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A STATISTICAL THEORY OF FRAGMENTATION PROCESSES

John K. Dienes
Theoreticel Division

Los Alamos National Laboratory
Los Alamos, NM 87545 USA

The goal of the work reviewed here is a theory of material behav-
for accounting for the average deformation that results from the open-
ing, shear, growth and coalescence of ar ensemble of microcracks. A
concomitant is the calculation of permeability from crack structure.
The first part of this paper summarizes previous develnpments. In
particular, the initial work on this problem made use >f a linear
Liouville equation to characterize the change in crack distributlon re-
Bulting from crack growth and coalescence. Stralahtforward analytic
snlutions to this equation were possible bhecause the mean free path of
cracks was assumed constant. Though this assumption is useful for the
carly atages of crack growth, Increasing crack size reduces the mean
free path in the later stapges of fragmentation. This problem i8 ad-
dresseu in he second part of this paper. The governing (nonlinear)
Liouville equatlon {8 derived thereln, and it 1s shown that it can be
reduced to an ordinary differentlal equation of third order Involving
only a single parameter, B. This equation has now heen solved numeri-
cally to determine the limiting value of the mean free path as a func-
tion of 3, and the results are presented in graphical form. In the
third part of thias paper proapects for further developments arc briefly

dlacussed.



A STATISTICAL THEORY OF FRAGMENTATION PROCESSES



1. Review of Previous Work

One of the assumptions that has made it possible to formulate constitu-
tive relations accounting for the behavior of fragmenting solids 1s that the
straln rate can be represented as the sum of contributions from digparate
physical processes. This agsumption can be considered a generalization of
Reuss' (1930) concept of separating the strain rate into a sum of elastic
and plastic parts. Physically, one can envisage the total strain in a plas-
tically deforming solid a3 the sum of the elastic straln in a solid lattice
which is determined by the prescribed stress using linear elaaticity, and of
nonlinear slip along planes of weakness, represented by a phenomonological
plasticity law. The superpositinn can be represented in a number of ways,
depending on the variables selected. The most natural for computational
purposes 1s to work with the streiching D, which ls defined by separating
the velocity pradient G = (ui,j) into the sum of a symmetric part D, the

stretching, and an antisymmetric part W, the vortlcity, so that

G=D+W .

(L.1)
The stretching can be related to the strain
! 2
E -E(B - I) » (1'2)
where
B = FF (1.3)

fa the loft Cauchy-Green tensor and F {s the deformation gradient, by



E= VDV . (1.4)

Here the circumflex denotes the material rate discussed by Dienes (1979a)

and the left stretch V is defined by

V2 -B . (105)

The above definition of strain differs from those usually adopted, but is
thought to be the moet useful, Spr:ifically, the strain rate defincd above
is the actual rate of change (accounting for rotaticn) of strain., (The
stretching D, often taken as the strain rate, 1s not the rate of any
history-independent variable.) The aummation principle can be applied to
eithev E or D, with equivalent results according to (1.4), but the
application in terms of D is more convenient for computational purposes.
Contributions to the stretching in a fragmenting material can arise
from elastic changes in the lattice structure, De; from thc motion of slip
planes and dislocations that cuntribute to plastic flow, Dp; from crack
opening Do; from shearing of closed cracks DB; from unctable growth of
either open or closed cracks, Dg; from nonlinear interatomic and thermal ef-
fects represented by an isotropiec equation of ustate, Dn; and from viscous

behavior, p’. Thus, one may write

nep®+DP+D°+D® +D¥+ 00" +0Y . (1.6)

Since the rate at which work is done by the stress g is the trace of gb,
each term of (1.6) is ansoclated with the energetics of a particular defor-
mation mechanism. The elastic term can be written, in indicial notation, as

. .y
Dyy ™ “ikake (1.7)



where C if the compliance and 3 is the stress rate defined by Dienes
(1979a).

To account for plastic behavior in general deformation it 1is necessary
to allow for arbitrary states of stress and, consequently, to make use of a
hardening plasticity theory. An approach to this problem has been recently
developed using kinematic hardening theory (Dienes, 1984a,b) but details are
omitted here since space does not allow a complete discussion, and the main
purpose of this paper is to review the work on statistical crack mechanics.

