TITLE: MASTER

AUTHOR(S): Hsing-Hua Hsu, Group Q-2
 John C. Pratt, Group Q-2
 Edward R. Shunk, Group Q-2

SUBMITTED TO: Fifth Symposium on X- and Gamma-Ray Sources and Applications
 Ann Arbor, Michigan
 June 10-12, 1981

Los Alamos Scientific Laboratory
Post Office Box 1063 Los Alamos, New Mexico 87545
An Affirmative Action Equal Opportunity Employer
MULTI-ENERGY GAMMA-RAY AUTOMATED SCANNING SYSTEM

H. H. Hau, J. C. Pratt, and E. P. Shunk

Los Alamos National Laboratory
Los Alamos, New Mexico, 87545, USA

ABSTRACT

A CANAC-based gamma-ray scanning system was used to measure the transmission through stacked attenuators for up to 16 different gamma rays. For each measurement, we obtained the transmission for gamma rays ranging in energy from 77 to 2614 keV. These transmission measurements were used to produce a set of linear equations that may be solved for either thickness or density of the discrete attenuators comprising a given stacked assembly.

INTRODUCTION

A CANAC gamma-ray scanning system was used for multi-energy transmission measurements. These measurements allow us to estimate the effective or equivalent thicknesses of stacked attenuators.

DETECTOR SHIFTER

A screw-type detector shifter is used to accurately position a detector to be used for a selected energy. A computer-controlled motor transports the attenuators along a linear rail to the detector source axis, as illustrated in Fig. 1. The source distance is positioned by a drive screw turned by a stepping motor that is controlled by the data acquisition system.
A LeCroy 3500 multichannel analyzer was used to acquire and store the data for subsequent analysis. The LeCroy 3500 has a built-in CAMAC minicrate, keyboard, and cathode-ray tube display (Fig. 2). It runs a CP/M operating system that supports FORTRAN programs. LeCroy supplied both a FORTRAN-callable CAMAC program and plotting libraries that were used to develop the data-acquisition software employed in making these measurements.

The LeCroy 3500 also has special CAMAC data acquisition modules that can initiate direct memory access (DMA) to the 24-bit data memory. One such module is the LeCroy 3511 analog-to-digital converter that detects and digitizes the gamma-ray detector pulses. The digitizing time for 13 bits is 5 μs; the DMA time is 1 μs. With this module programmed to deliver its data by direct memory access, the gamma spectra acquisition continues without impact on the computation.

We acquired a transmitted gamma-ray spectrum for each horizontal point constructed, then controlled the stepping motor to position the detector to the next point. At the end of the operator-specified acquisition time for each of these points, we read the data memory and extracted the net photopeak area for each of up to 20 separate gamma rays. The ratio of each transmitted gamma ray's count rate to the count rate with the object (or stack of attenuators) removed, is the transmission of the material(s) at that point.
EXPERIMENTAL METHOD

Specific probe monoenergetic gamma rays were chosen as widely separated in energy as possible in order to have a suitably large range of material attenuation coefficients. A 238Th-208Tl source comes very close to these requirements, decays with a long half-life, and is readily available. On occasion, a 60Co source was incorporated for acquiring better statistics in the middle of the energy range employed.

One gamma-ray transmission scan of a multiple-component/multiple-layer attenuating assembly appears in Fig. 3. The arrangement of the attenuating materials is shown in Fig. 4. The scan shows a series of irregular steps as the scanner transports the attenuator assembly through the gamma-ray beam. The boundaries between materials appear on the plot. The measured transmission occasionally increases markedly at boundary points where poor joints allow a straight-through path for source gamma rays. One such spatial scan was recorded for each gamma ray.

If we denote

\[I_0(k) \] intensity of gamma-ray \(k \) without absorber,

\[I(k) \] intensity of gamma-ray \(k \) with absorber,

\[\rho_i \] density of absorber \(i \), in g/cm\(^3\),

\[\mu_i(k) \] attenuation coefficient of absorber \(i \) at the energy of gamma-ray \(k \), in cm\(^{-1}\)/g, and

\[t_i \] thickness of absorber \(i \), in cm,

then the transmission ratio \(I(k), I_0(k) \) is given for the materials present by
\[I(k) = I_0(k) \exp \left(-\sum_i \mu_i(k) \rho_i \right) \]

or

\[\ln \frac{I_0}{I} = -\sum_i \mu_i(k) \rho_i \]

One such equation, relating the material thicknesses (or densities) to observed gamma-ray intensities, is obtained for each gamma ray.

EXAMPLE

Consider the following seven gamma rays of \(^{226}\text{Th} \), \(^{208}\text{Pb} \), \(^{133}\text{Ba} \), and \(^{60}\text{Co} \): 238, 356, 583, 860, 1332, 1620, and 2614 keV. Imagine these gamma rays impinging upon some composite structure made up of the materials shown in Table I.

