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ABSTRACT

Melting of a two-dimensional electron lattice and a two-dimen-
sional dipolar solid are studied using molecular-dynamics techniques.
The existence of hysteresis and latent heat of melting are observed,
and the melting transitions in the two cases are found to be first
order. For an electron lattice the melting occurs between F=129±3
whereas in the dipolar solid it is between r=62+3, with a tran-
sition entropy of 0.3 kg per particle for both the systems.

INTRODUCTION i

Two dimensional solids are known to lack long range transla- !
tional order at finite temperatures,1-^ but they have long j
range orientational order. Kosterlitz and Thouless^ in 1973 pro- ;
posed a theory of melting for the 2D solids; the solids in their j
theory have bound pairs of dislocations and the dissociation of the
dislocation pairs is taken to be the cause of melting. Halperin
and Nelson^ in 1978 proposed a two-step melting process for 2D
solids; in the first stage a 2D solid melts at a temperature TM

by dissociation of dislocation pairs into a liquid crystal like
phase called a "hexatic" phase, which has bound disclination pairs;
on further increase in temperature the hexatic phase transforms
into an isotropic liquid at a certain temperature Tj, where the
disclination pairs become unbound. The two transitions at tempera-
tures TM and Tj are supposed to be continuous, and according to
Halperin and Nelson-* the melting of 2D solids by a pair of con-
tinuous transition is possible provided that it is not preempted
by a first order transition.



In this paper we shall describe the nature of the melting
transitions in two systems, one where the particles interact via
Coulomb interaction 1/r, and the other is where the pair-wise

interaction is the dipole-dipole interaction, 1/r-*, where r
is a two dimensional vector. Experimentally, electrons on the
surface of liquid helium represent a 2D Coulomb system. The
nature of the melting transition in this system has been studied
both experimentally" and by computer simulation methods.'~H
Recently, Pieranski*2 has argued that polystyrene spheres

( ~3000 A in diameter) on the water-air interface act as electric
dipoles aligned parallel to each other; the interaction in a plane
perpendicular to the dipoles is 1/r^. The investigation of melt-
ing in a 2D dipolar system was recently made through the molecular
dynamics method."

In systems where the interaction energy is.of the form

VC?) = e Cor/fr*!)n, all the properties are fully characterized
by a single, dimensionless variable,

r=0€(o-/ro)
n , (1)

2 —1
where (3 = 1/k T, fr = p , p being the number density. For the

Coulomb system n = 1 and €. u = e2, where e is the electronic
charge.

MOLECULAR DYNAMICS (MD)

The calculations are performed on 100, 256 and 576 particles
for the Coulomb system and on 256 particles for the dipolar system.
In both cases the particles are confined in a rectangular cell of
area A whose sides have a ratio of VJ/2 so that the cell can ac-
commodate 4M2 particles on a triangular lattice. Because of the
long range nature of 1/r and 1/r^ potentials, special care is
needed in the calculation of forces and potential energy; they
should include not only the interaction of a given particle with
all particles in the cell, but also its interaction with all the
images in the periodically repeated replicas of the central cell.
The forces and the potential energy are calculated by the Ewald
method.^ The Newton's equations of motion were integrated
using a predictor-corrector method which involves up to fifth
time derivatives of the positions.*•* The time step in the cal-
culations was chosen so that the energy was conserved to at least
1 part in 50,000 even after 15,000 time steps. At each tempera-
ture, the system was first thermalized for several thousand time
steps; results reported in this paper are based on long MD runs
after thennalization. The results are independent of the starting
configurations. Near the melting' transition calculations extending
up to 40,000 time steps were carried out.



RESULTS

In what follows we shall discuss the structural and dynamical
properties of the 2D Coulomb and dipolar systems.

a) Coulomb System

MD results for the internal energy E are shown in Fig. 1. The
squares correspond to an electron liquid which has been monotonicallyj
cooled from a temperature of 1 K (F= 36),and the solid circles

represent the results for the electron solid which has been monotoa-
ically heated from a low temperature triangular lattice. The pres-
ence of hysteresis is evident in the figure, and the hysteresis
region is marked by vertical dotted lines. In the temperature
range shown in Fig. 1, E seems to vary almost linearly with temper-
ature. The point marked L2 on-the upper line corresponds to the
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last supercooled liquid state. That the system at L>2 is a liquid
is evident from the fact that it has a finite value of self-
diffusion constant D = 0.5 cmfysec. To further confirm the dif-
fusivity of the supercooled liquid at L£ we show in Fig. 2 the

behavior of mean square displacement <R2(t)>, which increases
linearly with time t. The point marked S]_ on the lower line in
Fig. 1 represents the last superheated solid. It has no diffusion,
and its solid-like behavior is evident also from Fig. 2 where the
variation of <R^(t)> does not increase with time. The results
for the self-diffusion constant show that in the hysteresis region
D has two values at each temperature; zero in the solid phase and
around 0.6 cm^/sec in the liquid phase.