As cracks open, a certain amount of material is Jdisplaced. If it is
assumed that the surrounding material does not change its density, and that
the rate of material displacement in each direction i1s the sum of displace-
mente due to the individual cracks, then it has been shown by Dienes et al

(1980, 1983a) that the strain rate induced by an ensemble of penny-shaped

cracks is
0 _ 090 -
5 " Bl ka%a (1.8)
where ﬂo 1s a material constant and
o ” -\ 3
&ijkx - g dgninjnknl g dc (- EE-) c . (l.9)

Here n°(c,Q,t) denotes the number density of open cracks with orientation Q
whose radii exceed ¢, and ny denotes the ith component of a crack normal.

Cracks are conaidered open when the normal component of traction
g = gy,nyny (l.10)

fe positive (tensile).



In addition to the stretching associated with crack opening, there can
be a contribution resulting from the interfacial sliding of closed cracks,
for which the normal component of traction is negative (compressive);. The

assoclated stretching 1is

-] 8,8
Ay = P20 4k0%; (1.11)

where B® ic another material constant and

8 - _ ° _on®\ 3
ztjkl g da(1 a)bijkl g de 33-) ¢’ . (1.12)

The quantity a, arising from the effect of interfacial friction between

closed cracks, 1s given by

@ = plol(A - p (1.1%)

where ;'is the coefficlent of friction and A represents the magnitude

squared of traction:

Aw LI (l.14)

Only the distribution of cloeed cracks ns(c,g.t) enters into this calcula-
tion, and their effect I3 to modify only the shear strain, and not the dila-

tatlon, Thus, the operator
bijkl - 6“_ank + 6j1n1“k - Zninjnknl , (1.15)

defined in the process of deriving (l.12), has a property such that “:L

ishes, enforcing the shear constraint mentioned above. I[f g exceeds unity,

van-=

the normal stress is great anough tn lock cvracks with the corresponding ori-



entation, and their contribution to (1.12) is made to vanish in detailed
calculations. This introduces the hysteretic effect of solid friection.

If the stress is high enough so that cracks are unstable, they grow at
a rate wvhich can approach half the wave speed, but the rate may be much
lower at modest stress levels. The strain rate due to crack growth is given

by

aiy = (% e + B20 e 0)ag (1.16)
where the dots indicate that in (1.9) and (1.12), no and ns are to he re-
placed by their time derivatives. The criteria for crack instahility are
discussed in a separate paragraph bhelow.

At high pressure, when the state of stress 1s nearly isotropic, materi-
al behavior is dominated by &n isotropic equation of state relating pressura

p, to the density p and internal energy I, of the form (McQueen et al, 1970)

P =G(ppl + f(p) - (1.17)

It is convenient and reasonably accurate for many materials to take Gp as a

corstant, Gopo’ and to assume a linear relation

u =¢ + Su (1.18)

between shock velocity ug and particle velocity u . Ther {t 18 straightfor-
[
ward to show that

Z0(1 - 009/2)

f(p) r (L.19)

(1L - SO)2



where k denotes the bulk modulus, equal to pocg, and @ denotes the compres-

sion

0=1-p/p . (1.20)

Only the nonlinear part of the equation of state (l.17) is incorporated into
the term denoted by D" of (1.6).
The overall compliance of the fractured material C can be represented

as the sum
c=c® +p%° + pg%2° . (1.21)

It is convenient for specific calculaticns to write

el .
P " Cw ZJ (1.22)
where De1 and i denote 6--index stretching and stress vectors and Del com--

bines the stretching due to lattice strain, crack opening and crack shear-
ing. Then (1.6) can be solved for the stress increment
Ay =clo-0oP-0"-0%-0"-0")ar . (1.23)

This formula includes Br, an effective strain rate that arises from the cal-
culation of stress rate, in addition to terms previously described.

