICAL DETERMINATION OF LOCAL TEMPERATURE
FIELDS IN LMFBR FUEL ROD BUNDLES
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TASK I: BUNDLE GEOMETRY (WRAPPED AND BARE RODS)
I.A. Assessment of Available Data

(Jim Hawley)

1)      Bundle Average Friction Factor

The goal of this work is to develop a bundle average friction

factor correlation which is valid over the ranges of interest of

Reynolds number, H/D ratio and P/D ration. To this end, work has

continued on the compilation and assessment of bundle average fric-

tion factor data for various geometries of homogeneous, wire-wrapped

rods in a hexagonal can. Multi-straight line best fits were made

to all of the available friction factor data curves over the entire

Reynolds number range of each curve. Qualitative similarities

between the various data sets are: that at high Re (5 10,000 -

25,000) the data can be fit by a Re n straight line, where n is a

function of the H/D ratio but not the P/D ratio; and that as Re

decreases, there is a broad range of Re over which fB smoothly

varies to its laminar behavior of fBRe = constant.  In the latter

instance it should be pointed out that generally one line fits

this transition region data satisfactorily but no correlation

between the exponents of this line for the various data sets has

been determined. The purpose of making these fits is to provide

data to calibrate the correlation against. The writing of a pro-

gram to produce the bundle average friction factor correlation has

recently begun and will be the major emphasis in this area for the

next quarter.

2)      Subchannel Friction Factor

An immediate consequence of the bundle average friction

factor correlation is that friction factors for the edge and



interior subchannels will be derivable via the relation:

fi = f,    -1/

Thus, correlations for fl and f2 will be derived which will have

validity for the entire Reynolds number range of interest, as well

as for the P/D ratio and H/D ratio ranges of interest.

-



IB.1 61-Pin Fuel Bundle
(Paul Symolon)

During this quarter, flow split measurements were completed

on the 61-pin fuel assembly with a 6-inch lead length. This data,

along with the data for the 12-inch lead assembly is presented in

Figures 1 and 2.  The flow splits, x1 and x2' become constant for

fully turbulent flow. However, the data does not agree with the
1

existing correlation (see Table I). The discrepancy is due to

surface roughness on the aluminum sides of the bundle caused by

corrosion. Since the constants in the correlation (in particular

cf2/c  ) were calibrated for a bundle with smooth (stainless steelf1

or Plexiglas) walls, a new value for c /c had to be calibrated
f2 fl

to account for the larger skin friction coefficient in the edge

subchannel. For c /c = 1.69, the agreement between the dataf2 fl

and the modified correlation is quite good. (See Table I.)

The data for the mixing test on the 6-inch lead fuel bundle
*

was reduced to determine the dimensionless parameters El and cl

presented in Figures 3 and 4, respectively. These parameters, like

the flow split, reach a constant value for high Reynolds numbers.
*

The results vary with injection depth.  For the case of
el , the

variation is slight (see Figure 3) and both values are in good
2

agreement with the existing correlation .  For the case of cl'

however, the results for the 12" injection are considerably higher

than the predicted value. These values were reduced utilizing the

entire salt distribution map.  Efforts are underway to reduce cl

based only on salt concentrations in the edge subchannels, where

the effect of cl is important.  This technique may improve the

results. The mixing data for the 12" lead bundle is still being

1



reduced. Some preliminary results indicate that the same variation

with injection depth will be found.

In addition to completing the analysis of the 61-pin fuel

bundle, work is underway preparing the 217-pin bundle for test,

which should begin in early April.

REFERENCES:

1.  C. Chiu, W. M. Rohsenow, and N. E. Todreas, "Turbulent
Sweeping Flow Model for Wire-Wrapped LMFBR Assemblies,"
COO-2245-55TR, Revision I, October, 1978.

2.  C. Chiu, N. E. Todreas, and W. M. Rohsenow, "Turbulent
Flow Split Model and Supporting Experiments for Wire-
Wrapped Core Assemblies," (Sent to Nuclear Technology -
To be issued as COO-2245-56TR, Revision I).

