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RECENT DEVELOPMENTS IN COMPLEX SCALING 

T. N. Ki'icif.tia 

Theoretical Atomic and Molecular Physics Croup 
Lawrence Livermore Naiional Laburatory 
University ol California 
Livermor;1, t.'aliforria W 5 ) 0 

I. INTRODUCTION 

My objective in this talk will be to discuss sume ri I 
developments in the use of cumplex basis function technique:! in 
study resonance, a' well as certain types of non-reso-iaut, 
scattering plieim-rein. Complex scaling technique', and niln-r 
tlosely vi lateil niellnuls have continued to atti.ict tin nt t i-iit ; >n 
of computal innal physicists and chemist-i ,-md have iiui' i i-.'it ln-I a 
point of development where meaningful calculi''ion:; 01 tiiarty-
electron ( w o than two.'] atom; and cioleculcs are beg inn iiij; to 
appear feasible. The field has evolved very rapidly over the 
past few years and I will not attempt anything like an exhaustive 
review of the subject. 1 can refer the interested reader to the 
review article by McCurdy' and te a volume of the Iniernatiunal 
Journal of Quantum Chemistry' devoted entirely to the subject. 
These sources give an excellent summary of bath mathematical and 
computational techniques in complex scaling through 197B. The 
scope of this lalk will be limited to several developments since-
1973 with which I have been connected. 

The first of these developments i. a discussiun cf direct 
methods for computing partial resonance widths. •* The imaginary 
part of the complex resonance energy computed by any direct 
method gives only the total resonance width, but it can be shown 
that the uigc-niunct inn associated wirh the complex resonance 
eigenvalue can be used to provide partial widlh information - a 
simple consequence of the separable nature of the S-matrix near a 
resonance. 



The recent use of complex scaling methods for studying 
molecular resonances has stimulated considerable interest i > 
generalizations which arc applicable to other continuum 
processes.^' 5 In Section III of this talk, 1 will review 
methods for computing resolvent matrix elements - and molecular 
photoionization cross sections in particular - within the 
framework of the Born-Oppenheimer approximation. This discussion 
will also serve to establish a connection hi-tween (uu muthuJs 
proposed for treating molecular problems"" ' and will fOCUS 
attention on certain numerical complications that must be dealt 
with. 

Pirt.illy, in Section IV, I will review some very re, ent work 
on how complex scaling ideas can be used to adapt suyle SCF 
theory to the study of negative ion shape resonances in atoms tM 
molecules. 

II. PARTIAL WIDTHS 

Consider the scattering of a structureless particle by an 
idealised target with no rearrangements ;md with a potential 
which does not couple partial waves. These restrictions can be 
relaxed at the cost of substantially wore cumbersome ;iotation. 
The asymptotic form of the scattering wave function for partial-
wave £ is given by 

l»'.kB,£ ( r' x ,77Tr' (2U10»/» 

(0 

=A where U j ) is the target wave function for channel 0, and S. (t 
is the partial wave S matrix. The channel momenta k„ are related 
to the cotal energy E and target energy t by 

At a resonance eigenvalue tg, all non-vanishing S matrix 
elements S C ^ E R ) have a poie. Thus at large r, the wave 
function with k$ given by 

0 (icy*,)] h k! " l 2«WJ (3) 



has only outgoing waves in each open channel and satisfies the 
asymptotic boundary condition 

For a problem with M open channels, we use a trial v.'lr iat iunal 
function of the form 

N-M 

"*" (5) 
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where the functions <j;(r,x) are squ.ne-intuj'rable basis 
functions and tho sum over (4 is limiltnl lo open chdniieis, The 
functions 0 are given by 

P 

where g(r) is a cutoff function satisfying 

(f.) 
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The coefficients C; and C, are determined by making the 
functional 

[fjl - / /< t ( r ,x) (H l ( r ,x) -E) t t ( r ,x) r 'd rdx ( ( J ) 

where Hj,(r,x) is the partial-wave Haniiltonian, stationary with 
respect to variation of the coefficients. 

Bardsley and Junker" proposed an iterative scheme for 
solving a single-channel version of E<|. (8) for refinances by 
varying the (complex) values of k|[ in the trial fi. .tion until 
Eq. (3) is satisfied for a particular eigenvalue. 

