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L. LINTRODUCTTON

My objective in this talk will be to discuns some yooent
developments in the wse of camplex basts function techniques to
study resomance, av well as certain types ol non-resonant,
scattering phenorent,  Complex scaling techaniques and other
Llosely related pethods have continued to attract the attentvon
of computational physicists and chemists and have pov preacheld a
point of development where meaniagful caleculations o1 many-
electron (wore than two!) atom; and wolecules are beginuing to
appear feasible. The fivld has evolved very rapidly over the
past few years and I will not attempt anything like an exhaustive
veviev of the subject. 1 cap reler the interested reader to the
review article by McCurdy! aud to 2 volume of the International
Journal of Quantum Chemistr;% devoted entirely to the subject.
These sources give an excelleat summary of both ecathematical and
computational techniques in complex scaling through 1978. The
scope of this talk will be limited to seyeral deveiopments since
1973 with which [ have been connecled.

The first of these developments i. a discussiun of direct
methods for computing partial resomance widths.3 The imaginary
part of the complex resonance energy computed by any direct
method gives oniy the total resonance width, but it can be shown
that the eigenfunction asseciated with the complex resonance
eigenvalue can be used to provide partial width information - a
simple consequence of the separable nature of the S-matrix near a
resonance.
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The recent use of complex scaling wethods for studying
molecular resonances has stimulated cunsiderable interest {:
genzralizations which are applicable tu other continuum
processes.® 9 In Section 111 of this talk, T will review
methods for computing resolvent matrix elements - and molecular
photoionization cross sections in particular - within the
framework of the Born-Oppenheimer appcoximation. This discussion
will alsp serve to establish a enpnection hetween c¢wu methods
proposed {or treating molecular problemser 7 and will focus
attention on certain numerical complications that must be dealt
with.

Finally, in Section IV, I will review some very recent work
on how complex scaling ideas can be used to adapt siwmple SCF
theory to the study of negative ion shape resonances in atoms &nd
molecules.

I1. PARTIAL WIDTHS

Consider the scattering of a structureless particle by an
idealized target with no rearrangements and with a potential
which does not couple pavtial waves, These restrictions can be
relaxed at the cost of substantially more cumbersome notatioen.
The asymptotic form of the scattering wave [unction for partial-
wave L 1s given by
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where $,(X) is the rarget wave function for channel 8, and st (£
is the partial wave § matrix. The channel momenta k are xegﬁted
to the total energy E and target energy EY by

N - tZU(E—%)]% (2)

At a resonance eigenvalue €p, all non-vanishing § matrix
elements SBI(ER) have a pole. Thus at large r, the wave
function with k( givea by
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has only outgeing waves in each oper channel and satisfies the
asymptotic boundary condition
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For a problem with M open channels, we use a trial variatiunal
function of the form

N-M

; (5)
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where the functions ¢;(r,x) are squave-integrable basis
functions and the sum over B is limited to open chamels, The
functions 0 ave given by
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where glr) is a cutoff function satistyiag
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The coefficients C; and Cﬂ are determined by making the
functional
- - é
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wvhere Hg(r.x) ts the partial-wave Hamiltonian, stationary with
respect to variation of the coefficients,

Bardsley and Junkerd proposed an iterative scheme for
solving a single-channel version of Eq. (8) for resanances by
varying the (complex) walues of kE in the trial f. .tionm until
Eq. (3) is satisfied for a particular eigeavalue,

There is an important point to note about Eq. (8). The free~
free eluments of (Hy - E), i.e., matrix elements between two
functions of the form of & , are in general not weil defined for *
values ol the chaanel momefta iv the lower half-plave. This
difficulty depends spezifically on the form of the interaction




potential since the definition of the channel momenta in Eq. (2)
guarantees that the contribution at large r from the kinetic
energy to the free-free matrix elements of (Hy - E) does not lead
to divergences. The matrix is therefore defined, for a
particular choice of basis, as the analytic-ceontinuation of that
matrix from the upper half-k plane (physical sheet of the E
plane). This analytic continuation can be performed using
analytic formulas for the free-free matrix elements, if they are
available, or numerically as discussed by lsaacson et al.

