

APPROVED:

Saraju P. Mohanty, Major Professor
Elias Kougianos, Co-Major Professor
Armin R. Mikler, Committee Member
Ian Parberry, Interim Chair of the

Department of Computer Science
and Engineering

Costas Tsatsoulis, Dean of the College of
Engineering

Michael Monticino, Dean of the Robert B.
Toulouse School of Graduate
Studies

A NEW N-WAY RECONFIGURABLE DATA CACHE ARCHITECTURE FOR

EMBEDDED SYSTEMS

Ruchi Rastogi Bani

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2009

Bani, Ruchi Rastogi. A New N-way Reconfigurable Data Cache Architecture for

Embedded Systems

 Performance and power consumption are most important issues while designing

embedded systems. Several studies have shown that cache memory consumes about

50% of the total power in these systems. Thus, the architecture of the cache governs

both performance and power usage of embedded systems. A new N-way reconfigurable

data cache is proposed especially for embedded systems. This thesis explores the

issues and design considerations involved in designing a reconfigurable cache. The

proposed reconfigurable data cache architecture can be configured as direct-mapped,

two-way, or four-way set associative using a mode selector. The module has been

designed and simulated in Xilinx ISE 9.1i and ModelSim SE 6.3e using the Verilog

hardware description language.

. Master of Science (Computer Engineering), December 2009, 76

pp, 15 tables, 28 figures, references, 47 titles.

 ii

Copyright 2009

by

Ruchi Rastogi Bani

iii

ACKNOWLEDGEMENTS

I would like to extend my gratitude to my major professor Dr. Saraju Mohanty,

who has motivated and guided me throughout my studies and thesis work. I would also

like to express my unconditional thanks to Dr. Elias Kougianos, my co-major professor

for his support, advice and suggestions. I am also grateful to Dr. Armin Mikler for being

my thesis committee member and sparing his time to review my work.

 I would like to thank my husband, Nishith Bani, and my family for their

encouragement and patience throughout my research work. I could not have made it

without them. They give me a reason to work very hard. I would also like to thank Dr.

Dhruva Ghai and Oluwayomi Bamidele Adamo, for their advice and spending time to

guide me. Finally, I would like to thank friendly staff and my colleagues in computer

science and engineering department who encouraged me throughout my research

work.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

Chapter

1. INTRODUCTION .. 1

1.1 Motivation ... 2

1.2 History .. 3

1.3 Principles of Cache Memory .. 6

1.4 Operation of Cache Memory .. 6

1.5 Cache Memory Performance ... 8

1.6 Cache Architecture .. 9

1.6.1 Direct-Mapped Cache ... 9

1.6.2 Fully Associative Cache .. 11

1.6.3 Set Associative Cache .. 11

1.6.4 Impact of Cache Associativity ... 12

1.7 Cache Line Replacement Policy .. 14

1.8 Cache Write Policies .. 15

1.9 Organization of the Thesis ... 18

2. RELATED RESEARCH .. 19

v

2.1 Improving Performance of Direct-Mapped Caches by Reducing Miss Rate 20

2.2 Reducing Access Time of Set associative Caches .. 23

2.3 Reducing Power Consumption of Associative Caches... 25

2.4 Reconfigurable Cache Architectures .. 28

2.5 Field Programmable Gate Array Technology ... 30

2.6 Contributions of This Thesis ... 33

3. ELEMENTS OF CACHE DESIGN .. 34

3.1 Cache Size ... 34

3.2 Mapping Functions ... 35

3.2.1 Direct-Mapped Cache .. 35

3.2.2 Two-Way Set-Associative Cache ... 37

3.2.3 Four-Way Set-Associative Cache .. 38

3.3 Replacement Policy ... 40

3.4 Write Policy .. 42

3.5 Block/Line Size .. 42

4. PROPOSED DESIGN OF RECONFIGURABLE DATA CACHE FOR EMBEDDED

SYSTEMS ... 43

4.1 Overview of the Proposed Design .. 43

4.2 Architecture of the Reconfigurable Data Cache ... 44

5. PROTOTYPING AND SIMULATION RESULTS ... 54

vi

5.1 Basic Design Considerations ... 54

5.2 Elements of Verilog .. 55

5.3 FPGA Prototyping .. 57

6. CONCLUSIONS AND FUTURE RESEARCH... 72

REFERENCES .. 73

vii

LIST OF TABLES

Table 1-1 Data Cache Associativities of Popular Embedded Microprocessors. 3

Table 1-2 Comparisons of Mapping Functions .. 12

Table 1-3 Impact of Cache Associativity on Miss Rate and Access Time 13

Table 2-1 Table Showing Prior Research Done to Improve the Performance of Direct-

Mapped Cache .. 23

Table 2-2 Table Showing Prior Research Done to Reduce Access Time Set of

Associative Cache ... 25

Table 2-3 Table Showing Prior Research Done to Reduce Power Consumption of

Associative Cache ... 27

Table 2-4 Table Showing Prior Research Done for Reconfigurable Cache 30

Table 3-1 Effect of Cache Size on Miss Rate and Access Time 34

Table 3-2 Elements Available for Cache Design and Possessed by the Proposed

Reconfigurable Cache Architecture 35

Table 4-1 Mode Selector Operation .. 49

Table 4-2 Active High Control Signal During Each State ... 53

Table 5-1 Summary of Reconfigurable Cache Operation in Three Different Modes 65

Table 5-2 Comparison of Various Design Metrics of Proposed Design with Direct

Mapped, 2-Way, and 4-Way Set Associative Caches. .. 67

Table 5-3 Comparison of Design Metrics of Reconfigurable Data Cache for Various

FPGA Technologies. ... 70

Table 5-4 Comparison of Proposed Design with Existing Reconfigurable Memories. ... 71

viii

LIST OF FIGURES

Figure 1-1 CPU-Memory Speed Gap ... 4

Figure 1-2 Memory Hierarchy for Embedded Microprocessor 5

Figure 1-3 Cache and Main Memory Structure ... 8

Figure 1-4 Mapping of Main Memory Block 15 in Three Different Cache Architectures .