There is an important point to note about Eq, (8). The free-
free elements of (Hj - E), i.e., matrix elements between two 
functions of the form of fi , are in general not well defined for 
values of the channel momenta ir. the lower half-plane. This 
difficulty depends specifically on the form of the interaction 



potential since the definition of the channel momenta in Eq. (2) 
guarantees that the contribution at large r from the kinetic 
energy to the free-free matrix elements of (Hj - E) does not lead 
to divergences. The matrix is therefore defined, for a 
particular choice of basis, as the analytic-continuation of that 
matrix from the upper half-k plane (physical sheet of the E 
plane}. This analytic continuation can be performed using 
analytic formulas for the free-free matrix elements, if they are 
available, or numerically as discussed by Isaacson ot a l . ° 

The coefficients of the continuum functions, ®o, in Eq. (5) 
are determined by diagonalizing the secular matrix obtained from 
Eq. (8). There is, in general, no way to arrange for these 
coefficients to coincide with the Dg chosen in Eq. (4). We 
denote the vector which connects the two sets of coefficients 
as a 

\ DJ w 

A single diagon-ilization of a multichannel Hamiltonian in u set 
of basis functions which do not fix the asymptotic normal ization 
of the wave function does not provide eigenvectors from which 
complete scattering information can be obtained in the general 
nonresonant situation. The resonance case is considerably 
simpler; complete information, that is, partial as well as total 
widths, can be. nbtaiiird without requiring the mixing cnef 1 icienLs 

We can demonstrate this *<.ry simply. The partial-wave S 
matrix is given in terms of the partial-wave T matrix by 

c l - 6 - 2 i i U k* k* T* »« 

Since we are considering a problem with no partial-wave coupling, 
we can write T^ as a matrix element of the T operator between 
functions of the form <Kj(x)XJj(k0'f), where 

/ 1* 

\ cy> 
A < k « . r ) 

i 1 -Vr- TJ r> ( l l ) 

and j . is the regular Ricatti-Bessel function 
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We can establish the behavior of T ^ near a resonance by 
recalling that T(E) satisfies the operator equation for til E, 

T(E) - V + VG(E)V (13) 

where V is the full potential and G(E) is the full Green's 
function (operator) for the system. The central point of the 
proof hinges on the fact that the T operator is a separable 
operator at the complex resonance energy. We can define the 
resonance wave function \ty%> and the corresponding function in 
the dual space C § R \ (not merely the complex conjugate) in terms 
of the residue of Che Green's function at the resonance pole 

More and Gerjuoy 1 1 have discussed tlie fact that Eq. 0 4 ) fixes 
the normalization of the resonance wave function and also derive 
the relationship between l^* and |^ > . With the definition 
in Eq. (13) we can easily see the residue of T(li) at a resonance 
pole is a separable operator: 

lia (E-tj) T(E) - V|yR> <? R|V. 
(15) E+E„ 

R I I 
The definition of S,.^ in terms of iL Eq. [(10)] and Eqs. (II) 
and (12) can be used to evaluate the singular terra in So • 
Combining all other contributions to the S matrix into a 
background term Sw> , the form of Sn^ near a resonance is 

—* 
a n i. bn a * T T ^ (16) 
B,o p,a E-e_ 

where the factors of the residue are 

V <**!{>* <W»J«MV (17) 

If we now follow the usual argument for a narrow resonance,*' 
which is based on the unitarity of Sn^ for all real energies, we 
are led to the usual result Br the partial widths for decay into 
open channels ^ that if ^ is defined by , 

a ' ' a 1 



and the total width is defined by 

•» • v i r / 2 (19) 

where Eg is the real part of £g, the partial widths sum to 
the total width 

t-1 a (20) 

Although the identification of the total width as the sum of the 
partial widths 'Eq. 18) is exact only in the case of a narrow 
resonance, it ij important to note that the resonance form 
expressed in Eq. (16) is exact and that an unambiguous definition 
of both the complex resonance energy £g and the residue factors 
is provided by tne (analytically continued) matrix elements 
defined in Eq. (IV). 