The coefficients of the continuum functivns, Oﬁ, in Eq. (5)
are determined by diagonalizing the secular matrix obtained from
Eq. (8). There is, in general, no way to arrange for these
coefficients to coincide with the D, chosen in Eq. (4). We
deng}e the vector which connects the two sets of coefficlents
as o

B « B (9)

A single diagonalization of a multichannel Hamiltonian in a set
of basis functions which do not [ix the asymptotic normalization
of the wave function does not provide eigenvectors from which
complete scattering information can be obtained in the general
noncresonant situation.l0 The resonance case is considerably
simpler; complete infurmation, that is, partial as well as tolal
widths, can be obtained without requiring the mixing coeflicienls
a.

We can demonstrate this very simply. The partial-wave S
mairix is given in terms of the partial-wave T matrix by

1 ¥ % 4 (10)
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Since we are cgnsidering a problem with no partial-wave coupling,
we can write T, as a matrix element of the T operator between
functions of tE% form ¢a(x)X£(ka?), where
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and §l is the regular Ricatti-Bessel fuaction
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We can establish the behavicr of T, near a resonance by
recalling that T{£) satisfies the cperator equation for cll E,

T(E) = V + VG(EW (13)

where V is the Full potential and G(E) is the full Green’s
function (operator) for the system, The central point of the
proof hinges on the fact that the T operator is a separable
operator at the complex resvnance energy. We can define the
resonance wave fuaction le’ and the corresponding function in
the dual space <WRI (not merely the complex conjugate} in terms
of the residue of the Green's function at the resanance pole

|9R> wRI = lu (B-8) G(E)
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(14)

More and Gerjuoyll have discussed the fact that Eq. {16) fixes
the normalization of the resonance wave function and also derive
the relationship betweea ldh’ and |$R> . With the definition

in Eq. (13) we can casily see the residue of T(X) at a resonance
pole is a separable operator:
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The deinition of S in terms of Tp, Eq.[(10))and Eqs. (11)
i Brr, .
and (12) can be used to evaluate the singular term in qu
Combining all other contributions to the § malrix into &

background term S%ﬁhg, the form of SG& near a resonance is
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where the factors of the residue are
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1f we now follow the vsvwal arpument Qor a narrov resonance,
which is based on the unitarity of S5 for all real energies, we
are led to *he usual result for the partial widths for decay into

open channels ra that if P“ is defined by

I = ]‘{al’ (18)



and the total width is defined by

ER - ER-irlz (19)
where Eg is the real part of €p, the partial widths sum to
the total width
re )
rull B (20}

Although the identification of the total width as the sum of the
partial widths ‘Eq. 18) is exact only in the case of a narrow
resonance, it i3 important to note that the resonance form
expressed in Eq. (16) is exact and that an unaumbiguous definition
of both the complex resonance energy € and the residue factors
is provided by tne (analytically continued) matrix elements
defined in Eq. (17).

It is not convenient to use the definition of Ygin Eq. (16)
to compute the parzial widths, because we have not fixed the
normalization of Y to match that of Yg. Wowever, because of
the particular form of V. chosen in Eq. (5) we can derive a
simple prescription for the ratio of the partianl widths in two
channels. Recalling the definition in Eq. (9), it is ecasy to scc
that, with the form of the § matrix in Eq. (10), :he coefficients
Cg in the definition of Y are proportional (in the limit of a
complete basis) to the amplitudes Yp according to

1Y, .,
c, = - a 'y (21)
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Thus the ratio of partial widths for any pair of open channels is
given by

Cq

c

g

T

(22)
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Since the partial widths must sum to the total width, and the
Siegert eigenvalue compuled together with ¥, yields the total
width, we can use Eqs. 19) and (22) rogether to determine all of
the partial widths for decay into open channels.