 .. 10

Figure 1-5 Miss Rate (a) and Access Time (b) of SPEC92 Benchmarks on 1KB Data

Caches of Different Associativities. ... 13

Figure 2-1 Classification of Related Research .. 20

Figure 2-2 Basic Structure of an FPGA .. 31

Figure 2-3 FPGA CLB [36] .. 32

Figure 3-1 Direct Mapped Cache Architecture .. 36

Figure 3-2 Two-Way Set-Associative Cache Architecture ... 38

Figure 3-3 Four-Way Set-Associative Cache Architecture. ... 39

Figure 4-1 High Level View of Proposed Architecture of Reconfigurable Data Cache. . 44

Figure 4-2 Sub-Modules of Proposed Design ... 45

Figure 4-3 Architecture of Reconfigurable Data Cache ... 47

Figure 4-4 Partition of Available Cache into Three Modes ... 50

Figure 4-5 Cache Controller State Machine .. 51

Figure 5-1Typical Design Flow .. 55

Figure 5-2 RTL Schematic of Direct Mapped Cache ... 58

Figure 5-3 Simulation Waveform of Direct Mapped Cache Showing Read Miss 58

Figure 5-4 RTL Schematic of Two-Way Set-associative Cache 59

ix

Figure 5-5 Simulation waveform of Two-Way Associative Cache Showing Read Hit 59

Figure 5-6 RTL Schematic of Four-Way Set-associative Cache 60

Figure 5-7 Simulation Waveform of Four-Way Set-Associative Cache Showing Read

Miss ... 61

Figure 5-8 RTL Schematic of Reconfigurable Cache ... 62

Figure 5-9 Simulation Waveform of Reconfigurable Cache in Mode ‘00’ (Direct Mapped)

Showing Read Miss ... 63

Figure 5-10 Simulation Waveform of Reconfigurable Cache in Mode ‘01’ (Two-Way Set-

Associative) Showing Write Miss ... 63

Figure 5-11 Simulation Waveform of Reconfigurable Cache in Mode ‘11’ (Four-Way Set-

Associative) Showing Write Hit. .. 64

Figure 5-12 Performance Comparison of Reconfigurable Cache with Direct Mapped,

Two-Way and Four-Way Set-Associative Caches. .. 69

1

 CHAPTER 1

INTRODUCTION

The need for mobile systems, portable devices, and many other appliances used

in our modern life results in a growing demand for embedded computing systems. As

this growth occurs at tremendous rate, it reduces the window for time-to-market, which

in turn is motivating us to design new core-based system-on-chip (SOC) architectures.

In such systems’ design, embedded processors (microprocessor cores) are playing a

vital role [30]. Several programming languages and electronic design automation (EDA)

tools are available currently for embedded processors, which make programming

straightforward and offer different solutions to overcome design challenges and

simultaneously optimize design metrics. Designers have to maintain a balance of these

metrics and compromise between power, cost, performance and time-to-market. Cache

memory, a crucial part of embedded systems, is responsible for consuming approx. half

of the total power consumption by these systems. Research in design of optimal cache

architectures for portable and mobile devices is being actively pursued. According to

certain studies, the use of separate data and instruction cache is one way of improving

the performance of today’s microprocessors. Proper cache architecture can bring down

the time overhead of accessing data and instructions from off-chip main memory,

thereby reducing power consumption. High gains in performance have been achieved

by tuning appropriate cache architectures to the application set of embedded systems.

Cache sizes, degree of associativity, block replacement algorithms, write policies, block

size (cache line) are the core parameters for optimizing the cache architecture. Suitable

2

selection of these design parameters can enhance cache performance in terms of

power consumption, hit ratio, access time and hardware requirements.

1.1 Motivation

Embedded systems have always been cost sensitive. Cache occupies approx.

fifty percent of the total area and also accounts for approximately fifty percent of a

processor’s total power in embedded systems, including both static and dynamic

components [5][6]. Thus, cache governs the performance and cost of application

specific embedded systems. The direct-mapped (DN) cache architecture is very popular

in embedded systems because of its simplicity, faster access time and low power

consumption. A DM cache is more energy efficient and uses less power than the same

sized two-way or four-way set associative cache since it accesses only one location of

tag and data arrays per access [2]. Moreover, a direct-mapped cache has faster access

time as it does not require a multiplexer to select the requested data from multiple

accessed data items in different sets. Although direct mapped cache has the

advantage of consuming less area and power, it suffers from poor performance. One

way to improve the performance of such systems is to use set associative cache at the

expense of larger area and higher power consumption compared to direct mapped

cache. Other ways of improving the performance of direct-mapped cache are discussed

in section 2.1. The data cache architectures of most commonly used embedded

microprocessors are summarized in Table 1.1.

3

Table 1-1 Data Cache Associativities of Popular Embedded Microprocessors [2].

Processor Associativity Processor Associativity
Hitachi SH7750S (SH4) 1 Hitachi SH7727 4

NEC VR4181 1 IBM PPC 7603 4
NEC VR4181A 1 Motorola MPC8240 4
NEC VR4121 1 Motorola MPC823E 4

Sun Ultra SPARC lie 1 Motorola MPC8540 4
AMD-K6- IIIE 2 PMC Sierra RM9000X2 4
IBM403GCX 2 PMC Sierra RM7000A 4

IBM Power PC 405CR 2 SandCraft sr71000 4
Intel 960IT 2 SuperH 4

TI TMS320C6414 2 Triscend A7 4
Xilinx Virtex IIPro 2 IBM PPC 750CX 8
Alchemy AU1000 4 IBM750FX 8

ARM 7 4 Motorola MPC7455 8

From Table 1.1, it is clear that the associativity requirement of data cache for almost all

the embedded systems is one way, two-way or four-way. In order to match the cost,

performance, and power goals with targeted time-to-market, a new N-way

reconfigurable data cache is proposed. The proposed design can be configured as

direct-mapped, two-way or four-way set associative according to the system’s

requirement.

 1.2 History

Recent advances in chip technology, such as the ability to place more transistors

on the same die together with increased operating speeds, has led to a tremendous gap

between processor’s and main memory’s speed. According to Moore’s law, there is an

annual increase in performance of processor and main memory approximately by 60%

4

and 10%, respectively [4]. Thus, this gap between processor and main memory speed

is growing at a rate of 50% per year as shown in Fig. 1.1.

Figure 1-1 CPU-Memory Speed Gap [31]

With advancements in technology, this speed gap is gradually reduced as the

processor has to access on-chip cache memory instead of off-chip main memory.