It is not convenient to use the definition of tain Eq. (16) 
to compute the par rial widths, because we have not fixed the 
normalization of fy to match that of <I'R. However, because of 
the particular form of i|>t chosen in Eq. (5) we can derive a 
simple prescription for the ratio of the partial widths in two 
channels. Recalling the definirion in Eq. (9), it is easy to sue 
that, with the form of the S matrix in Eq. (16), ;li« coefficients 
Qa, in the dofinition of |'t are proportional (in the limit of a 
complete basis) to the amplitudes Yg according to 

1YB V 

Thus the ratio of partial widths for any pair c>£ open channels is 
given by 

r n i K C B I • 

o a ° 
Since the partial widths must sum to the total width, and the 
Siegert eigenvalue computed together with tyt yields the total 
width, we can use Eqs. 19) and (22) together to determine all of 
the partial widths for decay into open channels. 

The formalism outlined here was applied to a model three-
channel square-fell problem. The computational details c:-.n be 



found in reference 3. The results of this study confirmed the 
conclusions reached above and showed that the use of complex 
"Siegert" functions combined with purely L functions provides 
a convenient method for obtaining quantitative information about 
partial as well as total resonance widths. The procedure we have 
outlined .ibove is applicable to any direct method which provides 
an accurate representation of the eigenfunction associated with 
the resonance eigenvalue. However, if one were to employ a '.rial 
function without reference to a particular asymptotic form, as in 
the complex coordinate method lor example, one would also have to 
project onto the resonance eigenfunction with the unperturbed 
states ^(xJX^i^r), evaluated at complex coordinates, to extract 
the coefficients which would play the same role as C in Eq, (21). 
We refer the reader to the recent work of Noro and Taylor for 
further details.^ 

III. COMPLEX-COORDINATE PROCEDURES FOR MOLECULES AND MOLECULAR 
PHOTOIONIZATION 

Two computational techniques have been proposed to date for 
extending complex scaling techniques to molecular resonance 
problems. In an earlier study, McCurdy and Rescigno<> proposed 
the use of ordinary floating Gaussian basis functions which are 
made complex by simply scaling the orbital exponents by .7 phase 
factor. It was argued that such functions, when used ID form a 
matrix represenrat ion of the liom-Opp^iihcim.'r Kami [ton i an with n 
complex-valued scalar product, would effectively provide an 
asymptotic scaling ot the electronic coordinates and that such a 
scaling would be sufficient to render a resonance eigenfunction 
L'; this supposition was supported by several illustrative 
calculations. More recently, Moiseyev and Corcoran have 
described a procedure which superficially appears to be identical 
to the transformation r->-0r S\te^ that can be applied to the 
electronic coordinates of a dilatation analytic Hatntltonian. 
This simple analogy is complicated, however, by the fact that the 
branch-point singularities in the electron-nuclear attraction 
terms of the Born-Oppenheimer Hamiltonian render it a nonanalytic 
function c-f electron coordinates. In addition to these numerical 
studies, the formal work of Simon^ establishes that complex 
scaling in the Born-Oppenheimer picture can be put on firm 
mathematical ground through the use of what Simon calls the 
method of "exterior complex scaling" in which the magnitudes of 
all electronic coordinates are only scaled outside a sphere which 
is large enough to enclose all the nuclei. 

A recent development in this area was the observation by 
McCurdy 4 that the Moiseyev-Corcoran procedure' could be 



formally related to Simon's exterior complex scaling. This 
observation also led to a procedure for calculating the matrix 
elements of the resolvent needed to evaluate photoionization 
cross sections,*> I will not repeat the rather lengthy 
arguments needed to establish the formal connections between the 
various methods. These can be found in references 4 and 5. I 
will content myself here with a brief comparison of the 
McCurdy-Rescigno (MR)1* and Moiseyev-Corcoran (MC)^ procedures 
and their use in photoionizacion calculations. 

The MR procedure employs basis functions which effectively 
scale r by 0 asymptotically while avoiding the nonanalyticity 
problem at the nuclear centers. This is accomplished by forming 
a matrix representation of the unscaliid Born-Oppenheimer 
Harailtonian in a basis set of complex Cartesian Gaussians of the 
form 

•l J » . '« *> = "W* • V ^ - V"(l • V (23) 
-ae- z (? - A) 2 

We have aruged that using such a basis is equivalent to using 
rotated coordinates in the Hamiltonian asympototically. 