When the far-field stress on a crack exceeds a critical value, a me-
chanical instability is Induced and cracks begin to grow. This instability
occurs when the work done by external tractions as a result of an increment

in crack size exceeds the increase in internal energy. This internal eneryy



is the sum of an elastic straln energy, surface energy and, for closed
cracks, heating due to frictional sliding. For penny-shaped cracks in ten-
sion the strain energy is the sum of the temsile contribution determined by
Sack (1946) and a shear contribution found by Segedin (1950) and is given by
3 1 -v 2

-a—Y (2A - yo) 1.24)

4 ¢
Mo "33 2=y

as shown by Keer (1966). Here vy denotes the Poisson ratio, p the shear mod-
ules and ¢, A, and ; are defined above. Then it can be shown that open

cracks are unstable 1if

A< va2/2 + myu(2 = W/2(1 - We (1.25)

where y denotes the specific surface energy. If plastic effects contribute
significantly, then y can be increased to account for enhanced toughness in
an approximate way. For closed cracks, only the strain energy assoclated

with shear 1is involved. This can be written

B 1=-v 23
ws -Tum(d'f) c ’ (1.26)

where g and t denote the tangential components of traction assoclated with
the far-field stress and interfacial friction, A proof that strain energy

depends on utress difference in this manner, with

o=VA-3% , 1= -~ o (1.27)



1s given by Dienes (1983b). Rice (1984) corrects the stability criterion

derived by Dienes and shows that an instability occurs if

.2 n2-v
(d“t)c)il_vyu. (1.28)

The growth and coalescence of .racks is characterized by two distribu-
tion functions. The distribution of isolated cracks is characterized by
(c,Q,t), the number of 1solated, penny-shaped cracks per unit volume with
orientation Q at time t whose radii exceed c¢. The distribution of connected
cracks is given by a corresponding function m(e, Q,t). The sum of these
distributions 1is n(c,Q,t). It is shown by Dienes (1978) that these

distributions are related by a Liouville equation
Lc+i=-m . (1.29)
At early times, while the wean free path is essentially congtant,

m = kg (1.30)

vhere k ig a constant related to the mean free path. The linear equation
obtained by combining (1.29) and (1.30) is readily solvahle when the initial

distribution is exponential in crack size, with the result

4 - 1°E-c/€+(c/—c-k)t (1.31)

valid for ¢ > Et; otherwise, £ vanishea. This solution can represent anlso-

tropic materfals esuch as oil shale, since XO,IE and k can depend on orienta-

tion. Results showing new classes of pheuomena appearing in an anisotropic
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material have been described by Dienes (1979b, 1981). The assumption of
constant k may not be useful when the total crack area increases signifi-
cantly as the result of growth. This 1is the subject of the second part of
this paper.

The permeability tensor for fractured materials has been computed by
Dienes (1982) as

64 3
Ry = %35 © [ doa ()r, G(A) . (1.32)

Here O denotes a crack shape factor near unity, A is the aspect ratio of the

cracks,

r = §,, - n,n (1.33)

and

am 5

6(R) = - [dc 3¢ © (1.34)

1s the fifth moment of crack radius. If the cracks are isotropically dis-

tributed

2

On
Kll 15~ A

0 <> (1.35)
and the tensor is diugonal and isotropic. The complete theory accocunts for

the probability of crack intersecti-ns and thelr coalescence 1into cunnected

paths, and is discussed in the derivation. It also accounts for the possi-

bility that there are not enough cracks to form connected paths by using

percolation theory, not discussed herein.
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2. Variable lean Free Path

Consider a homogeneous, isotropic medium filled with circular cracks
that are randomly, homogeneously, and isotropically distributed. If sub-
Jected to a stresse field of sufficient Intensity, cracks in a real material
are unstable, and their grow:h can cause important changes in the macro-
scoplc properties of the mediﬁm. This behavior is complicated by crack in-
tersections, whose frequency 1s governed by the area per unit volume of
cracks, a quantity that changes as the cracks increase in size. Thus, the
mean free path of cracks is much more difficult to deal with than the mean
free path o 1ases, which remains coastant. The current approach idealizes
material behavior by dividing the cracks into just two categories, those
that ar~ essentially isolated and th&ae that have interaected a number, g,
of other cracks and, as a reunlt, are no longer capable of growth. The 1iso-
lated cracks are considered cctive, that is, capable of unstable growth If
the stress level aaceeds a critical value, whereas the other cracks are con-
sldered inactive, and will not exhibit growth even at high strese levels be-
cause thelr edges have intersected the planes of other cracks, and there 1is
no longer a region of stress concentration or an excess of strain energy to
drive crack growth. This is of course, a great 1dealization, and the reader
will quickly be able to demonstrate a number of geomettic and physical ef-
fects which this idealization fails to account for. Still, even this rela-
tively simple approach leadu to considerable mathematical complexity. The
consequences of this approach are examined in some deta‘l here. The goal is
to obtain an approximate, alheit crude, treatment of crack coalescence that
is usable in real calculations of parmeabllity, fragmentation and reiated
effects. 1In addition, it im possible that the conclusions may suppest prom-

