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ABSTRACT

This report describes and evaluates several procedures for using expert
judgment to estimate human error probabilities (HEPs) in nuclear power
plant operations., These HEPs are currently needed for several purposes,
particularly for probabilistic risk assessments., Data do not exist for
estimating these HEPS, so expert judgment can provide these estimates in
a timely manner. NURBG/CR-2255 suggested that expert judgment can pro-
vide reasonably valid and reliable HEP estimates, if used carefully and
systematically. Five judgmental procedures are described here: paired
comparisons, ranking and rating, direct mumerical estimation, indirect
numerical estimation and multiattribute utility measurement. These pro-
cedures are evaluated in terms of several criteria: gquality of judg-
ments, difficulty of data collection, empirical support, acceptability,
theoretical justification, and data processing. Situational constraints
such as the number of experts available, the number of HEPS to be esti-
mated, the time available, the location of the experts, and the re-
sources available are discussed in regard to their implications for
selecting a procedure for use. Details for implementing the procedures
and necessary calculations are included in appendices. These descrip-
tions will be the basis of subsequent research testing the use of sever-
al procedures.,
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1.0 INTRODUCTION

The purpose of this report is to present a set of procedures that can be
used to estimate human error probabilities (HEPs) in nuclear power plant
{NPP) operations using expert judgment. It is part of an ongoing re-
search program being conducted for the U.S. Nuclear Regulatory Commis-
sion (NRC) by Sandia Naticnal Laboratories and its subcontractors. An
earlier review of reievant literature in NURBG/CR-2255 (Stillwell, Sea-
ver, and Schwartz, 19&?) indicated the potential of this approach to
estimating HEPs. This research program is guided by recognition of the
role humans play in NPP operations, both in producing and in mitigating
accidents. A major effort in the program has been the development of
the Handbook of Human Reliability Analysis with Emphasis on Nuclear
Power Plant Applications (Swain and Guttmann, 1980) that is currently
being revised. The Handbook lays out procedures for estimating human
reliability based on probability tree diagrams called human reliability
analysis (HRA) event trees, and provides probability estimates for var-
ious specific types of errors and their disiributions. These probabil-
ity estimates, however, are generally based on extrapolations from only
partially related performance measures, or on the expert juigment of the
authors. Thus, at present, a major problem in human reliability analy-
sis is the lack of high quality HEP estimates. One way to provide
better estimates is to use expert judgmen:! in a more structured and sys-
tematic way. This report describes several procedures that can be used
under a variety of circumstances to produce needed HEPs. It provides
the basis for a test of several of these procedures.

1.1 Need for Expert Judgment of HEPs

Clearly the best way to obtain good HEP estimates is through well-con-
trolled and carefully executed empirical studies. Such studies, how-
ever, would be extremely costly and time consuming at actual plants, if
possible at all. Empirical data collection in control room simulators
is being funded by NRC, but the data are relatively costly and time con-
suming to collect, and the data cannot be calibrated quickly.

Yet HEP estimates are needed now. The accident at Three Mile Island
(TMI) has instigated the improvement and use of probabilistic risk
assessment (PRA) to quantify the risks agsociated with nuclear power
plants. Because, in part, of the human errors involved at TMI (Kemeny,
1979; Rogovin and Frampton, 1980), human reliability has begun to
receive special attention in PRAs. The methodology and models for the
human reliability analysis parts of PRAs are well-understood and devel-
oped (Swain and@ Guttmann, 1980), but the data needed to provide accurate
inputs to the analysis are sparse. Since empirical studies cannot pro-
vide these data to meet the needs of current PRAs, expert judgment is
the most viable method for obtaining HEP estimates in a timely manner.

1-1



If expert judgment is to be used to estimate HEPs, it should not be used
in an ad hoc and unsystematic manner. Reliable* and valid estimates are
needed. Although evidence described in the following section suggests
that experts can make reliable and valid judgments, it also indicates
that care must be taken in how judgments are made to avoid systematic
errors and unreliability. Thus, the procedures described here have been
identified and developed to systematize the use of expert judgment, and
to elicit judgments using procedures that, for given circumstances, will
minimize biases.

Expert judgment of HEPs is needed not only for PRAs. NPP control rooms
are currently being reviewed for human factors deficiencies. The proce~-
dures described here could be used to estimate the effects of the defi-
ciencies on human errors and to help prioritize the correction of defi-
ciencies. Expert estimation of HEPs could also serve a useful purpose

in control room design. BAlternative designs could he compared and evalu-
ated with respect to the HEPs they produce.

1.2 Rationale for the Use of Expert Judgment of Likeiihood

The argument that there is no other way to obtain rapidly and completely
needed HEPs is not sufficient to justify the use of expert judgment. It
must also be demonstrated that such judgments are of sufficient validity
to be useful and not misleading. ©On the balance the literature suggests
that expert judgment can be used effectively, if appropriate care is
given to the manner in which judgments are obtained (Stillwell et al.,
1982).

Research evidence is, however, somawhat divided as to the quality (in
terms of both reliability and validity) of quantitative judgment. The
use of heuristic estimation rules for making quantitative estimates and
their resulting biases in the judgment of probabilities are well docu-
mented. For instance, Tversky and Kahneman (1974), Kahneman and Tversky
(1979), Wallsten and Budescu (1980), and von Winterfeldt (1980), list
and give examples of biases in probabilistic judgment and explanations
of the heuristics that may be the causes. However, these examples gener-
ally come from narrowly focused laboratory experiments or ad hoc group
data collection efforts whose generality is difficult to defend. On the
other hand, Lusted (1977), Murphy and Winkler (1977), and others (for
example, Goodman et al., 1979; Kabus, 1976), show results that suggest
the opposite conclusion, namely, that humans can provide valid, orderly
estimates of likelihood.

*In this report, reliability refers to the consistency of judgments. It
is usually measured as the correlation between the same judgments made
at different times by the same judge or the correlation among judgments
made by different experts.

ot
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This mixed evidence would seem to cloud the question of whether these
probabilistic estimates should be used for decision making or any other
purpose. However, upon closer examination of the full breadth of these
studies, we can glean some important information about when and where to
apply judgmental methods and when to use the data that result from their
application.

As mentioned above, many of the studies that demonstrate bias or severe
random fluctuation in probabilistic estimates are highly controlled,
laboratory experiments. Thus, these experiments are suspect on a broad
range of realism grounds, including, for example, subject experience and
motivation, reality of stimuli and situation, and strength of experiment-
al manipulation. A subset of -judgmental studies, however, have used
expert subjects performing something akin to the tasks at which they are
expert, and we will look to these for evidence more directly relevant to
the question of whether expert generated judgmental probabilities can
usefully be used as input to HEP models.

Four substantive areas have provided the bulk of applied research using
real experts. The first of these areas, military science and intelli-~
gence, has produced findings that are only indirectly related to the
quality of the estimates. These findings can be summarized as follows:
(1) the experts prefer to respond in numerical form when expressing un-
certainty, (2) miscommunication is reduced by the use of numerical proba-
hilities rather than verbal reports for expressing uncertaincy, (3) reli-
ability of these estimates is satisfactory (average test-retest correla-
tion of .79 found by Johnson, 1977), and (4) satisfactory use of proba-
bilistic estimation is being made in the intelligence community to solve
traditional information processing problems.

The other three substantive areas are somewhat more interesting, since
the relative frequencies for the estimated events often become available
with the passage of time. The judgments of the experts can therefore be
compared to an external criterion to determine their accuracy. In the
area of business the evidence is relatively negative, suggesting that
experts in this area are poor judges of event probability. A variety of
studies (for instance, Stael wvon Holstein, 1972, and Bartos, 1969) in
this context have shown that security analysts, bankers, stock analysts,
and other financial "experts" cannot even outperform random guessing
strategies. These studies must, however, be viewed with the caveat that
many of the financial phenomena about which the judgments are being made
are essentially random with respect to the information the analysts have
to work with. Therefore, poor prediction is not necessarily demonstra-
tive of an inability of experts to make predictive judgments.

The evidence in the other two areas, weather forecasting and medicine,
is quite encouraging. Among those experts that have heen extensively
evaluated, weather forecasters are the best judges of probabilities.

When performing what are essentially the same tasks they do for their
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jobs, i.e., estimating probabiiities of precipitation and temperature
forecasting, they are surprisingly accurate. Their calibration (defined
as the degree to which the probability assigned to an event reflects the
recorded relative freguency of that event) has been shown to be very
good, with plots of their judgments showing very little distance between
the line describing perfect calibration and lines describing meteorolo-
gists judgments. Experts in the medical field, both nurses and doctors,
in studies covering a broad range of diagnostic and prediction tasks,
also show a high degree of calibration in their judgmental estimates of
uncertain quantities, although there is some tendency to overestimate
the likelihood of events with severe conseguences.

This last finding, that events with sewvere conseguences are overesti-
mated, points out one of several problems that must be considered when
using judgmental data. We would like to point out several considera-
tions as particularly important in the context of the judgment of HEPS.
We also would like to recommend that the user of these data take pains
either to utilize methods that minimize or remove the impact of these
problems or take steps to make allowance for that impact. Some of the
more important considerations for judgmental estimation of human error
probabilities are:

e Value/probability dependence - This is a more general versjion of
the medical problem discussed above in which the likelihood of
events with extreme consequences are overestimated. This pro-
blem could be very important in the judgment of HEPs where some
of the event pathways lead to extreme crisis situations.

e Small probability estimation - Many error probabilities are like-
ly to be extremely small, for example, less than 10~4, Rcesearch
evidence suggests that many methods for eliciting probabilistic
judgments suffer from insensitivity in the more extreme ranges
and these methods should therefore be avoided in the case of HEP

judgment.

e Making judgments outside one's area of expertise ~ Even in the
case of weather forecasters, who have been shown to be very good
probability estimators, high quality of estimation does not gen-
eralize outside the judges' specific aresa of expertise. There-
fore, in the case of HEP judgment, the expert judges must be
carefully chosen and not asked to make judgments outside their
area.

The techniques presented in this report are designed to take these con-
siderations into account to the extent that the judgmental basis of
these phenomena are understood. But it is also important that users of
the techniques, and the experts making any required judgments, be aware
of these potential problems to help minimize their effects.
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1.3 Scope and Use of Report

This report does not provide actual HEP estimates. Rather, it provides
directions regarding how to obtain these estimates using expert judg-
ment. It is intended to be used by people with some background in
statistics, including a knowledge of psychological scaling methods.

A large number of technigues could be used for obtaining judgmental esti-
mates of HEPs. These tecaniques have been reviewed (Stillwell et al.,:
1982), and the most promising procedures have been selected and consoli-
dated for presentation here. The five procedures described in this
report--paired comparison, ranking and rating, direct numerical estima-
tion, indirect numerical estimation, and multiattribute utility measure-
ment--represent a wide range of judgmental processes, underlying assump-
tions, and proven usefulness. This heterogeneity has helped to ensure
that at least one of the procedures can be used appropriately under most
circumstances.

A caveat regarding the multiattribute utility measurement procedure is
required here. This procedure, although widely used for other applica-
tions (Keeney and Raiffa, 1976), has not generally been used to estimate
probabilities, nor has there been much research concerning its reliabil-
ity and validity as a scaling technique. Recent research by Embrey
(198la, 1981b), however, suggests it may be a viable method for judgment-
al estimation of HEPs. It is thus included here so that if additional
research shows it to be viable, directions for its use will be avail-
able. At this time, it cannot be recommended for use without additional
regsearch support.

The following section of this report is its heart. It includes a dis-
cussion of general requirements for the use of any judgmental procedure
for estimating HEPs. Following this is an overview of the five proce-
dures. Details of their implementation, including step-by-step instruc~-
tions and worked-through examples are in the Appendices. Finally, this
section contains an evaluation of the procedures and specific con-
straints on their use. The concluding section discusses the use of the
procedures, and presents some caveats regarding their use.

Thus, this report is primarily a "how to" document with strong emphasis
on understandable guidance and instructions for use. Above all else, it
is meant to be practical.



2.0 JUDGMENTAL ESTIMATION PROCEDURES

2.1 General Requirements

Probably the most critical regquirement for the use of judgmental proce-
dures to estimate HEPs is that the events possibly producing human
errors being considered be defined carefully and completely. The more
fully the events are defined, the less they will be open to individual
and variable interpretation by the experts judging their likelihood.

‘One of the primary factors lanvolved in the definition of eveuts will be
performance shaping factors (PSFs). These may include a wide range of
factors including stress, training, environmental factors (noise, temper-
ature, etc.), and physical layout of controls. Swaln and Guttmann

(1980) provide a taxonomy of PSFs that may affect human errors in NPP
operations that is reproduced here as Exhibit 2-1.

The level of detail needed in the definition of events--that is, the
number and specifity of PSFs included--will vary acroes different uses.
There clearly is a tradeoff between the generality of the HEPs estimated
and the specificity of the estimates. Events that are defined with
great specificity regarding their PSFs will be easier to judge, requir-
ing relatively less subjective interpretation, and thus less variability
across the judgment of multiple experts. On the other hand, HEPs esti-
. mated for events that are somewhat more generally defined, although
possibly being subject to more variability, are usable in analyses of a
larger number of NPP operation contexts. An example illustrating this
point would arise regarding whether events should be defined and HEPs
estimated for a specific NPP or for a more generic set of NPPs, say all
boiling water reactor (BWR) plants. Taking the level of detail in event
definitions to a probably ridiculous extreme, HEPs could be estimated
for a specific operator.

The context in which the HEPs are to be used will determine the level of
detail to be used. For example, if the HEPs are to be used in a PRA,
the structuring of the PRA will help define the events. In any case, it
is always necessary to define the events as clearly and completely as
possible without adding detail that would make the events too specific
for the HEPs to be useful.

Closely related to this definitional problem is the need to determine
bounds on HEP estimates as well as the nominal estimates themselves.
These bounds will identify the possible variability in the estimates.

The variability may come from two basic sources: the events as defined
may include a broad range of levels on certain PSFs (e.g., operator
training), and the experts judging the HEPs may have some fundamental
uncertainty regarding their likelihood no matter how well-defined the
events are. Because of the first cause of variability, the more general-
ly defined the events, the wider the range of bounds for HEP estimates.
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EXTERNAL

S8ituational Characteristics

Architectural features
Quality of enviromment:
Temperature, humidity,
and alr quality
Lighting
Nolse and vibration
Degree of general
cleanliness )
Work hours/work breaks
Avallabllity/adequacy of
special equipment,
tools, and supplies
Manning parameters
Organizatinnal structure
{(e.g., authority, re-
sponsibility, comeuni-
cation channels)
Actions by supervisors, co-
workers, union repre-
sentatives, and regu-
latory personnel
Rewards, recognition,
benefits

Job and Task Instuctions

Procedures required
{written or not
written)

Written or oral communi-
cations

Cautions and warnings

Work methods

Plant policies and shop
practices

EXHIBIT 2-1.

Task and Equipment
Characteristics

Perceptual requirements
Motor requirements
(Speed, strength,
precision)
Control-display
relationships
Anticipatory requirements
Interpretation
Deciston~-making
Complexity (informatlion
load)
Narrowness of task
frequency and repeti-
tiveness
Task criticality
long~ and short-tem
memory
Calculatlional require-
ments
Peedback {knowledge of
results)
Continuity (discrete
vs continuous)
Team structure and
commun lcation
Man-machlne interface
factors:
Design of prime
equipment, test
equipment, manu-
facturing equipment,
job alds, tools,
fixtures

Performance Shaping Factors

STRESSORS

Psychological Stressors

Suddenness of onset
Duration of stress
Task speed
Task load
High jeopardy risk
Threats (of failure,
loss of job)
Monotonous, degrading,
or meaningless work
long, uneventful vigi-
lance periods
Conflicts of motlives
about job perfor-
mance
Relinforcement absent
or negatlve
Sensory deprivation
Distractions (nolee,
glare, movement,
flicker, color)
Inconsistent cueing

Physiclogical Stressors

Duration of stress

Fatigue

Pain or dlscemfort

Hunger or thirst

Temperature extremes

Radiation

G-force extremes

Atmospheric pressure
extremes

Oxygen insufficlency

Vibration

Moverment constriction

fack of physical exerclse

INTERNAL

Organismic Factors

Previous training/experience
State of current practice or
skill
Personality and intelligence
variables
Mot ivation and attltudes
Emotional state
Stress (mental or bodily
tension)
Rnowledge of required
performance standards
Physical condition
Attizudes hagsed on
influence of family
and other outslde
persons or agencies
Group identificatlion



HEP eztimates should not be used without careful consideration of accom-
panying unc- vtainty bounds. These bounds will provide necded informa-~
tion. Fo~ example, wide uncertainty bounds imply a certain lack of con-
sensus among the experts regarding the estimates of HEPs. Conclusions
drawn from HEP estimates should be based on uncertainty bounds and sensi-
tivity analyses as well as the HEP estimates themselves.

In addition, it is important before using the results of any of the pro-
cedures to check the consistency of judgments across experts. While
complete agreem nt is clearly an unreasonzble goal {in fact some of the
techniques require some variability across experts), too much inconsist-~
ency, indicating lack of agreement among the experts, will suggest that
results may be of questionable wvalidity. Thus, in this report we dis-
cuss procedures for consistency checks, as well as methods for obtaining
uncertainty bounds on estimates (that may also be related to consistency
acrogs experts).

Finally, in order to use any of the procedures discussed here, appropri-
ate experts must be available to make the required judgments. Later in
tihis section, specific reguirements (e.g., the nvmber) regarding experts
for each of the technigues are discussed. Here, the focus is on general
requirements including what types and mixes of experts to use. Exper-
tise of the following types may be useful:

e human factors,
e NPP operators,
e NFP supervisory personnel,

® nuclear and system engineers (preferably with some exposure to
human engineering), and

¢ human factors, operating, supervisory, and syrtem engineering
knowledge of non=-NPP contexts that are similar, e.g., chemical
processing plants or military weapons systems.