If we take the densities and attenuation coefficients as known, the thickness of each material remains unknown on the right-hand side of equation (1b), which when expanded produces the following set of seven equations in six unknowns:

\[\ln \frac{I_0}{I} = 7.08 t_1 + 1.90 t_2 + 0.606 t_3 + 0.83 t_4 + 0.12 t_5 + 0.71 t_6 \]

\[\ln \frac{I_0}{I} = 4.10 t_1 + 1.10 t_2 + 0.7 t_3 + 0.26 t_4 + 0.4 t_5 + 0.13 t_6 \]

\[\ln \frac{I_0}{I} = 1.61 t_1 + 1.00 t_3 + 0.20 t_4 + 0.05 t_5 + 0.13 t_6 \]

\[\ln \frac{I_0}{I} = 0.59 t_1 + 0.32 t_2 + 0.10 t_3 + 0.2 t_4 + 0.13 t_5 + 0.13 t_6 \]

\[\ln \frac{I_0}{I} = 0.78 t_1 + 0.32 t_2 + 0.10 t_3 + 0.2 t_4 + 0.13 t_5 + 0.13 t_6 \]

\[\ln \frac{I_0}{I} = 0.34 t_1 + 0.32 t_2 + 0.10 t_3 + 0.2 t_4 + 0.13 t_5 + 0.13 t_6 \]

\[\ln \frac{I_0}{I} = 0.11 t_1 + 0.32 t_2 + 0.10 t_3 + 0.2 t_4 + 0.13 t_5 + 0.13 t_6 \]
where \(t_1, t_2, t_3, t_4, t_5, t_6 \) are the thicknesses (in centimeters) of lead, cadmium, iron, aluminum, polyethylene, and mock high explosive, respectively. One such set of linear equations occurs at each point in a typical scan, relating the thicknesses of the materials at that point to the transmission of the gamma rays at that point.

We can find these unknown thicknesses \(t_1 \ldots t_6 \) by solving the set of six linear equations exactly, or finding the \(t_i \) by a least-squares method where there are more equations than unknowns. The results of a test run appear in Table II.

Inferred attenuator thickness values were, in general, lower than the actual thickness for each specific attenuating material. The observed difference can be attributed to the fact that the employed theoretical attenuation coefficients for these materials were derived from narrow beam considerations, an ideal situation not too well realized in the actual measurements.

REFERENCE

<table>
<thead>
<tr>
<th>Material</th>
<th>238.9 keV</th>
<th>425 keV</th>
<th>550 keV</th>
<th>1170 keV</th>
<th>2630 keV</th>
<th>5640 keV</th>
<th>1068 keV</th>
<th>2314 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>7.05</td>
<td>9.90</td>
<td>0.959</td>
<td>0.303</td>
<td>0.121</td>
<td>0.218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd-113</td>
<td>0.45</td>
<td>0.35</td>
<td>0.83</td>
<td>0.278</td>
<td>0.112</td>
<td>0.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>7.06</td>
<td>1.10</td>
<td>0.765</td>
<td>0.261</td>
<td>0.105</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.70</td>
<td>0.775</td>
<td>0.647</td>
<td>0.225</td>
<td>0.0907</td>
<td>0.163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td>1.02</td>
<td>1.01</td>
<td>0.609</td>
<td>0.216</td>
<td>0.0857</td>
<td>0.156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nock High Explosive</td>
<td>1.84</td>
<td>0.95</td>
<td>0.549</td>
<td>0.193</td>
<td>0.0777</td>
<td>0.139</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE II

ACTUAL AND EXPERIMENTAL ATTENUATOR THICKNESSES

<table>
<thead>
<tr>
<th></th>
<th>Lead (cm)</th>
<th>Cadmium (cm)</th>
<th>Iron (cm)</th>
<th>Aluminum (cm)</th>
<th>Polyethylene (cm)</th>
<th>Mock High Explosive (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>1.9</td>
<td>0.32</td>
<td>2.5</td>
<td>1.9</td>
<td>5.4</td>
<td>6.6</td>
</tr>
<tr>
<td>Measured</td>
<td>1.7 ±0.3</td>
<td>0.26 ±0.3</td>
<td>2.3 ±0.3</td>
<td>1.7 ±0.3</td>
<td>5.0 ±0.5</td>
<td>5.9 ±0.7</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. High-purity germanium detector, source, and attenuation materials mounted on scanner carriage.

Fig. 2. LeCroy 3500 multichannel analyzer.

Fig. 3. Attenuation profile, multi-component/multi-layer transmission test object.

Fig. 4. Top view of transmission test object shown in Fig. 3.
\[
\begin{align*}
\ln \frac{I_{239\text{y}}}{I_{239\text{y}}} &= 7.08 t_1 + 1.90 t_2 + 0.959 t_3 + 0.303 t_4 + 0.121 t_5 + 0.218 t_6 \quad (2a) \\
\ln \frac{I_{135\text{m}}}{I_{135\text{m}}} &= 3.10 t_1 + 1.10 t_2 + 0.765 t_3 + 0.261 t_4 + 0.105 t_5 + 0.188 t_6 \quad (2b) \\
\ln \frac{I_{153\text{m}}}{I_{153\text{m}}} &= 1.11 t_1 + 0.701 t_2 + 0.609 t_3 + 0.216 t_4 + 0.085 t_5 + 0.154 t_6 \quad (2c) \\
\ln \frac{I_{189\text{y}}}{I_{189\text{y}}} &= 0.997 t_1 + 0.543 t_2 + 0.506 t_3 + 0.178 t_4 + 0.0719 t_5 + 0.128 t_6 \quad (2d) \\
\ln \frac{I_{133\text{m}}}{I_{133\text{m}}} &= 0.920 t_1 + 0.429 t_2 + 0.407 t_3 + 0.144 t_4 + 0.0579 t_5 + 0.104 t_6 \quad (2e) \\
\ln \frac{I_{153\text{t}}}{I_{153\text{t}}} &= 0.561 t_1 + 0.390 t_2 + 0.369 t_3 + 0.130 t_4 + 0.0523 t_5 + 0.0938 t_6 \quad (2f) \\
\ln \frac{I_{162\text{th}}}{I_{162\text{th}}} &= 0.475 t_1 + 0.327 t_2 + 0.300 t_3 + 0.102 t_4 + 0.0403 t_5 + 0.0726 t_6 \quad (2g)
\end{align*}
\]
NET COUNTS = 16866 ± 136