Cache is a small on-chip memory situated between a high speed processor and low

speed main memory. A cache is implemented using SRAM (Static Random Access

Memory) which makes the cache fast, unlike the main memory which comprises of

DRAM (Dynamic Random Access Memory). Fig. 1.2 illustrates the memory hierarchy

for embedded microprocessors.

5

As cache is very fast and on-chip, the processor can access it more quickly than

main memory. A cache is local memory in a computing system that stores a copy of

data and instructions currently used by the processor. The architecture of cache

memory is largely determined by the behavior of the application using that cache. Single

functioned embedded systems like scanners, fax machines, digital cameras, etc. are

designed to execute a small range of well defined tasks in the system’s lifetime,

requiring a small, high performance, low power cache. In contrast, a desktop computer

has to support various applications, like word processors, spreadsheets, CAD software,

etc. which need large amounts of cache [14]. Desktop systems afford greater flexibility

for the design of cache memories in terms of cache size, associativity, block size, line

size, and multi-level cache. Due to limitations on the physical size and energy budget,

design of cache for embedded applications is more stringent than those for desktop

applications.

On Chip

Memory

D- Cache

I - Cache

Processor

Custom

Off Chip

Main

Memory

Figure 1-2 Memory Hierarchy for Embedded Microprocessor [35]

6

 1.3 Principles of Cache Memory

At any given time, the processor needs only small amount of data [28]. The

cache memory tries to predict the range of memory locations, which the processor will

need in the near future and copies the content of these locations in advance. Whenever

the processor needs any data, first it attempts to retrieve it from cache and if data is not

available there, it has to wait until the data is loaded from main memory to cache. At this

time data from nearby locations of the requested address are also copied to cache.

The basic principle behind cache operation is locality of reference, also known as

principle of locality. According to this principle, any program or application running on a

processor needs to access only a small portion of their total available address space at

a given point of time [26]. There are two basic types of reference locality:

1. Temporal locality (locality in time): At a given instant of time, if a particular

data item is used, then there is a high probability that it will be required again

in near future [33].

2. Spatial locality (locality in space): If a data item from a particular memory

address is used at a given instant of time, then there is a high probability that

data items from nearby addresses will be required soon [33].

1.4 Operation of Cache Memory

Main memory with n-bit address lines has a total space of 2n words. It is divided

into numbers of blocks containing k words each. Thus, it has total 2n/k = MB (main

memory blocks). Cache memory is also divided into a number of lines containing k

words each. The total number of cache lines (CL) is considerably smaller than the

7

number of main memory blocks (MB). Thus, only few main memory blocks are mapped

to cache at any point of time. When a read request is initiated by the processor not

present in the cache, then the whole block containing that requested data item is

mapped to one of the cache lines [24]. A cache line cannot be uniquely assigned to

individual main memory block because of the large number of blocks compared to

cache lines. Hence a tag is associated with each cache line to identify the physical

address corresponding to that particular line. Fig. 1.3 illustrates the structure of cache

and main memory.

8

Figure 1-3 Cache and Main Memory Structure [24]

1.5 Cache Memory Performance

The performance of the cache is based on how efficiently it provides the

requested data. It is measured in terms of the hit or miss ratio, and access time. When

the requested data is found in the cache then it is called a cache hit, otherwise a cache

miss. Hit ratio is defined as the number of memory accesses found in cache with

respect to the total requested memory accesses. Miss ratio is given as (1 - hit ratio)

[28]. The time taken by the cache to provide the requested data in case of a hit is called

hit time. When there is a cache miss, then the requested data is fetched from main

0
1
2

CL-1

k words

0
1
2

MB-1

Line
Number Tag Cache Line

Memory
Address

Cache Main Memory

9

memory and mapped to cache. The time required for fetching and mapping of the data

is called miss penalty. Conventional approaches to improve the performance of cache

(by increasing the hit ratio or by decreasing the miss ratio) are generally categorized as:

(1) increasing block size and cache size, (2) increasing associativity, (3) cache probing,

(4) supplementing the regular cache with victim cache, (5) hardware prefetching of data,

and (6) including additional cache hierarchy [25].

 1.6 Cache Architecture

Cache memory is responsible for half of the total power and area usage in

embedded systems. Effectiveness of the cache memory is determined by its

architecture, which means how the cache is mapped to the system’s main memory.

Mapping reduces the chance that a moved-out block will be used again in the near

future. There are three types of mapping: direct, fully associative, and n-way set

associative.

1.6.1 Direct-Mapped Cache

In direct-mapped cache (also known as one way-set associative cache), each

block from main memory is assigned to one particular cache line. Mapping is based on

the following relation [24], CL = (MB mod CL), where MB is the main memory block which

is mapped to the cache line number CL and CL is the total number of lines in the cache.

Fig. 1.4 shows how the position of block number 15 from main memory can be placed in

three different cache organizations.

10

Figure 1-4 Mapping of Main Memory Block 15 in Three Different Cache Architectures
[25].

Simple design and comparatively easy hardware implementation are the two

benefits of direct mapped cache [29]. However, the only problem associated with this

design is the mapping of each block from main memory to one specific cache line. In

spite of the fact that cache follows the principle of locality, for some programs or

applications, there is a possibility of requiring few data items very frequently which are

mapped to the same cache line. These data items will be moved in and out of the cache

continuously causing a low hit ratio. In single tasking embedded systems, this situation

is unusual but in multi-tasking systems it can arise fairly often and hence deteriorate the

performance of direct-mapped cache.

11

1.6.2 Fully Associative Cache

In fully associative cache each block from main memory can be assigned to any

of the cache lines, as shown in Fig. 1.4 and thus provides best hit ratio. At the same

time, it suffers from the overhead of cost, complexity, hardware and access time

involved in the search of requested address within the cache. All cache blocks are

simultaneously compared with the requested address to determine whether a requested

memory address is in the cache. In addition to this, extra logic is required to find out

which cache line should be replaced when requested data is not available in the cache.

Generally, fully associative cache is not used due to its high cost, complexity, and

access time.

1.6.3 Set Associative Cache

In set associative cache architecture, the cache memory is divided into a number

of small, direct mapped modules, where each module is called a set. A cache

comprising of N sets is called N-way set-associative. A particular main memory block

can be assigned to any cache line within the set according to the relation [24], CSN =

(MB mod S), where MB is the main memory block which is mapped to the cache set

number CSN and S is the number of sets in the cache. In order to determine whether a

requested memory address is in the cache, locations within the set indicated by an

index field are compared with the desired address.