It is instructive to compare the behavior of the analytically 
continued matrix elements in the MR and MC procedures, 
particularly the matrix elements of the nuclear attraction 
potential. We will consider a matrix element of one term of the 
nuclear potential between two S-type Gaussians [l=m=n=0 in Eq. 
(23)] both centered at position t: 

I i$r 'I£l 3/4 
d 3r e " a ( r t)2 

1 

'(? - * ) 2 

s-fi(r - if}2 

(24) 

>'/2 f„.iV4 

,(z) is the entire functi 

FQ(z) = 1/2 / I erf ( z) 

where F Q(z) is the entire function of z, 

The MC procedure replaces (? - tf)2 with (r9 - R ) 2 in Eq. (24) 
and obtains a formula for I by factoring 0~* out of the 



integrand. Evaluating the result at complex 0 gives 

In the M procedure, we simply multiply t» and 3 in Eq. (24) by 
(T 2, giving 

jHR . ej* !^]/Z t~°W I f» + «!»-"•. & „ [ ^ V *>']"" 
It is now clear from comparing Eqs. (25 and (26) that the MR 
procedure can be related to the MC procedure; j£ Che oasis 
functions are simply shifted from center A to A3"' in the 
latter, it reduces Co the McCurdy-Rescigno prescription. 

Note that as Che orbital exponents ft and 0 become small, 
l" c and I ™ limit to the same numerical value since lim z_ > 0F 0(i) ,'l. 
Furthermore, since the asymptotic behavior of the eigenfunctions 
is determined by the most diffuse functions, it is clear that 
both procedures should yield the same spectrum in the limit of a 
complete expansion. However, since the behavior of the matrix 
elements for large values of ci and (3 is quantitatively very 
different in the two procedures, one may expect to find 
significant differences between the two methods in numerical 
applications. In fact, wa expect to see substantial numerical 
differences between Che two approaches (or the following reason. 
In a complex-coordinate calculation, the cusps ChaC appear in the 
wavefunccion because of the nuclear sigularties in the Born-
Oppenheimer Hamiltonian are moved to complex centers. Recalling 
that the M procedure can be derived from the MC prescription by 
translating the basis functions to complex centers 0"1 A, we 
see immediately that the MR r.ethod allows the complex cusps in 
the molecular wave function.' co be approximated by Gaussians of 
large exponents on the cusp centers, while the MC method 
effectively centers basis functions elsewhere. For this reason 
we expect the MR procedure to have better convergence 
properties. 

We have applied both the MR and MC procedures to the 
calculation of the photoionization cross section of Hj. We 
mak? use of the fact that the cross section 9(w) can be expressed 
a? a matrix element of the resolvent:^ 



where "l^is the wave function for the target in its initial state 
with energy E 0, 11 is the dipole operator, and u is the photon 
frequency. Under complex-scaling, the continuous spectrum ot the 
atomic Hamiltonian is rotated off the real axis. This makes it 
possible to obtain convergent approximations to F.q. (27) by 
inverting a finite matrix representation of the scaled Hamiltonian 
obtained over a set of normaliz.ible functions, whereas such a 
representation could.not be used directly at real energies in the 
continuum for the unsealed llamiltonian.'" 

An approximation to Eq. (27) is obtained as (see references 4 
and 5 for details); 

0(ui) C 4w/c Ira G"3 fop * M • II|j-l f, (28) 

where the inverse (E 0 + ui - H T 1 is simply formed from the 
analytically continued matrix elements obtained either from the 
MR or MC procedures and the elements of f are given by 

fa - ̂ l^l^Mhhfr) (29) 
p I 

The expansion coefficients dp. in E<|. (29) mnke up the eigenvector 
corresponding to ty0 and are determined by diagonalixing H c,n(Q) 
over b.-sis functions {X_} of the initial-state symmetry, the 
matrix inverse (E 0 + h\ - llj~* is then constructed o «r a set 
of functions of opposite parity, (x } . 