The formalism outlined here was applied to a model three- *
channel square-tell problem. The computational details can be




found in reference 3. The results of this study confirmed the
conclusions reached gbove and showed that the use of complex
"Siegert" functions combined with purely L2 functions provides

a convenient method for obtainming quantitative information about
partial as well as total resonance widths. The procedutre we have
outlined sbove is appiicable to any direct method which provides
an accurate representation of the eigenfunction associated with
the resonance eigenvalue, However, if one were to employ a trial
function without reference to a particular asymptotic form, as in
the complex coordinale method lor cxample, one would also have to
project onto the resonance eigenfunction with the unperturbed
states ¢“(x)xg(kur), evaluated at complex coordinates, to extract
the coefficients which would play the same role as C in Eq. (21).
We refer the reader Lo the recent work of Noro and Taylor for
further details.!

I1L. COMPLEX~COORDINATE PROCEDURES FOR MOLECULES AND MOLECULAR
PHOTOIONIZATION

Two computational techniques have been proposed to date for
extending complex scaling techniques to molegular resonance
problems. In an earlier study, McCurdy and Rescigno® proposed
the use of ordinary [loating Gaussian basis functions which are
made complex by simply scaling the orbital cxponents by a phase
factor. It was arpgued that such functions, when used o form a
matrix representation of the Barn-Oppenheimer Hamiltonian with a
complex~valued scalar product, would effectively provide an
asymptotic scaling ol the electronic coordinates and that such a
scaling would be sufficient to remder a resonance eigenfunction
L2; this supposition was supported by several illustrative
calculations, More veceatly, Moiseyev and Corcoran! have
described a procedure which superficially appesrs to be identical
to the traasformation r-@t = Are® that can be applied to the
electronic coordinates of a dilatation analytic Hamiltonian.

This simple analogy is complicated, however, by the fact that the
branch-point singularities in the electron-nuclear attraction
terms of the Born-Oppenheimer Hamiltonian render it a nonanalytic
function ¢f electron coordinates. In addition to these numerical
studies, the formal work of Simonl% establishes that complex
scaling in the Born-Oppenheimer picture can be put on firm
mathematical ground through the use of what Simon calls the
method of “exterior complex scaling" in which the magnitudes of
all electronic coordinates are only scaled outside a sphere which
is large enough to enclose all the nuclei.

A recent development in this area was the observation by .
MCCurdya that the Moiseyev-Coicoran procedure’ could be



formally related to Simon's exterior complex scaling. This
observation also led to a procedure for calculating the matrix
elements of the resolvent needed to cvaluate photoionization
cross sections.® 1 will not repeat the rather Lengthy
arguments needed to establish the formal connections between the
various methods. These can be found in references 4 and 5. 1
will content myself here with a brief comparison o‘ the
McCurdy-Rescigno (MR)® and Moiseyev=Corcoran (MC)? procedures
and their use in photoionizatien calculations.

The MR procedure wiploys basis functions which effectively
scale ¥ by 0 asymptotically while avo1d1ng the nonanalyticity
problem at the nuclear centers. This is accomplished by forming
a matrix representation of the unscaled Born-Oppenheimer
Hamiltonian in a basis set of complex Cartesian Gaussians of the
form

1
(o, ¥, K) = Wy xRy - Ay)m(z - A

n
w]mn 2 (23)

po”4(F - 1)

We have aruged that using such a basis is equivalent to using
rotated coordinates in the Hamiltonian asympototically.

It is instructive to compare the behavior of the analytically
continued matrix 2iements in the MR and MC procedures,
particularly the matrix elements of the nuclear attraction
potential. We will consider a matrix element of one term of the
nuclear potential between two S~type Gaussians [l=m=n=0 in Eq.
(23)] both centered at position

e [t ]3"‘ [_E]3lqjd3re-u(?-3)2 IR S
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where Fo(z) is the entire fuqction of 2,
Fo(z) =172 /zl erf ( z) .

The MC procedure replaces (¢ - K)2 with (r - K)? in Eq. (24)
and obtains a formula for I by factoring 0~ -1 out of the




integrand. Evaluatiag the resuit at complex 0 gives

e e o)

In the M procedure, we simply multiply ® and B in Eq. (24) by
0‘2, giving

e (3 2 af 34 (a+Ble ](26)
e 5 (T} ’u+B; Fo[ X “! B

It is now clear from comparing Egs. (25 and (26) that the MR
procedure can be related to the MC procedure; 1[ the vasis
functions are simply shifted from ceater A to Kl in the
latter, it reduces to the McCurdy-Rescigno prescription.

