

RHO-BWI-LD-11 Informal Report

Reference Waste Form, Basalts, and Ground Water Systems for Waste Interaction Studies

R. A. Deju R. K. Ledgerwood P. E. Long

September 1978

Prepared for the United States Department of Energy Under Contract EY-77-C-06-1030

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Rockwell International

Rockwell Hanford Operations Energy Systems Group Richland, WA 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY UNDER CONTRACT EY-77-C-06-1030

PRELIMINARY REPORT

This Report contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final Report. It was prepared primarily for internal use within The Rockwell Hanford Operations. Any expressed views and opinions are those of the Author and not necessarily of the Company.

NOTICE

This Report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their Employees, nor any of their Contractors, Subcontractors, or their Employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. REFERENCE WASTE FORM, BASALTS, AND GROUND WATER SYSTEMS FOR WASTE INTERACTION STUDIES

> R. A. Deju R. K. Ledgerwood P. E. Long

for

Basalt Waste Isolation Program

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. NOTICE infringe privately owned rights.

September 1978

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

۶B

Rockwell International Rockwell Hanford Operations Energy Systems Group Richland, Washington 99352

TABLE OF CONTENTS

Ρ	а	α	е
-	÷	~	<u> </u>

V

:	
SUMMARY	4
WASTE FORM	5
GLASS	5
SUPERCALCINE	9
SPENT UNREPROCESSED FUEL	12
BASALTS	15
POMONA MEMBER	18
UMTANUM UNIT	24
BCR-1 STANDARD	24
WATERS	25
ENGINEERED BARRIERS	33
SCENARIOS TO BE MODELED	35
REFERENCES	38
DISTRIBUTION	40
APPENDIX A - PETROGRAPHIC DESCRIPTION OF THE POMONA TYPE SECTION	41
APPENDIX B - POMONA AND UMTANUM CHEMICAL COMPOSITION	· 45
APPENDIX C - PETROGRAPHIC DESCRIPTION OF THE UMTANUM	
FLOW	50
APPENDIX D - BCR-1 DATA	57
· · · · · · · · · · · · · · · · · · ·	

LIST OF TABLES

	TABLE	I	WASTE FORM PROPERTIES	6
	TABLE	II	COMPOSITION OF BATTELLE-NORTHWEST WASTE GLASS 76-68	7
	TABLE	ттт	PW-8A WASTE COMPOSITION	8
a * i •	TABLE	IV	COMPOSITION OF SUPERCALCINE SPC-2	10
يدالملة البغة	TÄBLE	V	SIMULATED SPENT UNREPROCESSED FUEL FISSION PRODUCTS	13
	TABLE	VI	SUMMARY OF PHYSICAL AND THERMAL CHARACTERISTICS OF THE POMONA MEMBER	23

X

Table of Contents (continued)

)

	<u> </u>	age
TABLE VII	MAJOR CONSTITUENTS: ANALYTICAL RESULTS	27
TABLE VIII	TRACE CONSTITUENTS: ANALYTICAL RESULTS	28
TABLE IX	EXPERIMENTAL CONDITIONS FOR WASTE/BASALT COMPATIBILITY EVALUATIONS	37
TABLE B-1	POMONA AND UMTANUM CHEMICAL COMPOSITION	46
TABLE B-2	POMONA AND UMTANUM X-RAY FLUORESCENCE	48
TABLE D-1	BCR-1 DATA FROM ATLANTIC RICHFIELD HANFORD COMPANY AND ROCKWELL HANFORD OPERATIONS ANALYSIS	58
TABLE D-2	1972 VALUES FOR INTERNATIONAL GEOCHEMICAL STANDARDS FOR BASALT, AFTER FLANAGAN	59
	LIST OF FIGURES	
FIGURE 1	PORTION OF AN X-RAY DIFFRACTOGRAM OF CRYSTALLIZED SPC-2	11
FIGURE 2	MACROSTRUCTURE OF A GENERALIZED FLOW OR FLOW UNIT	16
FIGURE 3	PASCO BASIN STRATIGRAPHIC NOMENCLATURE	17
FIGURE 4	POMONA TYPE LOCALITY LOCATION MAP	19
FIGURE 5	IDEALIZED SECTION THROUGH THE POMONA MEMBER	21
FIGURE 6	REPRESENTATIVE TEXTURE OF THE POMONA MEMBER	22
FIGURE 7	HANFORD AREA MAP SHOWING LOCATION OF WELLS SAMPLED	26
FIGURE 8 .	MAJOR CONSTITUENTS OF DB-1 (DUPLICATE SAMPLES) WATER FROM THE MABTON MEMBER	29
FIGURE 9	MAJOR CONSTITUENTS IN DB-2 (DUPLICATE SAMPLES) WATER FROM THE MABTON MEMBER	30
FIGURE 10	MAJOR CONSTITUENTS IN DB-7 (DUPLICATE SAMPLES) WATER FROM THE MABTON MEMBER	31
FIGURE 11	MAJOR CONSTITUENTS IN RSH-1 (DUPLICATE SAMPLES) WATER FROM THE GRANDE RONDE FORMATION	32
FIGURE B-1	HANFORD AREA MAP SHOWING LOCATION OF WELLS SAMPLED	49

í

SUMMARY

This report summarizes the type of waste form, basalt, and ground water compositions to be used in theoretical and experimental models of the geochemical environment to be simulated in studying a typical basalt repository.

Waste forms to be used in the experiments include, and are limited to, glass, supercalcine, and spent unreprocessed fuel. Reference basalts selected for study include the Pomona member and the Umtanum Unit, Shwana Member, of the Columbia River Basalt Group. In addition, a sample of the Basalt International Geochemical Standard (BCR-1) will be used for cross-comparison purposes. The representative water to be used is of a sodium bicarbonate composition as determined from results of analyses of deep ground waters underlying the Hanford Site.

At present, the experiments do not include an analysis of overpack material and/or container materials, inasmuch as the nature of these materials will be determined as a result of the experiments on the interactions in the absence of these materials.

WASTE FORM

The present emphasis in the United States' Terminal Storage Program is not to reprocess spent fuel elements. Due to this directive, we are considering spent unreprocessed fuel to be our prime radioactive waste form to be stored in a potential basalt cavern.

If the decision were made to reprocess spent fuel with its resultant high-level waste stream, a vitrification process yielding a glass product would probably be the leading contender for the solid waste form, since it has, to date, received the majority of research and development funding.

In order to ensure the comprehensiveness of our current waste/basalt interaction studies, we have chosen to include the following waste forms in our experiments: spent unreprocessed fuel; glass; and supercalcine.

As a first step in analyzing the physical and chemical effects of storing nuclear waste in an underground basalt repository, one must first deal with the waste forms themselves. Needless to say, each waste form has its own set of unique characteristics (chemical and radiological composition, mineralogy, structure, thermal energy, physical properties, etc.) which will have a direct bearing upon the storage concept. Table I summarizes many of these properties for the above waste forms.⁽¹⁾

GLASS

The composition of glass chosen for study will be the same specimen being used in the source term characterization task of the Office of Nuclear Waste Isolation/Battelle-Northwest/Waste Isolation Safety Assessment Program. Its code is 76-68 and its composition is given in Table II. The waste composition (PW-8a) used to prepare glass 76-68 is given in Table III.

.

TABLE I

WASTE FORM PROPERTIES

PROPERTY	UNITS	SUPER CALCINE POWDER	SUPER CALCINE CERAMIC	PHOSPHATE GLASS	BORO- SILICATE · GLASS	SPENT FUEL PELLETS
SOLUTION RATE	mg m ² sec	10^{-6} $10^{\pm 0}$	10 ⁻⁷ to_5 10 ⁻⁵	10 ⁻⁵ to 0.7	10 ⁻⁵ to 0.01	10^{-2} 10^{-2} 10^{-2}
CORROSION TO CLAD Material	nm/sec	0 to 10	0 to 10	0 to 10	0 to 10	*
RESIDUAL NITRATE AND/OR WATER	8	0.005 to 0.05	0.005 to 0.01	0.005 to 0.05	0.005 to 0.05	<.005
MAXIMUM PROCESSING TEMPERATURE	°x	1,370 to 1,570	1,370 to 1.570	1,170	1,270 to 1,670	NA
RUTHENIUM VOLATILIZED AT PROCESSING	8	<u><</u> 7.0	<u><</u> 5.0	3 to 15	<u><</u> 2.0	NA
VOLATILITY	NA	1,570°K some Ru & Cs	1,670°K much Ru & Cs	<1,500°K all Ru & Cs	<1,500°K all Ru & Cs	NA
SPECIFIC VOLUME	m ³ MgU	0.070	0.070	0.036 to 0.078	0.04 to 0.1	- -
WEIGHT PERCENT WASTE PRODUCT	MAXIMUM	<u><</u> 751	<u>≺</u> 75¥	<u><</u> 25%	<u><</u> 50%	5%
OXIDES	TYPICAL	452	45%	201	20-35%	48
SPECIFIC AREA	m ² Kg	10,000 to 20,000	C.005 to 0.05	0.005 to 0.05	0.005 to 0.05	—
FORM	NA	Powder	Monolithic	Fractured Monclith	Fractured Monolith	Fractured Pellets
STRUCTURAL QUALITY	NA	Soft & Crumbly	Very Hard & Brittle	Very Hard & Brittle	Very Hard & Brittle	Very Hard & Brittle
POROSITY	ŝ.	40 to 80	2 t.c. 20	<u><</u> 5.0	<u>~</u> 1.0	2 LÖ 10
DENSITY	Kc m ³	4,000	3,500 to 4,000	2,700 to 3,000	3,000 to 3,600	10,000 to 10,500**
COEFFICIENT OF LINEAR EXPANSION	x 10 ⁻⁶ /°E	~8.3	8 to 10	8 to 10	8 to 10	~10** ·
THERMAL CONDUCTIVITY	<u>w</u> т°К	0.E	0.8 to 2	0.8 to 1.3	0.9 to 1.3	2** to 6
НЕАТ Слрасіту	<u></u>	E /U	1,100 to 1,200	1,100 to 1,200	· 750	238** LU 330
LIQUIDUS TEMPERATURE	, °К	1,670 to 1,870	1,670 to 1,870	820 TO 1,020	800 to 1,500	-3,138**
TPANSITION TEMPERATURE	•ĸ	NA	NA.	770	870 to 970	NA

HEY TO SYMBOLS

= Not Available.

NA = Not Applicable.

Mostly stress correston cracking which is localized, variable, and dependent upon the chemical species.

++ = Based on UC2 with approximately 2-10 percent porosity.

*** = Alloy has a transition temperature.

TABLE II

· .		· · · · · · · · · · · · · · · · · · ·			
Oxide	Wt.8	Oxide	Wt.8	Oxide	Wt.%
SiO2	39.8	MoO ₃	2.3	P205	0.5
Na ₂ 0	12.5	CaO	2.0	Cr203	0.4
Fe203	9.8	ZrO2	1.8	Sr0	0.4
B203	9.5	CeO2	1.2	TeO2	0.3
ZnO	5.0	RuO2	1.1	NiO	0.2
U ₃ 0 ₈	4.6	Cs ₂ 0	1.0	Rh203	0.2
RE203**	3.4	BaO	0.6	Rb ₂ 0	0.1
TiO ₂	3.0	PdO	0.5	Others	0.1
	. <u>.</u>				

COMPOSITON OF BATTELLE-NORTHWEST WASTE GLASS 76-68*

*Modified from a table provided by D. J. Bradley, Battelle-Northwest.

**RE = La, Pr, Nd, Sm, Eu, Gd, Y.

TABLE III

PW-8A WASTE COMPOSITION* (Kgs Oxide/MTU)

-	•	
Inerts_	Na ₂ O	14.057
• • • •	Fe ₂ O ₃	27.225
	Cr_2O_3	1.151
	NiO	0.566
	P ₂ O ₅	1.342
Fission	Rb ₂ O	0.354
Products	SrO	1.059
· · ·	Y ₂ O ₃	0.598
	ZrO ₂	4.944
	MoO 3	5.176
	TC 2 O 7	1.291
	RuO ₂	2.972
· · ·	Rh ₂ O ₃	0.480
•	PdO	1.483
	Ag₂O	0.088
	CdO	0.097
	TeO ₂	0.725
	Cø ₂ O	2.880
	BaÖ	1.567
	La_2O_3	1.480
	CeO ₂	3.323
	Pr 6011	1.482
	Nd 2 O 3	4.522
1	Pm_2O_3	0.123
	Sm 2 O 3	0.924
	Eu ₂ O ₃	0.200
•	Gd 203	0.137
Actinides	U 3 O 8	11.689
	NpO ₂	0.865
	PuO₂	0.174
	Am_2O_3	0.181
· · · ·	Cm 2 O 3	0.040

*See reference 7.

8

A great deal of experimentation has taken place using this reference glass and other glasses. Ross⁽²⁾ has discussed the development of glass formulations containing high-level nuclear Others at Battelle have detailed numerous studies to wastes. characterize high-level waste glasses and examine their volatility and devitrification behavior. (3-6) A recent Battelle report⁽⁷⁾ discusses some miscellaneous experiments with 76-68 and other waste glass formulations. An important conclusion from the above experiments is that the 76-68 (low ZnO) waste glass form shows much improved resistance to acid attack with little change over the pH 4-12 range. In glass 76-68 where devitrification rates are very slow, elemental differences between as-formed and thermally treated samples have not been significant. Average leach rates based on cesium from the 76-68 waste glass in an International Atomic Energy Agency type long-term test are about 3.3 x 10^{-8} g/cm²/day.

