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A STATISTICAL THEORY OF FRAGMENTATION PROCESSES

John K. llfenes

Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM 87545 USA

The goal of the work reviewed here is a theory of material behav-

tor accounting for the nverage deformation that results from the open-

ing, shear, growth and coalescence of an ensemble of microcracks. A

conc~mitant is the calculation of permeability from crack structure.

The first part of this paper sllmmarizee previous developments. In

particular, the initial work on this problem made use of a linear

Liouvllle equation to characterize the chanRe in crack distribution re-

sulting from crack RrOwth and coalescence. Straightforward nnalytic

enlutlons to this equation were possible because the mean free path of

cracks was nssumerl con.qtnnt. Though this assumption is useful for the

early qtnges of crack ~rowth, increasing crnck size reduce~ the mean

free path in the later .qtn~esof fra~mentntton. Thiq prohlcm is nd-

drcsseo in :-hesecond p~rt of this paper. The govern[ng (nonlinear)

Llouvllle cquatlon in derlvud therein, ~n~l it is ~hown that it can be

reduced to nn ordinary cllffcrentlal equntl.on of th{rd order involving

only u stnglc par:imeter, p. This equntlon Ima now beun eolved numeri-

ral ly to fleterm[ne the llmltlng vnlu~ of the nwn froc pnth us n func-

tfon of (),nnd the reHulte nre pronrnted in grnphicnl form. [n tllo

third pnrt of this pnpcr pronpectn for further dcvrlopment~ nro briefly

dlqcll~~ed.
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1.

tive

Re.riewof prevl~u~ pork

One of the assumptions that has made it possible to formulate constitu-

relatlons accounting for the behgvior of fragmenting solids is that the

strain rate can be represented aa the sum of contributions from disparate

physical processes. ‘Thisassumption can be considered a generalization ~f

Reuas’ (1930) concept of separating the strsin rate into a sum of elaatic

and plastic parts. Physically, one can enviaag~ the total strain in a plas-

ttcal,lydeforming solid aJ the sum of the elastic etra[n in a solid lattice

which is determined by the prescribed stress ustng lines: elasticity, and of

nonlinear slip along planes of weakness, represented by R phenamonological

plasticity law. The superpoeitinn can be represented in a number of ways,

depencllnR on the variables selected. The most natural for cc)mputationul

purposes ~s to work with the stretching D, which 1s defined by separating

the velocity grndient C = (u~ ,) into the sum of n symmetric part D, the
?.

!3tretchinR, and nn nnttsymmetrlc part W, the vortlcity, so that

G m D+W ,

The ~tretchlng cun be relal.edto the utrain

(1.1)

E“;(r+ -I), (1.2)
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fi-lmv ● (1.4)

Here the circumflex denotes the material rate discussed by Dienes (1979a)

and the left stretch V itidefined by

V2_B. (1.5)

The above definition of strain differs from Lho6e usually adopted, but is

thought to be the most useful. Spn:ifically, the strain rate defined above

is the actual rate of change (accounting for rotati~n) of strain. (T:le

stretching D, often taken as the ~train rates Is not the rate of any

history-independent variable.) The nummation principle can be applied to

cithet ~ or D, with equivalent results according to (1.4), but the

application in terms of D is more convenient for computational purposes.

Contributions to the stretching in a fragmenting material can arise

from elastic changes in the Ltitticestructure, De; frum the motion of IJliP

planes and dislocations that contribute to plastic flow, Dp; from crack

opening Do; from shearinfi of closed cracks De; from unutable growth of

either open or cltisedcracks, PK; from nonlinea: interatomic and thermal ef-

fect~ represented by an isotropic cql.mtlonof Iltate,Dn; and fr~lmviscous

buhavior, D“. ThuB, one may write

~-De+Dp+DO+Ds+# +D’’+l)v ●

Since the rate

each term of (

(1.6)

at which work is done by the stress a is the trace of d,

.6) iS anaociated with the cner~ettce of a purt,icuiirdeEor-

elastjc turm can be wri~ten, in indicial notatif)n, as

(1.7)
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.
where C iP the compliance and a is the etrees rate defined by Dienes

(1979a).