Note that as the orbital cxpcneats @ and B become small,
IMC and TR Jimit to the same numerical value since Yimg, oFolz )l
Furthermore, since the asymptotic behavior of the elgenfunctlons
is determined by the most diffuse functions, it is clear that
both procedures should yield the same spectrum in the limit of a
complete expansion. However, since the behavior of the matrix
elements for large values of o and B is quantitatively very
different in the two procedures, one may expect to find
significant differences between the two methods in aumericatl
epplications. In fact, we expect to see substantial numerical
differences between the two approaches for the following reason.
In a complex-coordinate calculation, the cusps that appear ip the
wavefunction because of the nuclear sigularties in the Born-
Oppenheimer Hamiltonian are moved to complex centers, Recalling
that the M procedure can be derived from the MC prescrlptxon by
translating the basis funcfions to complex centers 071 X, we
see immediately that the MR riethod allows the complex cusps in
the molecular wave function: to be approximated by Gaussians of
large exponents on the cusp centers, while the MC method
effectively centers basis functions elsewhere. For this reason
we expect the MR procedure te have better convergence
properties.

We have applied both the MR and MC procedures to the
calculation of the photoionization cross section of H3.
mak2 use of the fact that the cross section T{(W) can be expressed
ac a matrix element of the resolvent:l?

1im '
drw } {27)
ofw) = =2 Im <y fu s ulp, >
0 c 0 HEom'lc 0



vhere ¥, is the wave function for the target in its initial state
with engtgy E,, M is the dipole operatar, and w is the photon
frequency, Under complex-acaling, the continuous ¢rectrum of the
atomic Hamiltonian is rotated off the real axis. This makes it
possible to obtain convergent approximations to Eq. (27) by
inverting a finite matrix representation of the scaled Hamiltonian
cbtained over a set of normalizable functions, whercas such a
representation could.not be used dlrectll at real energivs in the
continuum for the unscaled Hamiltonian.!

An approximation to Eq. (27) is obtained as (see references 4
and 5 for details):

olw) = 4nafe Im 03 B(Eg + 6 ~ L £, (28)

wherte Ehe 'mverse.(E° + Y -.Hifl is simply formed from the
analytically continued matrix elements obtained either from the
MR or MC procedures and the elements of f are given by

-3 3 (Bl
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The expansion coefficients dp in Eq. (29) make up the eigenvector
corresponding to ¥y and are determined by diagonalizing H, p(0)
over brsis Functions {X } of the initial-state symmetry. %Le
matrix inverse (Eq +w - W)~1 is then constructed over a sct

of functioas of opposite parity,[xa}.

To facilitate our comparisuns, we have used large basis sets
both to calculal - the lsg, ground-state eigenfunction and to
represent the matrix (Eg, + w - H)y for the 0 continuum. In
this way, we are able to use the same basis sets Eor both methods
while avoiding the criticism that the basis set was cptimum for
one method but not for the other. After choosing the basis-sat
exponents, one may optimize the scaling parameter © in a given
basis set because the results are formally independent of ¥ when
converged. The usual procedure in atowic calculations is to fix
the magnitude of 8 at unity and vary the argument ro find the
vegion of greatest stability. We did that using the MR
prescription for computing H (3), making no attempt -0 optimize
the magnitude of 6. Figure % shows a superposition of five plots
of the photo-ioaization cross sections obtalned by setting

= exp(ind/180.0) and varying ¢ in 2.5° increments over a 10
1nterva1 centerad approximately at the most stable point in §.
The results are stable within a few percent and azree essentially
exactly with the exact values of Bates and Opik.l
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Fig. 1. Superpusition of results for the parallei cowponent

of the photoionization cross section of Y5 computed using

the method of Ref. 6 to analyttcally continwe the Hauiltoniun
matrix elements. The superimposed curves .re for ¢ varying over
the most stable region (15° to 25°) in 2.5% increments.