SUPERCALCINE

The specific formulation of supercalcine to be used for study is SPC-2 prepared as described by McCarthy⁽⁸⁾ on the spray calciner at Battelle and crystallized by firing at 1,125° C for two to four hours.

The complete composition of SPC-2 oxides is given in Table IV and a portion of an X-ray diffractogram of crystallized SPC is shown in Figure 1. The crystalline phases and their shorthand notation in SPC-2 are:(1)

Ca_2RE_8 (SiO ₄) ₆ O ₂	[Ass]
REPO ₄	[Mss]
Tetragonal-ZrO ₂	[Tss]
(Ca, Sr, Ba) MoO ₄	[Sss]
(Cs, Rb, Na) $AlSi_2O_6$	[P]
(Ce, Zr.,,)O ₂	[Fss]
(Fe, Cr) $_{2}O_{3}$	[(Fe ₂ O ₃)ss]
(Ni,Fe) (Fe, $Cr)_2O_4$	[SPss]

9

TABLE	IV
-------	----

COMPOSITION OF SUPERCALCINE SPC-2

Ion	Molarity	Oxide	Grams Oxide Per Liter of Calcined SPC-2	r Weight Percent Oxide	
ROM THE MOD	IFIED PW-7 WAST	<u>`E</u> :			
Ce	0.161	CeO2	27.7	16.3	(12.7)
2 r .	0.106	2r0 ₂	13.0	7.6	(5.9)
RE ²	0.1022	RE203	17.0	10.0	(7.8)
Fe	0.100	Fe203	8.0	4.7	(3.7)
[P0]]	0.100	P205	7.1	4.2	(3.2)
Мо	0.095	Mo03	13.7	8.0	(6.3)
La	0094	La203	15.3	9.0	(7.0)
Св	0.054	C820	7.6	4.5	(3.5)
Sr	0.027	SrO	2.8	1.6	(1.3)
Ba	0.027	BaO	4.1	2.4	(1.9)
Cr	0.012	Cr203	0.9	0.5	(0.4)
Rb	0.010	Rb ₂ 0	0.9	0.5	(0.4)
Ма	0.010	- Na ₂ 0	0.3	0.2	(0.1)
Ru ³	0.006	RuO	0.8	0.5	(0.4)
Mi	0.005	NiO	0.4	0.2	(0.2)
ca	0.002	Cao	0.3	0.2	(0.1)
			•		
UPERCALCIN	E ADDITIVES:				
Si	0.539	sio ₂	32.4	19.1	(14.8)
Ca	0.150	CaO	8.4	4.9	(3.8)
A1 .	0.148	· A1203	7.5	4.4	(3.4)
Sr	0.020	SrO	2.1	1.2	(1.0)
1			170.4	100.0	
	. (7(0.5 percent	waste loading)		
THED WACME	CONSTITUENTS	•		÷ .	
U(Pu ND)	0.1195	. 11.0	33.6		(15.5)
- (1 -)	0.053	ິ3ິ8 ອາເດ	7.1		(3:2)
Pd	0.032	PAO	39		() - 8)
то •	0.012	TeO	1.9	•	(0.9)
Rh	0.010	15.72 RK D	1.3		(0.5)
Ag	0.002	2~3 Arti	0.3	•	(0.1)
- ''			218 5		100 0

 $^1 Value$ in parentheses is the weight percent of the oxide after addition of the appropriate amounts of U, Ru, Pd, Te, Rh, Ag.

 $^2 RE$ =0.061 Nd + 0.019 Pr + 0.011 Sm + 0.007 Gd + 0.003 Y (Note: 0.002 RE is a stand-in for Am+Cm).

 $^3\rm Ru$ concentration in the spray supercalcine SPC was 10 percent of the actual PW-7 value of 0.059 M. The addition of the remaining 0.053 M was made after calculation.

*These constituents were not included in the large batch of SPC-2 because of their expense or radioactivity. None require fixation additives. The only PW-7 conetituent not included above is Tc.

PORTION CF AN X-RAY DIFFRACTOGRAM OF CRYSTALLIZED SPC-2

Ē

RHO-BWI-LD-11

SPENT UNREPROCESSED FUEL

Spent unreprocessed fuel (SURF) from light water reactors (LWR) consist of pellets of UO₂ plus a small amount of fission products clad in high zirconium alloy (zircaloy) tubes. Cohen⁽⁹⁾ has shown that nuclear fuel from a LWR having a burnup of 33,000 MWd/MTU will consist of approximately 3.5 wt.% fission products and 96.5 wt.% UO₂ (+ NpO₂ + PuO₂). In the SURF formulation for this study, UO₂ should be used as a standin for NpO₂ + PuO₂.

The number of elements in fission products includes more than 1/3 of the periodic table. Table V lists elements or stand-ins that are present in the fission products at >0.2 wt.%. The actinides Am and Cm are produced by neutron capture rather then fission, but they are included with Gd because of their crystal chemical similarity to this element. Radioactive Tc, gaseous Kr, and Xe and I are not included in this fission product mix.

The atomic concentrations of the elements in Table V come from the ORIGIN code or an LWR fuel having a burnup of 33,000 MWd/MTU. The third column in the table gives the recipe for obtaining these concentrations of a mixture of nitrates and oxides. The nitrates, nitrate solutions, and oxides should be mixed vigorously with a large excess of water to give a homogeneous solution-suspension and should then be dried as rapidly as possible on a stirrer-hot plate. The residue should further be dried at 90° C and then slowly heated to 400° C in air to decompose most of the nitrate. These conditions are selected to minimize alkali and ruthenium volatilization. The final product should be ground thoroughly.

TABLE V

SIMULATED SPENT UNREPROCESSED FUEL FISSION PRODUCTS^a

(burn-up of 33,000 MWd/MTU)

Element	_Atomic_%	Formulation for a 100 Meg ^b Batch	<u>Oxide</u>	<u>Wt.% Oxide</u>
Zr	16.51	4.408g ZrO(NO3) 2.2H2O	ZrO ₂	14.3
Мо	. 14.80	2.131g MoO₃	MOO 3	14.9
Nd (Pm) C	11.37	4.980g Nd(NO3)3.6H2O	NdO 1 . 5	13.4
Ru	9.19	27.5 ml 10% Ru nitrate solution	RuO 2	8.5
Cs	8.41	1.640g CsNO3	CsO _{0.5}	8.3
Ce	7.94	3.454g Ce(NO3)3.6H2O	CeO 2	9.5
Pd	4.98	5.3 ml 10% Pd Nitrate solution	PdO	4.2
Sr	4.21	0.893g Sr(NO3) 2	Sr0	3.1
Ва	4.21	1.099g Ba(NO3)2	BaO	4.5
La	3.74	1.619g La(NO3)3.6H2O	LaO1 ₅	4.3
Pr	3.58	1.564g Pr(NO3) 3.6H2O	PrO1.5	4.1
Sm	2.18	0.968g Sm(NO3)3°6H2O	SmO _{1.5}	2.6
Y	2.18	0.835g Y(NO3) 3.6H2O	YO1.5	1.7
Те	1.87	0.299g TeO2	TeO ₂	2.1
Rh	1.56	1.61 ml 10% Rh nitrate solution	RhO _{1,5}	1.4
Rb	1.56	0.231g RbNO3	RbO _{0.5}	1.0
Gd (Eu, Am, Cm)	1.09	0.492g Gd(NO3) 3.6H 2O	GdO1.5	1.4
Ag	0.31	0.050g AgNO3	AgO _{0.5}	0.4
Cđ	0.31	0.040g CdO	CdO	0.3
				100.0

^aTc, I, Er, and Xe are not included.

^bMilliequivalent.

^CElements in parentheses indicate that the preceding element is a stand-in.

13

The conditions in actual spent fuel are highly reducing as controlled by the initial stoichiometry of the uranium dioxide fuel. Thus, some of the fission products in a SURF formulation will be present as metals rather than as dioxides produced in this procedure until this point. Therefore, an additional step should be included in the formulation that would provide reducing conditions where the appropriate oxides are converted to metals. To accomplish this, the oxidized product should be placed on a platinum boat in a Vycor tube and fired at 600° C in flowing hydrogen for four hours. This treatment should be sufficient to reduce the ruthenium, palladium, tellurium, rhodium, and silver oxides to metals and CeO₂ to Ce₂O₃.

The reduced fission product mix should be combined with uranium dioxide to give the 96.5 percent UO_2 , 3.5 percent fission product composition. Because the actual phase in which each fission product species is combined can have a major influence on its dissolution behavior or reactivity, it is then necessary to treat the mixture at a high enough temperature to promote phase formation. This firing must be performed in a closed system to prevent this specimen from oxidizing.

The major phase in SURF is a crystalline fluorite structure (UO_2) with fluorite-related structure fission product oxides $(RE_2O_2, CeO_2, and some ZrO_2)$ in solid solution. After a survey of papers on irradiated fuel behavior, it became clear that very little else is actually known about spent unreprocessed fuel crystalline phase behavior. It is widely believed that SrO and BaO react with ZrO_2 to form the perovskite structure $[(Ba,Sr)ZrO_3]$. There also appear to be distinct Cs-Te-rich zones. Cesium is thought to be present as a cesium molybdate and/or a cesium uranate, both of which are quite soluble in water. The bulk of the UO_2 -rich spent unreprocessed fuel waste form would remain relatively unreactive under hydrothermal repository ambients, as long as the Eh-pH conditions keep the uranium in the tetravalent state.

14

BASALTS

The Columbia River Basalt is classed as tholeiitic basalt on the basis of its chemistry and mineralogy. Not all flows within the Pasco Basin fit this classification because of their higher alkali content. The common minerals present in the basalt are plagioclase, clinopyroxene, olivine, opaque minerals (such as magnetite and ilmenite), apatite, and mineraloids (chlorophaeite). Tachylyte, a basalt glass crowded with crystallites, is abundant in most flows. The plagioclase is usually labradorite where it occurs as large phenocrysts, but may range from labradorite to andesine in the groundmass. Olivine is usually altered to clay minerals or Mg-chlorite. The pyroxene present is augite and/or pigeonite. The texture is aphanitic with rare large phenocrysts present in some flows. Although some flows in the Pasco Basin are quite glassy, most exhibit intersertal to intergranular textures. Some show a patchy diktytaxitic ophimottling. The color of the rock is generally gray to black on a fresh surface. Some flows have reddish-orange to reddish-brown weathered surfaces that result from the oxidation of iron in iron-rich clay and mineraloid present in the flow.

The macrostructure of a generalized flow or flow unit is depicted in Figure 2.(10). The stratigraphy of the various flow units in the Pasco Basin is shown in Figure 3.

As part of our waste-basalt interaction studies, three reference samples will be used. Samples of Pomona (high MgO), and Umtanum types (low MgO) and a basalt standard BCR-1 will be used. Data on these samples are given in subsequent sections of this report.

