I R HI

UCRL 85804

IRIISIMi

$11: \quad .11^{1} 11,^{\prime}!\cdots-2$
 MASTER

liccent Develoments in
Complex Scalinọ

T. N. Rescigno

Proceedings of Horkshop on
Electron-Atom and Flectron-ilolecule
Collisions
Gielefeld, Gertidny
Moy 5-14,1980
Decenber 15, 1980

RECEN DEVELOPMPNTS IN COMPLEX SCALING

1. N. Ruscigno

Thearetical Atomac and Molecular Physics Group
Lawrace Livermore National Laburatory
Universicy ol California
Lavermors, califorr a 245%

1. :NTRODLC [lGN

My objective in this tatk will be to disemses sume r. rmi developments in the use of complex basis function techniqurs to stody resoname , a wedl as certain types of mon-resomat, acattering phanwat. Complex scaling trchairate and ollorr closely related wetheds have cemtinurd to attact che attontum of computathond physirists and chomeste mad have nur aricher a point of development where meaningful calcularions of nanyelectron (more than two!) atom; and molecules are beginaling to appear feasible. The field has evolved very rapidly over the past few yesrs and I will nor attempt anything like an exhoustive revien of the subject. 1 can reter the interested reader to the review article by McCurdy and to a volume of the Incernational Journal of Quantum Chemistr, ${ }^{2}$ devoted entirely to the subject. These sources give an excellent summary of both tathematical and computational tecliniques in camplex scaling through 1478. The scope of this lalk will be limited to several deveiopments sinc: 1973 with which I have been comected.

The first of these developments i. a discussiun of direct methods for compuring parlial resonance widths. 3 The imaginary part of the complex resonance energy computed by any direct method gives uniy the total resonance width, but it can be shown that the a igenfuactun assuciated with the complex resonance eigenvalue can be used to provide partal width information a a simple consequence of the separable nature of the S-matrix near a resonance.

The recent use of complex scaling methods for studying molecular resonances has stimulated considerable interest i. generalizations watch are applicable to other continuum processes. 4,5 bu Section III of this tali, 1 will review methods for computing resolvent matrix elements - and molecular photoionization cross sections in particular - within the framework of the Born-Oppenheimer approximation. This discussion will also serve to establish a connection between wo methods proposed for treating molecular problems 6,7 and will focus attention on certain numerical complications that must be dealt with.

Finally, in Section IV, I will review some very recent work on how complex scaling ideas can be used to adapt simple SCF theory to the study of negative ion shape resonances in atoms end molecules.

II. PARTIAL WIDTHS

Consider the scattering of a structureless particle by an idealized target with no rearrangements and with a potential which does not couple partial waves. These restrictions cent be relaxed at the cost of substantially wore cumbersome notation. The asymptotic form of the scattering wave function for partialwave \mathbb{C} is given by

$$
\begin{align*}
& \Psi_{\alpha, k_{\alpha, 2}}^{\dagger+}(\tau, x) \xrightarrow[I+\infty]{ } \frac{1}{\left(2 \pi k_{\alpha}\right)^{2} I^{2}} \\
& \sum_{\beta}\left\{(-1)^{R \delta} \alpha_{\alpha B} \frac{e^{-1 k_{\alpha} r}}{k_{a}^{2 / 2} r}-S_{B, a}^{2}(E) \frac{e^{i k_{B} r}}{k_{B}^{1 / 2} r}\right\} \phi_{B}(x) \tag{1}
\end{align*}
$$

where $\phi_{\beta}(x)$ is the target wave function for channel $B_{\text {, }}$ and $S_{\beta{ }_{B}}^{l}$ (E is the partial wave S matrix. The channel momenta k, are related to the total energy E and target energy ${ }^{\varepsilon} Y$ by

$$
\begin{equation*}
k_{\gamma}=\left[2 \mu\left(E-\xi_{\xi}\right)\right]^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

At a resonance eigenvalue $\dot{\varepsilon}_{R}$, all non-vanishing S matrix elements $S_{\beta \alpha}\left(E_{R}\right)$ have a pole. Thus at large r, the wave function with k_{i}^{R} given by

$$
\begin{equation*}
\mathbf{k}_{0}^{R}=\left[2 \mu\left(\varepsilon_{R}-\varepsilon_{0}\right)\right]^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

has only outgoing waves in each open channel and satisfies the asymptotic boundary condition

For a problem with M open channels, we use a trial variational function of the form

$$
\mathrm{N}-\mathrm{M}
$$

$$
\begin{equation*}
\phi_{t}=\sum_{i=1} C_{i} \phi_{i}(x, x)+\sum_{\beta} C_{\beta} \theta_{\theta}(r, x) \tag{5}
\end{equation*}
$$

where the functions $\oint_{i}(r, x)$ are square-integrable basis functions and the sum over $\hat{\beta}$ is limited to open channels. the functions $0_{\hat{\beta}}$ are given by

$$
\begin{equation*}
\theta_{B}=g(x) \frac{e^{1 k_{B} x}}{r} \Phi_{B}(x) \tag{6}
\end{equation*}
$$

where $g(r)$ is a cutoff function satisfying

$$
\begin{equation*}
g(r) \underset{r \rightarrow 0}{\eta} r^{l+1} ; g(r) \underset{r \rightarrow \infty}{\longrightarrow} i \tag{?}
\end{equation*}
$$

The coefficients \mathcal{C}_{i} and $\mathcal{C}_{\boldsymbol{f}}$ are determined by making the functional

$$
\begin{equation*}
I\left[\psi_{\mathrm{L}}\right]=\iint \psi_{\mathrm{t}}(r, x)\left(H_{2}(r, x)-E\right) \psi_{\mathrm{t}}(r, x) r^{2} d r d x \tag{8}
\end{equation*}
$$

where $H_{l}(r, x)$ is the partial -wave Hamiltonian, stationary with respect to variation of the coefficients.

Beardsley and Junker ${ }^{8}$ proposed an iterative scheme for solving a single-channel version of Eq. (8) for resonances by varying the (complex) values of k_{G}^{R} in the trial f. .cion until Eq. (3) is satisfied for a particular eigenvalue.