ising approximations.
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The number density of isolated (active) cracks per unit volume whose
radii exceed ¢ 1s denoted by L(c,t), and the number density of connected
(inactive) cracks per unit volume whose radil exceed ¢ is denoted by M(c,t),
where t denotes the duration of crack growth. The number of active cracks
at time t + At larger than c is equal to th2 number at time t larger than
c - EAt, less the number that have been converted into inactive status,
MtAt, i~ the interval At. Were ¢ deno*es the speed of crack growth, assumed
uniform around the crack edges, but not necessarily constant in time. Sub-

scripts denote differentiation. Symbolically,
L(c,t + At) = L(c = cAt,t} - i (c,t)At
or, passing to the 1limit of small At,

Iacc + Lt - - Mt . (2-1)

The veiocity dependence can be eliminated by introducing a new variable

t
y = [ cdt (2.2)
o
representing the extent of crack growth. Then the governing equation sim-
plifies to

L + L - =M . (_2-3)
ey Y
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To make further progress it is necessary to characterize the rate of
formation of inactive cracks. To this end, let L denote the length of edges
of all the active cracks with radius exceeding c, per unit volume. Then,

essuming circular cracks,

L - f 2 (- &) e . (2.4)

The area swept out by cracks of radius exceeding c in time At is LcAt. Now,
let n denot¢ the number of crack intercepts per unit nrea on an arbhitrary
plane, a quantity independent of the plane selected in view of the statisti-
cal assumptions. (Later, it will be important to separate out the concribu-
tions from active and inactive cracks, but that is uunccessary at this
point.) The variahle n depends on y, but not on ¢, an important point in
the solution procedure that follows. Now, the rate at which cracks inter-
sect (per unit volume) is equal to the product of two terms, the rate at
which area 1s heing swept out by growing cracks (per unit volume) and the
uimber of cracks per unit area. The rate at which cracks become inactive 1is

1/a times the rate at which intersections form. Then, using (2.2),

M, = Leay)n(y)/a (2.5)

It is convenient to define

LI k = 2q/a (2.6)

iu order to nbtain a sailmple form for the governlng equatfon, which then re-

duces to
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z, +z, + kenz = 0 . (2.7)

The solution procedure falls naturally into two parts. In the first, a
form for the solution involving only a functicn of one variable, J(y), 1is
determined. Then, an expression for n(y) in terms of L(y,c) is formed. By
combining these results a third-order ordinary differential equation is ob-
tained whose solution determines J. The mean free path can then be obtained
in terms of L(y,c).

A solution of (2.7) can be obtained by the transformation
umc-y ,vemc+y (2.8)

which results in
z, + (k/4)(u + V)7 (lmiii) z=0 . (2.9)

This has the integral

v = h(u)eklc‘l'(")_"(y)l (2.10)

in terms of the original vnricbles, where

J* m o= p(y) , S(0) = J'(C0) =0 . (2.11)

Lt follows that

kuJ'(y)

UM COENEO] jdu hiu)e . (2.412)

-y

L(y,c) = =

If ¢ <y, the Integrand In (2.12) has to be set to zero wherover u {8 nega-

Live, and 1t follows that L 18 indepondent of ¢ This represents the simple
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fact that when the growth is y, no active crack can have a radius less than
'Y-

In Appendix A it is shown that the number of crack segments per unit
area for cracks with a size distribution P(c) is

np -g(j,‘ P(c) de . (2.17)