To the extent possible, the widest range of expertise should be used for
the application of any of the procedure.. It is also important, how-
ever, to ensure that particularly critical expertise be used. That is,
it is probably not advantagecus to reduce the mumber of human factor
experts with extensive experience in WPP operations in order to add
experts on human factors in military weapons systems.

2.2 Overview 2£ Frocedures

In this subsection, we describe briefly the five procedures that are
considered here. Details of their implementation are provided in Appen-
dix A. Also note that all evaluations of these procedures are reserved
for the following subsections.



2.2.1 Paired comparison procedure. A detailed description of the
paired comparison procedure is given in Section A.2 of Appendix A. This
procedure requires judgments of the type "event i is more likely than
event j." Using judgments of this type from several experts for a set
of events and Thurstone's (1927) Law of Comparative Judgment, an inter-
val scale of likelihood can be derived (Torgerson, 1958). This model
assumes that each event likelihood is represented by a di.tribution of
subjective magnitude, and that the distribution is normal. In comparing
the likelihood of two events, a magnitude is selected randcmly from each
distribution and the event with the higher subjectivce magnitude is
reported to be more likely. Taken across experts, the proportion of
times an event i is judged to be more likely than event j is then trans-
formed into a normal deviate. The average of all such normal deviates

- for a particular event in comparison with all other events is then taken
as the scale value of likeliood for tha* event.

In the general case, all pairs of k events are judged, requiring
k(k-1)/2 judgments from each judge. There are procedures that can be
used to reduce the total number of paired comparison judgments any
expert must make. If many experts are accessible, each expert need not
make all possible comparisons., With a total of n judges and if a mini-
mum of m judgments per pair are needed for a reliable scale, each judge
must make only 1l00m/n percent of all possible paired comparisons. The
pairs judged by the experts must be appropriately counterbalanced to
minimize biases. One counter-balancing approach would be to have each
judge i, i=l,...n, judge pairs (i-1l)t/n+l through (i-l)t/n+mt/n, where t
is the total number of possible paired comparisons. Note that in this
formula, pair t+l, is pair 1, etc. For example, with four experts
(n=4), a requirement for two judyments per pair (m=2), and nine events
(k=9), thus making t=k(k-1)/2=36; expert one would judge pairs one
((i-1)t/n+1=1) through 18 ((i-1l)t/n'mt/n=18), Expert-two would judge
pairs 10 through 27; expert three, pairs 19 through 36; and expert four,
pairs 28 through 9 (28 to 36 and 1 to 9).

Other procedures allow all experts to make all required paired compari-

sons, but reduce the number of paired comparisons needed. One method is
to use a subset of the events as standards. Each event is then compared
only with all standards. The standards should be selected to be spread
across the range of event probabilities. '

A second procedure, requiring a rough initial ordering, involves divid-
ing the total set of events iito overlapping subsets of events. Within
a subset, each event is comp:re? against all others and the usual proce-
dure is used to derive scale values within each subset. ‘

The overlapping events are then .sed to create a joint scale of all
events. Each subset must include at least two events in common with
another subset. The two common events can be used to transform the
scale values of one subset into scalr values which are on the same scale
as those of the second subset. Fcr example, for two subsets X and Y
with events e and f in common, th¢ equations
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Y X
Se =asg + b
and
Y X
Sg = asg + b,

where sgi séﬂ sg, and s? are the scale values for event e in subset Y,
event e in subset X, event £ in subset ¥, and event f in subset X, re-
spectively; would be solved for a and b Then all scale values in sub-
set X would be multiplied by a and added to b to obtain new scale values
which would be on the same scale as events in Y. If subsets have more
than two events iu common, least-squares procedures can be used to solve
for a and b.

A similar type of procedure can be used with non-overlapping subsets and
a set of standard events. In effect, the standard events become the
overlapring stimuli among subsets.

This sci.le wust then be transformed into a probability scale by assuming
some fixed relationship between the scale values and probabilities.
Previcus research (Bunns and Daniels, undated; Pontecorvo, 1966) sug-
gests that a logarithmic relationship is most appropriate, i.e.,

log py = asy +b

where p; is the estimated probability of event i, sj is the scale value
of event i, and a and b are constants. In order to determine a and b,
the probabilities of at least two events must be known or estimated inde-
pendently. If possible, more than two events should be used to increase
the reliability of the calibration. In general, if two events are used,
they should be near the upper and lower ends of the scale.

If two human errors with known or validly estimated probabilities cannot
be included in the set of events being considered, two approaches to
determining these constants are possible. One is to include two events
of a different type, e.g., death from different causes, with known proba-
bilities. This may require judgments that are difficult to make about
events on which the judges are not particularly expert thus leading to
questionable calil: ration. The other is to have experts make direct judg-
mental estimates »f tw> HEPs, At this point, there is no research bear-
ing directly ¢n wnic'. of these procedures is more appropriate. Our
recommendation is ©o vse the latter method, with carefully selected
human errors. The errors used should be those that the experts can best
estimate, and those for which evidence regarding their probabilities is
best, e.g., from Swain and Guttmann (1980).

Another relationship that might be appropriate rather than the logarith-
mic relationship is a power relationship (Stevens, 1975):

P; = exp((log s; - log a)/b).
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It, however, has not been studied in the context of relating interval
scale values of likelihood to probabilities, so until further research
can be performed, we recommend use of the logarithmic relationship.

In addition to the rationale underlying the Law of Comparative Judgment,
and its widespread use in psychological scaling; a major justification
for the use of the paired compariscn procedure is the argument that
people are much better able to make qualitative, relative judgments of
the type required than they are to make numerical estimates. This seems
to be particularly true for extreme numerical estimates such as the very
small probabilities estimated for most HEPs. For example, Lichtenstein
et al., (1978) found that subjects were generally able to judge correct-
ly vhich of two events was more likely (if one event was at least twice
as likely as the other), but were not very good at estimating numerical~
ly the relative likelihood of the two events. Thus, if the qualitative
information in paired comparisons can be used to derive probability esti-
mates without requiring invalid additional assumptions, the HEPs pro-~
duced will have a sound judgmental basis.

2.2.2 Ranking or rating procedure. Ranking and rating have “een in-
cluded as a single procedure because, although the judgments reguired
are somewhat different, the psychological model underlying the develop-
ment of HEPs firom ranking or rating judgments is the same. A complete
description of this procedure is given in Section A.3 of Appendix A.

Ranking requires each expert to rank order the set of human errors
according to their likelihood of occurrence. The rating procedure
requires each expert to judge each event on a given scale, e.g., from
one to ten. (Results are generally insensitive to exact form of the
rating scale, Bock and Jones, 1968.) These techniques can be considered
together as one procedure because, in effect, each rank can be consid-
ered a different rating.

The underlying psychological model for producing scales of likelihood
from ranking/rating judgments is the Law of Categorical Judgme .t (Tor-
gerson, 1958), which is based on psychological principals similar to
those for the Law of Comparative Judgment. Again, the likelihood of
each event is assumed to be represented by a normal distribution of sub-
jective magnitude. Category boundaries, i.e., the boundaries between
different rankings or different rating categories, are also assumed to
produce a normal distribution of subjective magnitude. Then both events
and boundaries are scaled using a procedure similar to that for paired
comparisons.

As with paired comparisons, the result of applying the Law of Categor-
ical Judgment is an interval scale of likelihood. This must then be
transformed into a probksbility scale using the same methods as described
for paired comparisons.



Ranking and rating judgments, as well as paired comparisons, are consid-
ered to be less susceptible to bias than are numerical judgments. As
discussed below the choice among these procedures will usually be made
on practical grounds.

2.2,3 Direct numerical estimation. The direct estimation procedure
(described in Section A.4 of Appendix A) requires the experts to provide
estimates of the likelihood of the human errors. The estimates may be
either in probabilities or in odds, and the response mode may vary.
Responses may be written mumbers, marks on a scale, or any of a mumber
of other responses (Stillwell_ggﬂgl., 1982). 043ds responses on a loga-
rithmicly-spaced scale appears to be the best direct estimation proce-
dure, particularly for relatively unlikely events as many human errors
are,

When HFEPs arc estimated using the direct estimation procedure, some
means of aggregating estimates across experts is needed to produce a
single probability estimate for each human error. For paired compari-
songs and ranking/rating the underlying model specifies how this aggre-
gation is to be accomplished. FPor direct estimation, this is not the
case, so any of a number of procedures can be used ranging from Delphi
to simple averaging (Stillwell et al., 1982). Since this same question
of how to agyregate across experts alse arises for indirect numerical
estimation and for multiattribute utility measurement, & detailed dis-
cussion of this problem is presented following the discussion of these
two procedures,

2.2.4 Indirect numerica) estimation., As described in detail in Section
A.5, Appendix A, this procedure reguires each expert to compare pairs of
events and to make ratio judgments as to how much more likely one event
is than the other. Each event must be compared with at least one other
event, such that all events are lirked. For example, with four events,
a, b, ¢, and 4, a would be compared with b, b with c, and c with 4.
Thus, with n events, n-1 judgments are needed. -

In order to gonvert these ratios into probabilities, the probability of
one event must be known or estimated independently. Procedures for ob-
taining this probability are the same as those discussed for paired com-
parisons. Other probabilities are then calculated by applying the appro-
priate ratios to this probability. As with direct estimation, some pro-
codure is required to aggregate estimates across experts. This is dis~
cussed below,

2.2.5 Multiattribute utility measurement. As was noted in the intro-
duction, this procedure is still in an initial developmental stage, and
thus is not recommended for use until udditional research documents its
validity. It is, however, an interesting possibility, and preliminary
studies by Embrey (198la, 1981b) suggest this procedure may be useful.
Several variations are possible, with the procedure described in Section
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h.6 of Appendix A based on Embrey's work appearing to be the most promig-
ing. ‘

As used by Embrey, the procedure is based on methods advocated by
Edwards (1977). The first step in the procedure is.to identify the PSFs
that are most relevant to the events being considered. The choice of
this set of PSPs is based on a consensus of experts making the judg-
ments. Edwards (1977) argues that the number of PEFs should not be more
than 11, and that seven is a reasonable number to conslder. These PSFs
are then weighted regarding their relevancy to producing errors for the
set of events under consideration. Thesgse weights are not general in
that tI they would apply to all sets of events. The weights are asaessed
judgmentally by the experts using a procedure described in the Appendix.

Then each event must be rated with regard to how much each PSF degrades
or enhances the likelihood of an error. Numerical ratings on a 0 to 100
scale are used. A rating of 0 indicates that the particular PSF has a
maximally degrading effect for that event, while a rating of 100 implies
& maximum enhancing effect. For example, if the PSF is the amount of
feedback received by an operator, a rating of 0 might indicate mislead-
ing or incorrect feedback, 50 would indicate no feedback, and 100 would
be the provision of accurate, complete, 2nd timely feedback. It is
important to have descriptive anchors for these scales to maintain con-
sistency across experts.

An index of human error likelihood is then derived using a weighted addi-
tive model:

1 » ng'ﬂijij;
where S; is the likelihood scale value of event i, NW; is the normalizad
weight for PSFy, and X;4 is the rating of the effect of PSF, on event i.
Since the likeiihood scale produced is again an interval scale, it must
be transformed into probabilities using the methods dlscussed for paired
comparisons.

Aggregation of estimates across experts can be undertaken at elther of
two points: as individual weights and ratings are assessed, or after
probabilities are derived using each expert's individual assessments.
Our recammendation regarding where aggregation should take place depends
apon the procedure used to aggregate (see diacussion below). . If inter-
action among the experts during the estimation process does not occur,
aggregation should take place after probabilities have been derived
Individually for each expert. If, however, there is an opportunity for
interaction and discussion among the experts, the aggregation should
occur for each weight and rating judgment.

2.2.6 Ahggregating individual judgments. As noted above, for the direct
numerical, indirect numerical, and multiattribpte utility procedures,
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some method is needed to aggregate the HEP estimates of individual ex-
perts into a single estimate. Two methods are advocated, with the
choice between them depending primarily upon whether or not the experts
are physically together to discuss information and interact while making
judgments. (Additional considerations regarding this choice are dis-
cussed in the following subsections.)

One method is simply to combine mathematically the individual estimates.
This can, of course, be used when experts have no opportunity to inter-
act directly. We recommend this method, as opposed to a Delphi method
involving feedback and multiple estimates, because research has shown
that the additional effort required for the Delphi method does not
increase the validity of estimates (Seaver, 1976, 1978).

The aggregation rule we suggest is:

( 1=l >
Pj T/ m l m 1
I@Q-P,.))m ne,, m

j=1 13 i=1 I

where P; is the aggregated probability assigned to event j, Pij' is the
probablilty estimated for event j by expert i, and m is the number of
experts. This rule is appropriate only for binary events, i.e., those
which either occur or do not occur. Bordley (1982) provides theoretical
justification for this rule, and Seaver (1978) has shown this to be a
good aggregation rule with empirical results.

gl

’

The second method is based on the Nominal Group Technique (NGT) (Delbecq
et al., 1975) that guides and controls interaction among the experts.
Tt is meant to allow for the exchange of ideas and information while
attempting to control for extraneous influences that may affect judg-
ments such as pressure for conformity, or domination by certain experts
because of personality. The NGT, however, because it does allow some
discussion among experts may not completely control these extraneous
influences. Typical use of the NGT includes the following steps.

1. Each expert makes a private judgment in the presence of all
experts without discussion.

2. Again without. discussion, each expert's judgment is presented
to all experts.

3. Judgments are discussed for clarification and evaluation under
the control of a discussion leader who is responsible for pre-
venting dominance and focusing on relevant issues.

4. Each expert then reconsiders his/her judgment without further
discussion.
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5. These final judgments are combined using a mathematical rule.

For direct and indirect numerical procedures, these steps would be fol-
lowed for each event and the judgments would be those required by the
procedure. The aggregation rule would be the rule given above.

For +he multiattribute utility procedure, these steps would be followed
once for judgments of weights. That is, each expert would make all
weight judgments (step 1) and then proceed through steps 2-4 considering
all weights at each step. The aggregation rule for weights is to take
the geometric mean of the (unnormalized) individual judgments, i.e.

1
,m o
W, = ( n Wi.>m ’
J i=1 J

where W. is the (unnormalized) weight for PSF., Wij is the (unnormal-
ized) weight assigned by expert i to PSFj, a m is the number of
experts.

The rating of each event on each PSF should also follow these five
steps. In this case, all steps should be carried out for the rating of
one event on one PSF before proceeding to the next rating. The aggrega-
tion rule used for ratings should be a simple average of the experts®
ratings.

2.3 Evaluation _<£ Procedures

The procedures described above represent a set of procedures from which
one procedure may be selected for any specific application. Which pro-
cedure should be selected will depend upon what use is to be made of the
HEPS, the values and preferences of the person (people) obtaining the
estimates, and specific situational constraints. These latter con-
straints are discussed in detail in the following subsection. Here the
focus is on a general evaluation of the strengths and weaknesses of the
procedures.

The following criteria have been identified as important for the eval-
unation of the procedures:

e quality of the judgments required,

o difficulty of data collection,

e empirical support for procedure,

® acceptability to experts making judgments,

e theoretical justification, and
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e data processing requiréments.

Exhibit 2-2 presents a rank ordering of the five procedures on each of
these criteria, based on review of the use of these procedures and our
experience with them. Below, the basis of these rankings on each cri-
terion is discussed. It also ranks the two procedures for aggregating
individual estimates that are required for the direct numerical, indi-
rect numerical, and multiattribute utility procedures.

Regarding Exhibit 2-2, several points must be made. First, it should
serve only as a guide to be used in conjunction with good professional
judgment, not as a decision table. (For example, one should not neces-
sarily use the procedure with the lowest sum of rank orders.) Second,
in using this exhibit as a guide, the user should consider the relative
importance of the criteria. 1In most cases the “quality of judgment™ and
"empirical support” criteria may be the most important. The user should
also note that because the entries are rank orders, they do not indicate
how much better or worse one procedure is compared to another on the
criteria. Finally, in the evaluation here, practical situational con=
straints are not included. These are discussed in Section 2.4 along
with their implications for selecting a procedure. A user should select
the best procedure possible based on the information in Exhibit 2-2 and
the following discussion within the practical constraints of the situa-
tion.

2.3.1 Quality of judgments. This criterion refers to accuracy of the
basic judgments required by the procedure. It is important to keep in
mind here that the HEPs being estimated will generally be quite small.
Were they larger, the direct numerical procedure would not be ranked so
low. Its ranking here reflects that people generally have great diffi~
culty in assigning very small probabilities. For less extreme probabil-
ities (eege, .1 to .9), direct estimates can be expected to be reason-
ably accurate.

There is a considerable body of research showing people make better rela-
tive, indirect numerical judgments (i.e., likelihood ratios) than direct
estimates (e.g., Lichtenstein et al.,, 1978; see also Stillwell et al.,
1982 for a review). People are even better at non-~numerical judgments
such as those required for paired comparisons, rankings, or ratings.
Among these types of judgments, paired comparisons seem to produce

higher quality judgments because they require a comparison between only
two events rather than simultaneous consideration of more than two

events (ranking) or comparison of an event with multiple categories (rat-
ing).

As noted earlier, the multiattribute utility procedure has not previous-
ly been used to estimate probabilities so little is known about the gual-
ity of these judgments. It has been used extensively on other problems,
but very little attention has been given to validity studies.

2-11



EXHIBIT 2-2. Rank Order of Procedures on Each Evaluation Criterionl

Procedure Aggregat:i.on2
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Evaluation g g E 5 g g g
Criteria e
Quality of Judgment 1 2 4 3 ? 1 1
Difficulty of Data Cellection 4 1 2 3 5 1 2
Fmpirical Support 3 4 1 l 5 1 1
Acceptability to Experts 1l 2 5 4 3 2 1
Theoretical Justification 1l 1 4 4 3 2 1
Data Processing S 4 1 2 3 1l 1l

NOTE: Care must be taken in interpreting the numbers in this table. They
indicate only rank orders and should not be interpreted as absclute
ratings. That is "1* means only that the particular procedure is
better on that criterion than other procedures. It does not imply
any judgment regarding the absolute quality of the procedure. All
numbers should be interpreted only in conjunction with discussion in
accompanying text.

lganks from 1 to 5 are from best to worst.