There is an important. point to note about Eq. (8). The free free elements of ($H_{\ell}-E$), ie., matrix elements between two functions of the form of (1 , are in general not well defined for values of the channel momenta in the lower half-plane. This difficulty depends specifically on the form of the interaction
potential since the defintion of the channel momenta in Eq. (2) guarantees that the contribution at large r from the kinetic energy to the free-free matrix elements of $\left(H_{l}-E\right.$) does not lead to divergences. The matrix is therefore defined, for a particular choice of basis, as the analytic-continuation of that matrix from the upper half-k plane (physical sheet of the E plane). This analytic continuation can be performed using analytit formulas for the free-free matrix elements, if they are available, or numerically as discussed by lsacson et al. ${ }^{9}$

The coefficients of the continumm functions, β_{B}, in Eq. (S) are deterained by diagonalizing the secular matrix obtained from Eq. (8). There is, in general, no way to arrange for these coefficients to coincide with the D_{β}^{α} chosen in Eq. (4). We dengte the vector which connects the two sets of coefficients as $\stackrel{3}{\alpha}$:

$$
\begin{equation*}
c_{B}=\sum_{a} a_{a} D_{\beta}^{a} \tag{9}
\end{equation*}
$$

A single diagonalization of a multichannel Mamiltunian in a set of basis functions which do nof fix the asymptotic normalization of the wave function does not provide eigenvectors from which complete scattering information can be abtained in the general nonresonant situation. 10 The resonance case is consideribly simpler; complete information, that is, partial as well as tolal widths, can be obtaiturd without requiring the mixing coefticients $\stackrel{\rightharpoonup}{a}$.

We can demonstrate this vory simply. The partial-wave S ma: rix is given in cerms of the partial-wave T matrix by

$$
\begin{equation*}
S_{B a}^{2}=\delta_{B a}-2 \pi 1 \mu k_{a}^{\frac{1}{2}} k_{B}^{L_{B a}} T_{B a}^{2} \tag{10}
\end{equation*}
$$

Since we are considering a problem with no partiol-wave coupling, we can write $T_{\beta a}^{l}$ as a matrix element of the T operacor between functions of the form $\phi_{\alpha}(x) X_{\ell}\left(k_{\alpha} \stackrel{\rightharpoonup}{I}\right)$, where

$$
\begin{equation*}
x_{l}\left(k_{\alpha} \stackrel{\rightharpoonup}{r}\right) \cdot\left(\frac{2}{\pi}\right)^{\frac{1}{2}} i^{\hat{j}_{e}\left(k_{\alpha} r\right)} \hat{k}_{\alpha} r \quad(\hat{r}) \tag{11}
\end{equation*}
$$

and \hat{j}_{ℓ} is the regular Ricatti-Bessel function

$$
\begin{equation*}
\mathbf{T}_{B \sigma}^{\ell}=\left\langle\phi_{\beta}(x) X_{\ell}\left(k_{\beta} \vec{r}\right){ }_{i}^{\prime T}(E) \mid \phi_{\alpha}(x) X_{l}\left(k_{\alpha} \vec{r}\right)\right\rangle \tag{12}
\end{equation*}
$$

We cant establish the behavici of $T_{\beta q}^{\ell}$ near a resonance by recalling that $T(E)$ satisfies the operator equation for all E,

$$
\begin{equation*}
T(E)=V+V G(E) V \tag{13}
\end{equation*}
$$

where V is the full potential and $G(E)$ is the full Green's function (operator) for the system. The central point of the proof hinges on the fact that the T operator is a separable operator at the complex resonance energy. We can define the resonance wave function $\left|\Psi_{R}\right\rangle$ and the corresponding function in the dual space $\left\langle\psi_{R}\right.$) (not merely the complex conjugate) in terms of the residue of che Green's function at the resonance pole

$$
\begin{equation*}
\left|\psi_{R}\right\rangle\left\langle\psi_{R}\right|=\quad \lim _{E+E_{R}}\left(E-E_{R}\right) G(E) \tag{14}
\end{equation*}
$$

More and Cerjuoyll have discussed the fact that Eq. (14) fixes the normalization of the resonance wave function and also derive the celationship between $\left|\psi_{R}\right\rangle$ and $\left|\psi_{R}\right\rangle$. With the definition in Eq. (13) we con casily see the residue of $T(E)$ at a resonance pole is a separable operator:

$$
\begin{equation*}
\underset{E+E_{R}}{ } \quad\left(E-\varepsilon_{R}\right) T(E)-V\left|\Psi_{R}\right\rangle\left\langle\Psi_{R}\right| V \tag{15}
\end{equation*}
$$

The decinition of $S_{d i \ell}^{\ell}$ in terms of $T_{B x}^{\ell}$ Eq. [(10)] and Eqs. (11) and (12) can be used to evaluate the singular term in $S_{\beta_{3}}$ Combining all other contributions to the S matrix into a background term $S_{\text {big }}{ }^{\ell}$, the Eorm of $S_{R \alpha}^{l}$ near a resonance is

$$
\begin{equation*}
s_{B, \alpha}^{\ell}=s_{\theta, \alpha}^{b g, L}-1 \frac{\gamma_{g} \gamma_{\alpha}^{*}}{E-\varepsilon_{R}} \tag{16}
\end{equation*}
$$

where the factors of the residue are

$$
\begin{aligned}
& Y_{\beta}=\left(2 \pi \mu k_{\beta}^{R}\right)^{\frac{1}{2}}\left\langle\psi_{\beta} X_{\ell}\left(k_{\beta}^{R}\right)\right| V\left|\psi_{R}\right\rangle \\
& \bar{Y}_{\alpha} \equiv\left(2 \pi \mu k_{\alpha}^{R}\right)^{\frac{1}{2}}\left\langle\phi_{\alpha} X_{\ell}\left(k_{\alpha}^{R} \bar{r}\right)\right| V\left|\bar{\psi}_{R}\right\rangle
\end{aligned}
$$