FIGURE 2

16

			FORMATIO	N	MEMBER	FLOW OR BED		<u> </u>	
			ALLUVIUM, COLLUVIUM, EOLIAN SEDIMENTS OF MANFORD		C ¹⁴ AGE	<u></u>	·····		
					6,600	MAZAMA ASH	ASH FALL. CRATER LAKE. OREGON		
					12,500		ASH FALL. GLACIER PEAK. WASHINGTO	N	
				—	12,000 < 18,000	ST. HELENS ASH	ASH FALL, MT. ST. HELENS. WASHINGT	N	
			ENTS			TOUCHET SILTS, SANDS, &	FINE-GRAINED FACIES OF GLACIOFLUV DEPOSITS, BEDDED		
			ACIO F HAP			PASCO GRAVELS	DEPOSITS, CUT AND FILL STRUCTURE		
			30			PALOUSE SOIL	CALCAREOUS SAND, SILT, AND EOLIAN	DEPOSITS .	
			95			(UPPER) RINGOLD	BILT AND SAND, SOME GRAVEL, FLUVIA LOCALLY CAPPED BY CALICHE	L. WELL BEDDED.	
			RMAT			(MIDDLE) RINGOLD	SAND AND GRAVEL, WELL-SORTED, COMPACT, BUT VARIABLY CEMENTED		
•			<u></u>			(LOWER) RINGOLD	SILT AND CLAY, INTERBEDDED GRAVEL CHARACTERISTICALLY BLUE, BUT MAY	AND SAND. CLAY IS BE GREEN, BROWN,	
ſ			· · · · · ·	m.y. 6.0	LOWER MONUMENTAL SYMBOL)	GOOSE ISLAND	POLARITY N	TOP UNDEFINED	
ł				8.5	ICE HARBOR MEMBER (TI)	MARTINDALE	BASALT, PHYRIC R		
-						BASIN CITY	N		
					BUFORD MEMBER (1)	LEVY BED	TUFF AND TUFFACEOUS SANDSTONE	R #REVERSED	
		•	<u>н</u>	10.5	ELEPHANT MOUNTAIN (Tem)	ELEPHANT MOUNTAIN FLOW	BASALT, APHYRIC N-T		
ł			ASAI		MEMBER	RATTLESNAKE MEMBER (Ter)	RIDGE SANDSTONE, TUFFACEOUS		
			5. 6		(UNNAMED)	MATTAWA FLOW	BASALT, APHYRIC N		
ł			TAIN	12.0		POMONA FLOW	BASALT, PHYRIC R) [
			NNO			SELAH MEMBE	SANDSTONE, TUFFACEOUS		
			ž u		ESQUATZEL MEMBER (Ta)	GABLE MOUNTAIN FLOW NO.2	AIN BED	N III	
1			100		(())	GABLE MOUNTAIN FLOW NO.1	BASALT, LOCALLY PHYRIC N		
ł			S .		WEISSENEELS DIDGE	COLD CREEK BED	SANDSTONE, LOCALLY TUFFACEOUS	ORM OF FC	
					MEMBER (1) ASOTIN MEMBER	HUNTZINGER FLOW	BASALT, APHYRIC, COARSELY PHANERITIC, AND VERTICALLY DIFFERENTIATED LOCALLY	R N I	
ł					WILBUR CREEK MEMBER (Tw)	WAHLUKE FLOW	BASALT, APHYRIC N	ATU	
						UMATILLA FLOW	BASALT, APHYRIC N	ILLEN	
ł						MABTON MEM			
	٩Û		<"	3.6		PRIEST RAPIDS FLOW NO.4	R		
Ì	GRO	ЧПО			PRIEST RAPIDS MEMBER	PRIEST RAPIDS FLOW NO.3 PRIEST RAPIDS FLOW NO.2	BASALT, APHYRIC		
	ALT	BGR	SALT		(1qT)	PRIEST RAPIDS FLOW NO.1	R		
	BAS	S	B			ROZA FLOW NO. 2	~ <u>™®v</u> z = = = = = = = =		
·	ER	SALT	NO4		ROZA MEMBER (Tr)	ROZA FLOW NO. 1	BASALT, PHYRIC) [
Í	RIV	BA	ANA	· '		SENTINEL GAP	MEMBER (Tesq) DIATOMITE		
	MBIA	CIMA	5		FRENCHMAN SPRINGS MEMBER (TI)	SAND HOLLOW PROBABLY	APHYRIC (TI) N		
ſ	סרחו	YAN	[- [ŀ	GINKGO FLOW VANTAGE (Ter			•
	ŭ		├~	14.5 -		MUSEUM FLOW	N	TIO2 HORIZON	
						ROCKY COULEE FLOW	N	BASE UNDEFINED	
					BASALT SEQUENCE (Teb)	FLOW J	N	Į	
				11-18	OF SENTINEL BLUFFS	FLOW H	BASALT, APHYRIC N	· ·	
			ALT A	BAS/		FLOW G			
			BAS	QNO		FLOW F	N		
			ä	JON		FLOW E	NN	MOO HORIZON	
			l õ	D CB	BASALT SEQUENCE		. N		
J			3	TIATE	OF SCHWANA (Ta)	RONDE BASALT FLOWS	BASALT. APHYRIC		
			BAN	EREN			<u>N</u>	REVERSED (P2?) RECOGNI	LE POSITION OF A REGIONALLY ZED PALEOMAGNETIC HORIZION ANSON AND OTHERS, 1977)
ļ			Ĭ	JOND				SOURCE: "PASI	CO BASIN STRATI-
1					UNNAMED	AT LEAST 15 FLOWS	Ţ	GRAPHIC NOM	ENCLATURE," R.K.
Į			ļ.			(CURRENTLY KNOWN ONLY FROM DEEP BOREHOLES)	BASALT, APHYRIC	LEDGERWOOD, CROSS. RHO-B	C.W. MYERS, R.W. Wi-LD-1, ROCKWELL
								HANFORD OPER	ATIONS, RICHLAND,
		ļ	L->15.4	Т	<u>ا جا جا</u>	<u>1 </u>	_	WASHINGTON (M	MT 1370J.
			AGE	7	OLDER COLUMBIA RIVE	R BASALT GROUP ROCKS			
					<u></u>				:
			AGE	7	PRE-COLUMBIA RIVER	BASALT GROUP ROCKS WER PART OF BOREHOLE ASH-1			
- 1									

17

(1) MEMBER KNOWN FROM AREAS OUTSIDE THE PASCO BASIN, BUT NOT RECOGNIZED TO DATE WITHIN THE PASCO BASIN.

FIGURE 3

V7808-6

PASCO BASIN STRATIGRAPHIC NOMENCLATURE

POMONA MEMBER

The Pomona Member is a slightly phyric basalt flow. The flow is medium to light gray and averages about 33 meters in Schmincke⁽¹¹⁾ has divided this flow into three thickness. (1) a basal zone comprising less than one-third of the zones: flow; (2) a central zone or entablature comprising the bulk of the flow; and (3) an upper zone comprising one-fifth of the flow thickness. The central zone or entablature is conspicuous for its long, continuous, undulating columns with diameters of 15-30 cm. Near the top, they cluster into composite columns, 1-2 meters wide which flare out from the center at high angles.⁽¹¹⁾

The buckled surface of the Pomona flow is broken in many places into blocks of highly oxidized scoria. About 8 km west of Benton City, 300 m downstream from a power station⁽¹¹⁾ Schmincke has noted that the top of the flow has developed as a maze of more than six flow units separated by lenses of scoria and breccia.

Such units are rare and may be the result of extreme gushing and eddying of the lava due to topographic irregularities. Spectacular pépérites occur where the flow ploughed into the vitric tuff near the flow margin such as along Crab Creek in T.16N., R.28E., and at the Snake River in T.9N., R.32E.

The Pomona Member was defined by Schmincke⁽¹¹⁾ as the upper flow in the southern entrance of the Yakima River Canyon 10 km north of Yakima, Washington, where it is well exposed in a U. S. Highway 97 road cut and in a nearby quarry (Figure 4). The Pomona Member was termed the Wenas or one of the Wenas flows, but incorrect application of this name caused the designation Wenas to be abandoned.

FIGURE 4

POMONA TYPE LOCALITY LOCATION MAP

(Contours in feet [meters] above mean sea level.)

Figure 5 depicts an idealized section through the Pomona Member. The horizontal zones are separated by an abrupt contact (No. 5). The upper (No. 1) and basal (No. 3) zones correspond to upper and lower colonnades and the central zone (No. 2) to the entablature of Tomkeieff.⁽¹²⁾ The upper zones are generally buckled (No. 12) at the top and may contain vesicles (No. 7) that coalesce into sheets. Undulating (No. 10) vertical joints divide the zone into thick (No. 4) prismatic columns. Other features sometimes observable in the Pomona Member include hackly columns (No. 7) fan jointing (No. 11) and pipe vesicles (No. 8).

The Pomona Member covers an area of about 18,000 km^2 and the total volume of lava deposited is estimated as 540 km^3 .⁽¹¹⁾

The Pomona Member is characterized petrographically by small phenocrysts of plagioclase (generally less than 5 mm long), clinopyroxene, and olivine. Modal analyses are distinctive because of low plagioclase/pyroxene ratios.⁽¹¹⁾ Plagioclase phenocrysts commonly have wedge-shaped appearance (Figure 6). Locally, as in a quarry on the east side of Devils Canyon, the flow contains large clots (up to 10 cm or more across) of plagioclase, pyroxene (including very rare hypersthene) and olivine believed to have formed during crystallization after eruption. (This information was prepared by D. A. Swanson, U. S. Geological Survey, Menlo Park, California.) The detailed petrography of Pomona samples from the type section is given in Appendix A (prepared by A. C. Waters, Santa Cruz, California).

The Pomona Member has a characteristic intergranular texture although intersertal and hyalopilitic textures may occur in its most glassy parts. Most clinopyroxene is colorless, unlike that in other flows, but where it borders tachylyte, it is a pale brown, probably due to late enrichment in titanium or iron.

The physical and thermal properties of the Pomona flow have been reported in other papers.⁽¹³⁾ Table VI summarizes recent results from core analyses of samples from within the Gable Mountain area, Hanford, Washington.

20

V7804-4.1

FIGURE 5

IDEALIZED SECTION THROUGH THE POMONA MEMBER

POMONA

V7804-4.2

200 µ

FIGURE 6

REPRESENTATIVE TEXTURE OF THE POMONA MEMBER

TABLE VI

SUMMARY OF PHYSICAL AND THERMAL CHARACTERISTICS OF THE POMONA MEMBER

.

	Average Value	Range Observed	Units
Uniaxial Compressive Strength	284	75-378	MPa
Brazilian Tensile Strength	21.4	15.0-28.5	МРа
Triaxial Compressive Strength	272	141-379	МРа
Modulus of Rupture	23.75	4.03-47.80	MPa
Density	2.84	2.78-2.87	gm/cc
Young's Modulus	76.5 x 10 ³	63.1-87.0 x 10 ³	MPa
Poisson's Ratio	0.25	0.19-0.29	-
Coeff. of Thermal Expansion	6.6 x 10 ⁻⁶	6.5-6.7 x 10 ⁻⁶	/oC
Thermal Conductivity	3.48×10^{-3}	$3.03 - 3.84 \times 10^{-3}$	cal/cm sec ^O C
Specific Heat:			
at 100° C	0.319	0.288-0.355	cal/gm ^O C
at 2000 C	0.425	0.394-0.460	cal/gm ^o C
at 300° C	0.538	0.474-0.585	cal/gm ^O C

Chemically, the Pomona Member is characterized by high CaO, MgO and chromium, but low FeO, Fe_2O , TiO_2 , hafnium, and barium. Its chemical composition is summarized in Appendix B using data from existing drill holes (Figure B.1).

UMTANUM UNIT

The Umtanum Unit is an identified flow from the Basalt sequence of Schwana, Grande Ronde Basalt Formation of the Columbia River Basalt Group. Unlike the Pomona Member, no type section has been described for the Umtanum Unit. Exposures of it are found in Umtanum Ridge due west of the Hanford Site and at Sentinel Gap (Figure 4). Samples of this flow have also been obtained from drill holes within the Hanford Site.

The chemistry of the Umtanum Unit is summarized in Appendix B. The flow shows a very low MgO content. Physically, the Umtanum Unit possesses excellent platy jointing at several levels. Petrographically, all of the rocks examined are high in glass, have small microlites, and have almost no microphenocrysts. The flow is very thick (in excess of 65 meters) and aphanitic. The platy jointing is probably the result of the stretching and smearing out of tiny vesicles and diktytaxitic patches, and infilling of the cavities by chlorophaeite, some of which has altered to clay, opal, and chalcedony. Petrographic description of drill hole samples from Wells DDH-3 and DH-5, within the Hanford Site, are given in Appendix B, Figure B.1, (prepared by A. C. Waters).

BCR-1 STANDARD

The designation of this sample stands for Basalt Columbia River=1 Standard. The sample was initially collected by A. C. Waters from a quarry near Hood River, Oregon. This basalt was used as an international basalt reference sample by the Standards Committee of the Geochemical Society. Best values for constituents determined in a rock analysis and for trace elements were given by Flanagan.⁽¹⁴⁾ Appendix D depicts the whole rock analyses for BCR-1 using X-ray fluorescence. These results were recently provided to us by Washington State University. Results on the trace element composition of BCR-1 are shown in Appendix D from Flanagan.⁽¹⁴⁾

WATERS

Generally, waters from basaltic aquifers are characterized by high ratios of calcium-to-sodium and of magnesium-to-calcium, a relatively high silica content and a relatively high fluoride content.

La Sala and Doty⁽¹⁵⁾ have examined numerous water analyses of Columbia Plateau basaltic aquifers. They concluded that the waters were typical of those found in sedimentary aquifers. The silica content of these waters indicates near equilibrium with a silica phase having properties similar to those of chalcedony or cristobalite. The silica probably comes into solution from feldspars and other minerals, but at a concentration higher than that at which it would be in equilibrium with quartz.^(16,17) The solubility of quartz is particularly low and would account for only 5 to 15 ppm SiO₂ in the water. Other silicate minerals, however, have solubilities intermediate between quartz and amorphous silica (40 ppm).

Waters from deep aquifers underlying the Hanford Site have recently been analyzed.⁽¹⁰⁾ The location of well samples is shown in Figure 7. Results of the analysis of Wells DB-1, DB-2, DB-7, and RSH-1 are summarized in Tables VII and VIII. The major constituents of these waters are depicted using semilogarithmic diagrams in Figures 8-11, respectively. The equilibrium pH with respect to $CaCO_3$ of all these waters is higher than the actual pH. The results from the analyses are also fairly close in the duplicate samples.