To facilitate our comparisons, we have used large basis sots 
both to calculal • the lstJg ground-state cigenfunction and to 
represent the matrix (E 0 + to - HL for the o continuum. In 
this way, we are able to use the same basis sets for both methods 
while avoiding the criticism that the basis set was optimum for 
one method but not for the other.. Actor choosing Che basis-set 
exponents, one may optimize the scaling parameter 0 in a given 
basis set because the results are formally independent of 0 when 
converged. The usual procedure in atoidc calculations is to fix 
the magnitude of 6 at unity and vary the argument to fini the 
region of greatest stability. We did that using the MR 
prescription for computing H g O ) , making no attempt ".o optimize 
the magnitude of 6- Figure l'shows a superposition of five plots 
of the photo-ionization cross sections obtained by setting 
9 = exp(iirtp/180.0) and varying ifi in 2.5° increments over a 10° 
interval centered approximately at Che most stable point in "J. 
The results are stable vithin a few percent and agree essentially 
exactly with the exact values of Bates and Opik.l' 
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Fig. 1. Superpuaition of results for Che parallel compunont 
of the photoioniaotion cross section of !lj computed using 
the method of Kef. 6 Co analytically continue the Hw.il ton ijn 
matrix elements- The superimposed curves ,r<! for $ varying over 
the most stable region (15° to 25°) in 2.5' increments. 

We repeated this calculation with the procedure of Moiseyev 
and Corcoran. However, no recognizable region of stability could 
be iound with \§\ = 1, and we Lherefore varied j0| to find a more 
optimum value. It is not surprising that this was necestary 
considering the behavior of nuclear attraction integrals with 
large exponents which Moiseyev and Corcoran point out and vMc'i 
ve discussed earlier. We find the rise favorable value of |fi| to 
be approximately C.6, with little sensitivity for values varying 
oetweer. 9.5 and 0.8. Figure 2 shows a superposition of five 
plots for the photoionination cross sections obtained with 
8 = 0.6 expfi<p /lSO-0^ fnr va'ues of i|> in 2.5° increments over a 
10 interval, again approximately centered in the region of 
greatest stability. Comparison of Fig. I and 2 shows that the 
Moiseyev-Corcoran technique is substantial.y less stable in tl.is 
application Chan that of McCurdy and Rescigno. 
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FIG. 2. As in Fig. 1, but using the method of Ref. 7 to 
analytically continue the Harailtoninn matrix elements. The 
magnitude of the scaling parameter is 0.6 and $ varies from 
S 0 to 15° in 2.5° increments. 

In comparing the two methods, ve have concentrated on the 
behavior of the matrix elements of the nuclear attraction terms, 
since thsir non-analytic behavior has hindered the application of 
complex scaling techniques to molecular probelms. Moiseyev and 
Corcoran have also emphasized that the computation of two-
electron matrix elements, which is the mosr time-consuming part 
of integral evaluation, is simpler with their procedure since the 
integrals are simply scaled by constants and need not be 
recomputed when the scale parameters are changed. It is nort--
worthy, however, that several applications of complex scaling 
techniques to atomic problems involving more than two electrons 



have shown that accurate results tan only be achieved when the 
orbitals referring to tightly bound core electrons .ire loft 
unsealed and the outer valence electron orbitals m.ide 
complex.I° We have adopted a similar procedure for u'oleculos, 
which 1 will illustrate in the next section. With tins mix of 
real and complex orbitals, the two-electron integrals no longer 
scale simply and the computational details involved in 
implementing cither method are comparable 

IV. COMPLEX SCF TECUN 1QUF:S 
A, Formulation 

Almost all of the nrovious calculations using complex basis 
functions have relied on direct diagonalix.it ion of the 
Hamiltonian with many-electron basis states. In convention, 1 
structure calculations on bound states, n Hartree-Fock 
vavefunccion is frequently generated as n starting punt lor inn re 
accurate treatments. It is logicaj to assume that the basic 
mathematics of SCF theory should also be applicable to the 
square-Integra'Id resonance eigenstates of an Analytically 
continued complex Hamittonian. We have recently shown Mwt, for 
the case of shape ivsonances in Otom. and molecules, this is 
indeed the case. 

The basic idea''' *" underlying OUT discussion of :he SCF 
equations for resonances is that by beginning with the Liminlex 
atomic llaroiltuni.:n, ll((l'c;)), and following (essentially) the 
same variational arguments used to derive the bound slate SCF 
equatiuns, we can derive complex SCF equations appropriate for 
resonance states. This procedure is successful because the 
resonance eiger,functiuns of the complex llamiltonian are square-
integrable. In that sense these eigenfunctions are sufficiently 
like bound state wavef»nctions to allow treatment by the SCF 
methods currently employed in many bound state calculations. 