Set associative cache is basically a compromise between direct mapped and

fully associative cache, thus its performance lies between these two cache

12

architectures. Two-way and four-way set associative caches give the best performance

in terms of hit ratio and access time for embedded systems [24].

Table 1-2 Comparisons of Mapping Functions

Cache Type Access Time per Access Hit Ratio
Direct Mapped Less Poor comparatively
N-way Set Associative Moderate (worsen as N

increases)
Good, (improves
further as N increases)

Fully Associative Highest Best

1.6.4 Impact of Cache Associativity

The associativity of cache memory not only affects its performance but also

greatly impacts the overall energy consumed. A direct mapped cache consumes less

energy per access than a two-way or four-way set-associative cache, because only one

tag and one data array are read during an access, rather than two or four arrays.

However, for some applications direct mapped cache has a higher miss rate and access

time, consuming higher energy for accessing the off-chip main memory. In such cases,

increasing the cache associativity is one way to reduce the miss rate and access time,

which in turn reduces the overall energy consumed by the cache [2]. Fig. 1.5(a) shows

the miss rate for the SPEC92 benchmark and Fig. 1.5(b) shows average memory

access time for these miss rates under the assumption that higher associativity will

increase the clock cycle [25]. Impact of cache associativity on miss rate and access

time is described in Table 1.3.

13

Table 1-3 Impact of Cache Associativity on Miss Rate and Access Time

Associativity Miss Rate Access Time (Clock Cycles)
1-way 13.3% 7.65
2-way 10.5% 6.60
4-way 9.5% 5.44

As shown in Fig. 1.5(a), the total miss rate for a one-way 1 KB cache is 13.3%,

for a two-way cache is 10.5% and for four-way cache is only 9.5%. It is clear from Fig.

1.5(b) that the average memory access time decreases with increase in associativity.

(a) Miss Rate vs. Associativity

(b) Access Time vs. Associativity

Figure 1-5 Miss Rate (a) and Access Time (b) of SPEC92 Benchmarks on 1KB Data
Caches of Different Associativities.

0%
2%
4%
6%
8%

10%
12%
14%

1-way 2-way 4-way

M
is

s R
at

e

Associativity

0

2

4

6

8

10

1-way 2-way 4-way

Ac
ce

ss
 T

im
e

Associativity

14

Although more energy per access is required for accessing a four-way set

associative cache, due to the additional hardware required to support line replacement,

the extra energy may be compensated by reduction in access time and energy that

would have been caused by misses. Thus, choosing the appropriate associativity to a

particular application is very essential to reduce energy, which motivates the need for

an N-way set associative cache.

1.7 Cache Line Replacement Policy

When a cache miss occurs, the requested address line must be placed into the

cache. To load a new line into the cache, one of the existing cache lines must be

replaced. Cache line replacement policy is a technique for selecting the line which

should be replaced when all the lines in set associative or fully associative cache are full

[14]. As discussed in section 1.6, there is no choice in a direct-mapped cache, as the

requested line can go to exactly one location in the cache. In set associative cache the

requested line can go in one of the fixed number of cache locations. Thus, we have a

choice as to where to place the requested line and hence a choice of which line to

replace. In a fully associative cache, the requested line can go to any location in the

cache. Thus all cache lines are candidates for replacement. The proposed design can

work either as direct-mapped, which does not need any replacement policy or as set

associative, which requires some replacement policy for line replacement in case of

cache miss. There are four most common replacement policies [24].

1. Random – A random replacement policy selects the cache line to be replaced

randomly.

15

2. Least Recently Used (LRU) – A LRU replacement policy replaces a cache

line which has not been used for a long time.

3. First in - First out (FIFO) – A FIFO replacement policy uses a queue of size N,

to keep track of the sequence in which cache locations are being accessed,

and replaces the cache line that was loaded in the queue in the most distant

time.

4. Least Frequently Used (LFU) – A LFU replacement policy replaces the cache

line that has been referenced the fewest number of times.

The random replacement policy is simple to implement in hardware but it has

been found that this policy would be a poor replacement line selection method. In

reality, it performs worse when compared to any of the other three replacement

methods mentioned above. The FIFO replacement policy is also easy to implement in

hardware via a queue of size N for cache lines. The most commonly used replacement

policy is LRU. It is implemented by maintaining a record of access of each cache line

within a set, relative to the other lines. According to the principle of locality, a recently

accessed cache line is more likely to be referenced again in the near future. Thus, LRU

tends to give the best performance among other methods. This policy provides an

excellent hit rate but relatively expensive hardware is required for its implementation.

 1.8 Cache Write Policies

It is necessary to check whether the cache line has been modified or not, before

replacement. If the content of the cache line has not been updated since its arrival in the

cache, there is no need to modify the main memory corresponding to this cache line

16

prior to its replacement. When we write to a particular cache line, the data contents of

the cache will be modified after the write operation therefore it would have a different

value from the corresponding main memory location. In such a case, there is a need to

update the main memory before replacement of that cache line. The cache line and

corresponding main memory location should hold the same data. There are three

different write policies which can be used to ensure that the cache and main memory

contents are the same: write-through, write-through with write buffer, and write-back

[26].

1. Write-through: It is the simplest method to simultaneously update the main

memory with modifications in the cache. In this technique the information is

immediately written to both cache and main memory during write operations.

Easy implementation and consistency among main memory and cache are

two major benefits of this policy. On the other hand, the write through policy

introduces a significant amount of delay as the processor has to wait until the

write operation to the main memory is completed. In spite of this delay, most

Intel microprocessors use a write-through cache design.

2. Write-through with write buffer: It is one of the solutions to reduce processor

delay during write operation. This approach uses a write buffer queue that

holds data which is waiting for it to be written into the main memory. As the

cache controller writes the data into the cache and into the write buffer queue,

it immediately returns a ready signal to the processor, so that it can continue

execution. Thus, the processor does not have to wait to write data into main

memory and saves valuable clock cycles. If the write buffer queue is

17

completely full, with pending data to be written on main memory, and a write

request comes from processor, then the processor has to wait until it gets an

empty location in the write buffer queue. One way to solve this problem is to

increase the size of the write buffer queue.