FIGURE 7

HANFORD AREA MAP SHOWING LOCATION OF WELLS SAMPLED

26

TABLE VII

MAJOR CONSTITUENTS: ANALYTICAL RESULTS (Sampling Dates are in Parentheses)

Constituent	DB- (8/9/	-1 /76)	DB (8/1	DB-2 (8/17/76)		DB-7 (8/11/76)		H-1 1/77)	Units
SiO ₂	27.8	28.8	31.6	31.8	36.4	36.4	22.5	22.5	ppm
Na	75.0	75.0	150.0.	150.0	106.0	117.0	30.0	. 25.0	ppm
ĸ	14.0	14.0	12.5	12.5	12.5	12.5	9.0	7.7	ppm
Ca	3.5	8.0	4.2	4.5	2.5	2.5	6.5	8.5	ppm
Mg,	0.70	0.90	0.18	0.20	0.50	0.50	1.0	2.2	ppm
Fe	.155	.105	0.53	0.63	2.72	3.82	.08	<.02	ppm
HCO3	208.8	219.6	196.4	192.8	135.7	121.4	42.8	67.3	mg/l CaCO3
CO3	0 -	0	21.4	21.4	35.7	50.0	0	0	mg∕l CaCO₃
SO 4	<.5	<.5	.5	.5	1.0	.5	23.0	15.0	ppm
C1	12.2	11.8	134.5	117.5	53.0	52.0	16.2	8.8	ppm
F	3.0	3.5	2	<1	7.0	8.7	0.7	0.7	ppin
NO	.5	.5	<.5	<.5	.5	.5	<.05	<.20	ppm
В	.25	.25	· .6	.6	.8	.7	<.05	<.05	ppm
T.D.S.	345	307	430	417	531	505	118	112	mg/l
TOC	29	28	14	16	27	28	9	9	mg/l
Cond.	400	430	430	440	450	475	250	250	micromhos/cm
pH	8.2	8.3	8.6	8.6	9.0	9.0	7.3	7.4	
	Water from Mabton interbed sampled with centrifugal pump		om Mabton sampled lift nd air or	Water fr interbed with air device a compress	om Mabton I sampled lift nd air or	Water fro Ronde Fm by swabb:	om Grande . sampled ing		

TABLE VIII

TRACE CONSTITUENTS: ANALYTICAL RESULTS* (Sampling Dates are in Parentheses)

Constituent	DB-1 (8/9/76)		DB-2 (8/17/76)		DB-7 (8/11/76)		RSH-1 (5/11/77)		
Zn	24	16	14	15	600	655	2560	39000	
Cu	15	15	10	12	15	19	20	50	
Hg	·<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	
Sb	10	< 8	<8	<9	10	15	< 3	< 3	
Ba	22	30	39	35	43	42	140	50	
Re	. 8	.9	1.3	1.2	. 8	1.2	ŅA	NA	
Cđ	<.5	<.5	<.5	<.5	1.0	1.5	. 2	.6	
Cr	2	<1	<1	<1	14	33	<25	<25	
Co	6	7	7	5	6.	5	2	2	
Pb	19	17	15	13	31	41	7	12	
Mo	67	20	<1	<1	40	15	2	2	
Ni	7	10	8	11	15	1.3	NA	NA	
Ag	1.5	1.0	1.0	1.5	0.8	0.8	<2.5	<2.5	
Sr	7	5	2	3	4	3	NA	NA	
Sn	14	17	14	14	5	5	NA	NA	
Tl	11	11	12	15	11	13	NA	NA	
v	<2	<2	8	9.	13	14	NA	NA	
Unit Sampled	Mabton Member		Mabton Member		Mabton Member		Grande Ronde Formation		

*All constituents are expressed in parts per billion. $^{\mbox{NA}}_{\mbox{Not analyzed for.}}$

MAJOR CONSTITUENTS IN DB-1 (DUPLICATE SAMPLES) WATER FROM THE MABTON MEMBER

٣

•

29

•

م معنوب

E e pr	۳ <u>۲</u> Co	ppm	EMg	ppm	E Ha	rdne <u>ss</u>	Na	ppm		Cl ppm	Eso4	ppm	EC031	ppm	pН	
s S S			100 100		300	- I				2000	²⁰⁰		EHCO	3 + C0 ₹	L.	* Linu
1 Multi 8			600		հետո					-	-141 dt		E Com	bined	' '	20 milling
40	100		500		200	900 H		ьH		-	2000		Ē		- 2	•• <u></u>
ulu			E-400			00 11110 00	Equ	ilibriun	n þ	_	ا بلید ا		1000	Free	- 3	IIII
30						600 3	-	-60		1000	1 L		900 A00	CO2		30 Libbu
	500		300			تاریب 500-14	È	1 2		800	Ē		E 700	F=1000		لأشبط
20	400		հուհ		- 100	mhu	┝	3		700	- noo		600	800	- 5	م الله ماليا
E			200		80	40 IIIII	Ē	4 - 5		600	800		500	600 500	- •	Intr
E	100 Hell		http://			20 JI	-	6		500				400	- 7	ليليا
	հոդ				••	եսև	F	7 8		400			որո	1 300 1		11
- - -	200		E		50	2011	F	9		<u>-</u> E	in soo		300	200	- 8	<u>ار</u>
	مليل		100		E 40	hulu	F	- 7.0 t		300			ահու	يليلين	- 9	, and a second
	E L		₩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			T T	Ŀ	2	anna).	-	<u>п</u>		200		7.0	7-111
6	Ē		E 70		30	Ē		, A		200			E E	10		Llistu
In s			∎ 1 1	•	ահուս		F	- **		<u>-</u> .	հեւն		L	60 40	'	2 mlmuh
	BL 80		50 International Social		20	•	\vdash	7			1 200			JE 30	- 2	allin
	E 70		Ш ∎ 40		lu lu lu	1	F	8 9	Ę	Ī		ļ	- 100	20	- 3	uluu
3	S and a second		1 I I I I I I I I I I I I I I I I I I I		E		-	- 8.0		100	L L		90 80	սկսկ	- 4	2
للمليل	so mining		30		E.		F	1 2		90 1 80	L.		E- 70	و السلية		بأيليلا
2	40	I	ասե				\vdash	3.	1111	70	100	j		Щ,	- 5	ي مالأمل
ىلىمىل	L		11 20		and a		F	4 - 5		H 60	80	"			- 6	1111
	30	1	ليا الم			»- <u>1</u>	-	6		50		1		11 A	- 7	أبابا
E	հու		in Fr			ուս		7 6 8		40	60 Linutu	i				Ē
	11 20				┠╏	1	1	₀ <u>8</u> .9			50 1111	j	1 30 Y	Ë,	- 8	1 T
	1-1-1		e no			ړي. ان∎نا	F	-9.0 DOTH	1.6	•			للطها		- 9	0.9-11
μ Π α			and a		Ë,	L		SAMP	FS	= <u> </u> !	<u>eluu</u>	1	20	e.o =	80	۵.7- 1
	, E		m ,		E!	ليليا		SAME			30 1	il		0.8		••=
)	6		H						հետե		in the second	0.6		<u>م</u> ه الا
		5	s s		Ξ.	° anna				= 1	20	1	Ē		- 2	°*-li Jiili
	inter :	,	4 A		ŧ.	. " IIII				=	հես	IJ	<u> </u>	EI	- 3	ultu
10.3		5 <u>.</u>				, Ind			E H		L L	1		0.Z		0.5 F
		5	1 3		F	Indian	•				Ē	!	E,		- 4	ռհո
	2	L	ւսես			, mhui						!	e e	5 0.I		02-11 02-11
հեսեւ			1 2	_ /	0.9	↓					luulu s	1	dundan 6		6	ևևև
E L		5	لتأتيا	- F	E- 0.7	, Iuil				<u> </u>	ш ш л	il				لىلىب
Ē		(يابي	1	0.6	عيابليا					- uule	il			,	تليليا
E-o.		4	م ليل	,	0.5	فلتلطط				<u> </u>	s s	!	111 3		- 8	아크
	39 	Ň				يأليل				₽,		!!			ہ ۹_	
E	07 <u>-</u>	Ì			E	1.5							, ան			
E	26 -			. <u> </u>	- 03					<u> </u>	<u>F</u> i	<u> </u>	Ë.		9.0 0	
		<u> </u>	\checkmark							O	< .5					
		1	۲				3	FIGUI	RE	9						, ·`

MAJOR CONSTITUENTS IN DB-2 (DUPLICATE SAMPLES) WATER FROM THE MABTON MEMBER

30

Line pm 1 Cappm 1 C	Mg ppm - 700 - 600 - 500	Hardness • Fr 1000-	Na ppm.	Cl ppm	$\frac{1}{2000}$	DH ^{epm} pH ^{70−} 60 - 50 − 1 50
11111111111111111111111111111111111111	- 400		Equilibrium - 60 - 1 - 2 - 3 - 4	5 1 500 5 1 500 5 1 500 5 00 5 000 5 000 5 000 5 00 5 00 5 00 5 00 5 00 5 00 5 00 5 00	L 1000 Free 1000 Free 1000 Free 1000 Ppr 1000 Ppr 1	n 4 900 5 800 5 700 600 700 700 700 700 700 700 700 700
11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	- 200 	thurthadatabuttabuttabuttabuttabuttabuttabutta	5 - 6 - 7 - 8 - 9 70 - 1	11111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1	500
11111111111111111111111111111111111111	2 50 2 50 50 50 40	17 17 17 17 17 17 17 17 17 17 17 17 17 1	- 2 - 3 - 4 - 5 - 6 7 8	200 200		100 7.0 80 7.0 80 7.0 60 5 40 2 30 4
11111111111111111111111111111111111111	30			L - huthuthuthuthuth	سیسیایسیایی ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۵۰ ۱۰۰ ۱۰۰ ۱۰۰ ۵۰ ۵۰ ۱۰۰ ۱۰۰ ۱۰۰ ۱۰۰ ۱۰۰	20 - 4 - 4 - 4 - 4 - 4 - 4 4 4 4
			- 7 - 8 - 90 - 90 - 90	40 77 77 77 77 77	1111111111111111111111111111111111111	2 8 1
	territe for the formation of the formati		SAMPLES			0.7 0.8 0.6 0.5 0.5 0.4 2 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.
11444444444444444444444444444444444444				e e e e e	L L L L L L L L L L L L L L L L L L L	

MAJOR CONSTITUENTS IN DB-7 (DUPLICATE SAMPLES) WATER FROM THE MABTON MEMBER

.

	E.	E 7		<u>-</u>	F	E	
E 70 E Ca ppm	E Mg ppm	Hardness	Na ppm	Cl ppm	ESO4 ppm	ECO3 ppm	pH 70-
E-60 E	E_ 700				3000		eo-3
	E	E -		Ē	da hi		노 , 킐
E-50 E 1000	E-600			EL L	1	Combined	50-3
E E 900	E	E 100-1		E_	E	E	L 。 引
E 40 E 800	E 300	E-200 900-	~ H	F	E	E	· ••-=
	Ē	£ ∞_=	pri El cuittibelium	E	E.		. 킠
EE	E-400 .	1 700-1	Equilibrium	È.	E-	E 1000 Free	「 ' <u>,</u> 当
E 30 E 600		E I	60	600 .	Ē	E *** CO2	*
500	- 390		- ı	900	F	E 800 ppm	F • -]
		E 500-	2	E 800	F	E 700 F= 1000	
E 10 E 400	ليا	L-100 =	- 3	700	1000	E 600 E 800	5 20-
	Ē.	400 H	- 4	E.	00e]
	200		- s	1000	800	500 500	- • I
F E 300	E		- 6	500	700	E 400	
	F	E % 4	. ,	Ē	E 600	E 400 E 100	ト 기 귀
	E			400			I I
F. E.	E		Ļ	E.	E- 600	E 300 E 200	F 8 10 - 1
E	È.	E 200-	7.0	E.			9
E E	100			300	400	ատ	┝ ♥ [劃]
	1	E I		يا بي	шĻ	E E 100	
	E 80			1.11F	E von	200 200	-70 T
E · F	70	E 30		E 200		E E [%]	.6-1
	E .	E.		E ···	<u>ما الم</u>		ト・,킓
5 100	60	T		Ē	LLLL LLLL	E E	
₽ ₽ °	50			Ē	200	FE	
				E	F	E = 30	
	40		- 8	F	E		- 3 =
	Ē.	E 70	- 9	E	E		3-3
	E	£ 60-			E		▲ 3]
مسلس	30			\$ 0	E		
		F 50	- 2	Ē *	E no	E EK	
		E "	- 3	E 70			2-3
타토	Ē.	E 9 40-		60		E. E.	
	E 2		- 5			して / 一	
1 III 30	F	E 7 30 T	- 6	so	E "		L. =1
	E	E. A	N - 7	Ē	60		E ' 1
EE	E.			4 0		Z / F	1, 1
	Ę		N A. •		50	E 36 E 2	
		10-	90	E .	E /		0.9-=
E as E	E °				Ë " /		~ ° 0.8-==
E E	s and a second	E/1 -	A 9.2		E /		
	E 8	Zi =		data l	上 30//		-80 E
E on E	E 7	扂/ ∃	9.5	20	E	E E ST	0.6
IE .E .	E. /		イン	E	長1		· ' 0.5
		1 10-		¥	E/	E E a4	_=]
	Ē s. /	🕹 2 📲		F	20	E E.	2 0.4-
		/≞ i≣		E	E/	E E	Ing I
E €V		F ,=	\	E	Z-		下 ° 目
□ 03 □	E/ !				F		03-1
	E/. /	E 1		9	E		► • <u>=</u>
	E/ 1			- B	Ę.	E 7 En	I
	∖₽ i		· ·	E,	E 10 .	E 6	- 5 <u>1</u>
E'E (¥i	E.o. 4-		Ē]]
	E 2,	E.a.		6	8	6	- 6]
	E /	E.	1	in the second se		1 Lin	-]
	F/	E 3		Ē,	E.		F , 1
	FI	6 3				EL	1. 1
	E.				5	E.	- e _ =
	ΛE'			Ē			
E-009E	V.	E.		3			- <u> </u>
E 008		E-0.4	1	E	EL.	1111 ·	0.08-3
E-007F	E					₽ 2	
E		E-03	1	<u> </u>	3	ы ы	C.00-
	07		·····				

FIGURE 11 MAJOR CONSTITUENTS IN RSH-1 (DUPLICATE SAMPLES) WATER FROM THE GRANDE RONDE FORMATION Application of the Palmer classification⁽¹⁸⁾ to the waters from DB-1, DB-2, DB-7, and RSH-1 shows that all the waters are Class I waters and in the bulk of the samples, the primary alkalinity is dominant, indicating waters in contact with sedimentary strata. Well DB-7 shows also a high primary salinity, probably due to the basaltic influence on the water composition.

In the waters depicted in Figures 8-11, sodium is the predominant cation present. These waters appear to be in equilibrium with a feldspar of about equal calcium and sodium content.