We repeates this calculacion with the procedure of Moiseyev
and Corcoran. However, no recognizable region of stability could
be lound with [¢{= 1, and we therefors varied |0| to find a more
optinum value. It is not surprising that this was necessary
cosidering the behavior of nuclear attraction integrals with
large exponents which Moiseyev and Corcoran point out and uhich
ve discussed earlier. We find the rast favorable value of |g| to
be approximately 0.6, with little semsitivity for values varying
oetweer. .5 and 0.8. Figure 2 shows a superposition of five
plots for tke photoionication cross sections obtained with
B = 0.6 expfid /180.0) For values of § in 2.5° increments over a
10 interval, again approximately centered in the region of
greates! stability. Comparison of Fig. | and 2 shows that the
Moiseyev-Corcoran technique is substantial.y less stable in this °
applization than that of McCurdy and Rescigno.
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FIG. 2. As in Fig. 1, but using the method of Ref, 7 to
analycically continue the Hamiltonian matrix elements. The
magnitude of the scaling parameter is 0.6 and ¢ varies from
5° to 15° in 2.5° increments.

In comparing the two methods, we have concentrated on the
behavior of the matrix elements of the nuclear attraction terms,
since their non-analytic behavior has hindered the application of
complex scaling techniques to molecular probelms. Moiseyev and
Corcoran have also emphasized that the computation of two-
electron matrix elements, which is the most time-consuming part
of integral evaluation, is simpler with their procedure since the
integrals are simply scaled by constants and need not be
recomputed when the scale parameters are changed. It is note-
worthy, however, that several applications of complex scaling
techtiques to atomic problems involving more than two electrons

.




have shown that accurate results van only be achicved when the
orbitals referring to tightly bound core electrons are left
unscaled and the outer valence clectron orbitals made
complex.ls We have adopted a similar procedure for wolecules,
which 1 will illustrate in the next section. With this mix of
resl and complex orbitals, the two-electron integrals no longer
scale simply aad the computational details involved in
implementing cither wethod are compavable,

IV, COMPLEX SCF TEUNNIQUES
A. Formulation

Almost all of the vrevious calculations using complex hasis
Functions have rclied on direct diagonalization of the
Hamiltoni¢n with many-electron basis states. In convention. i
structure calculations on bound states, a Hartree-Fock
wavefunceion is frequently generated as a starting pe 't lor moge
accurate treatments. 1t is logica} to assume that the basic
maihematics of SCF theory should also be applicable to the
square-integre' ¢ resonance eigenstates of an analytically
continued complex Hamiltonian. We have recently shown that, for
the case of shape resonances in atom. and molecules, this is
indeed the case.

The basic ideal?, 20 underlying our discussion of the SCF
equations for resonanes is that by beginming with the complex
atomic Hamiltunian, W{teil), and following (essentialiy) the
same variational arguments used to derive the bound state SCF
equatiuns, we can derive complex SCF equations appropriate for
resonance states. This procedure is successful because the
resonance ciger.functiuns of the complex Hamiltonian are square-
integrable. In that sense these eigenfunctions are snlficiently
like bound state wavelnnctions to allow treatment by the SCF
methods currently employed in many bound state calculations.

We will specislize our discussion to the simple case of a
shape resonar z¢ which corresponds to an electronic conf.guration
with one electron outside a closed shell. The 2P shape resonance
encounterad in e~ - beryllium scattering is 2n example of such a
case; the :Hg resonauce state of N3 is . well known molecular
examp le.