We will specialize our discussion to the simple case of a 
shape resonar:e which corresponds to an eleclronic configuration 
with one electron outside a closed shell. The *P shape resonance 
encountered in e" - beryllium scattering is .in example of such ,i 
case; the 'Jig resonance state of Nji is i well known molecular 
example. 

Starting with a trial variational wavefunction which is a 
single Slater determinant of spin orbitals 

* - det|i|i$ ty $ ... V M L I • i i * a K K V 
(30) . 
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where each spin orbital, 0;, is the product of a spatial 
orbital ^ (depending on the coordinates of one electron) and a 
spin function, and '̂  denotes the spin orbital with opposite 
spin, we derive the SCF equations for the orbitais, $j, by 
setting to zero the first variations with respect to those 
orbitais of a paiucular functional. For th«* ordinary hound 
state problem tli.it fnncCion.il consists ol t !• • - cxp^ctat ion viluc 
of the Harailtonian with respect to v plus Lagrange multiplier 
terms which serve to apply the orthonortnality constraint among 
the orbitais, s1; ' n o u r c a ! i e "* ^ust generalize this 
expression slightly. Since the 1 .miltonian, ll(( : ; } ) , is not 
hermitian, its cigenfuncCions torm a biort'ioconal set , and the 
complex conjugate of the wavefunction which appears in the usual 
expectation value is not appropriate. Thus the functional we 
have chosen is 

2k+l I » ffrHftf.B})**! dT ...dT J J II 

( J I : 

,(r)d'i \JV*]Vm'T 

where the matrix, '.;:, of Lagrange multipliers is complex 
ytiKietric: and die redundant terms in the first sum air tor 

convjniencc i-nly. An the scale factor, £', approaches unity the 
SCF equations must approach the usual Hartree-Krock equutijus in 
which the orbitii Hamiltonians are hermitian. The equations wi-
drive using Eq. (31) have this property only if the urbitals, 
4>i, in the trial wavefunction are real when , 1 : 1 , because 
otherwise the Coulomb ami exchange operators as defined below arc 
nonh^rmitian. In practice, this simply means that we are 
constructing the correct analytic continuation of the working 
equacions of the ordinary real valued SCF calculations of quantum 
chemistry. Note that in defining the functional in equation 
(31), we have in mind a class of problems whi.h, in the 8'M 
limit, can be formulated in terms of real orbitais. If, for 
example, the orbitals of Eq. (31) wer>' expressed as products of 
radial functions and spherical harmonics, the functional we would 
ther. use would have the complex conjugate of the angular 
variables of th< left hand orbitais appearing in all the scalar 
products, but not the radial variables. 

http://tli.it
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By setting the functional derivatives, M/ i^; and •'t/5ij>u, 
of equation (31) with respect to the open and closed sln-l! 
orbitals to zero, we obtain the SCF equations. If wc di-fine Lite 
Fock operators by 

k 
W e r (2jj - K j) + e- 1^ -Hy 

v 
F u • h e + e- 1 l (2J - K ) 

j-1 

where the one electron Hamillouian, h-,, is (atomic units) 

n 6 2 i' (33) 

and the Coulomb and cxchangij operators arc 

, . / XJL_J_J_ d'r 
J j \> 

(34) 

the complex SCF equations can b': written 

2Vi " £ Vj * \l\ (35) 
k » 

F4»LX.<J>. + e* 
v*v ^ vn UP 

> • A 

The usual SCF procedure is to find a set of equivalent matrix 
equations by multiplying equation (35) by the orbitals and 
integrating. All the matrices appearing in these calculations 



arc complex symmetric. Finally, we note that the value of the 
complex resonance energy from this procedure is the complex SCK 
energy, E C S C p 

ECSCF • | « ( t f J B , , l * " - f t l W ( 3 6 ) 
• fan (Itfi 

B. Atomic Example 

The ^P shape resonance in c-bery 1 Viutn scattering is an 
example of a resonance which the .:omplex SCF approach should 
describe well. We have performed two sets of cnlcuUtions on 
this system, 1' the first of which employs a (I4s/16p) b.nis oi 
real valued Caussians chosen as follows. The complex SCF 
equations were solved in matrix form and ErjscF from this 
calculation with [) - expli.i) is plotted in Figure 3 for a ranp.e 
of ct values between .3 and .5 radians. We were unable to 
converge the SCF equations for values of a less than .3, The 
trajectory of EQ S Q P as a function of Ci is somewhat surprising 
in view .if what has hern observed in complex coordinate CI 
calculations. 