The cation-anion balances of the waters from DB-1, DB-2, DB-7, and RSH-1 are within 0.8-14.8 percent, averaging 5.5 percent. In over 60 percent of the samples, the balance is within 2 percent.

The main trace constituents are Zn, Cu, Ba, Pb, and Mo. Zinc is present in concentrations as high as 39 ppm (RSH-1 sample).

ENGINEERED BARRIERS

The present concept is to enclose spent unreprocessed fuel in a container constructed of stainless steel after the spent unreprocessed fuel has cooled in a water pool for five to ten years. The container would serve only to permit handling and temporary storage of 50 years.

The term "overpack" refers to the material emplaced between the borehole wall and the canister. At present, the spent unreprocessed fuel stored in a repository must be retrievable, and overpacks should be engineered that permit retrieval of the spent unreprocessed fuel. However, long-term storage will require a permanent overpack. There is considerable promise for further research into canister materials design for long-term containment or isolation of radionuclides (i.e., approximately 10⁶ years).

There is a need for much further research into overpack materials selection and design for long-term containment of radionuclides. Opportunities for the design of an effective overpack barrier are promising.

The functions of the overpack should be as follows:

Chemical Functions

- Must absorb leaking nuclides;
- Should control oxidation potential and pH to limit solubility of nuclides;
- Should react chemically with migrating nuclides to minimize solubility;
- Could act as a dehydrating agent, preventing access of water to the waste;
- Should provide protection from corrosion to the container.

Physical Functions

- Should act as a heat transfer medium;
- Should provide stress relief (both static and dynamic);
- Should act as a permeability barrier;
- Should act as radiation shield and permit inspection above the storage well during the initial storage period.

Several container materials are presently being studied by investigators abroad. These include hot pressed Al_2O_3 and copper. The Swedish government has indicated an intention to use a copper container. Overpacks may include one or more of the following:

- Layer silicates;
- Zeolites;
- Concrete;
- Eh-pH buffer pairs; e.g., CuS₂-CuS, NiO-FeO;
- pH buffers, e.g., carbonates;
- Silica-alumina gels

Overpack materials should be tailored only to prevent the migration of radionuclides that would possess a high mobility through the host rock environment and could not otherwise be contained.

SCENARIOS TO BE MODELED

During the first few decades of geologic isolation, the heat of radioactive decay in the wastes could raise considerably the immediate repository temperature. Temperatures significantly above the normal 40-45° C ambient for deep repository would persist for up to several hundred years depending on the placement of the waste containers and the thermal conductivity of the host rock. If ground water should come in contact with waste sealed in a repository during this thermal period of isolation, reactions would be expected.

The expectation is that hydrothermal solutions would transport species to and from the waste solid and the host rock, a process very similar to contact metamorphism. The result would be a zone around the waste container, a contact aureole, in which there would be developed new "minerals" which might or might not correspond to known mineral species. The thickness of the aureole would be limited by the falloff of temperature away from the container. The phases in the aureolc would depend primarily on the compositions of the waste form and of the repository rock with perhaps some contribution from the container and overpack. These phases could provide either better or worse long-term fixation depending on their solubility in percolating ground water. Largely crystalline waste solids would react more slowly than poorly crystalline or noncrystalline solids such as glasses; yet, unless they were in thermodynamic equilibrium with the pressure-temperaturechemical environment of the waste repository site, they too should eventually interact.

Once the thermal period (200-600 years) is over, the mixture of these interaction products and the remnants of the waste form and its containment would constitute a "new" waste form. It is this "new" waste form which will act as a source of radionuclides for any additional transport over the functional lifetime of the repository.

To simulate the behavior during the operating and postoperating phases of a repository, waste/basalt interaction studies must be conducted using the experimental conditions noted in Table IX. These experiments will involve typical Columbia River Basalt waters in flooded or wet areas and container materials as needed. The results of the studies should then be used to determine the types of overpack needed to contain any radionuclides that would otherwise migrate through the environment and cause a higher than maximum permissible concentration to get to the biosphere.

36

TABLE IX

EXPERIMENTAL CONDITIONS FOR WASTE/BASALT COMPATIBILITY EVALUATIONS

÷

· · · · · · · · · · · · · · · · · · ·	Dry Repository (H ₂ 0 from Minerals Only)	Wet Repository Low Transport (Closed System)	Flooded Repository High Transport (Open System)
LOW PRESSURE (No Lithostatic Load) P∿ 1 Bar Open to Atmosphere	A <u>—50 - 400 °C</u> <u>Experimental Method</u> Sealed Gold or Glass Ampuls 1. Waste + Basalt <u>+</u> Metal 2. Specific Mineral Systems <u>+</u> Metal		B <u>Experimental Method</u> Water Circulating Through Columns of Waste/Basalt 1. Waste + Basalt + H ₂ O <u>±</u> Metal 2. Specific Mineral Systems + H ₂ O <u>±</u> Metal
<u>HIGH PRESSURE</u> P = 50 - 500 Bars Sealed Repository	C <u>Experimental Method</u> Hydrothermal: Cold Seal or Morey Vessels 1. Waste + Basalt ± Metal 2. Specific Mineral Systems ± Metal	D <u>Experimental Method</u> Hydrothermal: Cold Seal or Morey Vessels 1. Waste + Basalt + H_2C <u>+</u> Metal 2. Specific Mineral Systems + H_2O <u>+</u> Metal	E <u>Experimental Method</u> Circulating Water Hydro- thermal 1. Waste + Basalt + H_2O^{\pm} Metal 2. Specific Mineral Systems + H_2O^{\pm} Metal

1 . .

REFERENCES

- G. J. McCarthy and M. W. Grutzeck, <u>Preliminary Evaluation</u> of the Characteristics of Nuclear Wastes Relevant to <u>Geologic Isolation in Basalt</u>, RHO-C-12, Rockwell Hanford Operations, Richland, Washington (May 1978).
- 2. W. A. Ross, <u>Development of Glass Formulations Containing</u> <u>High-Level Nuclear Wastes</u>, PNL-2481, Pacific Northwest Laboratory, Richland, Washington (February 1978).
- 3. J. E. Mendel, et al., <u>A Program Plan for Comprehensive</u> <u>Characterization of Solidified High-Level Wastes</u>, BNWL-1940, Battelle, Pacific Northwest Laboratories, Richland, Washington (December 1975).
- J. E. Mendel, et al., <u>Annual Report on the Characterization</u> of High-Level Waste Glasses, BNWL-2252, Battelle, Pacific Northwest Laboratories, Richland, Washington (June 1977).
- 5. W. J. Gray, <u>Volatility of a Zinc Borosilicate Glass Containing</u> <u>Simulated High-Level Radioactive Waste</u>, BNWL-2111, Battelle, Pacific Northwest Laboratories, Richland, Washington (October 19/6).
- R. P. Turcotte and J. W. Wald, <u>Devitrification Behavior in</u> <u>a Zinc Borosilicate Nuclear Waste Glass</u>, PNL-2247, Pacific Northwest Laboratory, Richland, Washington (May 1978).
- 7. W. A. Ross, et al., <u>Annual Report on the Characterization</u> of High-Level Waste Glasses, PNL-2625, Pacific Northwest Laboratory, Richland, Washington (June 1978).
- 8. G. J. McCarthy, et al., <u>Simulated High-Level Waste-Basalt</u> <u>Interaction Experiments, Second Interim Progress Report</u>, RHO-BWI-LD-16, Rockwell Hanford Operations, Richland, Washington (June 30, 1978).
- 9. B. L. Cohen, "The Disposal of Radioactive Wastes from Fission Reactors," Scientific American, 236 (6), 21, (1977).

- 10. D. A. Swanson, "Yakima Basalt of the Tieton River Area, South-Central Washington," <u>Geol. Soc. America Bull.</u>, <u>78</u> pp. 1077-1110 (1967).
- 11. H. U. Schmincke, "Stratigraphy and Petrography of Four Upper Yakima Basalt Flows in South-Central Washington," <u>Geol. Soc. America Bull.</u>, <u>78</u>, pp. 1385-1422 (1967).
- 12. S. I. Tomkeieff, "Basalt Lavas of the Giant's Causeway," <u>Bull. Volcanol. 2, p. 81-147, (1940).</u>
- 13. W. I. Duvall, R. J. Miller, and F. D. Wang, <u>Preliminary</u> <u>Report on Physical and Thermal Properties of Basalt Drill</u> <u>Hole DC-10 Pomona Flow - Gable Mountain</u>, RHO-BWI-C-11, Rockwell Hanford Operations, Richland, Washington (May 1978).
- 14. F. J. Flanagan, "1972 Values for International Geochemical Reference Samples," <u>Geochimica et Cosmochimica Acta</u>, <u>37</u>, pp. 1189-1200, (1973).
- 15. A. M. La Sala, Jr. and G. C. Doty, <u>Preliminary Evaluation</u> of Hydrologic Factors Related to Radioactive Waste Storage in Basaltic Rocks at the Hanford Reservation, Washington, U. S. Geological Survey Open-File Report (1971).
- 16. J. A. Lier, "The Solubility of Quartz," Utrecht, Kemink
 en Zoon, 54 pp., (1959).
- 17. G. W. Morey, R. O. Fournier, and J. J. Rowe, "The Solubility of Quartz in Water in the Temperature Interval from 25 to 300° C," Geochim. et Cosmochim, Acta, 26, pp. 1029-1043.
- 18. R. A. Deju, <u>Preliminary Analysis of Some Waters From the</u> <u>Confined Aquifers Underlying the Hanford Site</u>, RHO-BWI-LD-12 Rockwell Hanford Operations, Richland, Washington (September 1978).

DISTRIBUTION

40 • . . .

• • • • •

т., Была Ме

RHO-BWI-LD-11

 $\mathcal{C}^{(n-2)}$

Number of Copies	
2	LAWRENCE BERKELEY LABORATORY
	J. C. Apps L. Benson
1	PACIFIC NORTHWEST LABORATORY J. R. Serne
3	THE PENNSYLVANIA STATE UNIVERSITY
. *	G. J. McCartny
2	U. S. DEPARTMENT OF ENERGY-HEADQUARTERS
	M. W. Frei D. L. Vieth
2	U. S. DEPARTMENT OF ENERGY-RICHLAND OPERATIONS OFFICE
· .	R. B. Goranson D. J. Squires
1	A. C. WATERS
38	ROCKWELL HANFORD OPERATIONS
	 H. Babad R. L. Biggerstaff D. J. Brown D. J. Cockeram T. A. Curran R. A. Deju H. B. Dietz G. C. Evans M. B. Fox
	R. E. Gephart R. J. Gimera R. E. Isaacson A. D. Krug R. K. Ledgerwood
	J. F. Marron M. J. Smith W. W. Schulz R. T. Wilde Pagalt Waste Icolation Program Library (1)

Basalt Waste Isolation Program Library (15) Document Control (4)

APPENDIX A

PETROGRAPHIC DESCRIPTION OF THE POMONA TYPE SECTION

PETROGRAPHIC DESCRIPTION OF THE POMONA TYPE SECTION

Latitude - 46° 42' N Longitude - 120° 28' W

<u>SAMPLE A-1270</u> - (Taken from 8 feet below the flow top) Description

Numerous cumulate-like clots of plagioclase, as well as separate phenocrysts of the two minerals in the same size range: plagioclase, 0.5 to 1 mm; pyroxene 0.3 to 0.6 mm. This thin section has caught only a few segments of the large phenocrysts with poikilitic inclusions of pyroxene in the center of the plagioclase, which are one major characteristic of the Pomona Flow. The sliced parts of these phenocrysts are not larger than sliced sections of some of the microphenocrysts. Microlites of plagioclase are mostly 0.1 to 0.2 mm long; pyroxene microlites 0.05 to 0.1 mm. Olivine rare, saponitized on edges and in cracks. Much black dusty tachylyte. Iron ores are in the tachylyte. Opal fills some small vesicles, others are empty. Opal appears to replace a rim of earlier chlorophaeite in some vesicles.

· · · ·			<u> </u>	Control	Points	
Minerals	· Vól	ume %	lst	500	2nd	500
Plagioclase		33.9		173		166
Phenocrysts Microphenocrysts Microlites	1.6 6.5 25.8		8 33 132	· .	8 32 126	· · ·
Pyroxene		37.2		179		193
Microphenocrysts Microlites	0.7 36.5		5 174		2 191	
Olivine (fresh)		2.8		14		14
Opaques		5.5		25		30
Tachylyte		17.1		93		78
Opal (some is replacing chlorophaeite)		<u>3.5</u> 100.0		<u>16</u> 500		<u>19</u> 500

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene = 0.91

100-(glass + opaque)/pyroxene = 2.08

Solidification Index: SI = 35.1124

SAMPLE A-1268 (Taken from 30 feet below the flow top) Description

The rock is full of small phenocrysts of plagioclase (0.5 to 0.8 mm), and of clots of this plagioclase with microphenocrysts (0.4 mm) of pyroxene. The larger phenocrysts of plagioclase (greater than 1 mm) that have cores of poikilitic pyroxene are rare, but as in A-1270, there are a few of them none however, are much larger than the microphenocrysts. They contain inclusions of bubbly-brown glass as well as pyroxene. The matrix of the rock is a black irresolvable tachylyte. Olivine is in sparse microphenocrysts (0.8 mm). It is fresh, and difficult to tell from pyroxene. Microlite sizes are 0.05 to 0.3 mm for plaqioclase; 0.05 mm grains for pyroxene, which however, is clotted into welded aggregates up to 0.5 mm long. One pyroxene phenocryst has inclusions of glass and olivine. There is a peculiar interstitial yellow-green mineraloid. Apparently it is opal, some of which has relic features (shrinkage cracks, inclusions) that indicate that it replaced chlorophaeite.