Starting with a trial variatioaal wavefunction which is a
single Slater determinant of spin orbitals

¢ = detlw‘mlw’m’n-‘ ¢k$kwu| ’

(30},
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where cach spin orbital, Vi, is the product of a spatial
orbital ¢ (depending on the coc:dinates of one electron) and n
spin function, and y; denotes the spin orbital with oppesite
spin, we derive the SCF cquations for the orbitals, ¢iv by
secting to zero the first variations with respect to those
orbitals of a paiticular functional. For the ordinary hound
state problem that fuactional cunsivts of the expectation v iiue
of the Hamiltonian with respect to v plus Lagrange multiplier
terms which serve to apply the orthonormality constraint amony
the orbitals, ﬁ. In our case we must general.ze this
expression slightly. Since the )} amiltonian, H({vr;}), is not
hermitian, its cigenfunctions torm a biorthoponal sct , and the
complex canjugate of the wavefunction which appears in the usual
expectation value is not appropriate. Thus the functional we
have chosen is I

'
1 "f° H({tja})odT‘dT'-nodT2k+l

k
- L AL [ (D), (N
1,31 ”f L

(J1)

k .
3
. 2151 Ay fo (10, e’

A, o< H
- cuftbu(rwu(r)d r

where the matrix, lijv of Lagrange multiplicrs is complex
ymmetric and the redundant terms in the first sum are tor
convenience vnly. As the scale factor, 0, approsches unity the
SCF equations must approach the usual Hartree-Froch cquuations in
which the orbitti Hamiltonians are hermitian. The cquations we
drive using Eq. (31) have this property only if the urbitals,
®;, in the trial wavefunction are real when :1, because
otherwise the Coulomb and exchange operators as dulined below ace
nonharmitian. In practice, this simply means that we are
constructing the correct analytic continuation of the working
equations of the ordinary real valued SCF calculations of gquantum
chemistry, Note that in defining the functiunal in equation
(31), we have in mind a class of problems which, in the 871
limit, can be formulated in terms of real orbitals. ILf, for
example, the orbitals of Eq. (31) were expressed as products of
radial functions and spherical harmonics, the functional we would »
then use would have the complex conjugate of the aagular
variables of the left hand orbitals appearing in all the scalar
products, but not the radial variables.
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By setting the functional derivatives, 81708, and “{/88,,
of equation (31) with respect to the open and clused shel!
orbitals to zero, we cbtain the SGF cquations. If we define the
Fock operators by

-~ k ~ " ~ "~
" ~l - -1 -
Fohy +8 jfl(z.r_1 k) +070 - )

|3
Ly - - "~ - L.} (32)
Fu by + ] jtlmj KJ)

vhere the one electron Hamiltouian, hb' is (atomic units)

a7
hg=-"7 ¥ -7 (33)

and the foalomb and exchange operators are

/ 6 ”’f_lda, (3)
2

(T)Mr) .
K ¢ ~ ¢ (r )J[ d r'

the complex SCF equations caa be wriltea

k

2, = 551 Apgby t gl (35)
. k .

P ™ j:1 qu’J t o )
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The usual SCF procedure is to find a set of equivalent matrix
equaticns by multiplying equation {35) by the orbitals and
integrating. All the matrices appearing in these calculations

=15~




=16~

arc complex symmetric. Finally, we notc that the value of the
complex resonance energy from this procedure is the complex SCF
energy, Eegep

Eoser "f@H ({rjﬂl)ﬁn edty

(36)
k L)
> ]
11:1 8y(hg + ¥ )0 d%

+ 'sftbu(he + Fu)¢ud’r

B. Atomic Example

The 2P shape resonance in c-beryllium scattering is an
example of a resonance which the :omplex SCF approach should
describe well. We have perlormed two sets of caleulations on
this system,19 the first of which vmploys a (145/16p) basis of
real valued Gaussians chosen as [ollows. The complex SCF
eguations were solved in matrix form and Ecgep from this
calculation with 0 = exp(ia) is plotted in Figure 3 for a range
of « values between .3 and .5 radians. We were unable to
converge the SCF equations for values of o less than .3, The
trajectory of Epgep as a function of a is somewhat surprising
in view »f what has been observed in complex coordinate Cl
calcutations,