-



TABLE I

EXISTING CORRELATION2 MODIFIED CORRELATION

DATA

cf2/Cfl =
1.2 % Error

cf2/c   = 1.69   % Errorf1

6" lead x  = 1.09 X = .99        10             1.09            0
1                    1

X = .81        x  = 1.03        21              .84            4
2                     2

12" lead x = 1.07 X = .99         8             1.09             2
3                     1

X = .88        x  = 1.03        15              .84            2
4                    2
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IB.6 37-PIN BUNDLE
(Tom Chiu)

Work is being done of fabrication of a 37-pin blanket

bundle with geometric characteristics of P/D = 1.15 and H/D =

20.88. These numbers are chosen to fill a gap in published

experimental data which are also characteristic of

Phenix geometry.

The bundle was fabricated and set up at the beginning

of February. The mixing experiment was about underway. Cali-

bration on the conductivity probes was done. However, the

mixing experiment could not be carried out due to two reasons.

One reason was the breakdown of flow meters which measure the

salt solution injection flow rate. The second reason was that

the modification of the Joint Computer Facility made the mixing

data conversion procedure temporarily inoperable. Therefore, the

original plan was changed. The pressure drop experiment was to

be done first. Unfortunately, due to an accident, a lot of large

plastic particles got into the bundle area and blocked some of the

subchannels. To remedy this situation, the bundle had to be taken

down and disassembled; filters were installed in the flow loop.

After two weeks' work, the bundle is now ready again. However,

due to the continued non-availability of data conversion system,

the sequence of the experiment will be:  pressure drop, mixing and

flow split including "history effect".



-

I.B.7.  Experimental Method for Flow Split
(Jim Hawley)

Work continued on a report on the experimental method used

in determining the flow split parameters xl' x2' and x3.  The

suggested methodology to be used in the case of an arbitrary upper

plenum geometry was altered from two data points to three data

points needed to deduce the isokinetic flow rate in a single sub-

channel.  This alteration of method is now being reviewed by Dr.

C. Chiu of Combustion Engineering. Also, an experiment has been

proposed which will check the validity of the assumptions which

underlies the flow split experimental methodology; this assumption

is that the pressure taps on the isokinetic sampler measure the

undisturbed pressure of the subchannel and this requires that the

disturbance of the sampler is small and that the boundary layer

covering the tap is laminar.



ID. ANALYTICAL MODEL DEVELOPMENT

Multi-Assembly Transient Analysis
(Tom Greene)

The modification of TRANSENERGY-S to permit multi-assembly

analysis has been completed.  A description of the modifications

made and the motivation for developing the multi-assembly version

were included in the last progress report. To date, sample problems

run with the code have not been satisfactory. The energy balance,

which serves as an accuracy check on the code, has been in error

by as much as 10% in some cases. Work is continuing to correct

this problem.

A study was made to determine the applicability of a forced

convection model to the analysis of typical postulated LMFBR transients.

Three representative transients were considered: a reactor trip, an

uncontrolled rod withdrawal from 100% power, and a loss of offsite

electrical power with coastdown to natural circulation. A proto-

typical 61-pin LMFBR radial blanket assembly was used in the analysis.

The design operating conditions of the assembly are summarized in

Table 1.  The Modified Grashoff Criterial was used to predict the

inception of mixed convection in the bundle.

Table 2 summarizes the characteristics of the transients

analyzed and the results of the analysis. It was found that, for

the reactor trip and uncontrolled rod withdrawal transients, the

flow remained within the forced convection regime. The emergency

coolant pumps were assumed to maintain core flow at 10% of full

flow. In the loss of offsite electrical power transient, the emer-

gency pumps were postulated to fail, allowing the core flow to

coast down to natural circulation conditions (-3.5% full flow).



For this case, inception of mixed convection was predicted to occur

at 7% full flow. This corresponded to a Reynolds Number of 2 456,

based on the bundle average velocity and the interior subchannel

hydraulic diameter. These results suggest that a substantial

fraction of the postulated transients for LMFBR's may be analyzed,

in whole or in part, using a forced convection flow model.
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Linear Power (KW/M) 12.12

Flow Rate (KG/SEC) 7.428

Heated Length (M) 1.626

Power Skew (PEAK/AVG) 1.71

TABLE 1. DESIGN OPERATING CONDITIONS. FOR A PROTOTYPICAL
61-PIN LMFBR RADIAL BLANKET ASSEMBLY

TRANSIENT ESTIMATED POWER FLOW INCEPTION OF
DURATION CHARACTERISTICSCHARACTERISTICS MIXED CONVECTION
(sec) sec/% core flow