If we now follow the usual argument for a narrow resonance, 12 which is based on the unitarity of $S_{\text {Ba }}$ for all real energies, we are led to the usual result for the partial widths for decay into open chanmels Γ_{a} that if Γ_{a} is defined by

$$
\begin{equation*}
r_{\alpha}=\left|\gamma_{\alpha}\right|^{2} \tag{18}
\end{equation*}
$$

and the total width is defined by

$$
\begin{equation*}
\varepsilon_{R}=E_{R}^{-1 \Gamma / 2} \tag{19}
\end{equation*}
$$

where E_{R} is the real part of ε_{R}, the partial widths sum to the total width

$$
\begin{equation*}
r=\sum_{\alpha} r_{\alpha} \tag{20}
\end{equation*}
$$

Although the identification of the total width as the sum of the partial widths 'Eq. 18) is exact only in the case of a narrow resonance, it is important to note that the resonance form expressed in Eq: (16) is exact and that an unambiguous definition of both the complex resonance energy ε_{R} and the residue factors is provided by the (analytically continued) matrix elements defined in Eq. (1) .

It is not convenient to use the definition of γ_{β} in Eq. (16) to compute the par:ial widths, because we have not fixed the normalization of ψ_{1} to match that of ψ_{R}. However, because of the particular form of ψ_{t} chosen in Eq. (5) we can derive a simple prescription for the ratio of the partial widths in two chanels. Recalling the definition in Eq. (9), it is ensy to seo that, with the form of the S matrix in Eq. (16), :he coefficients © ρ in the definition of w_{t} are proportional (in the limit of a complete basis) to the amplitudes γ_{B} according to

$$
\begin{equation*}
c_{\beta}=\frac{i \gamma_{\beta}}{k_{\beta}^{\frac{1}{2}}} \sum_{\sigma} a_{\alpha} \bar{\gamma}_{\alpha}{ }^{*} \tag{21}
\end{equation*}
$$

Thus the ratio of partial widths for any pair of open channels is given by

$$
\begin{equation*}
\frac{\Gamma_{B}}{\Gamma_{\alpha}}-\left|\frac{k_{\beta}}{k_{\alpha}} \frac{C_{B}}{C_{\alpha}}\right|^{2} \tag{22}
\end{equation*}
$$

Since the partial widths must sum to the total width, and the Siegert eigenvalue computed together with ψ_{t} yields the total width, we can use Eqs. 19) and (22) together to determine all of the partial widths for decay into open channels.

The formalism outlined here was applied to a model threechannel squaremell problem. The computational details cen be
found in reference 3. The results of this study confirmed the conclusions reached above and showed that the use of complex "Siegert" functions combined with purely L^{2} Eunctions provides a convenient method for obtaining quantitative information about partial as well as total resonance widths. The procedure we have outlined above is apnicable to any direct method which provides an accurace representation of the eigenfunction associated with the resonance cigenvalue, However, if one were to employ a trial function without reference to a particular asymptotic forta, as in the complex courdinate method lor example, one would al so have to project onto the resonance eigenfunction with the unperturbed states $\phi_{\alpha}(x) X_{l}\left(k_{\alpha} r\right)$, evaluated at complex coordinates, to extract the coefficients which would play the same role as C in Eq. (21). We refer the reader to the recent wark of Noro and Taylor for further decails. ${ }^{1 J}$

IIT. COMPLEX-COORDINATE PROCEDURES FOR MOLECULES AND MOLECUI.AR HHOTOLONIZATION

Two computational techniques have been proposed to date for extending complex scaling techniques to molecular resonance problems. In an earlier study, NcCurdy and Rescigno ${ }^{6}$ proposed the use of ordinary floating Gaussian basis functions which are made couplex by simply scaling the orbital exponents by a phase factor. It was argued that such functions, when used in form a matrix representation of the Born-oppenacimer Hamiltonian with a complex-valued scalar product, would effectively provide an asymptotic scaling of the electronic coordinates and that such a scaling would be sufficient to render a resonance eigenfunction L^{2}; this supposition was supported by several illustracive calculations, More recently, Moiseyev and Corcoran ${ }^{7}$ hive described a procedure which superficially appears to be identical to the transformation $r \rightarrow B r=$ hre ${ }^{i d}$ that can be applied to the eiectronic coordinates of a dilatation analytic Hamiltonian. This simple analogy is complicated, however, by the fact that the branch-point singularities in the electron-nuclear attraction terais of the Born-Oppenheimer Hamiltonian render it a nonanalytic function of electron coordinates. In addition to these numerical studies, the formal work of Simonl4 establishes that complex scaling in the Born-Oppenheimer picture can be put on firm mathematical ground through the use of what Simon calls the method of "exterior complex scaling" in which the magnitudes of all electronic coordinates are only scaled outside a sphere which is large enough to enclose all the nuclei.

A recent development in this area was the observation by . MoCurdy ${ }^{4}$ that the Moiseyev-Coicoran procedure ${ }^{7}$ could be
formally related to Simon's exterior complex scaling. This observation also led to a procedure Eor calculacing the matrix elements of the resolvent needed to evaluate photoionization cross sections. 4 , I will not repeat the rather lengthy arguments needed to establish the formal comections between the various methods. These can be found in references 4 and 5. I will content myself here with a brief comparison of the McCurdy-Rescigno (MR) ${ }^{6}$ and Moiseyev-Corcoran (NC) ${ }^{7}$ procedures and their use in photoiohiation calculations.

The \mathbb{M} proredure cr.ploys basis functions which effectively scale \vec{r} by 0 asymptotically while avoiding the nonanalyticity probiem at the nuclear centers. This is accomplished by forming a matrix representation of the unscaled Born-Oppenheimer Hamiltonian in a basis set of complex Gartesian Gaussians of the form

$$
\begin{array}{r}
\psi_{1 m n}^{\theta}(a, \vec{r}, \vec{A})=N_{1 m n}\left(x-A_{x}\right)^{\prime}\left(y-A_{y}\right)^{m}\left(z-A_{z}\right)^{n} \tag{23}\\
e^{-a \theta^{-2}(\vec{r}-\vec{A})^{2}}
\end{array}
$$

We have aruged that using such a basis is equivalent to using rotated coordinates in the Hamiltonian asympototically.