2Applies only for direct mumerical, indirect mumerical, and multiattribute
utiliity procedures.
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With respect to the two aggregation methods, research has shown that
they produce very similar results with no significant differences in
quality (Seaver, 1978; Stillwell et al., 1982).

2.3.2 Difficulty of data collection. This criterion refers to such
factors as the time and effort required of both the experts and the
people obtaining the estimates. It may involve designing the data col-
lection process, developing appropriate response forms, training experts
in the judgments required, and making the judgments.

The multiattribute utility procadure appears to be the most time consum-
ing and difficult to implement. It requires the experts to define the
PSFs to be included in the assessments. Each expert must then make m-1
weight judgments and m x n ratings of events with respect to the PSFs
where m is the number of PSFs included and n is the number of events.

In addition, the judgments required (weights and ratings) are compli-
cated ones, so considerable training and/or :Lnstructions will be
required to elicit these judgments.

Less complicated judgments are required for paired comparisons, ranking,
or rating procedures so training time and instructions will be less, A
large number of judgments, however, is required for the paired compari-
son procedure. Ranking/rating, direct numerical, and indirect numerical
procedures each require approximately one judgment per event, although
ranking may be somewhat more difficult than rating in this respect. For
numerical judgments some training and/or instructions should be provided
regarding biases that typically occur in such judgments (Stillwell et
al., 1982).

Use of the interactive NGT is clearly a much more difficult data collec-
tion technigue, All the experts must be assembled in one place, and
they are then allowed to exchange information and discuss judgments
which will require considerable time. It will also require the time of
someone involved in obtaining the estimates to lead the group.

2.3.3 Empirical support. Ranking on this criterion is based on the
extent to which the procedure has been empirically tested as a means of
estimating probabilities. The multiattribute utility procedure has very
little empirical support. Embrey (1981b) describes a small-scale, pre-
liminary test of the methodology that produced some promising results in
terms of the agreement between probabilities obtained with the procedure
and known probabilities. These results are somewhat controversial, how-
ever, because of a low degree of interjudge consistency and because the
probabilities being estimated were not extreme as HEPs are likely to be.

Although there has been considerable empirical support for the use of
paired comparisons and ranking or rating as scaling techniques, they
have not received much attention as procedures for estimating probabil-
ities. Blanchard et al., (1966) and Rigby and Edelman (1968) have used
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paired coamparisons in human reliability analysis, and Hunns and Daniels
(undated) used the procedure to estimate the probability of a train
disaster. Some unpublished work by Stillwell and Seaver used paired
comparison information to estimate the probability of death from various
causes and obtained a correlation of .75 between estimated probabilities
and relative frequencies.

A particularly weak link in both procedures is the transformation of the
scale values into probabilities. . Although a logarithmic relationship
has been suggested (Hunns and Daniels, undated; Pontecorvo, 1966), empir-
ical support is weak.

Direct and indirect numerical procedures are both supported by an exten-
sive amount of research and practical application (see Stillwell et al.,
1982). Little of this support, however, reflects estimation of very
small probabilities.

For the three procedures requiring some type of aggregation, both mathe-
m2tical aggregation and the NGT have considerable support (e.g., Seaver,
1976, 1978; Stillwell et al., 1982). The NGT method also has been used
extensively in problem solving tasks where probability estimates or
other numerical judgments are not required (e.g., Delbecqg et al, 1975).

2.3.4 Acceptability to experts. The acceptability of the procedure to
the experts providing judgments is important because if the resulting
HEP estimates are to be used, they must have the support of the experts.
This support will occur only if the experts are satisfied with the way
in which the HEPs were estimated. The procedure must also be accepted
by users of the HEPs, e.g., PRA specialists, and by regulators (e.a.,
NRC) who make decisions based on this information.

The numerical judgment procedures may be the least acceptable because
experts may feel that an accurate probability or relative likelihood
judgment cannot be made (even though research has shown that in many
cases they can be). The direct numerical judgment procedure is particu-
larly susceptable to this criticism because of the extremeness of the
HEPSs.

The multiattribute utility procedure has considerable face validity.
primarily because it deals explicitly with PSFs that human factors
experts will feel are very important considerations in estimating HEPs.
In this procedure, however, the experts may be somewhat uncomfortable
with the unusual nature of the judgments required.

Ranking, rating, and particularly paired comparisons are likely to be
more acceptable because the judgments are relatively simple ones, and
the experts may be expected to believe they can make such judgments
relatively well. Questions of acceptability may arise, however, because
the experts do not understand how these judgments are used to derive
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HEPs. These questions may be partially alleviated by a careful explan-
ation of the procedures.

With respect to aggregation methcds, this criterion is very important.
Experts are much more likely to accept a procedure such as the NGT in
which they have a chance to interact and discuss information with col-
leagues, so they can consider more information and can understand rea-
sons for differences in judgments. Social psychological research has
shown that involvement in a group produces a strong feeling of respons-
ibility for and acceptance of group products and decisions (Seaver,
1976).

2.3.5 Theoretical justification. This criterion refers to the extent
to which a formal model underlies the procedure. There is no particular
theoretical justification for the numerical procedures: their justifica-
tion is derived empirically. Multiattribute utility measurement does
have a very strong theoretical basis (Keeney and Raiffa, 1976), but not
as a probability estimation procedure. 1In addition, there is no under-
lying psychological theory for the types of judgments reguired.

On the other hand, both paired comparisons and ranking/rating are based
on well-established psychclogical theories of judgment (Torgerson,
1958). But these two procedures also suffer from a lack of justifica-
tion as probability estimation procedures. Again the weak link theore-
tically is the transformation from scale values to probabilities, which
must be justified empirically.

The NGT was developed on an extensive review of psychological theory
regarding group processes (Delbecq et al., 1975). While the mathemat-
ical models used for aggregation (in the NGT as well as with no interac-
tion) are based on a theoretical model, they have been simplified to be
practical with empirical support for the simplification (Seaver, 1978).

2.3.6 Data processing requirements. This criterion refers to the
amount of analysis required after the experts provide judgments to pro~-
duc~ HEPs. As can be seen from Appendix A, none of the procedures
rec: ve difficult processing. All processing can be performed by hand
or .iulatively easily with a calculator. Thus, this criterion is proba-
bly less important than the others. '

The paired comparison and ranking/rating procedures require the most
processing. Paired comparisons require slightly more because of the
necessary collation of the paired comparison judgments. Other process-
ing required is simply averaging and translating scale values into proba-
bilities.

The multiattribute utility procedure uses a weighted additive model to
derive scale values, that are then translated into probabilities. It
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also requires aggregation of estimates across experts. In the indirect
numerical procedure, probabilities are calculated by simple multiplica-
tion and are aggregated across experts. The direct numerical procedure
requires only aggregation across experts.

Both aggregation procedures use the same aggregation rules, except if
the NGT is used with the multiattribute utility procedure. Then more
aggregations must be performed.

2.4 ¢cituational Constraints

Many factors in the specific context in which HEPs are to be obtained
may influence the selection of a particular estimation procedure. These
factors include:

e number of evperts available,

e number of HEPs to be estimated,

e time available to produce estimates,

e type of experts available,

e physical location of experts,

e specificity of the errors considered,

e similarity of errors considered,

o order of magnitude of the errors,

e availability ~f independent estimates of some HEPS, and

® resources available.

The number of experts available is particularly critical, since the
paired comparison and ranking/rating procedures require relatively more
experts. Appendix B discusses the implications of the number of experts
used for reliability of and uncertainty bounds for HEPs estimated by the
paired camparison procedure. Because the underlying model is much the
same, these implications also apply to the ranking/rating procedure.

The results in Appendix B suggest that reasonable reliability can be
obtained with as few as eight experts, or even fewer in some circum-
stances. However, 1f only smaller numbers of experts can make the judg-
ments, paired comparison and ranking/rating procedures may not be suffi-
clently reliable.
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As also noted in Appendix B, the number of HEPs to be estimated affects
the reliability of estimates derived from paired comparisons (and
ranking/rating as well). However, for paired comparisons, this must
trade off againet the number of judgments required which increases
rapidly as the number of events considered increases.

Although there are some techniques for reducing the number of judgments
required (discussed previously with a specific example in Appendix a),
estimation of a large number of HEPs using paired comparisons will take
either considerable time from each expert or a large number of experts.
If a large number of HEPs are needed and there are limitations on time
and the number of experts available, procedures other than paired compar-
isons may be more efficient.

The degree to which the time available to make the estimates constrains
selection of a procedure obviously is dependent upon the number of
experts available and the number of HEPs to be estimated. The more
experts and fewer HEPs to be estimated, the less important time con-
straints are. To the extent that time does constrain the estimation
process, direct and indirect numerical and ranking/rating procedures
will require the least time.

The type of experts available, particularly with respect to understand-
ing and being comfortable with the concepts of probability, can also
affect procedure selection. Less probabilistically sophisticated
experts will require considerable training for the direct and indirect
numerical procedures (Stillwell et 2l., 1982). For such experts, the
non-numerical procedures are to be preferred.

The physical location of experts will affect whether or not it is feas-
ible to get them together to interact. For the paired comparison and
ranking/rating procedures, there is no particular advantage to having
the experts together. For the other procedures, however, if the NGT is
used, the experts must be together physically, which may increase the
time and costs of data collection and/or constrain which experts can
participate.

The numerical procedures will generally require more specifically
defined events because they require a very precise numerical judgment.
This is also true of the multiattribute utility procedure. The paired
comparison and ranking/rating procedures, however, do not reguire pre-
cise judgments. It is possible, for example, to judge which of two
generally defined errors is more likely even though, because of their
generality, the exact probability of either error could not be esti-
mated.

The similarity of errors considered is of particular relevance for
paired comparisons. If paired errors are too dissimilar, judgments may
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be very difficult. For example, experts may have a difficult time com—
paring a judgmental error with an action error. If paired comparions
are to be used, some grouping of errors by similarity may be useful.

On the other hand, errors that are defined the same way except for one
specific change, e.g., a change in stress, should not be paired. The
underlying assumptions of the psychological model are unlikely to be met
in such a case, andi thus may detrimentally affect results. For example,
if the same error is considered under normal and high stress, all ex-
perts may indicate that the high stress error is more likely. This cer-
tainty does not necessarily reflect a belief that the likelihood of the
error under high stress is very much higher than under normal stress.
The actual probabilities could be quite close. The paired comparison
procedure, however, could produce a large difference in probabilities.

In most cases, in estimating HEPs at least some can be expected to be
quite small. To the extent this is true, it may lead direct numerical
judgments to be somewhat biased, although the procedures described for
direct numerical estimation in Appendix A are designed to minimize bias.
If extreme HEPS are not expacted, the direct numerical procedure becomes
relatively more attractive.

All procedures except the direct numerical procedure regquire an independ=-
ent estimate of at least one HEP. The indirect numerical procedure re-
quires one such estimate while the other procedures reguire two. The
more confidence that can be placed in indapendent estimates, the bettexr
these procedures are.

Lack of resources may constrain procedure sgelection through the incapa~
bility of obtaining the services of a needed number of experts for the
necessary time. A very tight budget may eliminate paired comparison and
ranking/rating procedures that require more experts and/or their time.
If direct numerical, indirect mamerical, or multiattribute utiliey pro-
cedures are used, resource constraints may force the use of mathematical
iggregation rather than the NGT.

For the most part, the constraints discussed above tend to drive proce-
dure selection away from paired comparisons and to some extent rank-
ing/rating. On the other hand, without constraints, the general eval-
uation in the preceding subsection tends to favor these procedures.
Thus, practical choice of a procedure will usually be a matter of the
degree and firmness of the constraints. Very severe and firm con-
straints will usually lead to selection of the direct or indirect numer-
ical procedures and use of mathematical aggregation. Less severe con-
straints will allow use of paired comparisons or ranking/rating, which
are generally more attiactive.
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3.0 DISCUSSION

The spirit in which the procedures described in this report for estimat-
ing HEPs in NPP operations are offered is much- the same as that underly-
ing advocacy of the use of expert judgment to estimate HEPs: nake the
best use possible of current procedures and information, even though
they may be flawed. These procedures certainly are not well-tested and
validated procedures for estimating HEPs. They are, however, based on
sound psychological theory and empirical support that indicate their
potential usefulness. And as a practical matter, they can be used now
to obtain needed HEPs,

The selection of which procedure to use is probably less important than
the decision to use expert judgment to estimate needed HEPs, These five
procedures have all been screened and developed to be reasonably effec-
tive and valid, with the exception of the multiattribute utility proce-
dure that has not been investigated thoroughly. Our recommendation is
that this procedure not be used until it is further tested. This should
not be interpreted as a negative critique: the fact that it is dis-
cussed here is a positive appraisal. Rather, we simply advocate a wait
and see attitude.

Among the procedures described, based on available evidence the paired
comparison and ranking/rating procedures appear to have the potential to
provide the best HEP estimates. The paired comparison procedure in par-
ticular has been used to a small degree in human reliability analysis
(Blanchard et al., 1966; Rigby and Edelman, 1968) as well as extensively
as a psychological scaling technique. It however, generally presents
the most practical problems in application. ’

Some practical constraints can be alleviated by using the ranking/rating
procedure that is based on the same underlying psychological model of
judgment as the paired comparison procedure. If practical constraints
are severe, either of the numerical estimation procedures can be used,
although under most circumstances, the indirect numerical procedure is
recommended. These procedures can be used to obtain HEPs relatively
quickly, with a few experts, and with low costs. These practical sav-
ings, however, can be expected to result in some decrease in the quality
of the HEP estimates obtained.

Two parts of the implementation of any of these procedures will probably
have more effect on the results than will the selection of which proce-
dure to use. It is critical that the "right" experts be selected and
that the "right" events be considered. In Section 2.1, these topics
were discussed, so here only a few important points are made. In selec~-
ting experts, the best available people should, of course, be used. But
it is also necessarv to use experts whc have an open mind about the use
of expert judgment to estimate HEPs, and are willing to put their exper-
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tise on the line in their judgments. Experts who do not helieve that
judgment can be used to estimate HEPs are unlikely to give their judg-
ments sufficient consideration because they do not think the judgments
are sufficiently valid to estimate HEPs.

To some extent, the "right" events will be defined outside the context
of estimating HEPs using expert judgment. For example, they may be
defined by a PRA. What is important, is the clarity and completeness of
the definition of the events. Good definitions including consideration
of PSFs will simplify judgments and improve their reliability and valid-
ity.

Although the procedures described here can be used now to estimate HEPs,
they undoubtedly can be improved through additional testing. Such test-
ing would also increase the confidence of users in the results of analy-
ses using judgmentally-estimated HEPs. There are several specific areas
in which research is needed.

For the paired comparison, ranking/rating and multiattribute utility
procedures, scale values must be transformed into probabilities. Cur-
rently, the relationship between scale values and probabilities is
thought to be best-defined as logarithmic. This relationship, however,
has relatively little empirical support, so additional research should
investigate the extent to which it is logarithmic across events and
experts.

The transformation of scale values into probabilities also requires inde-
pendent estimates of at least two HEPs for paired comparison and rank-
ing/rating and one HEP for indirect numerical estimation. (f such esti-
mates for human errors are not available, the independent estimates can
be obtained either by direct numerical judgment or by including two
events of a different type with known probabilities (though the latter
approach would require empirical support before use). The effects of
including two events of a different type in the set of human errors
should be Investigated for different types of events.

In addition to these specific research topics, more general research is
needed investigating the reliability and validity of the procedures for
probabilities generally and HEPs specifically using real events and
experts. In particular such research should determine the extent to
which. the procedures produce different estinmates. Even though there is
at present some qualitative indication of differences (which of course
may be wrong), quantification of differences would be helpful in estab-
lishing tradeoffs between the quality of estimates and practical consid-
erations (time, cost, number of experts, etc.). Not only should the
research quantify the differences, but it should also, to the extent
possible, determine which estimates are more valid and the circumstances
under which different procedures produce more valid estimates.
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Thus, we conclude this report with two recommendations. (1) The proce-
dures described herein should be used now to estimate HEPs as they are
needed. (2) A program of research should be undertaken to test further
and validate the use of these procedures.
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APPENDIX A
IMPLEMENTATION OF ESTIMARTION PROCEDURES

In this appendix, the steps for implementing the five procedures are
described in detail including examples and necessary calculatioms.
People interested in using these procedures can use this appendix as a
guide. The appendix is composed of a brief discussion of preparation
for implementing any of the procedures (Section A.l) which should be
reviewed along with Section 2.1 of the main body of this report. Then
Sections A.2, A.3, A.4, A.5, and A.6 describe the paired comparison,
ranking/rating, direct numerical, indirect numerical, and multiattribute
utility procedures respectively. Each of these sections consists of
subsections regarding '

# judgments réquired,

e calculations required to produce HEPs,

® procedures for determining interjudge consistency, and
® procedures for estimating uncertainty bounds.

Section A.2 on paired comparisons contains an additional subsection on
procedures for determining within-judge consistency. Each procedure is
introduced by a summary of steps to be followed in developing desired
HEP data.

A.1 Preparation

The most important ingredient in any of the estimation procedures to be
discussed in these appendices is that the events about which the judg-
ments are to be made be carefully and accurately defined. There are
many approaches to event definition but the best include the following
elements

e The role of PSFs in the event should be defined.

e Events not under consideration, but which might be confused with
the event to be judged should be clearly separated from the
event under consideration.

e lLarger gets of events to which this event belongs should be
described.

e Causes of the event, e.g., sets of mutually exclusive initiating
events and sequences of events, should be identified.