3. Write-back: It is another alternative to write through, sometimes also called a

posted write or copy back policy. During a write operation the data is written

only to the line in cache. This takes less time and allows the processor to

continue execution immediately. The updated cache line is written to the main

memory only when it is replaced. In order to keep track of a cache line which

has been updated and written to main memory before replacement, an extra

bit called dirty bit is associated with each line. The status of the cache line is

indicated by this bit, whether the line is updated (dirty) while in the cache or,

not updated (clean). If the cache line is not updated, there is no need to copy

its content before replacement on a cache miss. The advantage of the write-

back policy is that it can improve system performance when the processor

requests write operations faster than writes, which can be handled by main

memory. Although write-back is a faster alternative to the write-through policy,

it suffers from the major drawback of content inconsistency between main

memory and cache, which is called cache coherency problem. Moreover, it is

more complicated to implement in hardware when compared to the other two

polices.

18

1.9 Organization of the Thesis

This thesis is organized as follows; Chapter 1 provided an introduction and

motivating factors of this research. Related research is discussed in Chapter 2. An

explanation of design elements of proposed N-way reconfigurable data cache is given in

Chapter 3. Chapter 4 discusses architectures of reconfigurable data cache. In Chapter

5, the prototype of the direct-mapped, two-way and four-way associative data cache

along with proposed reconfigurable data cache is explained. Chapter 6 concludes the

work and gives suggestions for future research.

19

 CHAPTER 2

RELATED RESEARCH

Cache plays a vital role in any processor based embedded system in order to

achieve high performance. Several cache designs have been proposed by researchers

either to improve the performance of direct-mapped cache or to reduce the access time

and power consumption of set associative cache. In this chapter, a review of the

research work done in the field of cache design is presented. Classification of related

research is given in Fig. 2.1. Section 2.1 reviews various research works on improving

the performance of direct-mapped cache by reducing cache misses. Cache misses

incur accessing to off chip main memory which is both power costly and time

consuming. Sections 2.2 and 2.3 discuss in brief various research works done to

reduce the access time and power consumption in set associative caches. Section 2.4

covers the work done in the area of reconfigurable caches. FPGA technology overview

is described in Section 2.5.

20

Figure 2-1 Classification of Related Research

2.1 Improving Performance of Direct-Mapped Caches by Reducing Miss Rate

The ever growing need for high performance processors, especially for

embedded applications, has motivated the computer designers to study and work on

various techniques for improving the performance of direct-mapped caches. As

discussed in chapter 1, the most commonly and efficiently used method for increasing

performance of embedded processors is to use an efficient cache memory which

accounts for approx. half of the total power consumed by the system. Direct-mapped

cache is very popular in embedded systems due to its small size and high speed. The

Related
Research

Approaches for Direct
Mapped Cache

To improve
Performance

Agrawal, 199
3

Zhang, 2005

Zhang, 2006

Approaches for Set
Associative Cache

To reduce
access Time

Liu, 1994

Juan, 1996

To reduce Power
Consumption

Kin, 1997

Zhang, 2000

Zhang, 2003

Park, 2004

Zhang, 2005

Approaches for
Reconfigurable Cache

Kim, 2001

Zhang, 2003

Mai, 2005

Proposed
Design

21

key to improving the performance of direct-mapped cache is to reduce the miss rate or

to increase the hit rate.

A technique called Column Associative Cache for reducing the miss rate of direct

mapped caches has been proposed by Agarwal and Pudar [12]. This design uses an

extra bit for dynamically choosing alternate hashing functions and a multiplexer for the

address generation to achieve almost the same miss rate as that of a two way set

associative cache at a cost of extra hardware. The extension of column associative

cache has multiple alternative locations as described in [13].

Efficient direct mapped cache [3] architectures reduce the accesses to overused

cache blocks and increase the accesses to underused blocks without increasing the

cache access time, associativity, and area. Cache memory is divided into sub arrays in

order to achieve the best trade-off among power consumption, area, and performance.

In addition to this, conventional decoders have been replaced by SRAM, CAM (Content

Addressable Memory), and XCAM (CAM with ‘don’t care’) based configurable decoders

to maintain the same access time as that of the original direct mapped design. The

small amount of extra power consumption comes from the fact that instead of the

original four AND gate decoders, eight rows of five-bit long configurable decoders have

been used in this design. Total power overhead due to replacing the original decoder

with modified configurable decoders is 0.18% per access. Compared with a

conventional two-way set associative cache, efficient cache consumes less energy but

achieves almost the same hit rate. The design of this cache suffers from the drawback

that it requires simulation of applications in advance, to find out the best decoding

scheme for the configurable decoder.

22

Balanced Cache [10] introduces a programmable decoder and block replacement

policy to increase the access to the underutilized cache blocks in direct-mapped cache

architectures. The decoder length of a direct-mapped cache is increased by three bits,

which is further divided into a programmable decoder (PD) and a conventional non-

programmable decoder (NDP). This increase in decoder length potentially reduces

access to heavily used blocks to one eighth as compared to the original design. While

maintaining the same access time as of a traditional direct-mapped cache, balanced

cache design provides the advantage of block replacement at the expense of 10.5%

power and 7.98% area overhead.

The design features of the approaches discussed above are tabulated in Table

2.1.

23

Table 2-1 Table Showing Prior Research Done to Improve the Performance of Direct-
Mapped Cache

Name Column
Associative Cache

[12]

Efficient Direct –
Mapped Cache [3]

Balanced Cache
[10]

Year 1993 2005 2006

Miss Rate As two-way As two-way As four-way

Av. Memory
Access Time

As two-way As direct-mapped As direct-
mapped

Hardware & Area
Overhead

Due to rehash bit
and MUX

Due to SRAM,
CAM, XCAM based
configurable
decoder

7.98% due to
programmable
decoder

Power Overhead
Compared to DM

 1.8% 10.5%

Energy Savings
Compared to 2

Way-Set
Associative

 25% 2%

Simulation
Approach

Trace driven Simpler scalar Simpler scalar

2.2 Reducing Access Time of Set associative Caches

As discussed in chapter 1, set associative caches offer good performance in

terms of hit ratio but have relatively higher access time and power consumption than

same size direct mapped cache. Several approaches have been proposed to improve

the performance of set associative cache by reducing access time.