Reactor Trip               60        Trip at t= 0.5/100% Transient remains
.02 sec 30/10% in forced con-

Final=10% vection regime

Step increase
Uncontrolled Rod 360 to 115% power 0.0/100% Transient remains
Withdrawal from at t=0 sec 300/100% in forced con-
100% Power trip at t = 330/10% vection regime

300 sec Final=10%

Loss of Offsite 120 trip at t = 0.0/100% Reynolds No.=2456
Electrical Power .5 sec 30/10% Flow=7% Full Flow

Final=3.5%

TABLE 2. TRANSIENT CHARACTERISTICS AND PREDICTION OF
INCEPTION OF MIXED CONVECTION



ID.2 Mixed Convection in Sodium-cooled Reactors with Transients
(Song-Feng Wang)

TASK OBJECTIVE

The objective of this work is to develop computational methods

for analyzing transient fluid flow and heat transfer processes in

sodium-cooled fast reactors under mixed convection conditions.

Current emphasis is on developing a realistic pressure drop model,

from phenomenological considerations, for use in the more sophis-

ticated computer programs.

MODEL DEVELOPMENT

The velocity and temperature, (V, T) , fields in a reactor core

are determined by pressure boundary conditions as well as the rod

bundle power distributions. In sodium-cooled reactors, the effect

of the power distributions on (V, T) fields is enhanced by the

buoyancy effects and becomes a controlling factor under low flow

situations. The velocity and temperature fields interact and , as a

result, local flow recirculation within subchannels and rod assem-

blies may occur.  Under extreme conditions, flow reversal may occur.

Conditions of significant buoyant effects and possibly flow reversal

can occur:

a) within subchannels with buoyant effects influencing
the relative flows between subchannel regions

b) within a bundle with buoyant effects influencing
the relative flows between subchannels or regions

in the bundle

c) within a core with buoyant effects influencing the
relative flows of assemblies

Our model development has been started on a subchannel basis

(i.e, stage a) above). It was assumed that the subchannel problem



could be divided into three essentially independent parts:

1) pressure drop behavior within a bare rod

subchannel due to buoyant effects

2) pressure drop behavior within a wire-wrapped
rod subchannel under isothermal conditions

3) transient effects on pressure drop behavior

The resultant effect is simply a superposition of these thess effects.

In Part (1), a symmetric section of a subchannel, called a cell,

was analyzed using a multi-region analytical method. The onset of

flow recirculation within this subchannel can be predicted from the

local velocity distribution. The criteria for the.onset of flow

recirculation determines the limit on using a lumped parameter

approach to model the subchannel. Any analysis beyond that limit

should be done in a distributed parameter way, i.e., distributed

parameter analysis. The reason is because in lumped parameter

analysis, only one velocity and one temperature value is assigned

in each subchannel, which makes it unable to handle flow recircu-
BY

lations. A buoyancy multiplier, 0 . can be found as
sb'

BY BY
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-
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ISOwhere 0 is given asSW
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ISO SW -f    =   wire-wrapped rod subchannel friction factor 
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Similarly, a transient multiplier, $ will be obtainedTR'

from Part (3).

The resultant subchannel friction factor in wire-wrap rod

BY
bundle, f  , is therefore approximated bySW
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Both the wire-wrap multiplier and buoyancy multiplier are

BY ISOunder calibration. The final results of 4 and 0 and the
sb SW

criteria of onset of flow recirculation within subchannels will

be reported in the future progress report. Work on transient

effects, Part (3), will be initiated to find $TR'



TASK III: LMFBR OUTLET PLENUM MIXING

(Professor Michael G. Golay)

The consistent goals of this effort have been and remain

validation and improvement of calculational methods for analysis
of LMFBR outlet plenum flow transients. The method used is per-

formance of flow-mapping measurements in simple geometries similar

to those arising in the outlet plenum configurations. From compari-

son of the measurements and calculations it is possible to improve
the choice of the free parameters appearing in the calculational

models, to determine situations in which the models are funda-

mentally inadequate, to identify vital input data requirements
for .accurate calculations, and to guide improvements in the
models.

Past work has been concerned with two-dimensional steady

state isothermal and thermally-mixing flows. Current work is

concerned with progressing to more complicated flow situations

which are of greater direct relevance to designers. Each of

the three current efforts is described in the following sections.