In a configuration interaction calculation using the complex
Hamiltonian, H({Or-}), there is a well known behavior to be
expected of the complex resonance eigeavalue as a function of 0.
That behavior, which can be shown te be a consequence of the
complex version of the virial theorem,?l is that for a given
basis set the resonance eigenvalue, Eregs has a stationary
point with respect to variation of 0 so that, at some value of €,
dEyag/d0 vanislies. The stationary point does not necessarily
occur with ]6[ = 1, but if a CI calculation is performed with
0 =exp(ia) a sharp cusp in the comglex value <[ Epq¢ is often
found as  is varied, The curve in Figure 3 corresponding to the
(14s/16p) real basis function calculation does not show such a
cusp, nor is Epgep particularly stable as o is varied. This is
a troublesome point because the stationary value of E.oq is
usually taken to be the best approximation to the resonance
energy:

The main curve in Figure 3 shows little evidence of
stationarity wilh respect to variations in @. This problem is



due entirely to an inadequate description of the orbitals which
make up the Be core, particularly the cight 1s orbital. The
problem has been discussed in detail elsewherc!® and can be
solved by using Gaussian basis functions with complex exponents
given by 9L vhere & is real to expand the cors orbitals (1s
and 25 in this case). Thus we performed a second sct of

1 ] T
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v <0.0085 ——r—T—
0,010 - f | N
H 0
3 00004040 A
-0.009 |- = ! {3
8 w 0.55
¢ Z -0.0003 -
‘: - — - | | _4
g oo 2033 0.29 0.25
g -0.007 l‘!e(E),millihartrees_1
E
-0.006 |- i
-0.005 _]
L .
-14.550 -14,540 -14,530

Re(E), hartrees

Figure 3. Ecgcp for Be™ as a function of « in the

scaling parameter 9 = exp{ia). The main cirve is calculated
with real basis functions, and the insert is the complex
basis function result for the same range of @, The real part
of the energy scale in the .nsert is relative to -14,%47
Hartrees.

calculations with only the s-functions scaled by 0. The results
of this calculation are plotted in the inset to Figure 3. The
stability of Ecgep as a function ol @ is remarkable in this
calculation, but still no sign of clear cusp behavior was
observed. Fortunately Eqgep is so stable that it is unnecessary
to find a stationary point of Ezgcp in order to find the
resonance energy. Choosing a value of o neat the center of che
range plotted in Figure 3 (4=0.4) we find Eggep = 14.54733 -

LGP 371, The value for the width of the resonance is therefore
0.51 eV or about half the value from a static exchange
calculation.1® To get an estimate of the position of the
resonance it seems most reasonable to subtract the Hartree-Fock
value of the ground state energy of Be from Eggep for Be™,
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because ane of the sotutions of the complex SCF cquations (a
nonresonant, continuum solution) is the Hartree-Fock wavefunction
for Be with the remaining electrop in a continuum p orbital with
(in a limiting sense) zero energy. The resonance position so
obtainfd is 0.70 eV, only slightly lower that the static exchange
value.

There is a practical note which concerns the use of complex
basis functions, In an carlier publicationl® we made use of
the identity, written here for the radial part of a one electron
problem,

f b, (IH(BY ()xdr = 6 f 8, (20" IH(r), (87 )r e on

to perform a rotated coordinate calculation by diagonalizing the
real Hamiltonian, H(r), using complex basis functions, 9;(r071).

It is in fact more convenient to use the same device in complex
SCF calculations., Thus the second of our calculations!? on Be™ was
actually perfurmed with unscaled Fock operators and complex p basis
functions of the form ¢; {x&"l) and real s basis functions, instead
of scaled Fock operators with real p and complex s basis functions
as described above. These two forms of the calculation are
completely equivalent, but the prescription of unscaled Fock
opetators plus complex basis functions requires fewer complex two
electron integrals and, more importantly, is a more convenient
starting point for the ecxtension to molecular problems.

B. Molecular Example

The 2F resonance state of Nj has been well characterized
experxmentally through exten51ve studies of vibrational excitation by
electrans between 1 and 5 ¢V’ % and has also been the subject of
numerous theoretical treatments.23-27 We felr that this system
would provide a good indication of whether the "method of complex
basis functions” is an accurate and practical way to proceed with
complex SCF studies on molecules.