It is instructive to compare the behavior of the analytically continued matrix siements in the $\mathbb{M R}$ and MC procedures, particularly the matrix elements of the nuclear attraction potential. We will consider a matrix element of one term of the nuclear potential between two s-type Gaussians [$1=m=n=0$ in Eq. (23)] both centered at position \vec{A} :

$$
\begin{equation*}
I=\left(\frac{2 a}{\pi}\right)^{3 / 4}\left(\frac{2 \varepsilon}{\pi}\right)^{3 / 4} \int d^{3} r e^{-a(\vec{r}-\vec{A})^{2}} \frac{1}{\sqrt{(\vec{r}-\vec{R})^{2}}} e^{-\beta(\vec{r}-\vec{A})^{2}} . \tag{24}
\end{equation*}
$$

$$
=\left(\frac{32}{\pi}\right)^{1 / 2} \frac{(\alpha \beta)^{3 / 4}}{(\alpha+\beta)} F_{0}\left((\alpha+\beta)(\vec{n}-\vec{A})^{2}\right)
$$

where $F_{0}(z)$ is the entire function of z,

$$
F_{0}(z)=1 / 2 \sqrt{\frac{\pi}{z}} \operatorname{erf}(z) .
$$

The MC procedure replaces $(\vec{r}-\overrightarrow{\mathrm{R}})^{2}$ with $(\overrightarrow{\mathrm{r}} \theta-\overrightarrow{\mathrm{R}})^{2}$ in Eq. (24) and obtains a formula for I by factoring 0^{-1} out of the
integrand. Evaluating the resuit at complex 0 gives

$$
\begin{equation*}
1^{M C}=\frac{e^{-i \phi}}{\lambda}\left(\frac{32}{\pi}\right)^{1 / 2} \frac{(\alpha \beta)^{3 / 4}}{(\alpha+\beta)^{3}} F_{0}\left((\alpha+\beta)\left(\frac{k e^{-i \phi}}{\lambda}-A\right)^{2}\right) . \tag{25}
\end{equation*}
$$

In the M procedure, we simply multiply a and B in Eq. (24) by 0^{-2}, giving

$$
I^{M R}=\frac{e^{-i \phi}}{\lambda}\left(\frac{3 c}{\pi}\right)^{1 / 2} \frac{(\alpha \beta)^{3 / 4}}{(\alpha+\beta)} F_{0}\left(\frac{(\alpha+\beta) e^{-2 i \phi}}{\lambda^{2}}(\vec{R}-\vec{A})^{2}\right)(26)
$$

It is now clear from comparing Eqs. (25 and (26) that the MR procedure can be related to the MC procedure; it the basis functions are simply shifted from center \vec{A} to \vec{A}^{-1} in the latter, it reduces to the McCurdy-Rescigno prescription.

Note that as the orbital exponents α and β become small,
 Furthermore, since the asymptotic behavior of the eigenfunctions is determined by the most diffuse finctions, it is clear that both procedures should yield the same spectrum in the limit of a complete expansion. llowever, since the behavior of the matrix elements for large values of α and β is quantitatively very different in the two procedures, one may expect to find significant differences between the two methods in numerical epplications. In fact, we expect to see substantial numerical differences between the two approaches for the following reason. In a complex-coordinate calculation, the cusps that appear in the waveturction because of the nuclear sigularties in the BornOppenheimer Hamiltonian are moved to complex centers. Recalling that the M procedure can be derived from the MC prescription by translating the basis functions to complex centers $0^{-1} \vec{A}$, we see immediately that the MR riethod allows the complex cusps in the molecular wave function. to be approximated by Gaussians of large exponents on the cusp centers, while the MC method effectively centers basis functions elsewhere. For this reason we expect the $M R$ procedure to have better convergence properties.

We have applied both the $M R$ anc $M C$ procedures to the ca!culation of the photoionization cross section of H^{t}. We mak \mathfrak{u} use of the fact that the cross section $g(\omega)$ can be expressed as a matrix element of the resolvent: 15

$$
\begin{equation*}
\left.\sigma(\omega)=\lim _{\varepsilon \rightarrow 0}^{=} \frac{4 \pi \omega}{c} \text { Im }<\psi_{0}\left|\mu \frac{1}{H-E_{0}-\omega-i \varepsilon} \geqslant\right| \psi_{0}\right\rangle \tag{27}
\end{equation*}
$$

Where ψ_{0} is the wave iunction for the target in its initial state with energy E_{0}, μ is the dipole operator, and w is the photon frequency. Under complex-araling, the continuous crectrum of the atomic Hamiltonian is rotated of the real axis. This makes it possible to obtain convergent approximations to f.q. (27) by inverting a finite matrix representation of the scaled Hamiltonian obtained over a set of normalizable functions, whereas such a representation could not be used directly at real eneryics in the continuum for the unscaled hamiltonian. 16

An approximation to Eq. (27) is obtained as (see references 4 and 5 for details):

$$
\begin{equation*}
\sigma(\omega)=4 \pi \omega / c \operatorname{Im} 0^{3} \vec{f}\left(E_{0}+\omega-\|\right)^{-1} \overrightarrow{f_{2}} \tag{28}
\end{equation*}
$$

where the inverse $\left(E_{0}+\omega-H_{0}^{-1}\right.$ is simply formed frum the Rnalytically continued matrix elements oblained either from the $M R$ or MC procedures and the elements of \vec{f} are given by

$$
\begin{equation*}
f_{\alpha}=\theta^{-3} \int_{\beta} d_{\beta} \int d^{3} r_{x_{\beta}}(\vec{r}) \mu(\vec{r} \theta) x_{\alpha}(\vec{r}) \tag{29}
\end{equation*}
$$

The expansion coefficients d_{β} in Eq. (29) make up the eigenvector corresponding to ψ_{0} and are determined by diagonaliaing $H_{0, p}(0)$ over bisis Eunctions $\left\{\chi_{\alpha}\right\}$ of the initial-state symmetry. fie matrix inverse $\left.\left(E_{0}+4\right)^{-11}\right)^{-1}$ is then constructed over 3 set of functions of opposite parity, $\left\{\chi_{\alpha}\right\}$.