A.2 Paired Comparison Procedure

The steps required in this procedure are the following:
l. Obtain paired comparisons.

2. Create table representing the number of experts judging each
event more likely than each other event.

2. Derive table of proportions from 2.

4. Create table of normal deviates corresponding to proportions in
3.

5. Calculate mean column values in table in 4 which are scale
values.

6. Obtain independent estimates of two HEPs.
7. Transform scale values into HEPs.

8. Detexmine within-judge consistency.

9. Determine interjudge consistency.

10. Estimate uncertainty bounds.

A.2.1 Judgments required. Each expert is presented with several pairs
of events and makes a discrete choice of which of each pair is the more
likely. The judgment "equally likely” is not allowed. In addition, the
probability of at least two of the events in the total set must be
known, but the more that are known, the better. It is important that
these two events be near the upper and lower ends of the range of proba-
bilities being estimated.

The total number of experts necessary and the number of event pairs that
must be judged by each expert should be based on the availability of
experts relative to the time available from each expert. Appendix B
gives some general guidelines on the number of experts necessary for a
given level of precision in the scale values of individual events
(expressed in terms of the largest expected variance possible) and shows
that good precision can be obtained with few experts.

An important consideration for the use of paired comparison techniques
is the large number of pairs there are for even moderate numbers of
events. For example, for 20 events there are 190 (22%52) pairs of

events. Scaling experts have noted, however, that all of these judg-
ments are not necessarily required to get good estimates of the scale
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values, and several suggestions have been made for reducing the number
of judgments required.

Probably the most appropriate for the judgment of human error probabil-
ities is to select a limited number of events as standards. As much as
possible, standards selected should be spaced out over the length of the
scale. Each event is then compared with each standard, giving
mn-m(m+1)/2 independent proportions where n is the number of events and
m is the number of standards. For example, with 20 events, 5 of which
are taken as standards, the required judgments would be reduced from 190
to 85 ((5)(20)-5(6)/2).

A.2.2 Performing the calculations. If a subset of events are used as
standards, the computational procedures would be identical. The differ-
ence would be in the mumber of rows in the initial and subsequent
tables. The number of standards with which all other events are com-
pared determines the number of rows. Assuminrg that we have obtained a
complete set of paired comparison judgments for the events whose proba-
bilities we wish to obtain, we will now work through ar example of the
application of paired comparison scaling. Assume that we have obtained
the matrix of judgments for 20 judges shown in Table A-l. Each cell
entry represents the number of judges who said the event listed across
the top was more likely than the event listed down the side. Thus, for
example, the entry for cell 1,4 (row 1, column 4) will be 20 minus the
entry for cell 4,1 (row 4, column l). These example events are taken
from Swain and Guttmann (1980), Table 20-17, for probability of a main-
tainer failing to check value status before maintenance; the frequencies
in Table A~l are hypothetical. The frequencies shown in Table A-l are
converted into proportions by dividing each fregquency by the total num=-
ber of experts (20 in this case). Table A~2 shows the matrix of propor-
tions.

The next step is to convert the proportions in Table A~2 into units
reflecting the assumption that they represent proportions of the area of
the normal probability distribution. This conversion is accomplished by
using tables of the area under the normal distribution, that can be
found in most introductory statistics texts. For example, cell entry
4,1 shows that 9 of 20, or 45% of the judges stated that event 1 was
more likely than event 4, while 11 of 20 or 55% said the opposite. By
looking at the table of the normal distribution we find that a z value
of -.13 leaves 45% of the area of the nomal distribution to the left.
This z value represents the relative distance between events 4 and l.

By transforming each of the proportions in Table A-2 into unit normal
deviates as described above we have the matrix shown in Table A-3.

These normal deviates are summed and the mean calculated for each column
as shown in Table A~3. This column mean is the value for the event on
the newly created subjective scale. For example, the scale now looks
like this:
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TABLE A-1

Frequency Matrix of Paired Comparison .Judgments®*

Events: Maintainer

fails to check valve

status before

maintenance when: 1 2 3 4 5 6

1. short list is used
with checkoff, per- - 15 13 11 17 19
sonal safety is
affected

2. short list is used

with checkoff, per- 5 - 9 5 12 16
sonal safety is not : :
affected

3. short list is used
without checkoff,
valve is in field 7 11 - 8 13 17
of view, personal
safety affected

4. NPP procedures or
long list used with
checkoff, personal 9 15 12 - 16 18
safety affected

5. NPP procedures or
long list used with-
out checkoff, valve 3 8 7 4 - 12
within field of view,
personal safety not
affected

6. no list is used,
valve within field
of view, personal 1l 4 3 2 8 -
safety affected

*Each cell entry represents the number of experts who said
the event listed across the top was more likely than the
event listed down the side.



TABLE A-2

Matrix of Proportions?*

Event: 1 2 3 4 5 6
1 - .75 .65 .55 .85 .95
2 .25 - .45 .25 .6 .8
3 .35 .55 - .4 .65 .85
4 .45 .75 .6 - .8 .9
5 .15 .4 .35 .2 - .6
6 .05 .2 .15 .1 4 -

*Each cell entry represents the proportion of experts who said
the event listed across the top was more likely than the event
listed down the side. ’



TABLE A-3

Values of Proportions Under Normal Curve*

Event: 1 2 3 4 5 6

1 - «67 «39 .13 1.04 1.65

2 - .67 - - .13 - .67 «25 .84

3 ~ .39 .13 - - .25 «39 1.04

4 -~ .13 67 .25 - 84 l.28

5 ~-1.04 - .25 - .39 - .84 - o25

6 -1.65 - .84 -1.04 -1l.28 - +25 -

Scale Value (s)agﬁi = = .64 .06 - .11 - +45 .38 -84

where N = the number of events (6 in this case).

*Each cell entry represents the normal deviate value (2)
corresponding to the proportion for the cell shown in
Table A-2,




Event # 1 4 3 2 5 6
Scale value(s) -.64 -.45 ~-.11 .06 .38 .84

This subjective scale of relative distances must now be converted into a
scale of probabilities. 1In order to do this a pair of anchors is re-
quired that relate positions on the subjective scale to those on the
probability scale. In most cases these anchors will come from a pair of
events, placed for judgment among the others, for which the true proba-
bilities are known. In some cases, however, none of the events in our
scale will have known probabilities, and direct estimates of the anchors
must be made using the direct numerical estimation procedure described
in Section A.4. These direct estimates should be made after the paired
judgments so that the events used for the anchor judgments are as near
the ends of the true probability scale as possible,

Probabilities are assumed to be logarithmically related to the derived
scale values:

lJog HEP = as + b

vhere s is the mean scale-rank values judged by assessors, and a and b
are constants, arrived at by simultaneous solution of the two variations
of the above eguation that result from the two anchors. In our example,
we assumed anchor values were known for event #1 of .0004 and for event
#6 of .01, and thus the following two equations would be solved:

b

b

~1.48a

~-1.48a
«94.

log{.0004) = al(-.64)
log(.0l) = a(.84)
log(.0004) - log(.01)
~1.3979
a

RN+ 4

Substituting a back into the first equation we get:

log(.0004) = .94(-~.64) + b
b= -2,7963

The formula:
log HEP = .94s + (-2.7963)

now allows calculation of the probability for each of the scale values
and the following scale is arrived at for the six events:

event # 1 4 3 2 5 ) 6

log HEP -3.3979 -3.2193 . ~2.8997 -2.7399 ~2.4391 -2.0000
probability .0004 .0006 0013 .0018 004 0l



Although it is not a factor in our example, there can be a question
about how to handle complete agreement among judges about which event is
the more likely. Under the normal distribution 100% or 0% of the distri-
bution occurs at + infinity and thus has no meaningful z value. On the
other hand, this would seem to be an extremely diagnostic bit of data
and therefore should not be disregarded. Appendix B (Section B.2) shows
.methods for selecting a z value for complete agreement, one of which
results in Table A-4. We recommend that these values be used for z in
cases of complete agreement with 10 or fewer judges. When the number of
judges exceeds 10, procedures described in Appendix B (Section B.2) may
be used to determine the appropriate z value.

A.2.3 Within-judge consistency. For paired comparison judgments, the
experts may exhibit internal inconsistencies that will be shown as cir-
cular triads. That is, event a is judged to be more likely than event

b; event b more likely than event ¢; and event ¢ more likely than event
a. The consistency of each expert can be determined using the "coeffi-~
cient of consistency” (David, 1963; Kendall and Babington Smith, 1940).
This coefficient varies from zero for a completely random (maximum num-
ber of circular triads) set of judgments to one for a completely consist-
ent (no circular triads) set.

The coefficient of consistency, k, is calculated by first determining
the number of circular triads, c, for the expert:

c = B(pn2.1) - T
P T

n
where n is the number of events and T = .Zl(aiJK)z and a = (n-1)/2. The
1:

values a; are the number of times event a; was juiged to be more likely
than any other event. For example, if one expert's judgments are
described by the following matrix where a 1 indicates that the row event
was judged more likely than the columm event, the a;s are the row sums.

Event 1 ' 2 3 4 5 6 2, aa
1 - 0 1 0 1 1 3 .5
2 1 - 0 0 1 1 3 .5
3 0 1 - 0 0 0 1 -1.5
4 11 1 - 1 0 4 1.5
5 0 0 1 0 - 0 1 -1.5
6 0 0 1 1 1 - 3 .5

In this example, 3=(6-1)/2=2.5, and T=.52+.524(~1.5)2+1,52+(-1.5)2+.52=7.5.
Then c= 6 (62-1)-7-5=5,
24 2

The coefficient of consistency, k, is then found by the formulas
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TABLE A-4

Values of 2 for Complete Agreement®

Number of
Experts 2 3 4 5 & 8 10
2z - l.29 1.35 1.41 1.48 | 1.64 1.69

*Positive z values are used when the proportion is 1 and

negative values are used when the proportien is 0,




k=1-__24_ n odd,
n(nz-l)
k=1 ~__29C 5 even.

n(n2-4)
In the above example, since n is even

k=1"_2.-.4x_5'—‘1-£=0375.
6(62-4) 152

Statistical tests for the coefficient of consistency are approximate and
do not perform well for relatively small values of n, i.e., those in the
range of practicality for paired comparison judgments in this context.
For example, with six events, the usual test will reject the null hypoth-
esis that the judgments are random only if there are no circular triads.
Thus in using the coefficient of consistency, it should be interpreted

as akin to a correlation coefficient. Thus, the value of .373 in the
above example, while not showing a highly consistent expert, does not
show sufficient inconsistency to suggest that the data of that expert
should not be used. ‘

A.2.4 Interjudge consistency. B2An appropriate statistic for measuring
agreement with more than a single pair of judges is the coefficient of
concordance (W), which is the ratio of the variance of the asums of ranks
in the sample to the maximum possible variance of the sums of the ranks.
This statistic can be intuitively thought of as much like an average
rank order correlation. Thoe advantage of this statistic is that it has
an exact test of statistical significance. The calculation formula for
W is:

W o= 12s8 ,
m2(n3~nj

where m is the number of experts, n is the number of events, and ss is
the sum of sgquares,

n e
ss = I (Ry - R)Z
jel

with R; being the sum of ranks for event j and ﬁ'being the average sum
of ranks.

In order %o calculate W, each expert's paired comparisons are converted
into a rank order. This rank order can be derived by a count of the
number of times each event was judged to be more likely than other
events. The event with the largest count ig ranked first and so on.
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Thes=? rank orders are put into a table with m rows, one for each expert,
and n columns, one for each event. Entries in the table are the ranks
assigned by each expert to each event. Thus, a table such as A-5 re-~
sults where there are eight experts and five events.

For this example,

w = 120(13-24) + (16-24)° + (27-24)% + (29-24)% + (35-20)%)
64(125-5)

= 12(121 + 64 + 9 + 25 + 121)
64(120)

= 0530

This indicates that the variance on the sums of the ranks is about 53
percent of the maximum possible variance (produced if all experts agree
completely). The significance of W for seven or fewer events can be
found in Appendix C. If there are more than seven events, chi square
tables found in most statistics text can be used to determine signifi-
cance. In this case the statistic

T = __128S
mn{n+l)

is distributed approximately like chi square with n-1 degrees of free-
dom. In this formula, ss, m, and n are again the sum of squares for
rank sums, the number of experts, and the number of events. Thus, in
the example case, W is significant beyond the .0l level indicating basic
agreement among experts. '

A.2.5 Estimating uncertainty bounds. Conservative uncertainty bounds
on scale values, s, can be estimated statistically using a procedure
described in Appendix B. First the variance of each z value correspond-
ing to each proportion in Table A-2 is determined. If the number of
experts is ten or fewer, these variances cau be obtained from Table A-6.
If there are more than ten experts, procedures described in Appendix B
that involve considerable calculation must be used. In Table A-6, 2z
represents the value assigned to cells with complete agreement (e.g.,
from Table A-4, or from procedures in Appendix B).

Because of the tedicusness of the calculations inwolved for 20 experts,
for purpouses of demonstration here we assume that the proportions in
Table A-2 were generated by 10 rather than 20 experts. Then z=1.69 for
10 experts from Table A-4. For proportions not found in Table A-6,
interpolation may be used as is demonstrated below.
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TABLE A-5

Rank Ordering of Events*

Events
Experts 1 2 3 4 5
1 1 3 2 5 4
2 2 3 1 4 5
3 3 2 4 1l 5
4 2 1 5 4 3
5 1 2 4 3 5
6 1l 2 -3 4 5
7 2 1 3 4 5
8 1 2 5 4 3
Rj ' 13 16 27 29 35
(sum of ranks for event j)
R = 24

*A rank of 1 indicates the event chosen as more likely
than other events most often, while a rank of 5 indi-
cates the event chosen as more likely than other events

least often.

A-12



£1-¥

TAELE A-6

vVariance Estimates of z Values for Various

Proportions and Numbers of Experts*

Number Proportion
of

Experts .5 .6 .7 .8 .9
2 .522 .4822 .4222 .3222 .1822

2 2 2 2 2

3 2522 +.139 | .2572°-.0192+.129 | .27z2% -.06z +.105 | .2662%-.125z+.073 | .22° -.135z+.041
4 .125z%+.228 | .1442°%-.027z+.211 | .194z%-.105z+.17 .2452%-.2112+.131 | .2262%-.2552+.097
5 .06322+.261 | .08322-.0252+.239 | .1432%-.1072+.198 | .2212%-.2472+.167 | .2432%-.344z+.152
6 .031z%+.262 | .0492%-.0192+.244 | .1042°-.0932+.207 | .193z2-.2502+.189 | .249z2-.408z+.202
7 .0162%+.248 | .0292%-.013z+.234 | .0762°-.0742+.205 | .1662%-.2362+.200 | .2492%.451z+.245
8 .008z%+.227 | .0172%-.008z+.219 | .0542z%-.0562+.196 | .140z2-.211z+.201 | .2452%-.474z+.273
9 .004z%4.205 | .01022-.005z+.202 | .0392°-.041z+.189 | .1162°-.1842+.199 | .237z%-.483z+.296
10 .002z%+.185 | .0062%-.003z+.284 | .0272%-.03z +.177 | .09622-.1552+.191 | .227z%-.482z+.310

*Z represents the normal deviate value assigned to cells with complete agreement.




Then for the proportions in Table A-2, and the formulas for ten experts
in Table A-6, the matrix of variances in Table A-7 is derived. For exam-
ple, the proportion in cell 1,2 of Table A-2 is .75. From Table A-6,
the variance for .7 is .027(1.69)2 - .03(1.69) + .177 = .2034, and the
variance for .8 is .096(1.69)2 - ,155(1.69) + .191 = .2032, Since .75
is halfway between .7 and .8, linear interpolation arrives at a variance
that is halfway between these two estimates, .2033. This value, rounded
to .203, is entered into the appropriate cell in Table A-7. This is
also the estimate used for cell 2,1 since the variance for p is the same
as the variance for l-p, Other cells are filled in appropriately using
the same procedure. The variance of the estimate of the scale value for
each event is then calculated by summing each column and dividing by
n({n-1) (in this case, n=6), as shown in Table A-7. Error bounds on the
scale values--95 percent bounds--are then computed as s + 2s.e., vhere s
is the scale value (from Table A-3) and s.e. is the standard errcr of
the estimate which is the square root of the variance of the estimate.

These uncertainty bounds on scale values can then be transformed into
bounds on probability estimates as described in Appendix B (Section
B.3). The uncertainty bounds for log HEP are + 2as.e, vhere a is the
constant from the eguation,

log HEP = as + b,

used to transform scale values into probabilities. 1In this example, a
was determined to be equal to .94. Thus, the bounds on log HEP for the
six events are +.323, +.342, +.337, +.331, + +.337, and +. 312 respective~
ly. Tables of antlloganthms are then used to obtain the bounds on the
H#HEPs shown in the last column of Table A-8.

Another approach to estimating uncertainty bounds is based on judgmental
rather than statistical estimations. Judgmental prccedures including
paired comparisons, ranking/rating, direct numerical estimation, and
indirect numerical estimation can all be used. The advantages and disad-
vantages of these various judgmental procedures to estimate uncertainty
bounds are the same as those for those procedures used to estimate HEPs.
Any of these four judgmental bounding procedures can be used with any of
the five HEP estimation procedures. Here for the sake of consistency of
presentation, we discuss the paired comparison bounding procedure. Each
of the other judgmental bounding procedures is discussed in the section
of this appendix describing the similar HEP estimation approach. 1In
some applications, both a statistical and a judgmental bounding approach
may be useful.