The hysteresis in Fig. 1 extends from the superheated solid
system at Sj to the supercooled liquid system at L£. The hyster-
esis was found in all three sizes of the system, (N = 100, 256 and
576). In all three cases when the last superheated solid system
is heated, it melts abruptly and goes into the liquid phase marked
h\. While at Sj the diffusion is zero, it acquires a value of
CS0.7 cm^/sec after th'e system becomes a liquid at Lj. The hyster-
esis decreases slightly with increase in the size of the system
and the transition moves slightly toward a higher value of
T- 126-132, in good agreement with the experimental value of
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Figure 2. Mean square disp- 1
lacement vs. time.



F= 137±15. It should be emphasized that the latent heat of
melting, E(Li> - ECSj), is the same for all three sizes of the
system. Taking the middle point in the hysteresis region to be
the melting temperature TM, we find that the change in entropy
on melting is As ~ 0.3 kB per particle.

The observed hysteresis in the temperature dependence of E
and D, and the attendant latent heat of melting indicate that melt-
ing transition in the 2D electron system is first order. To fur-
ther confirm the nature of the phase transition we have investigated
the homogeneous nucleation of an electron solid from a supercooled
liquid in a 576 particle system. At time t = 0, the system is
cooled by lowering the energy by an amount slightly greater than

the latent heat. It is then allowed to run for 20,000 time steps.
The time dependence of the instantaneous temperature, T(t), shows
that for the first several thousand time steps it fluctuates around
a mean value and the system in the E vs T graph lies above the
lower line for the solid, but then in a small time interval (^1000
time steps), T(t) increases and settles to a value where the (E, T)
point for the system lies on the lower line for the solid, and the
self-diffusion constant becomes zero. Afterwards the mean tempera-
ture of the system stayed constant for as long as we investigated it,
which was several thousand more time steps. The above mentioned
variation of T(t) in homogeneous nucleation is unique to systems
which undergo first order phase transition.!"»"

b) Dipolar System

A schematic diagram of an interfacial colloidal crystal system-
polystyrene spheres on water-air interface interacting via dipole-
dipole interaction -is shown in Fig. 3. In Fig. 4 we show the tempe-
rature dependence of total energy E* = E/e for 256-particle system
at a reduced density p* = p<r = r .The solid circles represent
the MD results for the dipolar liquid which has been monotonically
cooled from a reduced temperature T* = T/€ = 28.3xlO~3. The
solid squares correspond tc the dipolar solid phase, and they are
obtained by monotonically heating a low temperature triangular lat-
tice. As in the electron system, the points L£ and Sj represent
the last supercooled liquid and superheated solid systems, respecti-
vely. When the system at S^ is heated, it melts abruptly and goes
into a state marked Lj where it has a finite mobility. The melting
takes place in only about 1000 time steps and after that the system
reaches equilibrium and settles into the state L^.
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Figure 3
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Figure 4. Reduced energy E* as a function of reduced
temperature T for a dipolar system in two
dimensions. The inset shows the homogeneous
nucleation of a dipolar solid from a supercooled
liquid s t a t e .

The homogeneous nucleation of a solid from a supercooled liquid
was also investigated along the lines we discussed in the last
section. The behavior of T*(t) is shown in the inset in Fig. 4.
During the first 10,000 time steps, T*(t) fluctuates around a
mean value of 14.7xlO"3 and then in the next 500 time steps,
T*(t) increases and fluctuates around a mean value of 15.8x10 .
The energy E* and the corresponding mean temperature of 15.8x10
constitute the point marked S2 in Fig. 4; at S2 the system has
zero mobility.

The hysteresis in E* vs T* for the dipolar system, the
presence of latent heat, and the homogeneous nucleation of the di-
polar solid from the supercooled liquid, clearly show that the
melting transition is first order. The melting transition occurs
between T => 59-65 and the entropy change on melting is again found
to be = 0.3 kB per particle, which is the same as the transi-
tion entropy for the electron system.

A remark on the nature of interparticle interaction in inter-
facial colloidal crystals is in order here. According to Pieranski
the experiment shows a long range interaction between the colloidal
particles. Since the polystyrene spheres are only partly immersed
in water, Pieranski claims that the interaction will vary as 1/r .



If the interaction is indeed 1/r^, then the properties of the
system, as we showed earlier, depend on a single variable
r=^e(<r2jrp)3/2 and n o t o n p an<i x separately. A plot of the
melting temperature TM and density p

3' 2 will be a straight
line In case the interaction is 1/r^. Experiments should there-
fore be carried out to verify if TM vs 0^/2 £s a straight line.
It is hoped that the MD results on the melting transition of a
dipolar system will stimulate further experimental investigations.
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