They are concerned with the following flow situations.

1.  Two-dimensional transient isothermal flows,

2.  Two-dimensional transient non-isothermal flows, and

3.  Three-dimensional steady isothermal flows.

The models being tested are the codes VARR-II (two-dimensional)

and TEMPEST (three dimensional), which have been developed for

designer use in the LMFBR programs.



III.1  Transient Two-Dimensional Isothermal Flows

(D. Boyle)

This effort is concerned with measurement and analysis

of isothermal shutdown water flow transients in two-dimensional

small scale outlet plenum flow cells. Work to date has mainly

been concerned with improving the accuracy of existing experimental

capabilities  and Bith development of instrumentation  and  data-

processing hardware for the transient measurements. That development

is now completed, and the transient measurements and calculations

have been initiated. These efforts are summarized in greater

detail in the following sections.

III.1.1 Initial Measurements

A series of preliminary experimental measurements and com-

puter test runs have been accomplished during the past quarter.
The primary thrust of this early experimental work has been to

characterize the flow at the inlet to the plenum accurately.
This is important since it represents the only experimentally-

derived information that the model uses for its predictions, and
therefore should be known as precisely as possible. Further,

since measurements and calculations are carried out in only

half the cell, flow symmetry must be obtained initially and then

maintained throughout the transient. A major concern has been
to assure that symmetry is obtained in the measurements, and

this goal has been accomplished.

Velocity measurements in the chimney entrance region of

the outlet plenum test cell were performed early during the past

quarter. It was determined that the single fine-mesh screen

installed at the base of the chimney did not adequately flatten
the inlet mean-velocity distribution. The screen was found to

be subject to partial occlusion by the particles suspended in

the water in order to scatter the laser light. A new entrance

region section was constructed and installed. The new device

(consisting of four parallel sheets of heavy-gauge stainless

steel girds) is much more efficient in flattening the inlet



velocity distribution and in eliminating the occlusion problem.

Steady-state measurements at full flow and temperature conditions

have been made for all five mean-turbulence parameters across

the cell inlet. Figure 1 is included to illustrate the flatness

of the velocity profile achieved, the degree of symmetry, and
the effect of the transient upon the distribution.

A further advantage of the new inlet is the sharp reduction

in size of the largest turbulent eddies entering the plenum, an

attendant decrease in turbulence intensity, and an approach to

true isotropy, at least at the inlet region. The impact of this

factor on turbulence modeling is discussed in Section III.1.3.

III.1.2 Electronic Data Recording

A computer program to receive the unprocessed transient

data, and to process it on the Nuclear Engineering Department's
Tektronix mini-computer has been written and tested. The in-house

effort to build a custom Analog-to-Digital Converter that

interfaces with the computer-compatible tape cassette for
processing the experimental data is nearing completion.

All hardware components have been tested, all micro-processor

sub-routines have been written and tested; system initialization

and check-out of the five subsystems of the A-to-D converter
remains to be finished.

III.1.3  Computer Work

The steady-state inlet data from the experiment has been

used in the VARR II computer code to generate a steady-state
f low  f iel d throughout the plenum which serves  as the initial

condition from which the coast-down transients can be started.

The turbulence model  used in VARR-II was heuristically derived
based on the assumption of roughly isotropic turbulence, and

has been shown to fail to predict experiments whenever significant

aniAtropy is present. Indeed, an earlier steady state experiment

with the same test cell but with highly anisotropic inlet condi-

tions, showed that the VARR-II estimates of point-wise
turbulence kinetic energy (TKE) were far lower than those
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measured. The new inlet region, described earlier, by imposing

a high degree of turbulence isotropy on the inlet flow, better

satisfies the turbulence model application criteria, and
results in TKE predictions that appear to be much better than

previously obtained.

In an effort to reduce the model running time, a coarser

mesh has been tried and is still being evaluated for accuracy.
If loss of accuracy is not significant, the coarse mesh will be

used for sensitivity and parametric analyses. It has been

found to reduce the run-time for a steady-state, FFTF calculation

by a factor of approximately twenty.



III.2 Two-dimensional Non-Isothermal Transient Flows

(S. Chang)

Buoyant effects are of central importance in determining

outlet plenum flow behavior during the shutdown transient. This

effort is aimed toward understanding such effects and validating
the buoyant flow treatment of models in current use. It should

be noted that the VARR-II turbulence model was formulated without

any explicit accounting of buoyant effects upon turbulence

and validation of the model under buoyant flow conditions has

not yet been done.