In the paired comparison bounding procedures, events are paired and pre-
sented to the experts just as described above for the paired comparison
HEP estimation procedure. The experts now, however, are responding to
the guestion:
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TABLE A-7

Matrix of Variances

Event: 1 2 3 4 5 6
1 - .203 .200 .1%4 .174 .114
2 .203 - .194 .203 .196 .203
3 .200 .194 - .196 .200 .174
4 . 194 .203 .196 - .203 .144
5 .174 .196 .200 .203 - .196
6 L114 .203 .174 .144 .196 -
z . 885 .999 . 964 .94 . 969 .83}
Variance=
£/n(n-1) .030 .033 .032 .031 .032 .028
Standard '
error = 172 .182 .179 .176 .179 .166
YVariance
s= -.64 .06 -.11 -.45 .38 .84
Scale Value
Error bounds _ og4  _.304 -.168  -.802 022  .508
on s (lower)
Error bounds _ ¢ 434 248  -.098  .738  1.172

on s (upper)
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TABLE A-8

Statistical Uncertainty Bounds on HEP Estimates

9T~¥

' Bounds on Bounds on
Event HEP log HEP log HEP , HEP
1 .0004 -3.3979 ~3.7419, -3,0539 .0002, .0009
2 .0018 ‘ -2,739% —3.0819; -2,3979 .0008, . .0040
3 .0013 -2.8997 -3.2367, =~2.5627 .0006, .0027
4 .0006 -3.2193 -3.5503, ~2.8883 .0003, .0013
5 .0040 -2.4391 ~-2.7761, -2.1021 .0017, .0079
6 .0100 -2.0000 -2.,3320, -1.6680 .0047, .0215




For which error are you more uncertain about how likely
it is? Note that we are interested in your uncertainty
about an estimate of likelihood rather than the estimate
itself,

(If the paried comparison bounding procedure is used in conjunction with
the paired comparison HEP estimation procedure, each pair of events
needs to be presented only once, with two responses required.)

These paired comparisons of uncertainty are then scaled using the
techniques described in Tables A-1 through A-3 and the accompanying
text. This produces scale values representing the degree of uncertainty
regarding the HEP of each event,

By properly phrasing a subsequent question (see below), we can assume
that bounds are 95 percent bounds measured by +x where x is an order of
magnitude measure. That is,the interval (log HEP-x, log HEP+x) contains
95 percent of the possikle HEP estimates., We also assume that

x=aT + b

where x is the uncertainty bound, T is the scale value derived from
paired comparison scaling, and a and b are constants to be estimated as
follows.

To estimate a and b, two independent estimates of bounds are needed.
Assume, for example, for the six events in the example (Tables A-1l to
A-3) we have obtained paired comparison scale bounding values, T, of:

Event: 1 2 3 4 S 6
T: -.74 -.12 02 1.22 =46 «32

Further assume that the experts have provided an independent estimate of
x = 1.4 for event 1 and x = .5 for event 4, by answering questions such
as:

For this event, a range of how many orders cf magnitude
would be required for you to feel 95 percent certain that
the range contained the true HEP?

An alternative question that might be easier for the experts to answer
would provide direct estimates of the upper and lower bounds:

For this event, what are the upper and lower bounds on the
HEP that make you 95 percent certain the true HEP falls between
these bounds.

This question will provide the necessary estimate of x.
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Then, the values of a and b are found by solving the simultaneocus egua-
tions:

1.4 a(-.74) + b

-5

a(l.22) + b.
First, subtract the second equation frem the first:

1.4 = a(=.74) + b
- +5 = a(l.22) + b
+9 = a({=1.96)
«9/=1.96 = a

=-,459 = a

Substituting this value of a into the first equations, we find
l.d = {«.459)(~.74) + b
l.4 = .34+ Db
b=1.4 - .34 = 1.06.
Using
x = -,459T + 1.06,

the following bounds {in orders of magnitude) are found:

Event: 1l 2 ' 3 4 5 6
T: -;74 -012 002 1022 - 46 l32
Bounds: +l.4 F1.115 #1.051 *.5 :1.27 ‘1.913

Since these hounds are on log HEPs, bounds on actual probabilities are
found by taking first log HEP +x and then taking antilogarithims as shown
in Table a-9.

A.3 Ranking and Rating Procedures

The steps required in this procedure are the following:
1. Obtain ranking or rating judgments.

2. Create table showing the number of experts who placed each
event in the various rating categories or rankings.

3. Derive cumulative frequency matrix showing the number of times
each event was assigned a certain ranking/rating or lower.
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TABLE A-9

Judgmental Uncertainty Bounds from
Paired Comparison Judgments

Bounds on Bounds on
Event log HEP HEP log HEP HEP

1 -3.3979 .0004 -4.7979,‘-1.9979 .000016, .01
2 -2.7399 .0018 ~-3.8549, ~1.6249 .00014, .024
3 ~-2,.8997 .0013 -3,9507, -1.8487 .00011, .014
4 -3,2193 . 0006 -3,7193, -2.7193 .00019, .0019
5 -2.4391 . 004 ~-3,7091, -1.1691 .0002, .068
6 ~-2.0000 .01 -2,9130, -1.0870 .0012, .082
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4. Transform matrix from 3 into a matrix of proportions.
5, Create table of normal deviates for proportions in table in 4,
6. Calculate row, colum, and grand means for table in 5.

7. Scale values are the grand mean minus the row mean for each
event.

8. Obtain independent estimate of two HEPs.
9. Transform scale values into HEPs.

10. Determine interjudge consistency.

1l. Estimate uncertainty bounds.

A.3.1 Judgments required. Ranking and rating procedures are discussed
together because the analytic technigues are the same regardless of the
judgmental source of the raw data. Ranking procedures require that the
expert rank order events by their relative likelihood. The rating pro-
cedure requires that the judge rate each event with respect to likeli-
hood. The rating may be expressed on a numerical scale {e.g., 1 to 10),
an adjectival scale, or a graphic scale. The graphic scale is arbitrar-
ily divided into as many categories as desired by the analyst.

R.3.2 Performing the calculations. Both the ranking and rating proce-
dures result in the same raw data form, i.e,, a matrix of the frequen-
¢ieg with which each event is ranked or rated into each category. An
example of such a matrix of HEPs is shown in Table A-10 with ratings
from 10 experts. Adjectives describing the likelihood of an event are
used as cacegory labels, arranged in order of increasing likelihood.
Note that these labels are not symmetric (e.g., from very unlikely to
very likely) because the HEPs are all likely to be small. Alterna-
tively, these categories could be ranks. The next step is to transform
this matrix into one in which the cell entries are the frequency of
times that the event was in that category or any of the categories below
it (Table A-l1l}. At this point, the last category, (e.g., category five
in this example) is simply the total number of judgments made and is not
used further. The entries in Table A-11 are converted into proportions
and the result is Table A-12.

The next step is to assume that the proportions in Table A-12 represent
proportions of the area under the normal distribution. The cell entries
are then converted into unit normal deviates by using a table of values
of the normal distribution found in most standard statistics texts.

Each proportion from the matrix is found as F{z) {or F(x)) in the normal
distribution table. The corresponding normal deviate, usually labeled
as z (or x) is found and entered into the new matrix (Table A-13}.
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TABLE A-10
Category Frequency Judgments*

Categories

Events: .Almost  Extremely Very Somewhat
Never Unlikely Unlikely Unlikely Likely

1. Select wrong
control in a
group of iden-
tical controls
identified by
labels only

2. Select wrong
control from
a functicnally 4 2 2 b} 1
grouped set of
controls

3. Select wrong
control from a
panel with 5 3 2 0 0
clearly drawn
mimic lines

4, Turn control in
wrong direction
under normal
operating condi- 0 1 1l 2 &
tions (violation
of a strong popu-
lational bias)

5. Improperly mate
a connector

*Each cell entry represents the number of experts who placed that event
into that category.
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Event

TABLE A-11

Cumulative Frequency Matrix*

Category
1 2 3 4 5
1 1 3 7 9 10
2 4 6 8 9 10
3 5 8 10 10 10
4 0 1 2 4 10
5 1 2 4 8 10

*Each cell entry represents the number of experts who placed
that event into that category or any of the categories be-
low it.
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Event

TABLE A~12

Cumulative Proportion Matrix*

Category
1 2 3 4
.1 .3 .7 .9
.4 .6 .8 .9
.5 .8 1.0 1.0
0 .1 .2 .4
.1 .2 .4 .B

*Each cell entry represents the proportion of experts
who placed that event into that category or any of the
categories below it.
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1
2
Fu]
g 3
S
(5]
4
5
Column
Means

TABLE A-13

a
Matrix of Unit Normal Deviates

Row
Category Means
1 2 3 4
-1.28 -.52 .52 1.28 0
- .25 .25 .84 1.28 .53
0 .84 1.69b 1.69b 1.06
-1.69°| -1.28 - .84 - .25 -1.02
-1.28 - .84 - .25 .84 - .38
- .90 - .31 .39 .97 Grand
Mean
= 04

®Each cell entry represents the normal deviate value (z)
corresponding to the cumulative proportion for that cell
shown in Table A-12,

bThese z values for cumulative proportions of 1 or O were

taken from Table A-4.
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As in the case of paired comparisons, there is a problem in how to
handle the situation where the cell entry is unity. (This happens vhen
all of the judgments in a cell fall at or below the upper boundary for
that cell.) This information should not be discarded, but instead some
value of z should be substituted that reflects the extremity of this
situation. Appendix B (Section B.2) shows methods for choosing a z
value for proportions of unity, one of which results in Table A-4.

Using the value of +1.69 from Table A-4 for z with 10 experts and the
other normal deviate values from a table of the normal distribution, the
matrix in Table A-13 is obtained.

The next step is to calculate row and column means and the grand mean as
shown in Table A-13. Values for the category boundaries arxe the column
means. To get scale values, the row means for each event are subtracted
from the grand mean. This procedure results in the following subjective
scale for the 5 events:

Event # 3 2 1S 4
Subjective Scale Value ~-1.02 -.49 «04 .42 1.06

It still remains to convert these scale values into probabilities. The
reader is referred to Section A.2.2 for rescaling procedures that are
appropriate for both paired comparisons and data resulting from ranking
or rating.

A.3.3 Interjudge consistency. For the case vhere rank order data are
provided by the judge, the reader is referred to Section A.2.4 for
methods of analyzing the level of agreement between judges. Rating data
can be handled in much the same way as rank order data except that some
provision must be made for ties in the ratings. The only difference
from Section A.2.4 in terms of the method of calculating the coefficient
of concordance is that the tied events are each given the average of the
ranks they would have been assigned had no ties occurred.

The effect of tied ranks is to depress the value of W. If the propor-
tion of ties is small, the effect is negligible. If the proportion of
ties is large, a correction should be introduced that will slightly
increase the value of W.

For example, suppose the data in Table A-10 had been generated by the
ratings shown in Table A-14. From these ratings, the rank order of
events for each expert can be derived as shown in Table A-15. Events
with the same rating are considered to be tied in rank. Table A-15 also
shows the sum of the ranks (Rj) for each event.

The coefficient of concordance, W, is then calculated as

a2(n3-n) - ml T
n
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TABLE A-14
Ratings by Ten Experts of Five Events*

Events

Expert 1l ‘ 2 3 4 5
1l 1 2 1 3 3
2 2 1 1 5 2
3 2 1 2 2 4
4 3 2 1 5 3
5 3 1 2 4 1
6 3 3 3 5 4
7 3 4 1 4 4
8 4 1 2 5 5
o 4 5 1 5 4
10 5 3 3 5 5

*Each cell entry corresponds to the rating an expert gave to
an event. As shown in Table A-10, a rating of 1 corresponds
to "almost never" and a rating of 5 corresponds to "somewhat
likely."
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TABLE A-15

Rank Ordering of Events®

Events
Expert b
1 2 3 4 5 T

1l 1.5 3 1.5 4.5 4.5 1.0
2 3.5 1.5 1.5 5 3.5 1.0
3 3 1 3 3 5 2.0
4 3.5 2 1 5 3.5 .5
5 4 1.5 3 5 1.5 5
6 2 2 2 5 4 2.0
7 2 4 1l 4 4 2.0
8 3 1 2 4.5 4.5 5
9 2.5 4.5 1 " 4.5 2.5 1.0

10 4 1.5 1.5 4 4 2.5
Rj 29.0 22.0 ‘ 17.5 44.5 37.0 TT=13.0
(Sum of ranks for event j)

IR, = 150

3 J

R, = 30
J

a'Cell entries represent the rank ordering of the events for each
expert.

b (t3-t) . .
T=3 3z where t=the number of events tied at a given rank

and the summation (I) is across all groups of ties within the
rank ordering for that expert.
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where ss 1s the sum of squares (Z.:(Rj-'R')z), m is the number of experts, n

is the number of events, and m Z.J T is the correction for ties that is
calculated as follows. m

For the rank order of each expert,

p = LE-E)
12

where t is the number of events tied at a given rank and the summation,
Z, 1s across all groups of ties within the rank order of that expert.
For example, for expert number 1, there are two events tied at 1.5 and
two events tied at 4.5. Thus, for expert 1,

o (2022) & (22-2) o (8=2) + (8-2) . ;.
12 12

The foxrmula, IT, is then the sum of the T values across all experts'
rank orderse ™ '

In the example in Table A-15, the corrected coefficient of concordance
is then

2
@ = 120(29-30° + (22-30)° + (17.5-30)° + (44.5-30)° + (37-30)°)
100(125-5) = 10(13)

= w = ,486.
12000-130

From tables for the significance of the coefficient of concordance in
Appendix C, this value is significant beyond the .0l level assuring that
the experts are essentially in agreement and that their "pooled" esti-
mate is reasonable.

A.3.4 Estimating uncertainty bounds. Statistical estimates of uncer-
tainty bounds cannot be made directly from tvhe ranking/rating data un-
less the number of experts used is quite large, e.g., wore than 25.
Since it is unlikely that such a large number of experts would be prac-
tical, uncertainty bounds for a smaller number of experts can be com=-
puted by transforming the ranking/rating data into paired comparison
data.

For example, the rating data from Table A-14 can be transformed into
paired comparison data in the following way. For the ten experts, count
the number of experts who rated event 2 as more }ikely than event 1.
Ties are included as .5 in the count. Experts 1, 7, and 9 rated event 2
as more likely, and expert 6 rated them equally giving a count of 3.5.
This number is entered into the cell for the event 2 column and event 1
row as in Table A-16. Also note that the entry for column 1 and row 2
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TABLE A-16

Paired Comparison Data Derived from Ranking/Rating
Data to Estimate Uncertainty Bounds*

Event 1l 2 3 | 4 5
1 - 3.5 1.5 9.0 7.0
2 6.5 - 4.5 9.0 8.0
3 8.5 5.5 - 9.5 9.0
4 l.0 1.0 0.5 - 3.0
5 3.0 2.0 1.0 7.0 -

*BEach cell entry represents the number of experts who said an
event listed across the top was more likely than an event listed
down the side. Since the data were derived from rating data, an
expert who gave 2 events the same rating is counted as .5 for
that cell.
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is 10 - 3.5 = 6.5 where 10 is the number of experts. Using this method,
Table A~16 can be completely filled. This table is then equivalent to
Table A-1 and the same procedure for computing uncertainty bounds can be
used that is described in Section A.2.5.

Any of the four judgmental procedures for estimating uncertainty bounds
can also be used. The ranking/rating procedure is described here: The
others are described in Sections A.2.5, A.4.4, and A.5.4.

Ranking or rating judgments can be elicited by asking questions such as
the following:

Rank order these events according to how certain you are
about the likelihood of the event. Use 1 to represent the
event for which you are most certain about the estimate and
n (number of events) to represent the event for which you
are most uncertain. WNote that we are interested in your
uncertainty about an estimate of likelihood rather than

the estimate itself.

or

Rate the events on the given scale according to how certain
you are about the likelihood of the event. Note that we are
interested in your uncertainty about an estimate of likelihood
ratler than the estimate itself.

(If the ranking/rating bounding procedure is used in conjunction with
the ranking/rating HEP estimation procedure, the events need to be pre-
sented to the experts only once with two sets of rankings or ratings to
be usado)

These ranking/rating data are then used to derive scale values represent-
ing the degree of uncertainty regarding the HEP of each event. The
methods used to derive these scale values are the same as those used
with Table A-10 through A-13 and described in the accompanying text.
Once the scale values are obtained, they can be transformed into bounds
on HEPs using the procedures described in Section A.2.5 for bounding
scale values derived from paired comparisons.

A.4 Direct Numerical Estimation

The steps required in this procedure are the following:
1. Obtain odds judgments.
2. Aggregate individual judgments to provide a single odds judgment.

3. Transform odds eétimates into HEPs.
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4. Determine interjudge consistency.
5. Estimate -uncertainty bounds.

A.4.1 Judgments required. Previous research (e.g., Stael von Holstein,
1972) suggests little improvement is gained in direct numerical estima-
tion by using more than about six experts. Direct estimation procedures
require that the judge provide numerical estimates of the likelihood of
the error. The best procedure is to provide the expert with a logarith~
mically spaced scale of odds and ask him or her to mark the scale at the
point that represents the odds (p/l-p)) that the event occurs. It is
important that this odds scale be of sufficient detail that the sensitiv-
ity of the expert to differences in event odds be displayed. Figure A-l
shows several examples of response sheets with odds scales that might be
used to agsess HEPs.