				Control Points			
	Volur	ne 8	_lst	500	2nd	500	
Plagioclase		32.8		169		159	
Phenocrysts Microphenocrysts Microlites	2.6 6.0 24.2		15 31 123		11 29 119		
Pyroxene		32.5		158		167	
Microphenocrysts Microlites	1.3 31.2		6 152		7 160		
Olivine (fresh)		1.0	• •	6		4	
Opaques		3.5		20		15	
Tachylyte		27.4	·	134		140	
Opal		2.8		13		15	
		100.0		50Û		500	

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene = 1.01

100-(glass + opaque)/pyroxene = 2.13

Solidification Index: SI = 35.6244

SAMPLE A-1267 (Taken from 60 feet below the flow top) Description

This thin section is very similar to A-1270 and A-1268, the same description applies. It may be somewhat more crystalline at least the tachylyte has slightly less fuzzy boundaries, although it is still filled with black irresolvable dust and in places with larger skeletal magnetites. A striking example of a feldspar phenocryst with inclusions of pyroxene and glass was observed. It shows good resorption features both in early zones, and in a big "peninsula" of groundmass from one edge. Another example contains a carlsbad and some pericline twins. An olivine phenocryst with picotite(?) inclusions was also noted.

		TOTALD	<u> </u>		
			Control	Points	;
Volu	ume %	lst	500	2nc	500
	28.7		143		144
2.3 4.7 21.7		11 24 108		12 23 109	. *
	30.8		151		157
0.9 29.9		5 146		4 153	ï
	1.4		10		· 4
	2.8		13		15
	34.5		176		169
	1.8		7		11_
	100.0		500		500
	Volu 2.3 4.7 21.7 0.9 29.9	Volume % 28.7 2.3 4.7 21.7 30.8 0.9 29.9 1.4 2.8 34.5 <u>1.8</u> 100.0	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene = 0.93

100-(glass + opaque)/pyroxene = 2.04
Solidification Index: SI = 36.9604

APPENDIX B

45

POMONA AND UMTANUM CHEMICAL COMPOSITION

POMONA AND UMTANUM CHEMICAL COMPOSITION

Results of Pomona and Umtanum whole rock analyses using atomic absorption and trace element analyses using neutron activation for holes DH-2, DH-4, DH-5, DDH-1, DDH-3, and DC-1 are reported in Table B-1. Table B-2 reports recent analyses of Pomona and Umtanum samples using X-ray fluorescence. Location of all holes sampled is shown in Figure B-1.

TABLE B-1

POMONA AND UMTANUM CHEMICAL COMPOSITION

			WIN F	IXX.K		Y919	Ationi	c Abs	ant			. بعد .) Triav	F 51	THE P	ATTAL Y	CIC.		 611 Aea		ton H	
	SAMPLE	is in	۵۱۵ E-0	Fe 0	Mod	C-010)	N2 0	 v r	, м.,	1 740	0 0	د ـ ۲	\ n.	0 10	M+3		بر رب ۵۰		5 10 10 1L_1	0101		r	T1.	115	T.
<u>DCP1H</u>	NUMBER	122	<u><u>x</u>² <u>x</u></u>	<u>x</u> 2	<u>ז יין י</u> נ <u>ג</u>	<u>x</u>	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	<u><u></u>²</u>		<u> </u>	2 22	5 <u>x</u>		_ <u>%</u>	Balt	ippin	<u>ppm</u>	_ <u>ppn</u>	- <u>ppin</u>	<u>. 5bii</u>	_ <u>bbu</u>	_ <u>pjxn</u>	b <u>bii</u>	. <u>15 ben</u>	ըըտ_
pa-2 C	OREHOLE	ומאטיו	IN BASALT P	12 CMAR	2																			•	
46		Flow	top		·																		•		
54	CN-53	53	12.9 12.4	• •	5.9	10.2	2.3	0.7	0.18	1.8		-	0.05	0.8	100.2	2									
110	CA-54	53	14.1 13.1	-	6.7	10.7	2.3	0.7	0,20	1.0	-	-	0.05	1.2	103.8	•									
01.0	N1057	52	14.0 11.0	-	1.9	10.0	2.3	0.4	-	1.5	-	-		3.5	102.7										
171 DU-A C		POIN	NA BASALT	MEMBEI	R																				
A5	OREHOLL	Flow	ton																						
56	NA004	50	11.6 10.9	_	7.1	10.2	2.2	0.1	0.17	1.6	.	0.03	0.07	3.0	99.0	,									
64	A4005	51	13.6 11.4	-	7.6	10.4	2.2	0.2	0.17	1.6	-	0.02	0.05	2.3	100.8	3 1 3 8	36	16	4.8	43	35	1.4	-	3.5	-
ពអ	A4006	51	13.6 10.0	-	7.5	10.2	2.3	0.2	0.17	1.6	-	0.02	0.06	1.9	99.4	1 87	35	19	5.3	46	33	1.5 .	-	4.8	-
120	A4007	51	13.5 10.9	-	7.3	10.1	2.3	0.2	0.18	1.6	-	0.03	0.05	2.7	99.9	0 100	35	18	1.9	43	34	1.3	-	·4.2	-
142	74008 74009	51	13.3 10.9	-	7.4	10.2	2.4	0.3	0.19	1.7	-	0.03	0.06	1.5	98.9	92	42	17	4.8	42	33	1.6	-	5.1	-
167	111105	Flow	bottom ·																						
		*mer.		ก นี่มา	י" וא	ssion	ment i	tenta	Éive)																
2306		Flow	top (7)		•		••••																		
2220	N4100	۰. ۵	17 7 17 4	-	4.6	. 7.1	2.7	1.2	0.25	2.1		0.03	0.08	4.7	98.4	4								.:	
2320	A4101	52	13.4 11.5	-	4.1	7.1	3.1	1.2	0.24	2.1	-	0.04	0.10	5.9	100.7	,								•	
2358	A4102	53	12.8 12.4	-	3.8	6.8	3.1	1.3	0.21	2.0	-	0.03	0.09	2.2	97.7	7 13	58	25	6.6	35	32	1.7	-	5.3	-
2170 "	A4103	54	13.0 12.3	-	3.8	6.9	3.2	1.3	0.21	2.0	-	0.03	0.10	2.,1	98.9	22	53	25	6.6	36	32	1.8	-	3.9	-
2398	አ4104	55)3.0 13.3	-	3.5	7.0	3.2	1.4	0.20	2.1	-	0.04	0.10	1.9	100.7	1 11	84	24	6.7	35	32	1.9	-	5.0	. –
2-11 B	N4105	56	13.1 13.2	-	3.5	7.2	3.3	1.4	0.20	2.1	-	0.04	0.10	1.7	101.0	3									• .
2435		Flow	bottom (7)).																				•	
DH-5 C	OREHOLE	POMO	NA BASALT P	1EMBEI	2										•		,								
324		Flow	top																						
336	A 5006	53	14.0 10.8	-	7.1	9.7	2.4	0.3	0.16	1.6	-	0.02	0.05	3,8	103.6	ć				_					
352	A5007	53	13.9 10.8	-	7.0	9.7	2.2	0.3	0.17	1.7	-	0.02	0.05	4.5	103.7	96	26	18	5.0	40	32	1.4	-	3.2	-
300	72000	52	14.2 11.0	-	7.6	0.6	2.4	0.7	0.18	1.6	-	0.03	0.05	2.4	100.8	5. 2.106	12	17	۸ n	4 1	32	1.4	-	3.1	-
402	A5009	52	14.2 11.4	-	7.7	9.6	2.4	0.5	0.19	1.6	-	0.03	0.05	2.4	101.7	7	32	. * '	4.0						
4.50	A5010 A5011	51	13.8 10.6	-	7.4	9.4	2.4	0.6	0.17	1.6	-	.0.03	0.05	1.4	911.5	5 104	21	19	4.7	43	33	1.4	-	3.3	-
460		Flow	bottom																						
		**11685	ANUM BASAL	Т UNI	T" (Assio	nment	tent	a⊊ivo	}															
2616		Flow	top							-		•													
2650	A5101	52	12.7 12.7	-	3.9	7.6	3.1	1.5		2.2	•	-	0.08	1.4	97.	2									
2670	A5102	53	12,9 12.9	-	3.9	7.2	3.0	1.5		2.2	-	-	0.10) i.9	98.	6 18	•	24	6.8	41	32	1.4	-	5.5	-
2692	A5103	54	12.7 12.4	-	3.8	7,0	3,2	1.6	-	2.2	. •	-	0.00	1.7	98.	7			-	30	17	۱ 4	-	5 6	
2712	15104	53	12.9 12.1	,	3.8	7.1	3.3	1.6	-	2.2	-	•	0.00	9 J., 6	1. HQ.2 	Ų ,27 6	• •	40	7.9	28	34	1.0	-	2.0	
2732	A5105	52	12.6 12.7	•	3.8	7.4	3.1	1,6		2.2	:		0.00	1 1.1	90.	ינ נ ז ונ		25	6.9	39	31	1.5	-	4.5	-
2752	A 5106	54	12.7 12.7	-	3.7	7,0	3.1	1.1	-	2.2	-	•	0.0	0.6	99.	3	-		••••						
2172	V2101)) ((, 15 11 12 U	-	3.9	7.5	3.2	1.2	-	2.2	-	-	0.0	2.7	101.	5 117	Έ.	25	7.3	39	33	1.7	-	7.5	-
2812	A5100	55	12.6 12.5	-	3.9	7.3	3,1	1.9	-	2.1	-	-	0.0	2.4	100.	9									
21120		r10)	4 130CCOM	. '																					

Table B-1 (continued)

		r			0000		/010									ر	TDAC	<u>с г. с</u>		APIAL	<u> </u>					
	SAMPLE			HULL	Iark	NNU	YSIS;	λ(omi	c Abs	urpCi	un						INAUC	ե ենե	neni	NWLY	212:4	en tro	N ACC	wate	011 [6	M(')
DEPTH	SERIAL NUMBER	5102	^1 ₂ 0	3 ^{FeO}	Fe20	3 <u>Mg</u> O <u>1</u>	CaO	Na 20	^K 2 ⁰	14n0 %	Ti02	P205	Sr0 	BaO	Vo') 	Mt1 Bal%	Cr ppm	Rb ppm	La ppm	Տտ 	Co ppm	Sc ppia	Eu ppm	ТЬ Р <u>Р</u> ш	lif ppm	Ta ppin
DD11-1	COREHOLE	rono.	на ва	SALT I	HEMBF.	R																				
248	•	F10w	top																							
254	CA-6	54.1	14.0	<u>ы.</u> ё	-	5.4	٩. ١	n	0.5	0.17	2.0	-	0.03	0.05	-	12.1										
26.4	CN-7	51.5	14.0	10.0	<u>.</u> `	5.0	n.3	2,0	0.4	0,19	2.0	-	0.03	0.04	-	99.0										
274	1011	51	11.9	10.0	-	5.7	9.5	2.3	0.4	-	1.6	-	-	0.06	1.1	94.4										
200	V1033	51.5	13.3	10.6	-	7.2	9.9	2.2	0.3	-	1.5	-	-	0.06	2.7	96.5										
300	CV-10	51.9	14.1	11.9	-	7.0	10.3	2.3	0.6	0.20	2.0	-	0.03	0.04	-	100.3										
356	A1034	52.	14.8	10.9	-	0.0	9.6	2.5	0.5	-	1.6	-	-	0.05	1.9	101.8										
360	CV-11	50.B	14.3	10.4	-	6.7	10.0	2.5	0.6	0.26	1.9	-	0.03	0.04	-	90.3										
400	. CN-12	51.9	14.3	11.7	-	7,1	9.9	2.5	0.5	0.20	1.9.	-	0.03	0.04		100.7										
410	A1035	52	14.6	11.1	•	0.0	9.9	2.3	0.4		1.5	-		0.06	0.4	101.0										
440	CV-11	51.2	. pott	11.3	-	6.9	10.0	2.3	0.4	0.17	1.0	-	0.03	0.04	-	90.0										
1111-3	CORITHORE	POHO	IIA BA	SALT I	HEMBE	R																				
400		- Flow	top																							
504	A2011	54	13.5	11.3	-	7.2	10.2	2.1	0.4	-	1.7	-	-	0.04	1.1	101.5	1.14	· -	17	5.2	44	34	1.5	-	2.8	-
.526	A 201 2	54	13.5	31.4	-	7.3	9.1	2.3	0.6	-	1.7	` -	-	0.04	2.2	102.1	10).	-	18	5.0	41	32	1.4	-	3.5	-
556	V5013	54	14.1	11.3	-	7.5	9.4	2.4	0.5	÷	1.7	-		0.04	2.0	102.9	111	-	17	5.4	42	32	1.5	-	3.3	-
612	A 2014	57	14.0	11.1	-	7.6	9.1	2.4	0.6	-	1.8	-	-	0.04	1.4	105.0	94	-	16	5.2	42	34	1.5	-	3.1	-
470		F}ow	hnid	com.											•											
		"UHT	ANUM	BV2VE	т แลา	r."																				
3066		Flow	top																							
30.00	A2108	55	11.9	11.3	-	3.2	5.4	2.8	2.3	-	1.9	-	-	0.13	6.7	100.6	22	-	27	7.7	36	38	2.7	·_	7.9	-
3125	V510à	56	11.9	11.7	-	3.2	6.6	2.0	1.2		1.8	-	-	0.16	3.3	98.6	5	-	21	6.5	38	35	2.2	·-	7.1	-
3146	V5JJ0	54	12.5	31.2	-	3.5	6.6	2.7	2.2	-	1.9	-	-	0.10	5.1	99 . F	13	-	26	7.3	41	38	2.4	-	5.6	-
3176	V5111	55	12.6	12.7	-	3.5	6.8	3.0	1.7	-	2.0	-	-	0.10	2.0	99.4	13	-	24	5.8	33	29 ·	1.7	-	4.4	-
3105	A2112	55	12.0	12.4	-	3.6	6.6	3.1	1.6	÷	2.0	-	-	0.12	1.9	99.1	16	-	22	5.9	33	30	1.9	-	4.5	-
1206	A2113	53.5	32.4	12.8	-	3.6	6.6	3.1	1.3	-	2.0	· _	-	0.10	2.1	97.5	31	-	29	5.1	96	29	1./	-	4.7	-
37.24	A2114	52	12.5	12.6	-	3.7	6.5	3.3	1.4	-	2.1		•	0.00	2.2	96.4	12	-	22	6.1	37	32	1.0	-	5.1	-
3742	N2115	52	12.5	13.3	-	3.0	6.5	3.0	1.3	-	2.1	-	-	0.00	2.1	100 1) 10 17	-	22	6.0	36	32	2.0	-	6.4	-
1200	A2117	35	13.2	13.0	-	3.0	6.7	3.3	1.5	-	2.0	-	-	0.10	1 9	100.6	, 1, ; 15	-	21	6.0	32	36	1.9	-	4.9	-
1206	A2119	54.5	13.3	12.4	-	3.7	6.8	3.2	1.4	_	2.0		-	0.09	1.3	98.7	19	-	22	6.2	35	32	1.9	-	5.2	-
3320	A2120	57	12.8	12.5	-	3.5	6.8	3.3	1.6	-	2.1	-	-	0.11	1.1	100.0	17		22	6.0	38	34	2.2	-	6.7	-
3340	A2121	57	11.9	13.5	-	3.6	6.7	3.1	1.5	-	2.1	-	-	0.10	1.6	100.1	12	Ξ	22	6.0	36	33	2.1	-	5.7	-
3354		Flow	bott	om																						
												·														
ARH D	C-1 BOREHO	NLE "ሆኑ	TANU	I BASA	LT UN	IT",	Flow	top 2	958																	
3087	A1072	57 '	13.2	12.7	-	3.5	6.8	3.2	1.5	-	2.0	-	-	0.0	8 0.6	-	5 1	-	28	5.8	35	21	1.5	ុ0÷94	5.3	1,5
3127	A1073	55	13.5	12.1	-	3.2	7.0	3.3	1.7	-	2.0	-	-	0.0	8 0.8	-	13	-	27	6.2	36	34	2.0	1.4	6.1	1.7
3126	A1138	53.5	13.1	12.1	-	3.5	6.6	3.1	1,6	-	1,.9		-	0.0	8 1.2	-										
3178		Flow	bott	on																						