To account for plaetic behavior in

to allow for arbitrary states of mtrese

general deformation it ia neceaaary

and, consequently, to make uae of a

hardening plasticity theory. An approach to this problem has been recently

developed using kinematic hardening theory (Dienes, 1984a,b) but details are

omitted

purpose

As

aaaumed

here eince space does not allow a complete diecuasion, and the main

of this paper is to review the work on statistical crack mechanics.

cracka open, a certain amount of material ia displaced, If it is

that the surrounding material does not change Ita denbity, and that

the rate of material displacement in each direction ie the aum of displace-

ments due to the individual cracks, then it has been ahown by Dienee et al

(1980, 1983a) that the strain rate induced by an ensemble of penny-shaped

cracka I.a

where ~“ is a material constant and

(1.8)

Ilere n“(c,Q,t) denotes the number density of open crack~ with oricntatiou Q

whose rudii exceed c, and ni denotes tho ith component of a crticknormal.

Cruc.ktitire con~idered open when the normal component of trtiction

.

‘“ ‘ijninj (1.10)
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In addition to tl?estretching associated with crack

be a contribution resulting from the interracial sliding

opening, there can

of closed cracks,

for which the normal component of traction is negative (compressive). The

associated stretching is

where ~s is another material constant and

(1.11)

(1.12)

The quantity a, arising from the effect of interracial friction between

closed cracka, 1s given by

-2 -$
a =~l~l(A - u )

where ~ is the coefficient of friction and A represents the magnitude

squared of tractton:

A - ‘ijnjUikT’k ●

(1.1-!)

(1014)

Only the distribution of closed cracks ns(c,$l,t) enters into this calcula-

tion, nnd their effect IS to modify only the shear strain, and pot the dtla-

tatlon, Thus, the operator

bijki = ‘Ilnjnk + bjlnlnk “ ‘ninjnknl ‘
(1.15)

defined in the process of deriving (1.12), has a property such that “fL val}-

Ishes, enforcing the -heat constraint mentioned above. [f a exceeh unity,

the normal stress is great onou~h to lock cracks with the corresponclin~ ori-



entatlon, and their contribution to (1.12) is made to vanish in detailed

calculations. This introduces the hysteretic effect of solid friction.

If the stress is high enough so that cracks are unstable, they grow at

a rate whlc!l can approach half the wave speed, but the rate may be ❑uch

lower at modest stress levels. The strain rate due to crack growth is given

by

(1.16)

where the dots indicate that in (1.9) and (1.12), no and ns are to he re-

placed hy their time derivatives. The criteria for crack instability are

discu~sed in a separate paragraph below.

At hi~h pressure, when the stnte of stress is nearly isotropic, m&teri-

al behavior is dominated by cn i~otropic equation of stntc relating pressure

P, to tiledensity p and internal energy I, of the form (Mcf)ueenct al, 1970)

p - c(p)pI + f(p) . (1.17)

It.i~ convenient and reasonably nccllrate for many mntertals to take CP as n

co~stant, Gopo, nnd to assume n linear relation

u - c + Stl
m c1 P

(1.18)

between shock velocity tIH and pnrticle velocity Uq. Thee tt i~ HtraiRhtfor-
1

wtirrito Hhnw thnt

‘:(3(1- CO(312)
F(p) r —

(1 - So)*
(1.19)



where k denotes the bulk nmdulus, equal to poc~, and 0 denotes the compres-

sion

0=1 - Polp ●
(1.20)

Only the nonlinear part of the equation of state (1.17) is incorporated into

the term denoted by Dn of (1.6).

The overall compliance of the fractured material C can be represented

as the sum

c - Ce + p“zo + pszs .

It is convenient for specific calculaticne to write

(1.21)

(1.22)

where Del and ~ denote (i-index~tretching and stress vectors and D
el

com-
. . .

binea the stretching due to lattice strain, crar.kopening and crack shear-

ing. Then (1.6) can be solved for the stress increment

(1.23)

This formula includes I)r,an effective strain rate that arises from the cal-

culation of stress rate, in addition to terms previously described.