To facilitate our comparisuns, we have used large basis sets both to calculat. the $1 s \sigma_{g}$ ground-state eigenfunction and to represent the matrix ($\left.E_{0}+\omega-H\right)$ for the ${ }_{\mu}$ continuum. In this way, we are able to use the same basis sets for both methods while avoiding the criticism that the basis set was optimum for one method but not for the other. Aftce choosing the basis-ser exponents, one may optimize the scaling parameter θ in a given basis set because the results are formally independent of 0 when converged. The usual procedure in atonic calculations is to fix the magnitude of θ at unity and vary the argument to find the region of greatest stability. We did that using the MR prescription for computing $H_{q, B}(\theta)$, making no attempt so optimize the magnitude of θ. Figure T 'shows a superposition of five plots of the photo-ionization cross sections obtaited by setting $\theta=\exp (i \pi \phi / 180.0)$ and varying ϕ in 2.5° increments over a 10° interval centered approximately at che most stable point in ϕ. The results are scable within a few percent and arree essentially exactly with the exact values of Bates and Öpik. 17

Fig. 1. Superpusition of resulcs for the parallei componenc
 the method of Ret. 6 ta anslytically concinue the Hilu.iltomian matrix elements. Tine superimposed curves ra for ϕ varying over the most stable region (15° to 25°) in 2.5° increments.

We repeated this calculacion with the proredure of Noiseyev and Corcoran. However, no recognizable region of stability could be iound with $|\phi|=1$, and we iherefort varied $|0|$ to find a more optititum value. It is not surprising that this was necessary considering the behavior of nuclear attraction integrals with large exponents which Moiseyev and Corcoran point out and witic' we discussed earliet. We find the π rse favorable value of $\mid \boldsymbol{f}$ to be approximately 0.6 , with litcle sensitivity for values varying oetweer. 0.5 and 0.8 . Figure 2 shows a superposicion of five plots for the photoionication cross sections obtained wich $\theta=0.6 \exp (i \phi / 180.0)$ for values of ϕ in 2.5° inczements over a 10 interval, again approximately centered in the region of greates! stability. Comparison of Fig. 1 and 2 shows that the Moiseyev-Corcoran technique is substantiai.y less stable in this applisation than that of McCurdy and Rescigno.

FIG. 2. As in Fig. 1 , but using the method of Ref. 7 to analycically continue the Hamiltonian matrix clements. The magnitude of the scaling parameter is 0.6 and ϕ varies Irom 5° to 15° in 2.5° increments.

In comparing the two methods, we have concencrated on the behavior of the matrix elements of the nuclear attraction terms, since their non-analytic behavior has hindered the application of complex scaling techniques to molecular probelms. Moiseyev and Corcoran have also emphasized that the computation of twoelectron matrix elements, which is the most time-consuming part of integral evaluation, is simpler with their procedure since the integrals are simply scaled by constants and need not be recomputed when the scale parameters are changed. It is noteworthy, however, that several applications of complex scaliag techriques to atomic problems involving more than two electrons
have shown that accurate results can only be achicved when the orbitals refer:ing to tightly bound core electrons are left unscaled and the outer valence rlectron arbitals mide complex. 18 We have adopted a similar procedure for urolecules, which l will illustrate in the next section. With this mix of reat and complex orbitals, the two-electron intugrals no longer scale simply and the computational detaits involved in implementing eitlere method are comparable.

IV. COMPLEX SCF TECINIqUES

A. Formulation

Almost all of the orevious calculations using comphex hasis functions have rclied on direct diagonalization of the Hamiltonian with many-electron basis states. In convention, 1 structure ealculations on bound states, n Hartree-Fock wavefunction is frequently generated as o starting point for monce accurate treatments. It is logical to assume that the basic mathematics of SCF theory should aiso be applicable to the square-integre' ie resonance eigenstates of an nnalytically continued complex Hamittonian. We have recently shown that, for the case of shape risonances in atom. and molecules, this is indeed the case.

The hasic ideal9, 20 underlying our discussion of : he SCF equations for resonanes is that by beginning with the wimplex atomic llamiltunion, ll(lligh), and following (essentially) the same variational arguments used to derive the bound state SCF equations, we can derive complex SCF equations appropriate for resonance states. This procedure is successful because the resonunce eigerfunctions of the complex Hamiltonian ate squareintegrable. In that sense these eigentunctions are sulficiently like bound state wavefnnctions to allow treatment by the SCF methods currently employed in many bound state calculations.

> We will specialize our discussion to the simple case of a shape resonar ee which corresponds to an electronic contaguration with one electron outside a closed shell. The 2 p shape resonance encountered in e- - beryllium scattering is an example of such il case; the ll_{g} resonance state of N_{2} is , well known molecular example.
> Starting with a trial variational wavefunction which is a single Slater determinant of spin orbitals

$$
\phi=\operatorname{det}\left|\psi_{2} \bar{\psi}_{2} \psi_{2} \bar{\psi}_{2} \ldots \psi_{k} \bar{\psi}_{k} \psi_{\mu}\right| \cdot
$$

where each spin orbital, Whe $_{i}$ is the product of a spatial orbital ϕ_{i} (depending on the cocidinates of one electron) and n spin function, and tri denotes the spin orbital with opposite spin, we derive the SCF equations for the orbitais, ${ }_{i}$ by setting to zero the first variations with respect to those orbitals of a pasicular functional. For the ordinaty hound state problem that functional cunsi-its of the "xpectallom viane of the Hamiltonian with respect to $\dot{\text { q }}$ plus lagrange multiplier terms which serve to apply the orthonormality constraint among the orbitals, W_{i}. In our case we mast goneralaze this expression slighty. Since the 1 miltonian, $H\left\{\left(: y_{j}\right\}\right)$, is not hermitian, its cigenfunctions lorm a biorthomal set, and the complex conjugate of the wavefunction which appears in the usual expectation value is not appropriate. Thus the functional we have chusen is