T'hen, the number of a~ntive cracks per unit area is

(- -]
n -%f L(y,c) de . (2.14)
Y
A similar relation can be written for the connected (inactive) cracks,
though in this case it cannot he expected to he very accurate hecausc the
initially circular ashape will not be retained in real materlals after Inter-

section. Thus, when cracks are assamed to be active until g intersections

have occurred, their growth ls somewhat overcstimated. This estimate,

n 'c{ de M(c) (2.15)

really represents an upper hound on n The integration {8 carricd ont in
Appendix B. When the result {a combined with the preceding one, the total

number of active and {nactive cracks per unit area {a

> Y
n=on, + n -%’ { I L(o,¢) de + I L{e,e) de - yl.(y,y)} . (2.10)
n 0

llence,



16

dn _ _=md_
d.Y 2 dY L(YIY) . (2-17)

Now, though the theory of Laplace transforms is not employad here, it is
convenient to use its notation, viz

h(s) = [ e h(u) du . (2.18)
o
Then, from (2.12)

Ly,y) = - e T DR, (2.19)
where
8= - kI'(y) . (2.20)

Combining (2.11), (2.17), and (2.19), we are led to the governing equation

T o — - 1
I e 2 ky (ﬂ—:— - Yh) Jre R (I=yIh) (2.21)

for J(y).

If the cracks have an Initiallv exponentinl distributinn, so that

h(c) = - (I,O/E')n"’/E (2.22)

then

‘\- - - I‘n/(l + -(-‘-H) . (2-23)
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In this case the gnverning equation becomes

g - B yLOIE + y(1 +28) jiig=k(I-y3") (2.24)
(1 + cs)?
This can be put into a canonical form by the scaling transformations
Wm-kJ , 06=y/¢c , B= gEE3LO/2 , (2.25)
with the result
W = BO [T, [ (2.25)
000 (1 + we)z 6o
Sinca the initiual conditions for W are
wee =B 4 W=Wg=0 (2.27)

it foliows that W is a function of 9§ with only one parameter, B. The varia-
tion of W with @ for various f is 1lllustrated in Fig. 1.

The mean free path of cracks can be obtained by »nsidering the pro-
jected crack area (on some arbitrary plane) per unit vo.ume, For an iso-~

tropic distribution the projected area per unit volume 1s given by

Tl/z 2x L] .
A= | stng coso do [ de [ m’ (- %g) dc (2.20)
0 (4] (V]

where n 18 the distrvibution of cracks per 2x. For en isotropirc distribution
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A=q fm cN dc . (2.29)
o
where N = 2wy is the density of cracks with all orientations. ff we consid-
er a cylinder of length S and unit cross-sectional area filled with this
isotropic distribution, the number of intersections that a generator of the
cylinder vill have with the contalned cracks is AS. The length for which

the number of intersections is unity 18 the mean free path
A=1/4 . (2.30)

For an initially exponential distribution

=2
A= ko = l/nLoc . (2.31)

To det.ermine the mean free path for the more general case it 1s neces-

sary to evaluace the integral

A=17 f c(L+M) de (2.32)
o]

where Eq. B.6 is used for ¢ < y and Eq. B.5 for ¢ > y. In bhoth cases y < vy,

s0 {or an exponential distribution the integrand is

L (ve) = = (1 /e kel nIKy-o /e (2.33)
For ¢ < ¥y

L k(=)
‘0 )

I, = : — (2.34)
- ke
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is independent of c, and for ¢ > y

k(I )+ y-e) e
o .

1 - keJ!

L
L=

(2.35)

With these relations it is possible to determine the mean free path as a
function of the growth y, though it 1s necessary to carry out the integra-
tions numerically.

The resvlts can be put in dimensionless form by defining the

dimensionless mean free path

w=mlla= [ [ eded+m] (2.36)
o |
where
I=L/L , m=MIL , 0mc/c . (2.37)
(o] [o]

The quantity p is plotted as a function of B in fig. 1. A natural approxi-
2/3

mation to the solution curve is to take j = % B, drawn as a dashed line
in the figure. This 1is equivalent to
- 241/3
A, = (#/8L_a") , (2.38)

a mean free path independent of the initial crack size, involving only the
number density of cracks and the parameter a defining the number of inter-
sections that terminates growth. The dimensionless crack distribution E +m

is plotted as a function of dimensifonless crack radius in fig. 2.
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3. Prospects for Further Development