Cache design with partial address matching [20] uses a hit way predicting

technique to reduce the access time. The tag field is divided into two arrays: Main

Directory (MD) and Partial Address Directory (PAD). Both Main Directory and Partial

Address Directory arrays possess the same parameters such as number of sets and

24

associativity, as the cache. The Main Directory array contains the thirteen most

significant bits of the original tag field while the remaining least significant five bits are

moved out to the Partial Address Directory. Only the PAD array is compared to predict

the hit instead of comparing the full tag field, and this hit is verified by MD comparison.

This design is faster because initially only the five bit PAD comparison is required to

predict the hit. If the PAD comparison is not correct then only the MD comparison is

required to rectify it.

The Difference-bit Cache [18] is a two-way set-associative cache with an access

time almost the same as that of a conventional one way set associative cache. This

cache design is based on the fact that there is a difference of at least one bit among two

tags of a set. This bit is called difference bit and the corresponding bit position in which

these two tags differ is called the difference-index. These difference indices and

difference bits are key design features and are used for way selection. Area overhead

depends on the size of the cache; it is 2% in the case of 8K and 1% in the case of 16K.

The design features of the approaches discussed above are tabulated in Table

2.2.

25

Table 2-2 Table Showing Prior Research Done to Reduce Access Time Set of

Associative Cache

Name Partial Address
Matching Cache

Design [20]

Difference Bit
Cache [18]

Year 1996 1994

Memory Access
Time

 As DM Cache

Hardware & Area
Overhead

Due to way prediction
technique

Due to special
decoder and
depends on size
of cache
2% for 8K
1% for 16K

Associativity N-way 2-way

Simulation
Approach

Benchmark based Cacti Software

2.3 Reducing Power Consumption of Associative Caches

Filter cache [9] is an unusually small low power direct mapped cache, which is

positioned in front of the regular cache. In embedded systems most of the processor’s

time is spent in executing just a few tasks, so most hits would take place in the small

filter cache. Therefore, the power hungry regular cache would not be accessed

frequently. Filter cache designs achieve overall power reduction, at the cost of

performance loss and extra hardware.

A CAM based cache [22] is designed to reduce the power consumption of set

associative caches. Each standard CAM cell consists of ten transistors compare to the

standard SRAM cell which consists of six transistors, hence occupying about twice the

area of an SRAM cell. CAM-tag caches have comparable access latency, but give lower

26

hit energy and higher hit rates than RAM-tag set-associative caches at the expense of

area overhead. CAM-tag caches can provide lower total memory access energy by

reducing the hit energy cost of the high associativities required to avoid costly misses.

There is no significant performance overhead associated with CAM designs except for a

10% area overhead.

Selective-way-access skewed associative cache [17] is a software controlled low

power two-way set associative cache for embedded applications. The design consists of

a modified two-way set associative cache, a decoder for the skewing function, and a

skewing function controlled way-selecting mechanism. In this approach, both sets

cooperate logically with each other: one behaves as a main cache and the other

behaves as a shadow cache to reduce conflict misses. Specialized replacement policy

in combination with differentiated function based skewing mechanism gives perfect

prediction for way selection, thereby obtaining higher hit rate. Moreover, this design has

the ability to be converted into one-way set associative for special applications. This

cache structure saves up to 55% power over conventional set associative cache.

Way halting cache [19] is a four way set associative cache with a halt tag array.

Halt tag array is a small fully associative memory, which stores the lowest four bits of all

ways tags. There is simultaneous comparison of the halt tag array with the requested

address tag, in parallel with address decoding of data and tag. This design consumes

less power as it uses static logic only instead of CAM based dynamic logic which is

used in modern highly associative cache. The halting tag array is the key component of

the design, which is responsible for overall power savings. Way halting cache achieves

27

about 55% of energy savings over conventional four-way set-associative cache at the

expense of area overhead of 2%.

Another method of reducing memory access power of cache is presented in [21].

The design of configurable line size cache is based on the fact that reducing the number

of switches per access can reduce overall power per access. Configurable line size is

achieved by a configurable counter which is placed in the cache controller and specifies

how many words to read at a time from the off chip main memory.

 The design features of the approaches discussed above are tabulated in Table

2.3.

Table 2-3 Table Showing Prior Research Done to Reduce Power Consumption of
Associative Cache

Name Filter
Cache [9]

CAM
based

Cache [22]

Configurable
Line Size

Cache [21]

Selective-way-
access
Skewed

Associative[17]

Way
Halting

Cache[19]

Year 1997 2005 2003 2004 2005

Performance
/ Memory

Access Time

Reductio
n by 21%

 As conventi-
onal set asso-
ciative cache

As
conventi-
onal 4-way

Hardware &
Area

Overhead

 10% due
to CAM
based tag
array

Due to
configurable
counter

Due to decoder
for skewing
function and
way selection
mechanism

2% due to
halting tag
array

Associativity Fully 4-way Set 4-way

Power
Savings

Up to
58%

 Up to 50% Up to 55% Up to 55%

Simulation
Approach

IMPACT
Lsim

HSPICE Simple Scalar Simple
Scalar

28

2.4 Reconfigurable Cache Architectures

In recent years, a lot of research has been conducted towards reconfigurable

cache design for embedded applications. In [11] the authors propose a reconfigurable

multi-function computing cache architecture based on the fact that some computing

related applications use complete cache storage. This reconfigurable cache structure is

divided into a regular cache and a configurable cache. The configurable part of the

cache architecture can be converted into a functional unit for either of the two

computations, Finite Impulse Response (FIR) and Discrete Cosine Transform/Inverse

Discrete Cosine Transform (DCT/IDCT). Additional logic is embedded into the cache

structure to convert the cache memory into a functional unit. This cache design

achieves performance improvement up to a factor of 50 for computational applications

with about 10-20% area overhead.

Zhang [2] proposed a highly configurable cache architecture which can be tuned

to direct mapped, set associative cache according to the requirements of embedded

systems. This architecture aids the cache system to be configured at the optimal

configuration. A software controlled technique called way concatenation is used to

configure the cache into direct mapped two-way or four-way associative architecture.

This structure achieves static and dynamic power savings with very little size and

performance overhead. But applications should be profiled before executing to achieve

this energy efficiency, since there is no simple method to obtain the optimal

configuration dynamically.