In a configuration interaction calculation using the complex 
Hamiltonian, there is a well known behavior Co be 
expected of the complex resonance eigenvalue as a function of 0. 
That behavior, which can be shown to be a consequence of the 
complex version of the virial theorem,?! is that for a given 
basis set the resonance eigenvalue, E r e 3 , has a stationary 
point with respect to variation of 0 so that, at some value of C, 
dE r e s/dQ vanishes. The stationary point does not necessarily 
occur with |0| = I, but if a CI calculation is performed with 
0 =exp(ia) a sharp t-usp in the complex value -.1 E r e s i s often 
found as a is varied. The curve in Figure 3 corresponding to the 
(14s/16p) real basis function calculation does not show such a 
cusp, nor is Erjgrjp particularly stable as a is varied. This is 
a troublesome point because the stationary value of E r e s is 
usually taken to be th>; best approximation to the resonance 
energy-

The main curve in Figure 3 shows little evidence of 
stationarity with respect to variations in ci. This problem is 



due entirely to an in.idcqu.ito description of the orbilals which 
make up the Be core, particularly the tight Is nrbit.il. The 
problem has been discussed in detail elsewhere'" and can be 
solved by using Gaussian basis functions with complex exponents 
given by d^ where Cj is real to expand the cor', orbitals (Is 
and 2s in this case). Thus we performed a second set ui 
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Figure 3. E^gcy for Be" as a function of a in the 
scaling parameter 9 = exp(ia). The main cirve is calculated 
with real basis functions, and the insert is the complex 
basis function result for the same range of a. The real part 
of the energy scale in the ...nsert is relative to -14.L47 
Hartrees. 

calculations with only the s-functions scaled by 0. The results 
of this calculation are plotted in the inset to Figure 3. The 
stability of E ^ p as a function ol u is remarkable in this 
calculation, but still no sign of clear cusp behavior was 
observed. Fortunately E^scp is so stable that it is unnecessary 
to find a stationary point of E^rjp in order to find the 
resonance energy. Choosing a value of a nea». the center of the 
range plotted in Figure 3 (*=C.4j we find £ C S C F = 14.54733 -
.COi37i. The value for the width of the resonance is therefore 
0.31 eV or about half the value from a static exchange 
calculation.18 x 0 g et a n estimate of the position of the 
resonance it seems most reasonable to subtract the Hartree-Fock 
value of the ground state energy of Be from EQJQP for Be", 

http://nrbit.il


because one of the solutions of the complex SCF equations (a 
nonresonant, continuum solution) is the llartree-Fock waveEunction 
for Be with the remaining electron in a continuum p orbital with 
(in a limiting sense) zero energy. The resonanco position so 
obtained is 0,70 eV, only slightly lower that the static exchange 
value.^° 

There is a practical note which concerns the use of complex 
basis functions. In an earlier publication^ we made use of 
the identity, written here for the radial part of a one electron 
problem, 

/"tyrWrBM (r)r*dr • 6"' f ^(rt-'Wr)* {r6"')r"dr 07) 

to perform a rotated coordinate calculation by diagonalizing the 
real Hamiltonian, H(r), using complex basis functions, ^(rO"^). 
It is in fact more convenient to use the same device in complex 
SCF calculations. Thus the second of our calculations^' on Be" was 
actually performed with unsealed Pock operators and complex p basis 
functions of thrf form <j>i(r6"0 and real s basis functions, instead 
of scaled Fock operators with real p and complex s basis functions 
as described above. These two forms of the calculation are 
completely equivalent, but the prescription of unsealed Fock 
operators plur complex basis functions requires fewer complex two 
electron integrals and, more importantly, is a more convenient 
starting point for the extension to molecular problems. 

B. Molecular Example 

The 2Jig resonance state of Nj has been well characterized 
experimentally through extensive studies of vibrational excitation by 
electrons between 1 and 5 cV • and has also been the subject of 
numerous theoretical treatments.23-27 He felt that this system 
would provide a good indication of whether the "method of complex 
basis functions" is an accurate and practical way to proceed with 
complex SCF studies on molecules. 