The theoretical work, called statistical crack mechanics, outlined in
this paper ig intended for use in finite difference codes. It makes possi-
ble the calculation of dynamic problems involving crack growth and coales-
cence that arise, ~ypically, in impact and explosion processes. It has been
used to investipgate blasting in oil shale and the sensitivity of propellants
to impact. The approach has been to use analytic solutions to crack prob-
lems, to assume the sirplest growth law, which involves self-similar growth
of penny-shapred cracks, snd to consider the statistics of crack coalescence
using the simplest Liouville equaiion. This has made it possible to develop
a computing acheme which works fairly well, though the complexity of the
processes 1nvolved and uncertainties in the microetructure makes it very
difficult to compare calculations with experiment. The calculations assume
9 possihle crask ovientations, thereby allowing for hipghly anilsotropic he-
havior, with crazks in one orientation typically dominating. It is also asg-
sumed that the initial distribution of cracks is exponential in crack radi-
us, with different distributions for esch orlentation being allowed. The
strongly anisotropic behavior of oil shale resulting from its sedimentary
formation was represented by allowing for zn extra set of large cracks in
the bedd!ng planes. The number of crack sets (orlentation and size distri-
bution) can be readily modified in numerical schemes.

Numerous vhyslcal effects were ipnored in developing the computational
framework, Ln order to get a working computer code as soon ns possible.
This made it possible to examine many computational problems, including com-
puter time n.ud storage requlrements, in cthe course of code development. It
nppears that computing speed is ahout a third of that for simple strength

theorles (rlantle Flow) and the momory requirement I8 roughly doubled. Some
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of the sgtudies needed to improve the existing code are discussed in the next
paragraph.

It would bhe useful to accouri for crack iunteractions, which are cur-
rently neglected, in some approximate way, especially since compression
failures seem to involve coalescence of cracks into complex patterns. Tt
would also be useful to account for out-vf-plane growth of cracks, especlal-
ly in compression where such effects se«n to be very important. However,
the statistical problem is greatly complicated when cracks assume complex
shapea, and approximation methods would have to be devised. The effect of
varying mean-free-path has heen discussed at length in this paper. It seems
probable that means for accounting for this effect within the computer code
can be found, but work has not begun on this probhlem. Ilowever, the method
described in the preceding section assumes an 1sotrople distribucion. If
used in its current siate, 1t 7ould be necessary to give up the anisotropy
that is allowed in the line.r, small-growth approximation. We hope to de-
velop an approximate theory that combines aspects of both approaches. In
the original work it was thought feasible to account for plastic behavior in
rocks and other materials by suitably modifying the rules for interfacial
friction of closed cracks. This effort is in limbo, and we have instead in-
corporated a phenomenological law (kinematic hardening) to account for plas-
tic flow. Currently, Interfacial friction is represented with a static val-
ue for locked cracks and a dynamic value for sliding cracks. It has been
shown (Dienes 1983h) that softening and melting can occur very quickly on
sliding cracks, and this may play an important role ILn high-speced pro-
cessesa. In fact, it may be that shear cracks beihnve more like shear bands
under some conditiong. A careful treatment of this problem would he of

great interest. Crack apeced {8 currently treated ad a constant (somewhat
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below elastic wave speeds) at high stvesses, but decreasing with stress to a
high power at stresses below a critical value, in accord with propellant
data. Different speeds are assumed for tension and shear cracks. The pro-
gram also computes permeability, which can be highly anisotropie, but no al-
lcwance 1s made for crack opening or propagation due to internal gas pres-
sure. Whether this effect 1s important is 2n open question in rock blast-
ing. Another area of concern 1s the effect of lnhomogenities, such as the
aggregate in concrete, aluminum in propellants, or inclusions in rock, whici
can profoundly affect crack stability and the pattern of crack growth, but
no means for accounting for those effects have yet been devised.