This work is in the stage of experimental design. The main

problem to be resolved is that of whether the in-house Laser

Doppler Anemometer (LDA) equipment can be used for such measure-
ments.  The difficulty which arises is that a mixing fluid of

non-uniform density is also non-uniform optically--causing the

LDA beams to be refracted. This can cause the beam crossing

point--at which the velocity measurement is made--to move, imparting

an error to the velocity measurement. This problem is being

attacked in two ways:  1) Feasibility calculations and experi-
ments involving the currently available LDA apparatus, and 2)

Investigation of alternative LDA-based measurement methods.

Nearly the entire effort to date has focussed upon the former
direction. It is apparent that optical "jitter" would have a

small effect upon mean-flow measurements; however, it could have
an important effect upon fluctuating flow measurements. In

order to evaluate this effect it is planned to perform short-

term feasibility tests with injection of warm water into the

cold outlet plenum.

In the proposed experimental work transients would be run
in whidh the water flow rate would be held constant (i.e.,

steady flow), but the temperature of the incoming water would

be reduced suddenly (by switching the inlet flow to a cold

reservoir tank). A range of tests at different inlet densimetric
Froude number values would be performed so that the effect of

flow stratification upon buoyant turbulence could be examined.

The experimental work is expected to begin after September, 1979.



III.3  Three-Dimensional Steady Isothermal Flows

(R. Sawdye)

A persistent requirement from LMFBR designers has been a

three-dimensional flow analysis capability.  The COMMIX code
offers promise in this area, and the code TEMPEST has been

developed at HEDL for this purpose. Neither code has--as far

as we know--a turbulence model, and a key question is that of the

appropriate level of modeling detail required to provide an accur-
I ate analysis.

In this work flows are planned to be examined in a simple
three-dimensional geometry (not yet selected). Current work is

concerned with experimental design. The main problem is that of

how to use the currently available equipment (designed for one-
and two-component velocity measurements) for three-dimensional

velocity measurements. A variety of approaches are being

examined, with the leading candidate being a marriage of the two

currently available systems (for single component and for two-

component measurements, using two separate lasers).
In addition the TEMPEST program has been requested from

HEDL; with the goal of using it for experimental design ealcula-

tions and possibly of addingthe TEACH-T (K, ) turbulence model
to it.



IV. THEORETICAL DETERMINATION OF LOCAL TEMPERATURE FIELDS

'

IN LMFBR FUEL ROD BUNDLES

1.  Wire-Wrapped Rod Bundle Heat Transfer Analysis
(Chung-Nin Wong)

In the past quarter of the year, work has been done on the

development of the computer code to analyze the wire-wrapped rod

bundle heat transfer in LMFBR. In the region of our interest

(that is, the coolant region inside the reactor core), the spiral

wire spacing induces swirl flow around the fuel pin and may possibly

result in a radial cross-flow at the common boundary between two

adjacent cells.  Of course, the dominating flow is still the axial

flow going up to the upper plenum. In order to pursue all these

three velocities (Vr, VG and Vz), the set-up of this computer code

should be able to analyze a 3-D non-linear flow problem. With this

non-linear problem at hand, the Newton Iteration Method is suggested

as the tool to solve it. However, for speeding up the convergence

rate, the latest Newton Block Grauss Seidel Iteration Method will

be adopted here. The resultaht governing equations will be expressed

in the form of the block matrices; then all three velocities (Vr,

Va and Vz) within each unit mesh cell will be solved for simultaneously.

In this way, one may obtain the solutions more efficiently because

obviously, these three velocities are strongly coupled.

To solve the 3-D non-linear flow problem required a huge

computer storage space  and a substantial amount of iteration  time.

Therefore, it becomes quite expensive to run this program in the

standard IBM 370/165 computer at MIT. For this economic reason,

this program will be designed for the Multics System on Honeywell

6180. The Multics System costs much less and can provide an

enormous storage space because it is a virtual system. A small

portion of the time and effort have been spent to gain familiarity
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with this new system.

Recently, the testing of the code has been started.  But,

no good results have been obtained and analyzed. Probably in the

next progress report, the result of the calculations will be

reported and discussed.

W