$$
I n \int \phi H\left(\left\{T_{j} \theta\right)\right) \phi d \tau_{2} d \tau_{2} \cdots d \tau_{2 k+1}
$$

$$
-\sum_{1, j-1}^{k} \lambda_{1 j} \int \phi_{1}(\vec{r}) \phi_{j}\left(\frac{1}{1}\right) d^{2} r
$$

$$
k
$$

$$
-2 \sum_{i=1}^{k} \lambda_{i \|} \phi_{i}(\hat{l}) \phi_{u}(\vec{r}) d^{2} r
$$

$$
-\varepsilon_{\mu} \int \phi_{\mu}(\vec{r}) \phi_{\mu}(\vec{r}) d^{s} r
$$

where the matrix, 'ij, of Lagrange multipliers is comphox ymater it and the redundant terms in the first sulii are for convanience unly. As the scale factor, f, approaches writy the CCF equations mast approach the ustal hartreerfroch equatiuns in which the orbitit Hamiltonians are hermitinn. The equations we drive using Eq. (31) have this property only if the urbitals, ϕ_{i}, in the t rial wavefunction are real when \therefore : 1 , becausu. otherwise the Coulomb and exchange operators as delined briow orr nonhermitian. In practice, this simply means that we arc constructing the correct analytic rontinuation of the wrorking equations of the ordinary real valued SCF calculations of quantum chemistry. Note that in defining the functicnal in equation (31), we have in mind a class of problems whish, in the θ^{+}] limit, can be formulated in terms of real orbilals. If, for example, the orbitals of Eq. (31) were expressed as products of radial functions and spherical harmonics, the functional we would , then use would have the complex conjugate of the angular variables of the left hand arbitals appearing ia all the scalar products, but not the radial variables.
 of equation (31) with respect to the open and closed shine! orbitals to zero, we obtain the Strife equations. If we define the Frock operators by

$$
\begin{align*}
& \hat{F}_{0}=h_{\theta}+\theta^{-1} \sum_{j=1}^{k}\left(2 \hat{J}_{j}-\hat{k}_{j}\right)+\theta^{-2}\left(\hat{J}_{\mu}-\hat{k}_{\mu}\right) \\
& \hat{F}_{\mu}=h_{\theta}+\theta^{-1} \sum_{j=1}^{k}\left(2 \hat{J}_{j}-\hat{k}_{j}\right) \tag{32}
\end{align*}
$$

where the one electron Hamiltonian, ha, is (atomic units)

$$
\begin{equation*}
h_{\theta}=-\frac{\theta^{-1}}{2} \nabla^{2}-\frac{2 \theta^{-1}}{\theta} \tag{33}
\end{equation*}
$$

and the coulomb and exchange operators are

$$
\begin{gather*}
\hat{J}_{1}=\int \frac{\phi_{1}\left(\overrightarrow{r_{2}}\right) \phi_{1}\left(\frac{\vec{r}}{2}\right)}{r_{12}} d^{2} t \tag{34}\\
\hat{k}_{1} \phi_{1}=\phi_{1}\left(r_{1}\right) \int \frac{\phi_{1}(\vec{r}) \phi_{1}\left(\vec{r}_{2}\right)}{r_{12}} d^{3} r_{2}
\end{gather*}
$$

the complex SCF equations can be written

$$
\begin{align*}
& {2 \hat{F}_{0} \phi_{1}}=\sum_{j=1}^{k} \lambda_{j 1} \phi_{j}+\lambda_{\mu 1} \phi_{\mu} \tag{35}\\
& \hat{F}_{\mu} \phi_{\mu}=\sum_{j=1}^{k} \lambda_{\mu j} \phi_{j}+\varepsilon_{\mu} \phi_{\mu} \\
& \lambda_{1 j}=\lambda_{j 1}
\end{align*}
$$

The usual SCF procedure is to find a set of equivalent matrix equations by multiplying equation (35) by the orbitals and integrating. All the matrices appearing in these calculations
are complex symmetric. Finally, we note that the value of she complex resonance energy from this procedure is the complex SCF energy, $\mathbf{E}_{\text {CSCF }}$

$$
\begin{align*}
E_{C S C F} & =\int_{i=1} \phi H\left(\left\{\hat{r}_{j} \theta\right\}\right) \Delta d \tau_{1} \ldots d \tau_{2 k+1}^{k} \tag{36}\\
& =\int_{1}\left(h_{\theta}+\hat{j}_{0}\right) \phi_{1} d^{3} r \\
& \div \int_{\frac{1}{2}} \phi_{\mu}\left(h_{\theta}+\hat{F}_{\mu}\right) \phi_{\mu} d^{3} r
\end{align*}
$$

B. Atomic Exataple

The ${ }^{2 p}$ shape resonance in e-beryllium scatering is an example of a resonance which the :omplex SCF appronch should describe well. We hive perlormed two sets of calculations on this system, ${ }^{19}$ the first of which employs a ($14 \mathrm{~s} / 16 \mathrm{p}$) basis of real valued Gaussians chosen as Collows. The complex SCF equations were solved in matrix form and ECSCF from this calculation with $0=\exp (i, y)$ is plotted in Figure 3 for a range of a values between. 3 and .5 radians. We were unable to converge the SCF equations for values of a less than .3. The trajectory of ECSCF as a function of a is somewhat surprising in view of what has bern observed in complex coordinate Cl calculations.

In a configuration interaction calculation using the complex Hamiltonian, $H\left(\left\{\theta_{r_{j}}\right\}\right)$, there is a well known behavior to be expected of the complex resonance eigenvalue as a function of 0 , That behavior, which can be shown te be n consequence of the complex version of the virial theorem, ${ }^{21}$ is that for a given basis set the resonance eigenvalue, Eres, has a stationary point with respect to variation of 0 so that, at some value of \in, $\mathrm{dE}_{\text {res }} / \mathrm{do}$ vanishes. The stationary point does not necessarily occur with $|\theta|=1$, but if a Cl calculation is performed with $0=\exp (i \alpha)$ a sharp cusp in the complex value $:$ I $E_{r e s}$ is often found as α is varied. The curve in Figure 3 corresponding to the ($14 \mathrm{~s} / 16 \mathrm{p}$) real basis function calculation does not show such a cusp, nor is ECSCF parcicularly stable as α is varied. This is a troublesome point because the stationary value of $E_{\text {res }}$ is usually taken to be the best approximation to the resonance energy.