Thus, with statistical crack mechanics it 1s possible to account for
faillure in a somewhat detalled way, and the possibility of understanding
processes such as fragmentation, spall, explosive and propellant sensitivi-
ty, blastine, ana projectile penetration ave greatly improved. On the other
hand, many new questions about failur: mechanlsms are raised. More correla-
tion with experiments and development of sultable diagnostics 1s needed to
test the proposed approach to fallure. On the other hand, it seema likely
that we will be able to improve predictions and intcrpretations of fallure
more reliably with statistical crack mechanics and, in particular to under-
stand better size and rate effects, which have not been amenable to detailed
theoretical analyais in the past. Thesé effects are now known to be of
preat importance, dnd better moethods to relate laboratory and field behavior
as well as static aad dynamic behavior are needed.
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APPENDIX A

Consider a space filled with penny-shaped cracks. It 1s useful to com-

pute the distribution of segments formed by their intersections with a

plane, S. If the cracks are randomly, ilsotropically, and homogeneously dis-

tributed, then the segmert distribution is independent of S. Now, let

n (Q,c) denote the number of cracks per unit volume and per sterradian with

orientation Q whose radii exceed c. Take the plane S as the x-y plane, and

let the distance of the center of a crack from the x-y plane be deroted by

z. Let 6 denote the angle of the crack normal with the z axis, so that

zZ = ng - 12/4 sin 6 (Al)

where L 1s the length of the intercept, as illustrated in fig. A. Then, the

number of cracks whose radii 1lie in the range (c,c + Ac) having centers in

the infinite slab (z,z + Az) is

It follows that the numher of intercepts with length exceeding £ by cracks

with orientation Q is

~ o z(L) ™ -
H(L,Q) = - I de f -%g dg = - 2 f c2 - 1z/4-%£ s8in 9 dec . (A2)
/2 -z(R) /2

The number of Intercepts of all orjentaticne is, then,



L4

n/2 2n
P(R) = [ sin 0 de [ n(x,Q) 48 . (A3)
o] [o}

Carrying out the integrations over ¢ and 6 on the asmumption of random ori-

entation one finds

o
P(o) = «° [ nde . (A4)
o)

The more general case of the relation between P(2) and n(L), which can be
reduced to an Abelian integral equation, is discussed by Dienes (1979¢), but

here only the result egiven above 1§ necessary. Since
no= N/2n (A5)
the number of ~rack intercepts per unit area an also be written

P(o) =7 [ Ndc . (A6)
[0
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APPENDIX B

The number of crack intercepts per unit area with an arbitrary plane S,

counting only those cracks that are inactive, 1s given by
(-]
n --% f M(c) de (B1)
o
using the result of Appendix A. This relation can be expressed in terms of

the density L in the following manner. Let

m=™-M = L + L (B2)
cy cy ce

denote the rate of production of connected cracks. 1In fig. B the y—c plane

is divided 1into reglons G where growth occurs and NG where it does not. 1In

G
Y _ = _
M= [ dy [ mdc (83)
o 0
and in NG
C _ w _ " - m _
M= [ dy [ mde+ [ dy [ mdc . (B4)
o ¢ c Y

Theu, it is atralghcforward to show that in G (y < ¢)

Y _ —
M » L(o,e) = L(y,e) = | L, (Yse) dy (B5)
5o

and in NG (v > c¢)
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[
M = L(o,c) = L(y,Y) - [ L (Yse) dy .

(B6)
o

Using these resulta to evaluate (Bl) it can be shown that

{ ] L(o,c) dc - f
o Y

L P

Y
'r]i - L('y.c) dec + I L(c,c) dec - YL(YIY)} .
[o]

(B7)
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The dimensionless mean free path p = ﬁEZLOx as a function of

g = nEEaLO/Z, in the limit of large crack growth y. This limit de-

pends only on B, which can be coneidered a dimensionless crack den-

sity. The approximation u = % 32/3 may be usetul in formulating

algorithms for computer analysls.

The dimensionless crack distribution function n o i + m as a func-
tion of dimensionless crack size, 8 = C/Z, for various values of

the dimensionless parameter g = nk53L°/2. This distribution 1is the
limit at late times, large y.

Intersection of a circular crack of radius c with the x - y phase
as viewed horizontally from the edge (lecft) and from a direction at
90° to the edge (right). The figure illustrates the intercepts
length R, the inclination 0, and is the basis for Eq. Al.

Illustration of the y - c phase showing reglons where crack growth

is possible (c > y) and impossible (y > ), for use in computing B3
and B4,
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