47

TABLE B-2

POMONA AND UMTANUM X-RAY FLUORESCENCE

	SAMPLE			WHO	le rock	AWLYSI	ES; X-R	ay Fluo	rescence	£		
DEPTH	SERIAL NUMBER	sio ₂	A1203	110 ₂	Fe ₂ 0 ₃	'Fe0 	Mn0	CaO 	Mg0 7	*2 ⁰	^{Na} 2 ⁰	P2 ⁰ 5
	COREHOLE	"нита	NIM BACK	14 10177	. (ber	icomont		i				
2306	CONSIDER	Flow	top (7)	UP: UNII	(//33	rgnoene	rentar	146)				
. 2378	A 3085	54.65	15.09	2.07	2.00	11.16	0.21	6.93	3.42	1.50	2.64	0.34
2406 2435	a 3084	5478 Flov i	14.66 bottom (2.13 ?)	2.00	11.05	0.22	7.20	3.44	1.52	2.66	0.3
											•	
DH-5	COREHOLE	F) ON	A BASALI		(
410	A3146	52.98	15.63	1.58	2.00	8.99	0.19	.8.89	6.79	Q.65	2.07	Q.2
443	DH50443	51.87	15.02	1.55	2.00	8.89	0.19	10.38	7.08	0.39	2.23	0.1
· 460		Flow	bottom									
		_ "UMTAI	NUM BASA	LT UNI	Ass	ignment	tentat	ive)				
2616		Flow	top (?)									
2655	A3124 A3125	54.13	15.33	2.15	2.00	11.31	0.21	6.80	3.43 3.63	1.48	2.82	0.3
2802	A3126	54.58	14.68	2.14	2.00	11.10	0.22	6.99	3.48	1.51	2.74	υ.3
2820	,	Flow I	bottom ((?)		•						
DC-2	COREHOLE	POMON	A BASALI	r membei	ł							
294		Flow	top									
377	DC 20377	52.39	14.92	1.58	2.00	8.21	0.18	10.94	6.94 7 17	0.53	2.09	0.2
439		Flow	bottom	1.55	2.00	0.33	0.15	10.01		0.00		
		ግብኤምርል	MIM RASI	ATT 11813	r#							
2958		Flow	top		-							
3044	DC23044	54.88	14.28	2.13	2.00	ü1.08	0.22	7.30	3.44	1.62	2.70	0.3
3126	DC23126	55.05	14.42	2.19	2.00	11.47	0.23	7.34	3.49	1.61	1.86	0.3
3100	IC 23160	54.70 Flow	bottom	2.23	2.00	11.4/	0.21	7.25	5.57			
3170		110*	Docton	1.12								
DC-6	COREHOLE	POMON	A BASAL	r membei	R							
514	,	Flow	top									
616	DC60616	52.78	15.50	1.60	2.00	8.90	0.19	8.73	7.22	0.53	2.24	0.3
675	DC60675	52.04	15.11	1.61	2.00	8.95	0.20	10.44	0.97	0.34	2.22	•
694		1.104	DOLCOM									
		"UMTA	NUM BASI	ALT UNI	r"							
3036		Flow	top		:			۰.				
3125	DC63125	54.65	14.41	2.13	2.00	11.07	0.21	• 7.24	3.49	1.65	2.81	0.3
3177 3243	DC63177 DC63343	54.77 54.45	14.23	2.12	2.00	11.23	0.22 0.77	7.21	3.40	1.64	2.71	0.3
3258		Flow	bottom									
DC-1	O COREHOL	E POMON	A BASAL	r membei	R							•
125		Flow	top		•••					•		
216.	5 [·] DC10	51.18	15.72	1.60	2.00	8.81	0.18	10.81	6.78	0.45	2.22	0.2
290	DC10	52.14	15.57	1.59	2.00	8.43	0.18	10.73	6.40	0.50	2.24	0.2
298		bjen -	bottom									
DC11	COREHOLE	POMON	IA BASAL	T MEMBE	R					·		
96		£ĵ0A	top									
143 266	DC11 DC11	51.30 51.18) 15.44) 15.53	1,60	2.00	6,89 9,00	0.19 0.19	10.86 10.80	6.86 6.85	0.44 0.56	2.19	0.2 0.2

FIGURE B-1

HANFORD AREA MAP SHOWING LOCATION OF WELLS SAMPLED

APPENDIX C

50

PETROGRAPHIC DESCRIPTION OF THE UMTANUM FLOW

PETROGRAPHIC DESCRIPTION OF THE UMTANUM FLOW

Well DDH-3

Top of Umtanum Flow at 3,125 feet Base of Umtanum Flow at 3,325 feet

SAMPLE A-2117 (Taken from a depth of 3,280 feet) Description

An extremely fine grained, glassy rock consisting of tachylyte pools crowded against a feeble network of thin (0.1 mm long and 0.025 mm thick) plagioclase microlites and shapeless grains of pyroxene (0.3 to 0.4 mm in diameter). Scattered small vesicles are partly filled with altered chlorophaeite and opal.

			Co	ontrol	Points	
Minerals	, Volu	me 😵	lst	± 500	2nd	500
Plagioclase		22.7		110		117
Phenocrysts Microlites	0.8 21.9		5 105		3 114	
Pyroxene		24.1		115		126
Phenocrysts Microlites	0.8 23.3		5 110		3 123	
Olivine		· [·] 0		. 0		0
Tachylyte glass (opaques included)	•	52.3		268		255
Altered Chlorophaeite and Opal	•	$\frac{0.9}{100.0}$		7		2
Plagioclase/pyroxene rat	io: 0.94					

POINT COUNT (1000 POINTS)

100-(glass + opaques)/pyroxene: 1.98
Solidification Index: SI = 17.665

SAMPLE A-2120 (Taken from a depth of 3,320 feet) Description

Section is thick. Shows the usual microphenocrysts of plagioclase (0.7 mm long). Rounded grains, tabular clotted plates, and rare microphenocrysts of green pyroxene, large euhedral opaques, and a deep brown glass - nearly clear except for a spattering of tiny spherical opaques. Only a little chlorophaeite.

		•	C	ontrol	Points	
Minerals	Volume %		lst	500	2nd	500
Plagioclase	38	8.6		· 190		196
Microphenocrysts Microlites	1.1 37.5		5 185		6 190	
Pyroxene	38	8.9		196		193
Olivine (saponitized)	· , . C).2		1		1
Opaques	7	.6	i.	38		38
Glass + crystallites	14	4.4		73		71
Chlorophaeite	C	. 0 ⁻	•	. 0		. 0
Apatite		.3		2		1
	100	0.0		500		500

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene	=	0.	99	
		•	• •	

100-(glass + opaque)/pyroxene = 2.26

Solidification Index: SI = 16.746

52

Well DH-5

Top of Umtanum Flow at 2,615 feet Base of Umtanum Flow at 2,825 feet

SAMPLE A-5101 (Taken from a depth of 2,650 feet) Description

Although this rock appears aphanitic to glassy, point counting indicates not more than 20-30 percent glass, but the microlites which compose most of its bulk are so tiny (mostly less than 0.25 mm) that they "swim" in glass of the thickness of a thin section. Because the dark brown glass is transparent, the amount of glass is constantly understated by the method of point counting, as microlites can be seen through it. Microphenocrysts are almost nil. Only 6 of plagioclase and 1 of pyroxene were encountered in counting 1000 points. Apatite is much more abundant than normal, but because it is in such tiny crystals, it was rarely counted. The small amount of mineraloid in the rock has been largely replaced by opal and chalcedony.

•	• •	<u>Control</u>	Points
Minerals	Volume %	lst 500	2nd 500
Plagioclase	46.4	236	228
Pyroxene	26.2	135	127
Opaques	5.1	18	33
Glass	19.0	97	93
Chlorophaeite	2.9	12	17
Apatite	0.1	0	1
Opal and Chalcedony	0.3	2	<u> </u>
(after chlorophaeite)	100.0	500	500

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene = 1.77
100-(glass + opaques)/pyroxene = 3.28

53

SAMPLE A-5103 (Taken from a depth of 2,692 feet) Description

This second thin section, taken 42' deeper in the 210-foot flow (or flow units) than A-5101 is richer in glass, but nevertheless, will make a more accurate point count. The tachylyte has cleared by nucleating small beads of opaque, which can be clearly discriminated from the translucent brown glass. Also this rock shows clearly what could only be anticipated from the ones above - the "poker-chip" structure is formed by the stretching and smearing out of tiny vesicles and diktytaxitic patches, and infilling of the cavities by chlorophaeite, some of which has altered to clay, opal, and chalcedony.

The rock is essentially without microphenocrysts; only three were encountered in 1000 points counted. All were plagioclase less than 0.7 mm long. Microlites range from 0.07 to 0.10 mm.

	ų	Control P	oints
<u>Minerals</u>	Volume 8	<u>lst 500</u>	<u>2nd 500</u>
Plagioclase	32.1	162	159
Pyroxene	19.4	90	104
Opaques	4.1	15	26
Glass	40.7	216	191
Chlorophaeite	3.2	14	18
Opal, Chalcedony,	0.5	3	2
Zeolite	100.0	500	500

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene = 1.64

100-(glass + opaques)/pyroxene = 2.84

SAMPLE A-5106 (Taken from a depth of 2,752 feet) Description

Unlike the preceding thin sections, this one shows a few microphenocrysts (0.6 mm) and a single small plagioclase phenocryst (1.5 mm). Plagioclase and pyroxene microlites are very small (0.1 to 0.05 mm). The glass is deep brown and relatively clear. Opaques have nucleated into clearly defined euhedral grains. Only a trace of mineraloid (chlorophaeite) is present, and clays or other alteration products are virtually nil. Because this is the best thin section, and because of the importance of this flow as a marker, two sets of 1000 points were counted by two separate operators with these results:

· .	Combined %	Operato	or 1		Opera	ator	2
Plagioclase	36.35	171	180		185		191
Microphenocrysts Microlites		6 165 1	13 67	3 182		6 185	
Pyroxene	25.50	127	128		131		124
Microphenocrysts Microlites	. •	8 119 1	2 26	2 129	х ·	0 124	
Opaques	5.50	37	30		21		22
Glass	32.10	164	161	•	157		160
Apatite	0.10	0	1		1		0
Chlorophaeite	0.45	1			5_		3
	100.00	500	500		500		500

The 2000 points combined give the mode (volume %) listed in the first column, and the mineral ratios indicated below.