Another consideration in scale design is that the scale values reflect
the estimated range of the odds of the events about which the expert
will make judgments. This consideration is particularly important for
HEPs that are in the extreme ranges of the odds scale. Take, for exam-
ple, the events listed below:

Event HEP* 0dds
1. Failure to respond to +0001 1:9999

annunciated legend
light (one of one)

2. Incorrect reading of «001 1:999
the message

3. Failure to resume .001 1:999
attention to a legend '
light within 1 minute
after an interruption

4. Fallure to respond to «95 19:1
a legend light if more
than 1 minute elapses
after an interruption

In the case where the expert is to make a judgment about events 1, 2, or
3, the scale in Figure A-1 (a) would be appropriate since it provides
sufficient divisions in the scale for the approximate magnitude of the
odds, and the appropriate end of the scale is represented (all odds are

*From Swain and Guttmann (1980), p. 20-9.
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Figure A=) (a)

Odds Response Scale

Mark the scale at the point
that represents the odds
against an average operator
failing to respond to an
annunciated legend light
{one of one)

Mark the scale at the point
that represents your judgment
of the odds against an operator
failing to respond to an annun-
ciated legend light (one of one)

A=-32

1:10
1:50

1:100
1:500

1:1;000
1:5,000

1:10,000
1:50,000

1:100,000
1:500,000

1:1,000,000

(p =.5)
{p=.17)

(p =.09)
{p=.02),

(p =.01)
{p = .002)

{p =.001)
(p = .0002)

{p 2.0001}
{p = .00002)

(p =.00001)
(p =.000002)

(p ¥ .000001)



less than 1:1). For event 4 alone, where the odds are greater than 1l:l,
the scale should look like that shown in Figure A-1l {b), with a more
restricted range and the scale representing odds greater than 1:l.
Finally, for the case where several events covering the full range of
odds are being considered, or where the approximate range of the event
probability is unknown, a scale like Figure A-l (c¢) should be used,
where the scale covers odds both greater than and less than l:l.

A.4.2 Performing the calculations. The only calculations necessary to
produce HEPs by this procedure are the aggregation of individual expert
judgments into single assessments for each event. The HEP for event j,
HEP_.’, is derived from the formula

m 1
Il odds, . m
i=1

1 +( I Oddsi.)m
i=1 J

where 0dds ; 4 is the o0dds estimated by expert i for event j, and m is the
number of experts.

To demonstrate this calculation, suppose six experts provided the odds
judgments shown on Table A=17(a). These odds judgments must firat be
turned into decimal odds values as in Tabls A-17(b). - Then to parform
the aggregation by hand, the simplest procedure is to take logarithms of
the values in Table A-17(b) creating a table such as A-17(¢). The aver-
age logarithm value for each event is then computed as the sum of the
numbers in the column divided by m (equal six in this example), the num-
ber of experts. Then antilogarithms are taken to provide an aggregated -
odds estimate for each event. These odds are converted into HEPs
through the formula

HEP = -29;‘1.0
1+0dds

A.4.3 Interjudge consistency. The ANalysis Of VAriance (ANOVA) statis-~
tical paradigm provides a method for examining consistency across ex-
perts of judgments of probability. The mathod allows for variation to
be separated into that accounted for by the differences amcng event pro-
babilities, relative to the variation due to differences among Jjudges.
The statistic produced is called the intra-class correlation coeffi-
cient. It represents a measure of the average correlation between each
pair of experts making estimates.

The analysis proceeds in two basic parts. The first is to conduct an
ANOVA for repeated measures (because each expert makes a judgment of
ecach of the events and has thus been measured repeatedly). An ANOVA is

A-33



Figure A-1(b)

0Odds Response Scale for Likelihood Ratio Judgments

Mark the scale at the point
that represents your judgment
of the odds in favor of an
operator failing to respond
to a legend light if more
than 1 minute elapses after
an interruption

QOdds

emapeem  10,000:1

5,000’1
1;00031

|1

—  500:1
+— 100:1

——  50:1
— 10:1
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Figure a-1(c¢)

For each human error mark the
scale at a point that represents
your judoment of the odds in favor
of that error occurring. Remember
that, for example, odds of 1:100
mean that the error is one hundred
times less likely to occur than
not to occur

A-35
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—— 1,000,000:1
—- 100,000:1
— 10,000:1
— 1,000:1
— 100:1

~— 10:1

—— 121

— 1:10

~— 1:100

— 1:1,000
— 1:10,000

—— 1:100,000

—1:1,000,000

(p
®
(p
(P
(p
(p
(p
(p
(p
(p
(p
(p

(p

=,999999)

=,99999)
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TABLE A~-17

Aggregation of Direct Numerical Estimation of HEPs

a. 0dds
Event
Expert 1 2 3 4 5
1 1:400 1:150 1:10 1:100 1:14
2 1:1000 '1:100 1:9 1:75 1:9
3 1:2500 1:200 1:75 1:30 1:9
4 1:1250 1:1500 ‘1:14 1:9 1:100
5 1:300 1:125 1:100 1:100 1:75
6 1:200 1:10 1:110 1:75 1:9
b. Decimal Values (x 10-3)
Event
Expert -1 2 3 4 5
1 2.5 6.67 100.0 10.0 71.4
2 1.0 10.0 111.1 13.3 111.1
3 .4 5.0 13.3 33.3 111.1
4 .8 .667 71.4 111.1 10.0
5 3.33 8.0 10.0 10.0 13.3
6 5.0 100.0 9.09 13.3 111.1
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TABLE A-17 (Continued)

Aggregation of Direct Numerical Estimation of HEPs

c. log odds
Event
Expert 1 2 3 4 5
1 -2.6021 -2.1759 -1.0000 -2.0000 -1.1463
2 -3.0000 -2.0000 -0.9543 -1.8761 -0.9543
3 -3.3979 -2.3010 -1.8761 -1.4776 -0.9543
4 -3.0969 -3.1759 -1.1463 = -0.9543 -2.0000
5 -2.4776 -2.0969 -2.0000 -2.0000 -1.8761
6 -2.3010 -1.0000 -2.0414 -1.8761 -0.9543
sum/6 -2.8126 -2.1250 -1.5030 -1.6974 -1.3142
a?;g;:? .0015 .0075 .0314 .0201 .0485
HEP .0015 .0074 0304 .0197 .0463
(=0dds/ (1+0dds) ) .
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designed to divide the variation in the data (in this case the individ-
ual judgments) into portions due to the factor of interest (differences
in probability among events) and that which is due to error (differences
among judges in their estimates of the event probabilities).

The second part of the analysis is to use the estimates of the variance
of events and judges to form the intraclass correlation coefficient.

The coefficient represents a proportion, the proportion of the total
variation in the data not produced by differences across experts in judg-
ments. Thus, when this mumber is 1.0, it means that all of the varia-
tion is among events, and that the experts are perfectly consistent with
each other. A value of 0 implies that none of the variation is produced
by differences among events, i.e., all is because of interjudge incon-
sistencies. ‘

An example should make these concepts more clear. Assume that each of 7
judges have made judgments about the probability of each of 5 events.
Data that might result from these judgments are shown in Table A-18.

The first step is to do a logarithmic transformation of each of these
values. This is necessary to fulfill the assumption of the ANOVA model
that the values be approximately normally distributed. The result is
the table shown in A-19. These numbers will now constitute the input
values for the ANOVA. The calculations required for an ANOVA are some-
what lengthy, and since there are a number of canned statistical com-
puter packages that perform this type of analysis, we recommend that one
of them be used (see, for example, the statistical package for the
social sciences). In the example, however, the complete set of calcula-
tions is shown to demonstrate the procedure.

After the transformation, the next step in the calculations is to com-
pute column (E;) and row sums (Js), and the grand sum (GT). These are
shown in Table A-19. Next, we calculate the following intermediate quan-
tities:

2
= &) (-64.3078)2 - 4135.49

(T == =5 322 = 18,16
n
Z(e;)> , , , , ,
(5] = 4= _ (-14.4894) “+ (-20.5879) °+ (~14.6655) >+ (-10.1426) 2+ (~4. 4224)
m 7
-1 I R
7
m
}:("j’2 2 2 2 2 2 2 2
(3] = 21 _ (=10.0) %+ (-8.2006) + (-8.0635) °+ (~10. 4437) %+ (-8. 9058) %+ (-9. 5406) %+ (9. 1536)
n 5
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6£-Y

Expert

Failure to
carry out a

TABLE A-~18

Probability Estimates for S5 Events

2. Failure to ini-
tiate a checking

Event

3. Failure to use
a value res-

4. Failure to use
written cali-

5. Failure to use
written mainte-

plant policy function toration list bration proce~ nance procedures
when there is dures - when available
.9 check on a
person

.020 .0001 .001 .1 .5

.005 .003 .02 .06 .35

.009 .008 .1 .02 .06

.015 .0004 .003 .01 .2

.004 .0023 .006 .15 .15

.01 .0009 .01 .008 .4

.006 .0013 .006 .05 .3




Judge

TABLE a-19

Logarithmic Transformations of HEPs for ANOVA

Event
1 2 3 4 5

1 -1.6990 | -4.0000 | -3.0000 | -1.0000 | - .3010
2 -2.3010 | -2.5229 | -1.6990 | -1.2218 | - .4559
3 -2.0458 | -2.0969 | -1.0000 | -1.6990 | -1.2218
4 ~1.8239 | -3.3979 | -2.5229 | -2.0000 | - .6990
5 -2.3979 | -2.6383 | -2.2218 | - .8239 | - .8239
6 -2.0000 | -3.0458 | -2.0000 | -2.0969 | - .3979
7 -2.2218 | -2.8861 | -2.2218 | -1.3010 | - .5229

~20.5879 -14.6655 -10.1426  -4.4224

Ei = ~14.4894
(Column Sum)
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(Row Sum)

-10.00

- 8.2006

- 8.0635

-10.4437

- 9.5406

- 9.1536

GT = -64.3078
(Grand Sum)



_ 595.47

T = 119.1
and
nom 2 2 2 2
(ET] = I I (BE.J.)° = (-1.6990)“+(-2.3010)“+(-2.0458)
i=1 §=1 +3

+ (=1.8239)2+...4(=.3979) %+ (-.5229) 2
= 145.9

In these equations, GT is the grand sum, E; is the column sum for event
i, Jj is the row sum for judge j, and m and n are the number of judges
and events respe . :ively.

The variance estimates can now be calculated for each of the components
as shown in Table A-20. By dividing each of the sums of squares of dif-
ferences by the appropriate degrees of freedom (the number of levels of
that factor minus 1), a quantity known as the mean squared differences
is obtained. The ratios of the mean squared differences for events and
judges compared to the events by judges interaction produces a ratio of
variance estimates that is distributed as an F statistic. A table of
the F distribution (found in any standard statistics textbook) will then
give the statistical significance of each factor. In our example the
effect for events was significant beyond the .00l level. The effect for
judges was not significant, however, implying a high degree of consist~
ency among experts. '

The last step is to calculate the intraclass correlation coefficient
from the quantities determined for the ANOVA. The formula is:

r = Fel
F + (n=-1)
= 200 = 1

20.0 + (5-1)
= 079'

where F is the F ratio for the events factor. As discussed earlier,
this quantity can be interpreted as an average correlation. Thus, a
value of .79 indicates a high degree of agreement among judges.

A.4.4 Estimating uncertainty bounds. Statistical estimation of uncer-
tainty bounds for HEPs obtained from direct numerical estimation should
be calculated using logarithms of the HEPs rather than the HEPs them-
selves. Thus, the first step is to take the logarithms of each expert's
HEP estimates. The odds estimates in Table A-17(a) must be converted
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h-v

Sources of Variation

Events

Judges

Events X Judges

Calculations

[E]-[T]

(31-[T]

[EJ]-[3]~-[E]+[T]

TABLE A-20

ANOVA Calculations

Sums of Squared Degrees of

Mean
Differences Freedom Square
138.8-118.2=20.6 5-1=4 3%9=5.2
119.1-118.2=.9 7-1=6 -‘6—?= .15
6.2
145.9-119.1-138.84118.2=6.2  (5-1)(7-1)=24  S:%-.26

F Ratio

20.0%*

.58 n.s.

TOTAL

**p<.001

(ET}-[T]



into probabilities using the formula P = 0dd/(l+odds). This results in
data such as in Table A-21 which shows six experts' estimates of log
HEPs for five events.

The variance over experts for these log HEP estimates, V(log HEPi), is
calculated as

B ’
n3=1 og HEPij

m{m=-1)

2 _ (.2 100 mEP, )
L S

V(log HEPi) =

where HEP;j4 is the HEP estimated for event i by expert j and m is the
number of experts. From the variance, the standard error of the esti-
mate (s.e.) can be calculated by dividing by m (m=6 in this case) and
taking the square root:

S.e. =« / V(log HEP;),
'Ill

The approximat« 95 percent uncertainty bounds for the logarithms of the
HEP estimates are +2s.e. The HEPs from Table A-17(c), log HEPs, and
uncertainty bounds for the example are shown in Table A-22. The bounds
on HEPs are found by taking antilogarithms of the bounds on log HEPs.

In addition to this statistical procedure, uncertainty bounds can also
be estimated judgmentally. Here, the use of direct numerical judgments
of uncertainty bounds is described. Other judgmental methods are dis-
cussed in Sections A.2.5, A.3.4, and A.5.4.

Direct numerical estimates of uncertainty bounds can be obtained using
respongse scales such as those shown in Figure A-l. Each expert is asked
to mark on the scale the values such that he/she is 95 percent certain
the HEP is between, i.e., mark the lower and upper bounds. These
uncertainty bound estimates of the experts are aggregated in the same
manner as are HEP estimates (see Section 4.2). That is the lower bounds
estimates of individual experts are aggregated to produce a lower bound,
and the upper bound estimates of the individual experts are aggregated
to produce the upper bound.

A.5 Indirect Numerical Estimation

The steps required in this procedure are the following:
1. Obtain indirect numerical relative likelihood judgments.
2. Obtain independent estimate of one HEP.

3. Calculate odds from 1 and 2.
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TABLE A-21

Statistical Estimation of Uncertainty Bounds

for Direct Numerical Estimation¥*

Event
Expert | 1 2 3 4 5
1 =-2.6031 -2.1790 -1.0414 ~2,0043 -1.1761
2 -3,0004 -2.0043 =1,0000 ~-1.8808 -~1.0000
3 =3,3981 -2,3032 -1.8808 -1.4914 -1.0000
4 ~3.0973 -3.1764 -1.1761» -1.0000 -2.0043
5 ~-2.4786 -2.1004 -2.0043 -2.0043 -1,.8808
6 -2.3032 -1.0414 ~2.0453 -1.8808 -1.0000
V(log HEP,)
(Variance  log HEPi) .1748 .4658 .2517 .1567 .2215
m , W g
} injjz_allog HEP, | -(jgllog HEPij)
m(m-1)
where m=the number of experts
s.e. .1707 .2786 .2048 1616 01921
(standard error)
= ,V log HEPi
m
2s.e, .3414 .5573 .4096 .3232 . 3843

*Bach cell entry represents the

that expert.
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TABLE A-22

Statistical Uncertainty Bounds on Direct
Numerical Estimates of HEPs

Bounds on Bounds on
Event HEP log HEP log HEP HEP
1 .0015 -2.8239 -3.1653, -2.4825 .00068, .0033
2 .0074 -2.1308 -2.6881, -1.5735 .0021, .0267
3 . 0304 -1.5171 -1.9267, -1.1075 .0118, .0781
4 .0197 -1.7055 -2.0287, -1.3823 .0094, .0415
5 . 0463 -1.3344 -1.7187, - .9501 .0191, .l122
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4. Aggregate odds for individual experts into a single odds estimate.
5. Transform odds estimates into HEPs.

6. Determine interjudge consistency.

7. Estimate uncertainty bounds.

A.5.1 Judgments required. Indirect numerical estimation requires judg-
ments of the relative likelihood of pairs of human errors. For example,
the experts might be asked which is more likely, the failure to detect
one deviant unannunciated display at a single scan for a meter with
limit marks or without limit marks; and how many times more likely. As
with direct numerical estimation, little is gained by using more than
six experts (Stael von Holstein).

T5 obtain a complete set of probabilities for n events requires a mini-
mum of n-1 such judgments and an independent estimate of the HEP of one
event. Additional judgments, however, may be obtained as consistency
checks. For example, event a may be judged three times as likely as
event b; and b is considered twice a likely as event c. As a consist-
ency check, a could be compared with c. A consistent judgment would e
that a is six times as likely as ¢. If an inconsistent judgment is
obtained from the expert, the inconsistency should be pointed out and
the expert should reconcile his/her judgments.

The determination of which events are paired for judgments should be
accomplished by first making a rough rank ordering of the events accord-
ing to likelihood. Adjacent events should be paired, with any consis-
tency checks coming from pairings with other events close in rank. This
procedure will minimize biases in judgment that tend to occur as such
judgments become more extreme.

In addition to the relative likelihood judgments, an independent esti-
mate of one HEP is necessary to serve as the anchor by which to convert
the relative numerical judgments into probabilities. This may be pro-
vided by including an event with known probability in the set of events
~ considered, or by direct numerical judgment using the questions and
response scales described in Section A.4.

As with direct numerical estimation, the response scale should be care-
fully selected. For these judgments the range of responses should be
more limited than it is for direct numerical judgments because of the
way in which events are paired. Only the increasing portion of the
scale needs to be used since all responses will be 1:1 or greater.
Also, more detalled gradations in the scale will be necessary, because
some of the relative likelihoods may be quite close to l:l. An example
assessment scale is shown in Figure a-2.
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Figure A-2

Assessment Scale for Likelihood Ratio Judgments

Place a mark beside the error
of the following pair of human
errors that is more likely:

1. In one scan, failure to
detect one (of one) deviant,
unannunciated display, where
the display is a meter with
limit mark

or

2. In one scan, failure to
detect one (of one) deviant,
unannunciated display, where
the display is a meter without
limit marks

Now mark the scale at the right at
the point that represents how many.
times more likely the error you have
chosen is than the other
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If more than one expert is providing judgments, the probabilities de-
rived from the individual judgments can be aggregated directly, or the
NGT can be used to allow the experts to interact. For each judgment, it
would proceed as follows.

1. With the experts together as a group, each expert, without
discussion, privately judges the relatives likelihood of a pair
of events.

2. Then, again without discussion, each expert presents his/her
estimate to the group.

3. The judgments are discussed for clarification and evaluation,
‘'with a discussion leader controlling discussion to maintain
relevance and prevent domination.