The open-shell SCF equations for N ^ I L ) , which has 
the electronic configuration (lOg lo u 2ajj 2a„ 30g l* u ljTg) 2Dg, 
were solved in a mixed basis set of real and complex Cartesian 
Gaussian functions.2" For these calculations, «>e use a real 
valued Hamiltonian again and Gaussian basis functions in which 
the exponents are scaled by 9 . The non-resonant core orbitals 
(all but litg) were again expanded solely in terms of real 
functions, for the same physical reasons which are discussed at 
length in reference 18. We also carried out several numerical 
tests to check the adequacy of the core-orbital basis. These are 
be discussed below. 



\ The lug orbital was expanded in terms of both real and 
complex Caussians. The Litter were chosen following the 
prescription of McCurdy and Resciguo (reference 6) by complex-
scaling the orbital exponents of the Gaussian basis functions and 
keeping the associated nuclear centers reai. 

The core orbitals were expanded in a nuclear-centered 
( 9s 5p)/[5s 3p] contracted basis, augmented with two d-
polarization functions (a * 1.0 and , 4 \ Several choices for 
the Hg orbital space were tested. A prelimenory set of 
calculations was done using a (4p) basis, augmented with 
additional diffuse d]j functions placed at the center-of-muss. 
All Tig functions were complex scaled. These calculations 
produced a complex total energy for NjjC^IL) which depended 
strongly on and varied monotonically with the rotation angle iji, 
the resonance width varying by loughly 402 over the range 
15° < <f> < 25°. A simple test was devised to demonstrate that this 
instability was due to the inadequacy of the u„ orbital basis 
and not the core orbital basis. The total SCF energy for Nj^lln) 
can be written as E = E c o r e + JI„ where E c o r e is the core-orbital 
contribution to the total energy and n„ is Che orbital energy o£ 
l7ig. A series of "static-exchange" calculations was performed at 
different angles with the core orbitals frozen- It was found that 
changes in 1L were precisely equal to the variations noted 
earlier in the SCF calculations. 

The addition of several real p functions to the ii,, orbital 
space greatly reduced the sensitivity of the energy to the 
rotation angle. The final lu basis we used consisted of the 
(5p 2d)/[3p 2d] set of re:l functions, four nuclear-centered p 
functions with exponents .6, .26, .125, and .05 and six complex d 
functions placed at the center-of-mass with exponents ranging from 
.2 to .002 in a geometric series. The total energy ,is a function 
of rotation is f.hown in Figure 4 for an internuclear separation of 
2.068 a.u., the equilibrium bond distance of Hj. The resonance 
width is found to vary by roughly % within a range of angles 
between 28" < 0<38°. An average of the data over this range gives 
a resonance lifetime of .44 eV and an energy of 3.19 oV, when 
referenced to the SCF energy of ground state N2 in the same 
basis. Table I compares these results to those of other recent 
theoretical calculations. 

These preliminary results 2" are an encouraging indication 
that the complex SCF method, with properly chosen basic functions, 
can provide useful information about the lifetimes of certain 
types of molecular metastables and should provide a convenient 
starting point for further complex configuration-interaction studies 
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Figure 4. SCK Resonance energy of NJt^Il) as a function 
of rotation angle. The real part of the energy scale Is 
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Table I. Comparison of electron resonance parameters For 
N;j( 11„). Energies and widths are in electron volts 
and F.0 = 2.068 a.u. 

Complex SCF20 

Kriuss and Mies 2 ' 
(stabilization) 

Schneider et a l 2 ^ 
(R-raatrix) 

Hazi et a l 2 6 

Levin and McKoy2? 

r (R 0 ) 

3.19 

3.26 

2.15 a 

3.23 <2.16aJ 

2.19 a 

H*o> 

M 

.8 ,3 

.34 

.42 

.35 

a Resonance energy relative to the energy of a fictitous N2 
neutral core made up with N2 orbitals. 
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It is worth noting Chat the simple SCF approach outlined above is 
not applicable in the case of a Feshbach resonance (for example, 
He (2s 2p) JP) because the complex SCF equations so derived 
have solutions which yield a real value for E^scp and 
consequently give no information about Che resonance width. The 
decay of a Feshbach resonance is a correlation effect which 
cannot be described by a simple SCF treatment, HCSCF theory 
might offer an effective way to treat these cases. 
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