29

A reconfigurable memory architecture is proposed in [16], which can emulate

many memory structures including cache, a FIFO and a simple scratchpad memory.

This design comprises of configurable memory mats as a fundamental building block.

These memory mats consist of a memory array with metadata bits and a small

peripheral circuitry. In addition to this, extra functional blocks and flexible status bits

have been used to support reconfigurability. This additional logic accounts for 32% area

and 23% power overhead.

The design features of the approaches discussed above are tabulated in Table

2.4.

30

Table 2-4 Table Showing Prior Research Done for Reconfigurable Cache

Name Multi-function
Computing
Cache [11]

Way Concatenation
Cache [2]

Reconfigurable
Memory [16]

Year 2001 2003 2005

Performance
Improvement

Up to factor of
50-60 for
computational
applications

Due to way
concatenation and
way shutdown
circuitry

Hardware &
Area

Overhead

~10-20% of
base cache
memory

Negligible ~15%

Access Time Increased by
1.6%

As 4-way Increased by
~10%

Associativity/
Configuration

 1,2,4-way Cache, FIFO,
Scratchpad

Power Dynamic Power
savings up to 40%
compared to
conventional 4-way

Power Overhead
~10%

Simulation
Approach

 Simple Scalar

2.5 Field Programmable Gate Array Technology

FPGA is a programmable device that can be configured by the designer after

manufacturing. A typical FPGA consists of combinational logic, interconnect, and I/O

blocks [38]. Fig. 2.2 shows the basic structure of an FPGA that incorporates all these

elements. The combinational logic is further divided into small units called combinational

logic blocks (CLBs) or logic elements (LEs). Fig. 2.3 shows the architecture of the

combinational logic block (CLB). A typical CLB consists of a look-up table (LUT), which

can be configured to a specific type of logic function and a flip-flop, thus providing

31

combinational as well as sequential logic [39]. A typical FPGA contains hundreds or

thousands of CLBs.

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

I / O Block

I
/O

B

l

o

c

k

I
/O

B

l

o

c

k

I / O Block

Figure 2-2 Basic Structure of an FPGA

32

The interconnections between these CLBs are made using programmable

interconnect. FPGAs usually offer various types of interconnect based on the distance

between the CLBs which are to be connected. Interconnects are organized in

routing/wiring channels that run horizontally and vertically through the chip. I/O blocks

are used as an interface between package pins and the internal configurable logic and

often provide other features such as high-speed or low power connections. FPGAs are

slower than ASICs, and cannot accommodate complex designs, but are ideal to check

the functionality of designs. Once the logic design of any module is written using a

hardware description language, it needs to be mapped onto the low-level logic blocks of

the FPGA. When a program is loaded onto an FPGA, three specific functions are

carried out:

1. Mapping: The logic design is placed onto CLBs.

2. Placement: CLBs are placed on the FPGA.

3. Routing: Interconnections between CLBs and I/O blocks.

Verilog and VHDL are common hardware description languages. A single FPGA can

be reprogrammed by various HDL or schematic-driven flows [44].

Look-up

Table

LUT

 D Flip Flop Output

Inputs

Enable

Clock

Figure 2-3 FPGA CLB [36]

33

2.6 Contributions of This Thesis

This thesis proposes a new N-way reconfigurable data cache architecture. The

proposed design is capable of operating in three configurations: (i) one-way associative

(ii) two-way associative, and (iii) four-way associative. We have designed a Mode

Selector module within the data cache which allows the data cache to work in any of

these three configurations. This N-way reconfigurable data cache has been designed to

target embedded systems, as most of the popular embedded systems use direct-

mapped, two-way or four-way data cache, as given in Table 1.1. The proposed

architecture has been prototyped using Verilog in Xilinx ISE 9.1i and simulated through

the ModelSim SE 6.3e simulator.

34

 CHAPTER 3

ELEMENTS OF CACHE DESIGN

The overall performance of cache is determined by the basic elements of cache

design, such as cache size, mapping function, replacement policy, write policy, and

block size. Table 3.1 gives the design features of the proposed architecture.

3.1 Cache Size

Performance of the cache depends on its size. Table 3.2 shows the effect of

cache size on miss rate and access time. The performance of the cache increases with

increase in cache size, but at the same time there is an increase in power consumption

and per bit storage cost.

Table 3-1 Effect of Cache Size on Miss Rate and Access Time [25]

Cache Size Miss Rate Av. Access Time
(Clock cycles)

1 KB 13.3% 7.65
2 KB 9.8% 5.90
4 KB 7.2% 4.60
8 KB 4.6% 3.30

16 KB 2.9% 2.45
32 KB 2.0% 2.00

The size of the cache should be small enough to reduce the per bit storage cost

and it should be large enough to provide better hit rate. Currently, a range of cache

sizes from a few words to several mega words are available. For simplicity we have

chosen a cache size of 256 bytes.

35

Table 3-2 Elements Available for Cache Design and Possessed by the Proposed

Reconfigurable Cache Architecture [24].

Elements Existing Proposed Architecture

Cache Size Few bytes to several Kbytes 256 bytes

Mapping Function Direct

Fully Associative

N-way Set Associative

Direct Mapped

Two-way Set-associative

Four-way Set-associative

Replacement Policy Least Recently Used (LRU)

First-in-first-out (FIFO)

Least Frequently Used

(LFU)

Random

Least Recently Used

(LRU)

Write Policy Write through

Write Buffer

Write Back

Write through

Block Size Multiple Words 1 Word

3.2 Mapping Functions

3.2.1 Direct-Mapped Cache

In direct mapping, illustrated in Fig. 3.1 [14], the physical address is divided into

three fields: tag, index, and offset. The tag bits (most significant bits) are unique

36

identifiers for each memory block, which are currently mapped to the cache. Index

(middle) bits specify the location of the requested address within the cache and also

determine the size of the cache. Offset (least significant) bits represent a particular word

within the cache line. Whenever the processor initiates a request to access a particular

memory address, the tag comparator compares the contents of the indexed tag with the

tag of the desired address and simultaneously reads the content of the indexed data

array. If the requested address is currently in the cache, it generates a high Match

signal. The cache produces a high on the hit line if the requested address is in cache

and valid.