4. Each expert individually re-evaluates his/her judgment.

Once the final judgments are made, the individual estimates are aggre-
gated using the same procedure described in Section A.4.2. If time
limitations are a pfoblem, use of the NGT will be faster if several judg-
ments at a time are made and discussed.

A.5.2 Performing the calculations. The first calculation required is
to transform the relative likelihood judgments into probabilities for
each expert. Suppose one expert gave the judgments shown in Table A-23.
Also suppose there was an independent estimate of the HEP of event 1=.05
or odds of 1:19 (where odds are p/(l-p)). Then the odds for event 2 are
three times the odds for event 1:

Similarly the odds for event 3 are 1/1.5 or 2/3 times the odds for event
2 or 2/19. Continuing this multiplicative process for all events leads
to the odds shown in Table A~24. The HEPs are calculated as

HEP = Odds
1 + 0dds

After HEPs are derived for each expert, they must be aggregated across
experts to obtain single HEP estimates for each event. The procedure
used for aggregation is described in Section A.4.2.

A.5.3 Interjudge consistency. As in the case of direct numerical esti-
mation, the intraclass correlation coefficient provides a measure of

interjudge consistency for relative mumerical estimation of likelihoods.
Once HEPs have been derived from the relative likelihood judgments, the
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TABLE A-23

Example of Relative Likelihood Judgments

Events*:

Failure to detect one

" (of one) deviant unannun-
ciated display at a single
scan for display type:

1.

Meter with limit marks
Meter without limit marks

Chart recorders with limit
marks

Chart recorders without
limit marks

Annunciator light no
longer annunciating

Legend light other than
annmunciator light

Indicator lamp

Relative
Event Pair Likelihood

l x 2 1.3
2x 3 1.5:1
3 x 4 ‘ 1:3
4x5 1:20
5x 6 1:5
6 x 7 1:2

*Events taken from Swain and Guttmann (1980) p. 20-12.
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TABLE A-24

Odds and HEPs Derived from Relative
Likelihood Judgments

Event odds HEP
1 1/19 .05
2 3/19 .136
3 2/19 .095
4 6/19 .24
5 120/19 .863
‘6 600/19 . 969
7 1200/19 .984
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method described in Section A.4.3 can be used to calculate the intra-
class correlation coefficient.

A.5.4 Estimating uncertainty bounds. Statistical uncertainty bounds on
the HEP estimates can be derived using the same method as used for
direct numerical estimation, which is described in Section A.4.4.

Judgmentally estimated uncertainty bounds can be obtained using any of
the judgmental procedures described in Sections A.2.5, A.3.4, and A.4.4;
or using the following procedure based on relative numerical estimates,

Each expert is given n-l1 pairs of events (or more if consistency checks
are wanted) and asked to judge the relative uncertainty of likelihood
estimates for the two events:

Express in terms of order of magnitude your relative uncertainty
about the likelihood of occurrence of the two events. For example,
if you feel that the 95 percent uncertainty bounds for event a are
plus and minus one order of magnitude and the same bounds for event
b are plus and minus one and a half orders of magnitude, your re-
sponse should be that b is more uncertain than a and the ratio of
uncertainty is 1.5 to 1.

In addition to these judgments, cne independent estimate of uncertainty
bounds is needed, either from an otherwise known estimate or from a
direct numerical estimate using a question such a- given in Section
A.z .5'

Each expert's uncertainty bounds are then determined using the single
independent estimate and multiplying by the appropriate relative uncer-
tainty judgments as shown in Table A-25. For this example, it is
assumed there is an independent estimate of the uncertainty bounds on
event 1 of .8 orders of magnitude. To aggregate these uncertainty
bounds across experts, simply take the average of the estimates for each
event.

These uncertainty bounds are on log HEPs. Bounds on actual probabil-
ities are found by first finding log HEP + the uncertainty bound, and
then taking antilogarithms of these values as was shown in Table A-9.

A.6 Multiattribute Utility Procedure

The steps required in this procedure are the following:
1. Determine relevant PSFs.

‘2. Rank order relative importance of PSFs.

A-51



TABLE A-25

Calculation of Uncertainty Bounds from
Relative Numerical Judgments

Relative Uncertainty

Event Pair Uncertainty Event Bounds
1 .8

1 x2 2:1 2 .4
2x3 1:1.2 3 .48

3 x4 3:1 4 .16
4.x 5 1:2 5 .32
5x 6 1:1.5 6 .48

6 x 7 1:1.5 7 .72
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3. Weight the PSFs.
4. Rate the effect of each PSF on each event.

5. For each expert and each event, calculate a scale value as the
sum of the weighted ratings.

6. Obtain independent estimates of two events.

7. Transform scale values of individual experts into HEPs.

8. Aggregate individual HEP estimates into a single estimate.
9. Determine interjudge consistency.

10. Estimate uncertainty bounds.

A.6.1 Preliminary preparation. The simplest to use multiattribute util-
ity procedure is one based on Edwards (1977) and described completely in
Embrey (198lb). The experts must flrst determine which PSFs are most
relevant for the set of events being considered. It is important that
all consideration of PSFs be specific to the particular set of events.
The initial consideration of PSFs should be a screening to reduce the
number of possible PSFs to a practical number. Our recommendation is
that no more than about 11 be used in subsequent scaling. This number
or fewer can be obtained by having the experts rank oxder a set of PSPs,
for example those in Exhibit 2~ (from Swain and Guttmann, 1980).
 Embrey (1981b) used another set of PSFs that included:

operator awareness of system state,
training,

feedback,

clarity of responsibility,

time,

quality of procedures,

®
[ ]

°

°

.

@

e complexity of decision making,

e opportunities for error correction,
e complexity of task,

® quality of supervision and checking,
e consequences of failure,

e degree of task functional isolation, and
@

adverse environmental conditions.
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Each PSF should be defined as well as possible. The experts should be
instructed:

For the set of events under consideration, rank these
PSFs in the order of the degree to which they affect
the probability of an error on these events.

This ranking can be carried out without any interaction among the
experts, or the NGT can be used. In the latter case, the experts would
be brought together. After explanations of the purpose of the study and
descriptions of the events and PSFs to be considered, they would be
asked individually to rank order the PSFs. Then each expert would pre-
sent his/her rank order to the group. Following this, the experts could
discuss the rank orders and the relative effects of the various PSFs.
Finally, after the discussion, each expert would again rank order the
PSFs. Whether or not the NGT is used, the PSFs to be used in the subse-
quent estimation process can be determined by averaging the ranks
assigned to each PSF and using the PSFs with the highest average ranks.

A.6.2 Judgments required. At present, there is no basis, either empiri-~
cal or formal, for determining the number of experts needed for this
procedure. Research will be required on this subject prior to implement-
ing the multiattribute utility procedure. The first judgments required
from the experts are weights for the extent to which the PSFs affect the
likelihood of error for the events specified. These weights can be eli-
cited using the following instructions.

1. Rank order the PSFs in terms of the extent to which they
‘ determine the likelihood of an error for the events under con=-
sideration. It is important to keep in mind that we are refer-
ring to the effects of the PSFs on this specific set of events
and not the general importance of the PSFs.

2. Now weight the PSFs. Arbitrarily assign a value of 10 to the
PSF having the least effect on error likelihood for this speci-
fic set of events. Compare this PSF with the next higher
ranked PSF. Assign a weight reflecting the ratio of the rela-
tive effect on error likelihood of the next higher ranked PSF
compared with the lower ranked PSF. For example, if the higher
ranked PSF has twice the effect, assign a weight of 20; or if
it has one and a half times the effect, assign a weight of 15.

3. Continue comparing PSPs ranked next to each other and assigning
ratio weights. For example, if the lower ranked PSF has a
weight of 40 and the higher ranked PSF has three times the
effect on likelihood of error, assign it a weight of 120.

4. Check for consistency among weights by comparing PSFs that are
not adjacent in rank. For example, if one PSF has a weight of
150 and another a weight of 30, the former should have five
times the effect.
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Again this procedure can be accomplished by the experts individually,
e.g., through a mail-out questionnaire, or using the NGT if experts are
broaght together. If the NGT is not used, all calculations should be
perforred independently for each expert with aggregation after probabil-
ities have been derived.

If the NGT is used, each expert should weight the set of PSFs as de-
scribed above. Then the steps of the NGT should be followed (see rank-
ing of PSFs abowe), until subsequently each expert has IZroduced a set of
weights, '

The next set of judgments each expert must make '~ an evaluation of the
degree to which each PSF is "good" or "bad" as it ocvcurz for sach event,
These judgments are made on a 0 to 130 scale where 0 means the PSF has
the maximally degrading effect on task performance, and 100 indicates
the PSF's effect is maximally enhancing. These anchors should be de~
fined as precisely as possible.

If the NGT is being used, each evaluation estimate (for one PSF and one
event) should be made using the first four steps in the NGT. It may be
necessary, in order to save time, to have each expert make evaluation
judgments for all events on a single PSF, and then follow the NGT for
these sets of judgments. The result of this process for each expert,
whether the NGT is used or not, is a set of evaluation judgments (on a 0
to 100 scale) describing the extent to which each PSF degrades or en-
hances each event, and a set of weights describing the relative impor-
tance of each PSF in determining the likelihood of error.

A.6.3 Performing the calculations. The exact nature of the calcula-
tions depends to some extent on whether or not the NGT is used. Calcula-
tions for when it is not used are described first.

Each expert will have made a set of judgments such as those described in
Table A-26. Assume the events are the same five events described in
Section A.3. The first calculation is to normalize the weights by divid-
ing each weight (W.) by the sum of weights. Then, for each event i, an
index of likelihood, Sj, is calculated by multiplying the normalized
weight, (ij), by the evaluation, Xig0 of event i on PSFj, and summing
across PSFs:

n

5; = % NWinj.

j=1
These values for the example are shown in the last column of Table A-26.
The scale values are transformed into probabilities using the same pro-
cedure used for paired comparisons and ranking/rating procedures. Inde-

pendent estimates are needed for two probabilities. With these esti-
mates, the procedure described in Section A.2.2 is used.
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TABLE A-26

Example of altiattribute Utility .'I!.'lclgmem:ain

PEFs
Avwareness of Praining Feedback Time Quality of Index
Event System State Procedures of
Likeliw
hood (5.)
i
h 40 50 80 a0 70 £1.5
2 20 40 60 %0 50 34.7
3 20 60 80 90 60 41.5
4 40 80 90 60 80 57.0
5 50 4] 70 20 70 53.4
Weight (W) 135° s 30 15 10
x| 3 = 235
Normalized
Weight (Nh'j)- 574 .191 128 .064 .043
u
W
J

Brach cell entry (X

by an expert. 4]

} represents the weight given to PSF, for event i

3

Prach value in this row (wj) reprasents the weight given to Psrj for the

set of events undsr consideration by an expert.

Srhe index of likelihood for event i (5) = T wo

to the pumbar of PSPs.

A-56

n

3=

3

X,
1

3

. where n refers



For each event, each expert's HEP estimates must be aggregated to obtain
a single HEP. This aggregation is accomplished using the formula

m HEP, l
I —il |
1-HEP,
HEP, = M i1 ij
m  HEP, 1
1+ 7 m
joy 1-HEP,

where HEP; is the aggregated HEP estimate for event j, HEP; 4 is the pro-
bability estimated for event j by expert i, and m is the number of
experts. ©Suppose, for example, the HFP estimates of six experts for
five events were as shown in Table A-27. To perform the aggregation by
hand, the simplest procedure is to create a new table with entries

HEP; 4/(1-HEP; y) as shown in Table A-28(a}. (Entries in Table A-28 are
HEP; 3/(1-HEP;3) x 1073.) Then, logarithms of these entries are obtained
as shown in Table A-28(b). These logarithms in each column (event) are
summed, the sum is divide2 by m(6), and antilogarithms are taken result~
ing in:

Event: 1l 2 3 4 s
Sum of logs: ~11.284 -16.136 -11.985 -10.629 ~9.59
Sun/6: ~ 1,881 - 2.689 - 1.998 - 1.772 ~1.599

antilogarithms «013 «002 .010 017 «025
HEP=antilog/
(1+antilog): .013 .002 .010 017 +025

HE
m i m
These antilogarithms are equal to H 1-HEP, J) The HEPs are then found
by dividing each of these values by one plus the wvalue.
If the NGT is used, aggregation across experts occurs at different

points in the process. Individual judgments regarding weights are aggre-
gated first using the formula

o 1
i=1

where W; is the weight for PSF., Wiy is the weight assigned by expert i
to PSFJ, and n is the number % experts.

For example, if six experts have assigned the weights to the five PSFs

as shown in Table A-29, the calculation proceeds as follows. The pro-
duct of weights for each PSF is calculated. The weight for each PSF is

A-57



TABLE A-27

Individual HEP Estimates

BEvent
Expert 1 2 3 4 5
1 .013 .001 .011 .024 .031
2 .021 .002 .003 .017 .019
3 .008 .001 .026 .026 .024
4 .00S .012 .008 .006 .018
5 .031 .001 .020 .015 .027
6 .014 .007 .022 .032

.003
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TABLE A-28

Steps in Aggregation of Individual HEP Estimates

a. HEP../l—HEp..(x10'3)
ij ij

Event
Expert 1 2 3 4 5
1 13.17 1.001 11.12 24.59 31.99
2 21.45 2.004 3.009 17.29 19.37
3 8.065 1.001 26.69 26.69 24.59
4 5.025 12.15 8.065 6.036 18.33
5 31.99 1.001 20.41 15.23 27.75
6 14.20 3.009 7.049 22.49 33.06
b. log[(HEPij/(l-HEPij)]
Event
Expert 1 2 3 4 5
1 -1.880 -3.000 -1.954 -1.609 -1.495
2 -1.669 -2.698 -2.522 -1.762 -1.713
3 -2.093 -3,000 -1.574 -1.574 -1.609
4 -2.299 -1.916 -2.093 -2.219 -1.737
5 -1.495 -3,000 ~1.690 -1.817 -1.557
© ~-1.848 -2.522 -2.152 ~1.648 -1.481
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TABLE A-29

Calculation of Weights for Multiattribute

Utility Procedure Using NGT*

PSFs
Awareness of Quality of
Expert System State Training Feedback Time Procedures
1 135 45 30 15 10
2 120 80 40 10 20
3 40 50 10 15 20
4 g 30 45 60 10
5 40 40 10 15 30
6 90 180 45 10 30
Hwij 2.09952 3.888 2.43 2.025 3.6
xlo11 xlolD x108 x107 xlo7
log HWij 11.32212 10.58973 8.38561 7.30643 7.55630
{log Hwi.) /6 1.8870 1.7650 1.3976 1.2177 1.2594
W, 77.09 58.21 24.98 16.51 is.17
zwjj— 194, 96
normalized W, .395 . 299 .128 .085 .023
(Nw.,) =
J
W,
—
.
J

A~60
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the mth root of this product which can be found by first taking the loga~
rithm of the product; dividing by m (the number of experts), in this
case, six; and taking antilogarithms. For subseguent calculations the
resulting weights are normalized to sum to one. This normalization is
accomplished by dividing each weight, Wj by the sum of all weights.
Then, the evaluation judgments by each expert for each event on each PSF
are aggregated by averaging across experts. For example, if the judg-
ments of the six experts for the five events with respect to training
are as shown in Table A-30, the aggregated evaluations for these events
on thig PSF are those shown at the bottam of Table A-30. Similar compu-
tations would be performed for each PSF.

After all aggregations are performed (weights and evaluations for each
event on each PSF), a table such as that shown previously as Table A-26
and discussed with accompanying text results. Now, however, entries are
already aggregated across experts rather than those of a single expert.
The transformation of these resulting scale values of likelihood is
again performed as discussed in Section A.2.2.

A.6.4 Interjudge consistency. The intraclass correlation coefficient
is used to measure interjudge consistency in the multiattribute utility
procedure as well as in the direct and indirect numerical procedues. To
calculate this coefficient, HEPs of individual experts for each event
must be calculated. If the NGT was not used, these probabilities have
already been derived using the methods described in Section A.6.3. If
the NGT was used, these individual probabilities must be derived using
the same method as used vwhen the NGT is not used. Once the individual
expert HEPs are derived, the method for calculating the intraclass corre-
lation coefficient described in Section A.4.3 can be applied.

A.6.5 Estimating uncertainty bounds. When the NGT? is not used, statis-
tical uncertainty bounds can be calculated just as they are for direct
numerical estimation as described in Section 4.4. Also, any of the four
judgmental methods for estimating uncertainty bounds, described in Sec-
tions A.2.5, A.3.4, A.4.4, and A.5.4, can be used.

If the NGT is used to calculate statistical uncertainty bounds, scale
values for the events are computed individually for each expert, as de-
scribed in Table A-26 and the accompanying text. This will provide the
entries for a table such as Table A-3l, for example, which shows the
scale value of each event for each expert. For each event, i, the var-
iance of scale values is calculated by the formula

m 5 m 2
L o M e U
i m(m-1)
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TABLE A-30

Example of Aggregation of Evaluation
Judgments on PSFs*

PSF: Training

Event
Expert
1 2 3 4 5

1 50 40 60 80 60
2 20 20 40 90 50
3 60 30 50 40
4 30 40 70 60 50
5 40 40 50 60 70
6 30 20 60 70 50
z 230 190 330 430 320

L/6 38.3 31.7 55.0 7.7 53.3

*Each cell entry represents the weight given to a PSP
for an event by an expert.
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TABLE A-31

Calculation of Uncertainty Bounds for Multiattribute
Utility Procedure When NGT is Used*

Event
Expert 1 2 3 4 5
1l 51.5 - 24.7 41.1 57.0 53.4
2 71.6 32.6 41.8 65.7 68.4
3 41.1 36.4 56.4 56.4 53,8
4 43.7 59.6 52.4 46.9 65.8
5 63.5 42.6 59.4 56.8 61.6
6 48.4 34.2 40.7 57.5 68.8
Variance(si)
[V(Si)l= 141.4 104.1 71.4 35.6 48.6
n o2 ©® 2
T -
mi25i5 ~ G553
m(m-1)
where m=number of experts
s.e, = 4,86 4.16 3.45 2.43 2.85

*Each cell entry (si.) represents the index of
likelihood for evefit i for expett j.
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where V(Sy) is the variance of the scale value for event i, Si4 is the
scale value of event { for expert j, and m is the number of experts (six
in this example). From the variance the standard errcr of the estimate
{s.e.)} can be calculatad by dividing by m and taking the sguare root:

/v(s.)
Bela = - S
n

These standard errors for scale values are then transformed into uwncer-
tainty bounds on HEPs as described in Section A.2.5.