The open-shell SCF equations_for N2(2ﬂ » vhich has
the electronic configuration (IOE 10} 20g o 30? iy Ing ) 2
were solved in a mixed basis set of real and complex Cartesxan
Gaussian Functions.2® For these calculations, we use a real
valued Hamiltonian again and Gaussian basis functions in which
the exponents are scaled by 0672, The non-resenant core orbitals
(all but 1m,) were again expanded solely in terms of real
functions, %ar the same physical reasons which are discussed at
length in reference 18. We also carried out several numerical
tests to check the adequacy of the core-orbital basis., ‘'These are
be discussed below.
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The ing orbital was expanded in terms of both real and
complex Gaussians, The latter were chosen following the
prescription of McCurdy and Rescigno (reference 6) by complex-
scaling the orbital exponents of the Gaussian basis functions and
keeping the associated nuclear centers real.

The core orbitals were expanded in a nuclear-centered
( 9s Sp)/[5s 3p] contracted basis, augmented with two d-
polarization functions {0 = 1.0 and ,4), Several choices lor
the 7y, orbital space were tested. A prelimenary set of
caICu§ations was done using a (4p) basis, augmented with
additional diffuse dq functions placed at the center-of-mess.
All 7g functions were complex scaled. hese calculations
produced a complex total cnergy for Nz( ﬂg‘ which depended
strongly on and varied monotonically with the rotation angle ¢,
the resonance width varying by 1oughly 40% over the range
15°< ¢ ¢25°. A simple test was devised to demonstrate that this
xnstabxlxty was due to the inadequacy of the i, orbital basis
and not the core orbital basis, The total SCF enerpy for HL(ZH )
can be written as E = Egore + Ny Mhege Ecqre is the core- orbxtal
contrnbut;on to the total energy and l'lg is the orbital energy of

A series of "static~cxchange" calculations was performed at

di%ferent angles with the core orbitals frozen. It was found that
¢hanges in were precisely equal to the variations noted
earlier in the SCF calculations.

The addition of several real py functions to the 1, orbital
space greatly reduced the sensitivity of the energy to the
rotation angle, The final Ty basis we used consisted of the
(5p Zd)/[Jp 2d] set of re:l funcrions, four nuclear-ceatered p
functions with expaneats .6, .26, (125, and .05 and six complex d
functions placel at the center-of-mass with expanents ranging from

.2 to .002 in a geomerric series, The total energy o5 a function
of rotation is shown in Figure 4 for an internuclear separation of
2.068 a.u., the equilibrium bond distance of Ny. The resonarce
width is found to vary by r.ughly 2% within a range of angles
between 28° < §¢38°% An average of the data over this range gives
a resonance lifetime of .44 eV and an energy of 3.19 oV, when
referenced to the SCF energy of ground state Ny in the same
basis. Table 1 compares these results to those of other recent
theoretical calculations.

These preliminary results0 are an encouraging indication
that the complex SCF wethod, with properly chosen basis functions,
can provide useful information about the lifetimes of certain
types of molecular metastables and should provide a convenient

starting point for further complex configuration-interaction studies.
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Figure 4. 5CF Resunance energy of N§(2 ) as a tunction
of rotation angle. The real part of the energy scale is
given relative to -108.8%94 Hartrees. The internuclear
separation 1s 2,068 a.u.

Table I. Comparison of electron resonance parameters for
Nj(zﬂﬁ). Epergies and widths are in electron volts
and Ky = 2.068 a.u.

¢ (Rg) I'(R,)
Complex scr20 3.19 b
Kriuss and Mies24 3.26 .8 .3
{stabilization)
Schnejder et al?? 2,158 .34
(R-matrix)
Hazi et a126 3.23 (2.163) 42
Levin and McKoy27 2.198 W35

4 Resenance energy relative Lo the energy of a fictitous Ny
neytral core made up with N7 orbitals.



It is worth noting that the simple SCF approach outlined above is
not applicable in the case of a Feshbach resonance (for example,
He (2s 2p) 3P) because the complex SCF equations so derived

have solutions which yield a real value for Eggcp and
consequently give no information about the resonance width. The
decay of a Feshbach resonance is a correlation effect which
cannot be described by a simple SCF treatment. MCSCF theory
might offer an effective way to treat these cases.
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