When the far-field ~tresp on a crack exceeds a critical value, a me-

chanical instability 18 induced and cracke begin to grow. This instability

occure when the work done by external tractione as a result of tinincrement

in crack eize excecd~ the increaee in internal energy, Thio internal energy
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is the sum of an elastic strain energy, eurface energy and, for cloeed

cracks, heating due to frictional sliding. For penny-8haped cracks in ten-

6ion the strain energy 16 the 6UUIof the tensile contribution determined by

Sack (1946) and a shear contribution found by Segedin (1950) and iB given by

4C31-Vwo-–—-—
3p2-v

(2A - vG2) (1.24)

as shown by Keer (1966). Here v denotes the Poisson ratio, p the 6hear mod-

ules and c, A, and ~ are defined above. Then it can be shown that opel

cracka are un6table if

A < V:2/2 + ~~(2 - v)/2(1 - V)C , (1.25)

where y denote~ the specific surface energy. If plastic effect6 contribute

significantly, then y can be increased to account for enhanced toughne68 in

an approximate way. For closed cracks, only the strain energy a660Ciated

with 6hear i6 involved. This can be written

W9-81-”(U- 23,mm 7) c (1.26)

where u and T denote Lhe tangential components of traction a6aociatcd with

the ftir-fieldstres6 and Iflterfacial friction. A proof that 6train energy

depends OT,utreefidifference in thi~ manner, with

(1.27)
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IS given by Dienes (19133b). R_Ice(1984) corrects the stability criterion

derived by Dienee and shows that an Inatablllty occurs if

(u-
Tt2-v

~j2c > ——
2 1 - vy~ “

(1.28)

and coalescence of cracks is characterized by two distribu-

te distribution of isolated cracks is characterized by

The growth

tion functione.

l(c,Q,t), the number of isolated, penny-shaped cracks per unit volume with

orientation Q at time t whose radii exceed c. The distribution of connected

cracks is given by a corresponding function m(c, Q,t). The sum of these

distributions is n(c,fl,t). It ia shown by Dienes (1978) that these

distributions are related by a Liouville equation

Ac;+i-”rb (1.29)

At early times , while the ineanfree pa:h is essentiall~ con,stant,

fi.k~ (1.30)

where k is a constant rela~ed to the mean free path. The linear equation

obtained by combinin~ (1.29) and (1.30) is readily solvable when the initial

distribution la exponential in crack size, with the reaul.t

(1.31)

valid for c > ~t; otherwise, 1 vanishes. This solutlon callrepresent unlso-

tropic materials euch as oil shale, since l., ~ ilnd k can depend on orienta-

tion. Results showing new cla~ses of phel,omena appearing in an nnisotropic
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material have been described by Diencs (1979h, 1981). The assumption of

constant k may not be useful when the total crack area increasea signifi-

cantly as the result of growth. This is the subject of the second part of

this paper.

The permeability tensor for fractured materials has been computed by

Dienes (1!I132)as

‘jk
=+ e ~dQA3(Q)rikG(f2) . (1.32)

Here e denotes a crack shape factor near unity, A is the aspect ratio of the

cracks,

‘ik = bik - ‘ink

G(n) m -jdc~cs

(1.33)

(1.34)

is the fifth moment of crack radius. If the cracks are isotropically dis-

tributed

2

‘11
“ ~- f3A3n,o<C5> (1.35)

and the tensor 1s diugonal and isotrop{c. The complete theory ncccwnts for

the probnhil{ty of crack intersectif,ns and their coalescence into ct~nnected

paths. and is discussed in the derivation. It also accounts for the possi-

bility that t+ere are not enou~h cracks to form connected pnths by usin~

percolation theory, not discussed herein.
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2. Variable Mean Free Path