Plagioclase/pyroxene = 1.43

100-(glass + opaques)/pyroxene = 2.45

SAMPLE A-5109B (Taken from a depth of 2,812 feet) Description

Two thin sections were cut at different angles with the platy structure. The larger one "B" was point counted.

The rock is exceedingly fine grained. Tiny (0.2 mm) plagioclase microlites are loosely grouped into bundles of 2 to 4 laths. Even smaller grains of pyroxene are more closely grouped into tiny clots or elongate clusters. Some clusters appear to be on the way toward making larger microlites (or microphenocrysts) by synneusis. Microphenocrysts of either plagioclase or pyroxone are virtually absent - less than a dozen in the entire thin section. The opaques are euhedral microlites; as a result, the glass is relatively clear. Chalcedony rims one vesicle, and slightly altered chlorophaeite has been smeared along the platy structure in places.

	Control	Points
Volume %	<u>lst 500</u>	2nd 500
44.1	216	225
34.3	167	176
5.4	30	24
15.8	85	73
0.2	0	2
0.2	2	0
100.0	500	500
	Volume % 44.1 34.3 5.4 15.8 0.2 0.2 100.0	Control Volume % 1st 500 44.1 216 34.3 167 5.4 30 15.8 85 0.2 0 0.2 2 100.0 500

POINT COUNT (1000 POINTS)

Plagioclase/pyroxene = 1.29
100-(glass + opaques)/pyroxene = 2.30

APPENDIX D

)

BCR-1 DATA

۸

.

•

...

TABLE D-1

58

BCR-1 DATA FROM ARHCO AND ROCKWELL ANALYSIS

.

	SAMPL F			WH	OLE RO	CK AWALY	SES; X-	Ray FLu	onescen	ce		<u> </u>
	SERIAL	si02	A1203	T102	Fe ₂ 03	FeO	Mn0	CaO	Mg0	K ₂ 0	Na ₂ 0	P205
DEPTH	NUMBER	1	1	<u> </u>	<u>x</u>	<u> </u>	2	<u> </u>	7	<u> </u>	2	
BCB-1 1				-								
BCK-1 1	BURNET 21											
ARHCO 1	BASALT AN	ALYSES	JUNE-J	ULY 197	7 (WSU	Special	Report	.)				
	К5218 К5219	54.14 54.38	14.71	2.22	2.00	10.74	0.21	7.00	3.70	1.89	3.07	0.32
	K5220	54.55	14.62	2.22	2.00	10.67	0.20	6.91	3.66	1.94	2.90	0.33
	K5221	54.39 54 22	15.03	2.19	2.00	10.25	0.21	7.34	3.66	1.89	2.71	0.33
	K5223	54.28	15.08	2.17	2.00	10.72	0.21	7.14	3.54	1.84	2.69	0.33
	K5224	54.44	14.70	2.23	2.00	10.73	0.21	£.92	3.51	1.88	3.05	0.33
	K3225	54.50	14.00	2.17	2.00	10.60	0.21	7.15	3.55	1.86	3.03	0.32
	K5235 K5236	54.87	15.04	2.21	2.00	10.89	0.20	7.17	3.74	1.74	1.92	0.33
	K5237	54.59	14.98	2.23	2.00	11.05	C.21	7.22	3.68	1.77	1.95	0.33
	K5238 K5239	55,02	14.91	2.24	2,00	10.60	0.21	7.27	3.61	1.84	1.96	Q.34
	K5240	54.83	14.55	2.26	2.00	10.95	0.21	7.30	3.57	1.86	2.12	0.34
	K5241	54.51	15.08	2.21	2.00	11.09	0.20	7.14	3.67	1.75	2.02	0.33
	K5243	54.75	15.07	2.22	2.00	10.82	0.21	7.22	3.66	1.76	1.95	0.33
	K5244	54.93	15.02	2.24	2.00	10.51	0.21	7.21	3.67	1.80	2.08	0.33
	K5245	55.01	14.71	2.23	2.00	10.62	0.21	7.27	3.63	1.81	1,95	0.34
	CA101 -	<u> </u>			LE ROC	K ANALYS	FS: X-1	Ray Flui	nescen			
	SERIAL	Si0.	A1_0_	Tio	Fe_0_	Fe0	MnO	CaO	MgO	К-0	Na 20	P.0.
DEPTH	NU!4BER	1	x 2-3	x	-2-3 L	x	2	2	2	2 %	ž	ž
		·										
BCR-1 E	BASALT ST	ANDARD										
WSU Rep	DOTE ROCK	WELL 1,	14 Mar	ch 197	8	. .					2.40	
во	CRP900	55.24	14.56	2.25	2.00	10.54	0.19	6.95	3.70	1.74	2.49	0.33
WSU Rej BC	port ROCK CRP900	WELL 2, 54.50	22 Apr. 14.23	2.20	2.00	10.31	0.18	6.80	3.49	1.79	4.15	0.33
WSU Reg	cort ROCK	WELL 3.	24 Mar	ch 1978								
вс	CRP900	53.93	14.26	2.24	2.00	10.49	0.19	6.97	3.61	1.85	4.11	0.34
WSU Reg	ort. ROCK	WELL 4,	21 Apr	il 1978							2 40	0.34
во	CRP900	55.34	14.50	2.26	2.00	10.55	0.19	6.97	3.51	1.65	2.43	0.34
WSU Rei	port ROCK	WELL 5, Sa 94	13 Apri	1 1978	2.00	10.43	0.19	6.97	3.50	1.84	3.18	0 36
	nort ROCK	WELL 6	19 Apr	il 1978								
NOU NO	CRF900	54.97	14.60	2.26	2.00	10.49	0.19	6.93	3.47	1.84	2.88	0.38
WSU Rep	port ROCK	WELL 7,	22 Apr	il 1978								
В	CRP900	55.18	14.55	2.25	2.00	10.59	0.19	6.88	3.41	1.80	2.80	0.34
WSU Rej	port ROCK	WELL 8,	1 May	1978	2 00	10 53	0.19	6 87	3 47	1 81	2.82	0.34
	_RP900		14.07	2.20	2.00	10.55	0.15	0.07	5.47			
WSU Rej B(CRP900	55.49	14.33	2.26	2.00	10.63	0.19	€.92	3.41	1.81	2.63	0.35
WSU Rep	port ROCH	WELL 10), 12 Ma	y 1978								
B	CRP900	55.38	14.33	2.24	2.00	10.50	0.19	6.87	3.48	1.80	2.85	0.36
WEU Rog	Port ROCK	WELL 1)	14 72	, ,,,	2 00	10 69	0 19	6 99	1.43	1.84	2.69	0.34
BC	CRP900	54.96	14.72	2.27	2.00	10.69	0.19	6.00	3.45	1.04	2.05	0.54
WSU Kel	CRP900	WELL 12 54.56	14.63	2.28	2.00	10.63	0.19	6.94	3.51	1.83	3.08	0.35
WSU Reg	oort ROCK	WELL 13	, 19 Ju	ne 1978								
BC	RP900	55.11	14.47	2.26	2.00	10.61	0.19	6.86	3.51	1.82	2.84	0.34
WSU Reg	FORT ROCK	WELL 14	, 19 Ju	ne 1978			0.10		3 50	1 07	3 DF	0.35
ы	CRP 900	55.15	14.37	2.26	2.00	10.63	0.19	6.87	3.50	1.83	2.00	0.35
WSU Rep	POTE ROCK	WELL 11 54.93	5, 23 Ju 14.50	ne 1970 2.27	2.00	10.59	0.19	6.89	3.45	2.01	2.83	0.35
มะเบ		WELT 14	5. 7 .101						-			
ноо кеј Ве	CRP900	54.91	14.53	2.26	2.00	10.54	0.19	6.89	3.53	1.82	2.97	0.36
WSU Rej	port ROCH	WELL 1	7,									
В	CRP900	55.20	14.57	2.27	2.00	10.59	0.19	6.89	3.52	1.84	2.57	0.36
WSU Re	port ROCH	WELL 10	3, 24 Ju	1y 1978	2 00	10 60	0.10	6 84	3 50	1 84	2.88	0.36
8	CRP900	55.05 	14.59	2.20	∡.00 °°	10.50	0.19	0.04	ου	1.04		
WSU Re	port ROC) CRP900	WELL 19 55.06	7, 3 Aug k4.62	ușt 197 2.27	2.00	10.64	0.19	6.93	3.48	1.86	2.60	0.36
WSU Re	port ROCI	WELL 20	ο,									
B	CRP900	55.10	14.03	2.24	2.00	10.60	0.19	6.87	3.45	1.82	2.79	0.34

TABLE D-2

1972 VALUES FOR INTERNATIONAL GEOCHEMICAL STANDARDS FOR BASALT

(After Flanagan,¹⁵ data for recommended, averages, or magnitudes)

	Andesite	Bosolts					
	USCS-AGV-I	CRPG-BR	GSJ-JB-I	USCS-BCR-I	ZCI-UM		
Major and	minor constituer	its (%)					
SiO ₁	59-00	38-20	62.09	51-50	49-60		
A1,0,	17-25	10.20	14-53	13-61	16.20		
Fr.0,	4.51	5.58	2.30	3.68	1.60		
FeO	2.05	6.57	8-06	8-80	7-28		
MgQ	1.53	13-28	7.70	3-16	7.46		
ÇnO	4-00	13.80	0.21	6.92	6-44		
No,O	4-20	3.05	2.70	3.27	1.64		
к,0	2.89	1-40	1-42	1.70	0.20		
160+	0.81	2.30	1.00	0.77	3.62		
1,0-	0.16	0.50	0.08	0.80	-		
TiO,	1.04	2.00	1-34	2.20	1-14		
r.o.	0.49	1.01	· 0·26	0.36	11.0		
MbÓ	0.007	0.20	0.16	0.18	0.15		
co,	0.00	0.88	0.10	0.03	1-34		
รษท	00-01	00-64	100-03	100-28	NO-87		
Total Fo							
ns Fc ₂ O ₃	6.76	12.88	9.04	13.40	9.68		
(1) Majo	or and minor cor	stituents on	moisturo-fre	o Unsia. Total i	ncludes: S		

Trace elements (ppm, or units shown)

Ar (ppm)	0.11		_	0.0.36	0.06
As (ppm)	0.3			0.70	14
Au (ppb)	0.6		_	0.95	5
13 (ppm)	5	•	10 .	5	9
Ba (ppm)	1208	1050	400	675	203
Bo (ppm)	J	1		1-7	1.3
Bi (ppm)	0.057			0.050	0.3
Br (ppm)	0.5		0.6	0.15	-
C (բրտ)			_	330	
Cd (բբտ)	0.09	-	0-1	0.12	
Ըս (բրա)	-63	-	67	53.9	23
Ci (ppm)	110		190	50	100
Co (ppm)	14-1	50	30	38	J4 102
Cr (ppm)	12.2	420	417	17.0	123
Ce (ppm)	7.4 60.7	70	×2	19.1	45
Dy (nom)	3.5		4.1	6-3	4
Er (nom)	1.2		2.23	3.59	3
Eu (ppin)	1.7	_	1-52	• 1.94	1-1
F (mm)	435	_	360	470	250
Gn (ppin)	20.5	20	17	20	15
Gd (ppin)	8-5	-	4-80	6.6	G
Co (ppm)	· 1.J		-	1.54	1.5
Hf (բրm)	6.2	-	3.5	4.7	3-1
Hg (ppb)	15		14	10-7	20
Ho (ppm)	0.5		-	1.2	1.5
1 (ppan)		_	-	0.095	0.03
In (ppm)	0.011		_	0.004	6
Tr (ppn)	15		36	20	8-6
Li (opm)	12	9	10-2	12.8	70
La (enu)	0.78		0.31	0.55	0.4
Mn (ppm)	763	<u> </u>		1406	1125
Mo (ppm)	2.3	J		1-1	0.0
N (ppm)	44	_	-	30	_
Nb (ppm)	15	_	-	13.5	10
Nrl (ppm)	30	-	25	20	16
Ni (ppm)	18-5	270	139	15-8	67
0 (%)	47-24			40-18	
On (ppb)	< 34	-	14	17.6	12
Ph (ppm)	- 0.5	_		12	·
Proprint	7		_	7	.3-5
FL (ppb)	ì			2	<5
Re (ppb)	0.69		0.72	0.56	-
Rb (ppm)	67	45	41	4G-8	12
Re (ppb)	<5			08	_
Rh (ppb)			_	0-2	-
Ru (ppb)				1	-
Տ (յւթու)	<10		60	303	-
ՏԵ (բրու)	4.6	—	0.2	0.00	2
Sc (ppm)	13-4		26	3.1	34
Se (ppm)	<0.14		<u> </u>	0.10	-
Sm (ppm)	4.9		2.1	9.6	1.7
Sa (opm)	857	1230	43.8	335	031 031
Te (ppm)	0.0	10.00	4	0.91	0.4
Th (nom)	0.70	_	0.5	1.0	1
Te (ppm)	<1		_	<1	_
Th (ppm)	0.41	-	D-4	0.0	3
Ti (ppm)	6190	-	_	12760	6840
Tl (ppm)	1		—	0-30	0.2
Դո (րբո)	0.4			0.0	_
U (ppm)	1.88		1.8	1-74	1
V (ppm)	125	240	300	300	180
W (ppm)	0.35		_	0.10	I
1 (ppm) Ma (anary	21.3	21		37-1	20
Zn (ppm)	84	100	81	120	107
Zr (ppin)	225	240	300	100	105