The main curve in Figure 3 shows little evidence of stationarity with respect to variations in a. This problem is
due entirely to an inadequate description of the orbitals wisis make up the Be core, particularly the tight ls orbital. The problen has been discussed in delail elsewherell and can be solved by using Gaussian basis functions with complex exponents given by $\partial \varepsilon_{i}$ where ε_{i} is real to expand the cort orbitals (ls and $2 s$ in th.is case). Thus we performed a second set of

Figure 3. $E_{C S C F}$ for Be^{-}as a function of a in the scaling parameter $\theta=\exp (i \alpha)$. The muin cirve is calculated with real basis functions, and the insert is the complex basis function result for the same range of a. The real part of the energy scale in the .nsert is relative to $-14,547$ Hartrees.
calculations with only the s-functions scaled by 0 . The iesults of this calculation are ploted in the inset to Figure 3. The stability of ECSCF as a function of a is remarkable in this calculation, but still no sign of clear cusp behavior was observed. Fortunately ECSCF is so stable that it is unnecessary to find a stationary point of E-GSCF in order to find the resonance energy. Choosing a value of a neat the center of che range ploted in Figure $3(u=0.4)$ we find $E_{C S C F}=14.54733$.CO: 37 i . The value for the width of the resonance is therefore 0.51 eV or about half the value from a static exchange calculation. 18 To get an estimate of the position of the resonance it seems most reasonable to subtract the Hartree-Fock value of the ground state energy of Be from $\mathrm{E}_{\mathrm{CSCF}}$ for Be^{-},
because ane of the solutions of the complex SCF equations (a nonresonant, continuan solution) is the llartree-Fock wavefunction for Be with the remaining electron in a continuum p orbital with (in a limiting sense) zero energy. The resonanc? position so obtained is 0.70 eV , only slightly lower that the static exchange value. 18

There is a practical note which concems the use of complex basis functions. In an carlier publication ${ }^{18}$ we made use of the identity, written here for the radial part of a one electron problem,

$$
\begin{equation*}
\int \phi_{i}(r) H(r \theta) \phi_{j}(r) r^{2} d r=\theta^{-3} \int \phi_{1}\left(r \theta^{-2}\right) H(r) \phi_{j}\left(r \theta^{-1}\right) r^{2} d r \tag{37}
\end{equation*}
$$

to perform a rotated coordinate calculation by diagonalizing the real Hamilconian, $H(r)$, using complex basis functions, $\phi_{2}\left(r 0^{-1}\right)$. It is in fact more convenient to use the same device in complex SCF calculations. Thus the second of our calculations ${ }^{19}$ on Be^{-}was actually perfurmed with unscaled Fock operators and complex p basis functions of the form $\phi_{i}\left(x e^{-1}\right)$ and real s basis functions, instead of scaled Fock operators with real p and complex s basis functions as described above. These two forms of the calculation are completely equivalent, but the prescription of unscaled Fock operators plus complex basis functions requires fewer complex two electron integrals and, more importantly, is a more convenient starting point for the extension to molecular problems.

B. Molecular Example

The ${ }^{2} \pi_{g}$ resonance state of N_{2}^{-}has been well characterized experimentally through extensive studies of vibrational excitation by electrons between 1 and $5 \mathrm{cV}^{2}$ and has also been the subject of numerous theoretical treatments. 23-27 We felt that this system would provide a good indication of whether the "method of complex basis functions" is an accurate and practical way to proceed with complex SCF studies on molecules.

The open-shell SCF equations for $N_{2}\left(2 \Pi_{g}\right)$, which has the electronic configuration $\left(1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} l_{i \pi}^{4}{ }^{4} \pi_{g}\right){ }^{2} I_{g}$, were solved in a mixed basis set of real and complex Cartesian Gaussian functions. ${ }^{20}$ For these calculations, we use a real valued Hamiltonian again and Gaussian basis functions in whicia the exponents are scaled by θ^{-2}. The non-resonant core orbitals (all but $1 \pi_{g}$) were again expanded solely in terms of real functions, for the same physical reasons which are discussed at length in reference 18 . We also carried out several numerical tests to check the adequacy of the core-orbital basis. These are be discussed bẹl.ow.

The $1 \pi \mathrm{~g}$ orbital was expanded in terms of both real and complex Gaussians. The latter were chosen following the prescription of McCurdy and Rescigno (reference 6) by complexscaling the orbital exponents of the Gaussian basis functions and keeping the associated nuclear centers reai.

The core orbitals were expanded in a nuclear-centered ($9 \mathrm{~s} 5 \mathrm{p} / /\left[\begin{array}{ll}5 \mathrm{~s} & 3 \mathrm{p}\end{array}\right]$ contracted basis, augmented with two $d-$ polarization functions $\alpha=1.0$ and .4?. Several choices for the π_{g} orbital space were tested. A prelimenory set of calculations was done using a (4p) basis, augmenred with additional diffuse d_{π} functions placed at the center-of-muss. All π_{g} functions were complex scaled. These calculations produced a complex total energy for $\mathrm{N}_{2}\left({ }^{2} \Pi_{\mathrm{g}}\right)$ which depended strongly on and varied monotonically with the rotation angle ϕ, the resonance width varying by toughly 40% over the range $15^{\circ} \leq \phi \leq 25^{\circ}$. A simple test was devised to demonstrate that this instability was due to the inadequacy of the π_{8} orbitai basis and not the core orbital basis, The total SCF energy for $\mathbb{N a}_{2}(2]_{g}$) can be uritton as $E=\varepsilon_{\text {core }}+{ }^{+} \Pi_{g}$ where $\varepsilon_{\text {core }}$ is the core-orbital contribution to the total energy and " Π_{g} is the orbital energy ai ${ }^{1} \pi g$. A series of "static-exchange" calculations was performed at different angles with the core orbitals frozen. It was found that changes in $\varepsilon_{\eta_{g}}$ were precisely equal to the variations noted earlier in the SCF calculations.