In addition to these statistical uncertainty bounds, any of the judgment-
al methods for estimating uncertainty bounds can also be used.
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APPENDIX B

SUGGESTIONS REGARDING THE NUMBER OF EXPERTS AND THE HANDLING
OF COMPLETE AGREEMENT IN THE PAIRED COMPARISON AND
RANKING/RATING PROCEDURES

David A. Seaver and Robert C. Bromage

This appendix is intended to guide users in determining the number of
experts needed for the paired comparison or rank/rating procedures. A
necessary part of this guidance, and results often needed for implement-
ing these procedures, is the development of techniques for handline com-
Plete agreement. Several practical technigues are suggested.

One of the most difficult practical problems in the use of the paired
comparison procedure based on Thurstone's Law of Comparative Judgment
(LCJ) or the ranking/rating procedures based on the Law of Categorical
Judgment appears to be that they require a large number of judgments in
order to produce reliable scale values and thus reliable probability
estimates. The analysis presented in this appendix suggests that this
problem is much less severe than anticipated. 1In fact, quite stable
estimates may be produced with ten or fewer experts. The following
analysis is based on the paired comparison procedure, but because of the
similarity of the model underlying the ranking/rating procedure, similar
results could be obtained for it.

One of the key factors in determining how many judgments are required to
produce a given level of variability in the estimates is how cells cor-
responding to complete agreement in the data matrix, R, which has as
entries Ty the proportions of times event j is judged more likely than
event k, are handled in the analysis, Thurstone and others (e.g.,
Torgerson, 1958) suggest that such cells be treated as blanks and bas-
ically ignored in arriving at scale values, This suggestion appears to
cause a loss of considerable very diagnostic data. Thus, this appendix
also suggests some possible alternative ways of handling these cells and
shows that use of these alternatives can significantly reduce the vari-
ability of scale values,

B.l Number of Experts

We assume that a relevant population of experts exists who might be
asked to judge the relative likelihood of various human errors. In this
population, for any pair of events j and kX, a proportion, rjk' would
indicate event j is more likely than event k{l-riy = rkj)‘ For any par-
ticular assessment of HEPs, a sample of experts from the population is
selected randomly. (This is, of course, not exactly true in practice,
but at this point we have no reason to believe the experts to be actual-
ly used are significantly different from the relevant population.) 1In
applying the method, we wish to obtain estimated scale values, sy, for
each event k that are as close as possible to the true values sy that
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would be obtained if the entire population of experts provided judg-
ments, and we want as little variability in these estimates as possible.
Thus, for a given sample of experts, we want to determine the distribu-~
tion of the variable sy, the estimated {observed) scale value.

Using the LCJ, for n events

where § ¥ k,

with xJ'k = FT (r:;k), where r;yx is the proportion of the sample who
judged event j to be more lxzely than event k, and F is the cumulative
distribution function for the normal distribution:

F(z) = {: (1//27) (exp(~t2/2) )at.

Assuming independence among experts (an assumption implicit in the ICJ),
T3k is distributed bincm:.ally. Thus, we can obtain the distribution of
'1(r3k), and since sk = 1 Z F’l(rjk), the variance of sk, V(sk) -

;‘ZJE V(F'l(rjk)), assuming ndependence of the distributions of rjk‘

(This assumption is discussed below.) 1In practice, since Fl(x j) is 0,
there are actually only n-l variances in the sum. Therefore, since the
multiplier is arbitrary, it makes sense to use

sk 1 Z Sjk' and
3 =]

Visp) = 1, 1 virliziy))

SK) = = V(P *(xrsik

k (n‘n2j=1 j

for estimates of Bk and its variance. 'rable B~l provides expected
values of the mean (y) and varxiance (0 ) of estimated scale values for

various values of ri) (population proportion) and m (number of judges).
From the fact that rjx is distributed binomially, this means that:

m
u 'xio Fl(r jk )P(xlrjk)

m [
02 = xzo [F'l(rjk )lzp(xlrjk)-uz

where
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TABLE B-1

Mean a.ad Variance Values for Different
Population Proportions and Number of Judges

[ ¢

Number of Judges

Population Propotubn

r
" .5 .6 .7 .8 .9
2 u (] .2z 4z .62 82
o? .522 .482° 4222 .322° .1822
, M 0 152z 4,062 .3162+.108 .504z +.124 .7202+.093
o2 .252%+ 139 125722-.01924.129 | .27z-.06z+.105 .2662°-.12524.073 | .222-.1352+.041
o M 0 .1042+.130 .2322+.227 .408z+.259 .6562+.194
o? .1252%+.228 144z3-.027z+.211 | .19422-.1052+.17 .24522-,2112+.121 | .2262-.2552+.097
s U 0 .068z+.182 .1662+.323 .3272+.378 .5902+.292
o? .063z2+.261 .083z2-.02524.239 | .1432%~.107z+.198 .22122-.2472+.167 | .24322-.344z+.152
6 U 0 .043z+.219 .1172+.39 .2622+.478 .5312+.384
0’ .03122+.262 .04922-.01924.244 | .10422-,093z+.207 .19322-.2502+.189 | .24922-.4082+.202
, M 0 .026z+.243 .082z+.450 .210z+.561 .4782+.471
o? .0162%+.248 .02922-.0132+.23¢ | .07622-.0742+.205 16622-.2362+.200 | .24922-.4512+.245
g ¥ 0 .0162+.257 .0582+.486 .1682+.627 .4302+.551
o? .0082%4+.227 .01722-.00824.219 | .05422-.0562+.196 .1402%-.2112+.201 | .2452%-.4742+.273
o ¥ 0 .010z+.264 .04z+.510 .134z+.661 .3872+.624
o> || .004z%.205 .010z2-.0052+.202 | .039z%-.041z+.189 | .1162%-.1842¢.199 | .2372%-.483z+.296
0 U 0 .006z+.269 .02824.528 ' .1072¢+.724 .34924.691
o .0022%+.105 .00622-.0032+.184 | .02722-.032+.177 .09622-.1552+.191 | .22722-.4822¢+.310
rel(r 0 .26 .53 .84 1.28




= (M X - m-X
P(xlrjk) (x)rjk Q rjk)
rak = x,m' x=0'1,2,---m

and F'l(r;k) is the inverse of the cumulative normal distribution.

Example: m = 5, ryx =.6

It is easiest to determine U and O by constructing a table. Note that
F*1(0) = -~z and F~1(1) = z.

x ri Flrg P(x|r=.6)

0 0/5 -z (3) .6® .4° = .0102
1 1/5 -.84 (i) .6 .4" = .0768
2 2/5 -.25 %) .6 .4 = .2304
3 3/5 .25 (3) .6 .4%> = .3456
4 4/5 .84 2) .6" .4 = ,2592
5 5/5 z (3) .65 .4° = .0778

Then:

u = '2(00102)'084(00768)-o25(02304)
+025(03456)+-84(02592)+2(00778)
= ,0676z+.1820.

0° = (~2)2(.0102)+(~-.84)2(.0768)+(~.25)2(.2304)
+(25)2(.3456)+(.84)2(.2592)+(2)2(.0778)
-(.0676z + .1820)2

.083z2 - .025z + .239.

Table B-l provides values for U and 02 for up to 10 experts. With more
experts, these calculations become very tedious and are really practical
only with a computer program. In this table z is the value assigned to
F~1(1), those cells where all experts agree that one event is more
likely than another. Thus, we see the relationship between how these
cells are handled and the variability of estimates of scale values.

This issue is discussed more fully below.

Before continuing further with the analysis, it is useful to address the

issue of independence mentioned above. What this assumption states is
that knowledge of event j's relationship with events other than event k

B-4



provides no extra informatxon about rs k' For example, with four events,
does knowledge that r41 = .8 and r42 = ,1 provide any information about
r43? It seems that it does not, although it does prov1de information
about r21. However, rzl is not part of the sum for s4, so it appears
that the independence assumptions holds.

Approximate confldence intervals for sk can now be derived. Since for
each k, all riy are considered to be independent samples from the same
distribution, the standard error of the estimate sk is equal to

J@(F‘l(rjk)/n. where n is the number of events. Because of the independ-

ence assumption, and the central limit theorem (e.g., Breiman, 1968, p.

186), the distribution of estimates of sy can be assumed to be approxi-

mately normal. Since V(F'l(rjk)) depends on the exact value of rjx and

cannot be known a priori, we examine the maximum value this variance can
take under various conditions. Using the central limlt theorem, we con-
clude that at least 95 percent of the estimates of sk will be in the

interval (sk - 2 Ymax V(F'l(rjk))/n, sy + 2 Vmax V(F'l(rjk))/n)- Obvi -

ously, the confidence will be higher than 95 percent when less than the
maximum variance is achieved.

B.2 Handling Complete Agreement

This analysis has suggested some points about the choice of a value of
z. Specifically, note in Table B-l1 that for most reasonable values of
z, the means of the F~1l(rl :ix) are higher than the actual value of

F~ 1(rjk). Thus, the resuiting estimates of s, are biased, particularly
for small m. One approach to the selection of z might be to minimize
the bias in these estimates. Unfortunately, there is no one value of 2z
that will produce unbiased estimates for all xg k' for any given m. Some
values of z, however, are better in this respect than others. Table B-l
indicates that as m increases the multiplier of z (r®-(1-r)M) decreases.
Thus, for example with m=10 and rs;x=.6, the formula is « 006z + 269,
which is very insensitive to smali changes in z. The closer rjx is to
1.0 the more sensitive the estimate becomes to z, suggesting that we
might want to minimize the hias for large values of r;x which are sensi-
tive to the value of z. We cannot, however, minimize the bias for
F~l(1) = w, so the value of r;x at which we minimize bias should be the
highest possible non-unity value in Table B-l. Por example, with m=10,

we would minimize the bias at rjk=.9. Using this guide, Table B-2
results.,
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TABLE B-2
Values of z Minimizing Bias for Maximum rjy

m 2 3 4 5 & 8 10

max ryp «50 67 +75 -80 «83 875 +90
z - 1.29 1.35 1.4) 1.48 1.64 1.69

This rule for selecting 2 produces, for example with m=8, the maximumn
variances shown in Table B-3.

TABLE B-3
Variances for m=8 Using Values of z to Minimize Bias
xjk 5 1 - o7 .8 +9
o? 25 { .25 | .25 | .23 | .%
v «50 .50 50 .48 .39

A second approach to selecting values for z is to consider the series of
possible values of F“ltrak) for a particular m and to use & polynomlial
expansion to find the next value.in.the series. Because of symmetry, we
are concerned only with values of r jx equal to or above .5. For exam-
ple, for m=8 the series of possible values of rék is .5, .625, .75,
+875, and the series of F'l(rik) is (approximately) 0, .32, .68, l.15.
The next value in this series can be found by first taking successive
differences.

¢ .32 .68 1.15
«32 .36 .47
.04 lll
Io?
Then, the next value is found by summing the last values in each row,

.., z = 1.15 + .47 + .11 + .07 = 1.80. Other values for z derived by
"this method are glven in Table B-4.

TABLE B-4
Values for z Derived Using a Polynomial Series

m 2 3 4 5 6 8 10
- - 1.35 1.43 1.61 1.80 1.96
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Note that these values tend to be somewhat higher than those derived
using the minimizing bias guideline. The effect of this approach is to
increase the maximum variances slightly. For example, with m=8 the vari-
ances are given in Table B-5. ‘

TABLE B~-35
Variances for m=8 Using Values of z from Polynomial Expansions

rjk 05 06 7 8 9
o2 .25 .26 .27 .27 21
o 50 .51 .52 .52 .46

The maximum variance has increased from .25 to .27. Examples of other z
values obtained using this method include z = 2.395 for m=20 and z =
2.85 for m=100.

An additional possibility for finding z is to use the foxmula:

-1 1l
F [2(m+1) ] -

n 2 3 4 5 6 8 10
z -~ 11.15 {1.28 {1.39 {1.47 |{1.59 {1.70

Resulting z values are:

These z values are close to those shown in Table B-2. An advantage of
this method is that the z value is easy to calculate with large m.

B.3 Implications

Table B-6 shows the maximum variances and standard deviations, across
populations proportions, for various numbers of experts using z values
from Table B~4. From the discussion above, the standard error of the
estimate of s, is o/Vn, vhere n is the number of events; and the 95 per-
cent confidence limits on s;( are s," + 20/ n. These values are shown in
Table B-7 for various levels of m and n.
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TABLE B~7

Maximum 95 Percent Confidence Limits on Scale Values for
Various Number of Experts and Events

Number of Number of Experts

Events 4 5 6 8 10
3 +.780  +.721 +.675 +.605 +.584
4 +.675  +.624 +.585 +.524 +.506
5 +.604 +.558 +.523  +.469  +.453
6 +.551  +.510 +.478 #.428  +.413
7 4.510  +.472  +.442  +.396 +.382
8 +4.477  +4.441  +.414  +.370 +.358
9 +.450  +.416  +.390 +.349  +.337
10 | 4.427  +.395  +.370 +.331  +.320
15 +.349 4.322  +.302 #.271  +.261
20 +.302  4.279  +.262 #.234  +.226




TABLE B-6
Maximum Variances and Standard Deviations for Various
Numbers of Experts

Number of Experts 4 5 6 8 10
o2 .456 <390 .342 .275 .256
.675 .624 .585 .524 .506

These confidence limits on sy can be converted to limits on probabil-
ities by recalling that scale values are transformed into probabilities
by log py = asy + s« With this transformation, the standard error for
log py is a times the standard error for sy, so the confidence limits
for log px are simply the confidence limits for sy multiplied by a.
Thus, in order to have some a priori idea about uncertainty limits for
HEP estimates, we need estimates of a. These can be obtained by noting
that a can be estimated as the ratio of the range of log p's to the
range of scale values. We know that the maximum range of scale values
is 2z, which occurs if there are two events about which all experts
agree; one that is more likely than all other events, and one that is
less likely than all other events. Table B-4 indicates that this range
may be between 2.7 and 4.0 for a reasonable number of experts (ten or
less). Since these extremes are unlikely a more reasonable lower bound
may be about 1.5, e.g., scale values ranging from =.75 to +.75.

The range of log p will, of course, depend upon the events being con-
sidered. Here, to provide a wide variety of possibilities, we assume it
can vary between 1.0 and 6.0. Thus, the maximum ratio of ranges, a,
that can be obtained is 6./1.5 = 4.0; and the minimum is 1./4. = .25,
The maximum 95 percent uncertainty bounds, +B for log p for various con-
fidence limits on scales values (from Table B~7), that depend on the
number of experts and events, can then be calculated:

BSQC,

vwhere a is the maximum ratio of ranges defined above and C is the confi-
dence limits on scales values (e.g., from Table B-7). These bounds,

because they are on log p, are expressions of the order of magnitude of
the uncertainty regarding the HEP.

This procedure can be used to help determine the number of experts re-
quired to achieve certain uncertainty bounds. For example, assume ten
events are to be considered. The first step is to determine what uncer-
tainty bounds, B, will be acceptable for the HEPs. Suppose this is
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determined to be +.5 on log HEP -~ plus or minus one half order of magni-
tude will include 95 percent of the estimates. WNext, a rough estimate
of the constant a —- the ratio of the range of log HEPs to the range of
scale values -- must be made. A rough guess might be that the HEPs will
vary from .1 to .0005, which is a range of approximately 2.25 in loga-
rithms. Furthermore, a conservative estimate of the range of scale
values is 1.5 -~ suggesting that the experts will not discriminate among
the events too well. Then, the estimate of a is 2.25/1.5 = 1.5. Now,
using the values of B=.5 and a=1.S5, B=aC is solved for C=.333.

Next Table B-7 is used to find how many experts will be required to
achieve bounds of +.333 for the scale values. In Table B-7, the row for
ten events is found, and going across this row, the first bounds below
4.333 are found. In this case, the minimum number of experts is eight.
Note that the same bounds could also be achieved with 15 events and five
experts. ~ '

In making these decisions regarding the number of experts (and events)
to use to achieve a certain level of uncertainty bounds, it should be
noted that, for the most part, these estimates are consexvative. The
variances used here are maximum variances, which often will not be
achieved in practice, so actual bounds may be somewhat smaller.

We note again that although the analysis described here is specific to
the paired comparison procedure, because of the similarity of the under-
lying judgmental models, the results can also be expected to apply
approximately to the ranking/rating procedure, implying that the same
number of experts can be used.
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APPENDIX C
TEST OF SIGNIFICANCE OF COEFFICIENT OF CONCORDANCE

Values of the coefficient of concordance, W, that are significant at the
«05 level are given in Table C-1l. If the value of W for the given num-
ber of experts and events is above the corresponding value in the table,
there is basic agreement among the experts. The values in Table C-1
were calculated from table R in Siegel (1956).
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Table C-1

values of Coefficient of Concordance for .05 Significance Level

Number of Number of Events
Experts 3 4 5 6 7
3 - - «716 -660 624
4 - -619 «552 512 -484
S - _ +501 .449 o417 +395
6 - -421 378 .351 " «333
8 376 .318 «287 «267 «253
9 «333 - - - -
10 -300 +256 231 e215 | .204
12 «250 - = - -
4 214 - - - -
15 «200 «171 .155 «145 «137
16 »187 - - - -
18 +166 - - - -
20 «149 -129 117 2109 2103
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