Consider a honogeneoua, isotropic medium filled with circula~ cracks

that are randomly, homogeneously, and iaotropically distributed. If sub-

jected to a streea field of sufficient intensity, cracks in a real material

are unstable, and their ~rowth can cau”seimportant changes in tilemacro-

scopic properties of the medium. Thi~ behavior is complicated by crac’k in-

terjections, whose frequency is governer! by the area per unit voluue of

cracks, a quantity that changea as the cracks increaae in size. Thus, the

❑ean free path of cracks is much more difficult to deal with than tbe mean

free path o ;aaes, which remains comztant. The current approach idealizes

material behavior by dividin8 the cracks into just two categories, those

that are essentially isolated and thotiethat have intersected a number, a,

of other cracks and, as a reuult, are no longer capable of growth. The iso-

lated cracks are considered cctive, that is, capable of un~table growth if

the stress level e~ceeds a critical value, whereas the other cracks are r.orl-

sidered Inactive, and wI1l not exhihit growth even at high atrese levels be-

cause their edges have intersected the planes of other cracks, and there ia

no longer a regitinof stress conc,cntration or an excess of strain energy to

drive crack growth. This 10 of cour~e, n great idealization, and the reader

will quickly he able to demonstrate a number of geometric and phynlcnl ef-

fects which this idealization fnils to nccount for. Still, even this rela-

tively simple approach l.enduto considerable m,~thernaticalcomplexity. ‘l’he

consequences of this nppronch ure exnmincd in some tlctn~.1here. The gonl in

to obtain an approximate, albeit crude, trenrment of truck coalescence thut

is usnhle. in real cnlcul~ltionn of purmunbllity, frugmentatl.on nnd reinted

effects. In nddl~ion, it in poa~ihlc that tileconclusions mny mflR~st prom-

ising npprox[mntlonsm
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The number density of isolated (active) cracks per unit volume whoee

radii exceed c is denoted by L(c,t), and the number density of connected

(inactive) cracka per unit volume whose radii exceed c 1s denoted by M(c,t),

where t denotes the duration of crack growth. The number of active cracks

at time t + At larger than c is equal to the number at time t larger than

c - ;At, lebs the number that have been converted into inactive status,

MtAt, i? the interval At. Here

uniform around the crack edges,

ecript~ denote differentiation.

L(c,t + At) = L(c - ;At,t:

; deno’.es the speed of crack growth, assumed

but not necessarily constant in time. Sub-

Symbolically,

- :lt(c,t)At

or, passing to the limit of small At,

Lc:+Lt--Mt. (2.1)

The ve’iocitydependence can be eliminated by introducing n new variable

t
y=jat

o
(2.2)

extent of crnck ~rowth. ‘t’henthe govcrnin~ cquntton t3im-

LC+l, --M.
Y Y
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To make further progress

formation of inactive cracks.

of all the active cracks with

resuming circular cracks,

The

let

()L=$”2w. -+ac .

c

it is necessary to characterize the rate of

To this end, let L denote the length of edges

radiua exceeding c, per unit volume. Then,

(2.4)

area ewept out by cracks of radius exceedtng c in time At is L&At. Now, ,

q denote the number of crack intercepts per unit nrea on an arbitrary

plane, a quantity independent of the plane selected in view of the statj.sti-

cal assumptions. (Later, it will he important to separate out the contribu-

tions from active and inactive cracks, but that is unneces~ary at this

point.) The variable q depends on y, hut not on c, an important point in

the solution procedure that follr,ws. Now, :Ilerate nt whicl~ crack~ inter-

sect (per unit volume) is equal. to the product of two terms, the rnte at

which area is being Hwept out hy growinR cracks (per unit volume) nncl the

ii~tmber of cracks per untt area. The rate nt which cracks become Innctlvr ifl

I/a times the rate nt which intersections form. Then, u~infl (2.2),

M - ~(c,y)q(y)/a s
Y

It 10 convenient to defi.nu

z = Lc , k m 2~/a (Z.r))

IN order to ohlnin n ntmple form for tho ~ovcrnl.nRCqIIIILlmI, wl}ich then rc-

duce~ to

(2.5)



zc+zy+kcqz=O .
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(2.7)

The solution procedure falls naturally into two parts. In the first, a

form for the solution involving only a functirm of one variable, J(y), is

determined. Then, an expression for q(y) in terms of L(y,c) IS formed. By

combining theee reaulte a third-order ordinary differential equation ie ob-

tained whose solution determines J. The mean free path can then be obtained

in terms of L(y,c).

A solution of (2.7) can be obtained by the transformation

u-c- y ,V=c+y

which results in

z
v

+ (k/4)(u+ v)?l(y~)z = ~ ●

z - t,(u)eklcJ’(y)-J(y)J

J“ m - m(y) , J(o) - J’(o) - t) ,

(2.8)

(2.9)

(2010)

(2011)

L(y,c) - - t’
k[y,l’(y)m.l(y)]j=(lll ,,((l)eku*J’(y) ,

(2.12)

,:- Y
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fact that when the growth ia y, no active crack can have a radius le~a than

Y“

In Appendix A it ie shown that the number of crack segments per unit

area for cracks with a

ap -

Then, the

ma -

A mimilar

though in

initially

fiectlon.