The addition of several real P_{V} functions to the n_{g} orbital space greatly reduced the sensitivity of the energy to the rotation angle. The final π_{g} basis we used consisted of the (5 p 2 d)/[3p $2 d]$ set of re:l functions, four nuclenr-centered p_{π} functions with exponents $.6, .26, .125$, and .05 and six complex d_{π} functions placed at the center-of-mass with exponents ranging from .2 to .002 in a geometric series. The total energy as a function of rotation is show in Figure 4 for an internuclear separation of 2.068 a.u., the equilibrium bond distance of N_{2}. The resonance width is found to vary by rughly $\%$ within a range of angles between $28^{\circ} \leq \theta \leq 38^{\circ}$. An avarage of the data over this range gives a resonance lifetime of .44 eV and an energy of 3.19 cV , when referenced to the SCF energy of ground state N_{2} in the same basis. Table 1 compares these results to those of other recent theoretical calculations.

These preliminary results ${ }^{20}$ are an encouraging indication that the complex SCF method, with properly chosen basis functions, can provide useful information about the lifetimes of certain types of molecular metastables and should provide a convenient scarting point for further complex configuration-interaction studies.

Figure 4. SCF Resunance energy of $\mathrm{N}_{2}\left({ }^{2} ?_{g}\right)$ as a tunction of rotation angle. The real part of the energy scale is given relative to -108.8434 Hartrees. The incemuclear separation is 2.068 a.u.

Table I. Comparison of electron resonance parameters for $\mathrm{N}_{2}\left(2 \pi_{8}\right)$. Energies and widths are in electron valts and $F_{0}^{8}=2.068$ a.u.

	$i_{r}\left(R_{0}\right)$	$\Gamma\left(R_{0}\right)$
Complex SCF ${ }^{20}$	3.19	. 44
Krauss and Mies ${ }^{24}$ (stabilization)	3.26	.8 .3
Schneider et al 25 (R-matrix)	$2.15{ }^{\text {a }}$. 34
Hazi et al ${ }^{26}$	3.23 (2.16 ${ }^{\text {a }}$. 42
Levin and McKoy 27	$2.19^{\text {a }}$. 35

[^0]It is worth noting that the simple SCF approach out lined above is not applicable in the case of a Feshbach resonance (for example, He ($2 s 2 p$) ${ }^{3} p$) because the complex SCF equations so derived have solutions which yield a real value for $E_{C S C F}$ and consequently give no information about the resonance width. The decay of a Feshbach resonance is a correlation effect which cannot be described by a simple SCF Lrestment. NCSCF theory might offer an effective way to treat these cases.

V. REFERENCES

1. C. W. McCurdy in Electron-Molecule and Photon-Molecule Colijsions, edited by T. Rescigno, V. McKoy and B. Schneider (Plenum, New York 1979).
2. Int. J. Quan. Chem 14, (4), 1978.
3. C. W. McCurdy and T. N. Rescigno, Phys. Rev. A 20, 2346 (1979).
4. C. W. McCurdy, Phys. Kev. A 21, 464 (1980).
5. C. W. Mccu: dy and T. N. Rescigno, Phys, Rev. A 21, 1499 (1980).
6. C. W. McCurdy and T. N. Rescigno, Phys. Rev. Letts. 4l, 1364 (1978).
7. H. Moiseyev and C. T. Corcoran, Phys. Rev. A 20, 814 (1979).
8. J. N. Bardsley and B. R. Junker, J. Phys. B 5, L178 (1972).
9. A. D. Isaacsun, C. W. McCurdy and W. H. Miller, Cinem. Phys. 34, 311 (1978).
10. A. U. Hazi, Cher. Phys, Letts, 20, 251 ' 15.1).
11. R. M. More and E. Gerjuoy, Phys. Rev. A 7, 1288 (1973).
12. J. Taylor, Scattering Theory, (Wiley, New York, 1972), pp.411-413.
13. T. Noro and H. S. Taylor, J. Phys. B 13, 2377 (1980).
14. B. Simon, Phys. Letts. 71A, 211 (1979).
15. P. W. Langhois, 5. T. Epstein and M. Karplus, Rev. Mod. Phys. 44, 602 (197a).
16. T. L. Rescigno and V. McKoy, Phys. Rev. A 12, 522 (1975).
17. D. R. Bates and I. Opik, J. Phys. H 1, 543 (1968).
18. T. N. Rescigno, C. W. McCurdy and A. E. Orel, Phys. Rev. A 17, 1931 (1978).
19. C. W. McCurdy, T. N. Rescigno, E. R. Devidson atd J. G. Lauderdale, J. Chem. Phys, 73, 3268 (1980).
20. T. N. Rescigno, A. E. Orel and C. W. McCurdy, J. Cuem. Phys. 73, (1980).
21. P. Froelich and E. Brandas. Phys. Rev. A 16, 2207 (1977);
R. Yaris and P. Winkler, J. Phys. B 11, 1475 (1978).
22. G. J. Schultz in Principies of Laser Plasmas, edited by G. Bekefi (Wiley, New York 1976).

23. A. Temkin in Electron-Molecule and Photon-Molecule Collisions, edited by T. Rescigno, V. McKoy and b. Schneider (Plenum, New York 1979).
24. M. Krauss and F. H. Mies, Phys. Rev. A 1, 1592 (1970).
25. L. Schneider, M. LeDourneuf and Vo Ky Lan, Phys. Rev. Lects 43, 1926 (1979).
26. A. U. Hazi, T. N. Rescigno, and M. Kurila, Phys. Rev. A (submitced).
27. D. A. Levin and V. McKoy, Phys. Rev, A (submitted).

"Wirk performed under the suppers of the
U.S. Dep inment of Enerpy by the Lawiente
L.fertilutic Labsadery under contract number
4.7415.1N('.48."

 durwinicit purpures.

[^0]: a Resonance energy relative to the energy of a fictitous N_{2} neutral core made up with N_{2}^{-}orbitals.