; jmP(c) dc
o

size distribution P(c) is

. (2.17)

number of active cracks per IInitarea ia

m

; ~ L(Y,C) dc . (2.14)

Y

relation cnn be wrtttcn for the connected ~lnact~ve) cri~ck~,

kh~s case it cannot he expected to he very accurate %CFIUEIP t!le

circlllar nhnpe will not be ret~inerlIn real mnterlnls nfter lnter-

Thua, when crocks tire~lss,lmcdto be nctivc until a il;ter.qections
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~=-nd
dy z~L~y’y) “ (2.17)

Now , though the theory of Laplace transforms ia not employsd here, it la
convenient to uae ~t8 notation,

F(s) - j- ~-su h(u) du .
0

Then, from (2.12)

L(y,y) = - e
-k(J-yJ’)~(~)

where

~m- kJ’(y) .

viz

I

(2.18)

(2.19)

(2.20)

Combining (2.11), (2.17), and (2.19), we are led to the Rovernlng equation

Jtl! “

f ‘y($-@-)“’Jk(’’-y)’)
for J(y).

If the crnckn have nn Inittal,lvexponentlnl rltstrihutinn, so thnt

h(c) - - (l,./:)O
-c /;

tlwn

(2.21)

(2.22)

~f-- l,./(l+ F-H) . (2.23)
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In thie caee the gnverning equation becomes

:+y(l +3J~’~ m~yLo

(1 + Ft3)2

This can be put Into a canonical

w. -kJ , O-y/F, p

with the result

~f,e-k(J-yJ’) .

form by the scaling transformations

- xkz3Lo/2 ,

Sine,- the initial conditions for W are

‘ee-P’ W-WOQ

(2.24)

(2.25)

(2.25)

(2,27)

it foliowe th~t W is a function of e with only one parameter, ~. The vuria-

tion of W with 0 for various ~ i~ illustrated in Fig. 1.

The mean free path of cracks can be obtained by )neidering the pro-

jected crack area (on some arbitrary plane) per unit volume. For an iEJo-

tropic diatri.bution the projected area per ul~itvolume 1A Mivcn by

(2.2(I)



18

A=nj’’c Ndc . (2.29)

o

where N = 2mn is the density of cracks with all orientations. I’fwe consid-

er a cylinder of length

isotropic distribution,

cylinder uill have with

S and unit cross-sectional area filled with this

the nwnber of intereectiona that a generator of the

the contained cracka la AS. The length for which

the number of interaectiona ia unity la the mean free path

A-l;A .

For an initially exponential distribution

A-A - l/7LoF*.
0

‘ro

9ary to

(2.30)

(2.31)

determine the mean free path for the more general caae it ia necea-

evalIIaI:e the integral

m

A=n~c(L+M)dc
o

(2.32)

where Eq. 11.6 tH used for c < y nnd I?q, B,5 for c > y. In both rxmea ~ < y,

HO tor an exponential dtntrtbution the intefir:lmlta

L(y)(l) - - (L@
-k[J(y)-cJ’(y)]+(y-c)/~ . (2.33)

For c! < y

,,~,-k(J-yJ’)

1,. 2—
1- k~J ‘

(2.34)
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ia independent of c, and for c > y

~ e-k(J-cJ’)+(y-c)/c

L-” .

1 - k~J’

With these relations it is possible to determine the mean

function of the growth y, thou~h it is necessary to carry

tions numerically.

(2.35)

free path as a

out the integra-

te results can be put in dimensionless form by defining the

dimensionless mean free path ..

whsre

~ = L/L ~ m M/l, Q“~/~ . (2.37)
0’ 0’

The quantity p ia plotted aa a function of ~ in fig. 1. A nataral approxi-

~ 2/3
mation to the solution curve la to take p = -2P , drawn as a dashed line

in the Figure. This is equivalent to

(2.38)

a mean free path independent of the initial crack size, Involving only the

number density of crackn and the parameter u defininfi the number of inter-

jections that terminates growth. The dimensionless crnck distribution I + ~

1s plotted as 11functton of dimensif~llleescrack radius in fiR. 2.
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3. Prospects for Further Development

The theoretical work, called .statiatical crack mechanicn, outlined in

this paper is intended for use in finite difference codee. It makes posei-

ble the calculation of dynamic problems involving crack growth and coales-

cence that arise, typically, in impact and explomion processes. It haa been

used to investigate blasting in oil shale and the nenaitivity of propellant

to impact. The approach han been to uae analytic solutions to crack prob-

lems, to aasume the sirpleat growth law, which involvea self-similar growth

of penny-shaped cracka, end to consider the atatiatica of crack coalescence

using the simplsat Liouville equation. Thio has made it possible to develop

a computing dcheme which works fairly well, though the complexity of the

proceaaea involved and uncertainties in the mjcroetructure makea it very

difficult to cumpare cnl.culmtions with experiment. The calculations aaaume

9 poaaihle crnck nrienttitiofifl,thereby allowing for hi~hly aniaotropic be-

havior, with ctacks in one orientnttan typically dominating. It la alao nM-

sumed that the initiul di~t.rihution of crncka is exponential in crack radi-

ua, with dif~crent distrihution~ for ench orientiltion being allowed. The

stronfily ani~ntropi.c behavior of oil shale re~ultlng from its sedimentary

formnzion was represented by allowing for en extr~lHe: of large cracks in

the hedd~n~ plnnc~. The number of crnck ~ets (ori.untntion and size diatrl-

hution) cun bc readily modified in numerical schemce.

Numerouu !)hy~lcnl effects were i~;norc!dJ.ndcveloplnu the computatlonnl

framework, in ord~r to get II working cornputcr code n~ soon ns possible.

l’hlamnde it po~ti{ble to ex~mine muny computntlonnl prohlcrn~, lncludln~ com-

plltcr tlmc IIOiti storulle requlrcrnents, tn the course of code development. IL

nppearM thfItcomplltln}? speed I.FJ (IhoIIt n tl~lrdof that fur simple ~trcn~th

t!~coric~ (rltlntlc Flnw) nncl the mornory rcquirc!ment in roughly dnuhlccl. Some
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of the etudie~ needed to improve the exiatinfi code are discussed in th.~next

paragraph.

It would he useful to accou?t ?or crack interaction , which are cur-

rently neglrcted, in some approximate way, especially since compression

failures seem to involve coalescence of cracks into complex patterns. T.t

would also be useful to account for out-of-plane growth of cracks, especial-

ly in compression where such effects se~:n to be very important. However,

the statistical problem 1s greatly complicated when cracks assume complex

shapefi,and approximation methods would have to be devised. The effect of

varying mean-free-path has been discussed at length in this paper. It seems

probable that means for accounting for this effect within the computer code

can be found, but work has not begun on this problem. llowever, the method

described in the precedinR section assumes an isotropic distribution. If

used in its current ~(ate, It .mu]d be necessary to give up the ar,isotropy

that is allowed in the line~r, small-growth approximation. !Jehope to de-

velop an approximate theory that combines aspects of both approaches. In

the original work it was thou~ht feasible to account for plastic behavior in

rocks and other materials by suitably modifying the rules for interracial

friction of closed cracks. This effort is in limbo, and we have instead tn-

corporaterla phenomenologicnl law (kinematic hnrduning) to account for plas-

tic flow. CUrrerltly, lntPrfFICinl frlct.iOnis represented with A static val-

ue for locked cracks and u dynamic VRIUQ for ~liding cracku. It hnH lx?en

ehown (Dienes 1983h) that softening and meltin% cnn occur very quickly on

nlidtng cracks, and this may plny an lrnportfintrole in hifih-speed pro-

cesses. In fact, it may be that shear crncks behnve more like ~hear band~

under some conditions. A cnrcful trentment or this prol]lemwould he of

gyeat lnterent. Crack spcml im currently treated n~ n constnnt (eomewhnt



below elaatic wave npeeds) at high stiiesses, but decreasing with stress to a

high power at stresses below a critical value, in accord with propellant

data. Different speeds are as8urned for ten6ion and shear cracks. The pro-

gram also computes permeability, which can be highly anisotropic, but no al-

lcwance IS made for crack opening or propagation due to internal gas pres-

cure. Whether this e:~fect iu important la en open question in rock blaet-

ing. Another area of concern IB the effect of Inhomogenities, such as the

aggregate in concrete, aluminum in propellarlts, or inclusions in rock, whici~

can profoundly affect crack stability and the pattern of crack growth, but

n~ means for accounting for thoee effects have yet been devised.

Thus , with statistical crack mechanics it is p,~ssible to account for

failure in a somewhat detailed way , and the posaibflity of understanding

processes such as fragmentation, span, explosive and propellant sensitivi-

ty, blastl.ng, ana projectile penetration aue greatly improved. On the other

hand, many new questions about failurtimechanisms are raised. More correla-

tion wfth experiments and development of suitable diagnostics is needed to

test the proposed appronch to fail~lre. On the other hand, it ~cems likely

that wc will be able to improve predictions and Intcrpretationa of failure

more reliably with statistical crrickmechanic~ and, In particular to under-

stand better size and rate effects, which have not been amenable to detailed

theoretical annlysis In the pnst. Thesk cffecta are now known to be of

Ereat Importallcc, ur,dhettL*rmuthr)dsito relnte laboratory and field behavior

UH well na stutlr [{i~[ldynamic hchnv{or are needed.

Acknnwi,edRmcnt

I nm I.nrlohtdto R. M,jolsnona For got.nRover the analysis of variable

mcnn free pnth, pointinR nut mI vrror, nnd for uneful discussions.



●

23

APPENDIX A

pute

Consider a ~pace

the dtatribution

filled with penny-shaped cracks. It is useful

of segments formed by their interaectiona with

to com-

a

plane, S. If the cracks are randomly, isotroplcally, and homogeneously dis-

tributed, then the segmel.tdistribution ia independent of S. Now, let

n(cl,c) denote the number of cracks per untt volume and per sterradian with

orientation Q whose radii exceed c. Take the plane S as the x-y plane, and

let the distance of the center of a crack from the x-y plane be denoted by

z. Let e denote the angle of the crack normal with the z axis, so that

where 1 is the length of the intercep~, as illustrated In fig. A. Then, the

number of cracks whose radii lie in the range (C,C + Ac) having centers in

the infinite slab (Z,Z + Az) is

-Fcmz ●

It follows that the number of intcrcept~ with length exceedin~ I hy cracks

with orientation Q is

The number of intercepts of all orjentaticns is, then,
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P(A) = ~ sin (3df3 ~ fi(l.,~)dO . (A3)

o 0

Carrying out the integrations over O and 0 on the asm~mptlon of random ori-

entation one finds

m

P(O) E I? j ndc . (A4)
o

The more general case of the relation between P(l) and n(l), which can be

reduced to an AbelIan integral equation, is discmsed by Dienes (1979c), but

here only the result given above is necessary. Since

the number of crack intercepts per ~nit area an also be written

m

I?(0)-; J Nlic .
0

(A5)

(A6)
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APPENDIX B

Tha number of crack intercepts per unit

counting only those cracks that are inactive,

area with an arbitrary plane S,

IS given by

(Bl)

using the result of Appendix A. This relation can be expressed in terms of

the density L in the following manner. Let

m“ -M =L +Lcc
Cy Cy

(lJ2)

denote the rate of production of connected cracks. In fig. B the y-c plane

IB divided into re~ions G where growth occurs nnrlNC where it does not. In

c

and in NC

(114)

(1}5)

nnd in N(:(y > c)
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M o L(o, c) - L(y, y) - ~L(~,c) dy ●

c
o

(B6)

Using these results to evaluate (Bl) it can be shown thut

q ‘; { jmL(o, c) dc - ~mL(7,c) dc+ jyL(c,c) dc-yL(y, y)} ●

o Y o

(B7)
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Fig. 1.

Fig. 2.

Fig. A.

FiK. R.

The dimensionless mean free path p = u~2Lok as a function of

~ = &3Lo/2, in the limit of large crack growth y. This limit de-

pend~ only on ~, which can be considered a dimenaionleea crack den-

sity. The approximation u -
1 2/3
7P ❑ay be useful in formulating

algorithm for computer analyalo.

The dimensionless crack distribution function ~ “ ~ + ~ aa a func-

tion of dimeneionlean crack size, 8 = c/~, for varioue valuea of

the dimensionless parameter ~ - W~3Lo/2. This distribution is the

limit at late times, large y.

Interaectlon of a circulmr crack of radium c with the x - y phaae
as viewed horizontally from the edge (leit) nnd from a dirertion at
90° to the edge (right). The figure illu~trates the intercepts
length 1, the Inclination 0, and is the baSiH for Kq. AI.

Illustration of the y - c phase Bhowing region~ where cr~ck ~rowth

is possible (c > y) nnd impoe~iblu (y > c), for u~e in cnmputin~ H3
and 114.
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