Figure 3-1 Direct Mapped Cache Architecture

37

3.2.2 Two-Way Set-Associative Cache

In a two-way set associative configuration, the full capacity of the cache is

divided into two sets of direct-mapped cache. Each set has its separate tag, and valid

and data arrays as shown in Fig. 3.2. Whenever the processor initiates a request to

access a particular memory address, both tag comparators compare the contents of the

indexed tag with the tag of desired address and simultaneously the cache read the

contents of indexed data array from both sets. In case of a case hit, the multiplexer with

the help of the encoder routes the corresponding data to the cache output.

38

Figure 3-2 Two-Way Set-Associative Cache Architecture

3.2.3 Four-Way Set-Associative Cache

Fig. 3.3 depicts the architecture of a four-way set-associative cache where the

physical address is divided into tag field, index field, and line offset field. Being four-way

set associative, the cache consists of four sets of tag, valid and data arrays. During an

access initiated by the processor, the cache first decodes the address bits of the index

field and then concurrently read out the contents from appropriate locations of all sets of

tag, valid and data arrays. The cache simultaneously compares the content of all four

39

selected tag locations with the content of physical address’ tag field. If any of the

selected tags matches the requested address’s tag, the corresponding comparator

generates a high match signal.

Figure 3-3 Four-Way Set-Associative Cache Architecture.

40

Valid data contents in the requested location with high match signal produces a high hit

corresponding to that set. If there is a hit in any of the sets, the multiplexer in

combination with the encoder passes the corresponding data to the cache output.

3.3 Replacement Policy

An efficient replacement policy can reduce the power consumption for set

associative cache. The replacement policy basically reduces the number of cache

misses, which in turn reduces power consumption [43]. The performance of the

replacement policy depends on the accuracy of prediction of future access locations by

the cache based on past accesses. LRU is the most popular replacement policy which

gives higher performance for set associative and fully associative cache design. There

are various ways to implement LRU policy in hardware. The complexity of

implementation increases with increase in cache associativity, which additionally

increases the delay associated with reaching the best candidate for replacement. Even

though a highly associative cache with LRU policy is designed, its performance can be

degraded because of inappropriate implementation.

Various ways of implementing LRU policy for an N-way set associative cache are

as follows [8]:

1. Square Matrix Implementation

2. Skewed Matrix Implementation

3. Counter Implementation

4. Phase Implementation

5. Link List Implementation

6. Systolic Array Implementation

41

In the proposed design of reconfigurable data cache, we have implemented the

LRU policy using the counter implementation method. In this method, each set has its

own LRU unit which has a log2N bits down counter corresponding to each cache line

within a set. The value of the counter shows the order in which the associated cache

line is used within the set. The larger value indicates the most recently used line, while

the smallest value shows the least recently used cache line within a set. Whenever a

cache line is accessed, the corresponding counter value is compared with other

counters’ values within set. The counter values which are greater than the counter value

of the currently accessed line, are decremented by one and the counter value of the

currently accessed line is set to highest value (N-1). Initially all counters are set to zero.

The proposed design can work either as two-way set associative or as four-way

set-associative. In a two-way set associative configuration the realization of LRU policy

is straightforward. Only a single bit (log22 = 1) is required corresponding to each line

within the set. Whenever a particular cache line within a set is referenced, the

corresponding LRU bit is set to 1, to indicate the most recently used line and the LRU

bit of the other cache line is set to zero to indicate the least recently used line. The

cache line whose LRU bit is currently 0, is selected for replacement whenever a miss is

occurred. To implement the LRU policy for a four way set associative configuration, a 2-

bit (log24) counter is needed corresponding to each cache line within the set. The

counter implementation method provides good performance only for low associativity

(two or four) caches. Complexity of implementation increases with increase in

associativity [8].

42

3.4 Write Policy

A write operation can create discrepancy between cache and main memory if

only the cache is updated after a write operation [42]. In our design, to prevent this

discrepancy we have employed a write-through policy, which ensures synchronization

of cache and main memory during write operation.

3.5 Block/Line Size

Another element of cache design is the size of cache line or main memory block.

It indicates the number of words per cache line. Whenever there is a cache miss, the

whole block of main memory containing the requested word is mapped to cache.

According to the reference of locality, the hit ratio increases with increase in line size. At

the same time, if block size is increased further, the hit ratio will start to decrease

because a chance of using newly fetched block is less than the one which has been

replaced.

43

 CHAPTER 4

PROPOSED DESIGN OF RECONFIGURABLE DATA CACHE FOR
EMBEDDED SYSTEMS

4.1 Overview of the Proposed Design

A data cache memory lies between the processor and the main memory [7]. Fig.

4.1 shows the high level block diagram of the proposed design along with the signals

that the cache needs to communicate with the processor and main memory interface.

The processor interface consists of address bus (PAddress), data bus (PData), and

three control signals (PR W , PStrobe, PReady). The processor starts a bus

transaction when PStrobe is high and a requested address is placed on the address

bus. The cache sends a PReady signal to the processor when the bus transaction is

completed. The PR W signal is low for write operation and high for read operation. The

main memory interface consists of address bus (MAddress), data bus (MData), and

three control signals (MR W

In order to access the main memory, the requested address is first placed on

MAddress bus along with MStrobe and MR

, MStrobe, MReady).

W control signals. The MR W signal is low

for write operation and high for read operation. MReady is used to signal the cache

memory that the bus transaction is completed by main memory. Two global signals, Clk

and Reset are used to synchronize the cache operation with the processor. There is an

additional signal called mode, which makes the cache reconfigurable. Depending upon

the value of mode signal, the proposed design of reconfigurable data cache can work in

any of the following three configurations:

44

1. Direct-Mapped Cache

2. Two-Way Set Associative Cache

3. Four-Way Set Associative Cache

Figure 4-1 High Level View of Proposed Architecture of Reconfigurable Data Cache.

4.2 Architecture of the Reconfigurable Data Cache

We have used top down approach to design our module. The top-level design

module shown is further divided into sub modules to build the main module as shown in

Fig. 4.2. The proposed reconfigurable cache consists of six sub modules:Tag RAMs,

Valid RAMs, Data RAMs, Line Replacement unit, Mode Selector Unit, Cache Controller.

Clk Reset Mode

PAddress

PStrobe

 PR W

 PReady

 PData

MAddress

MStrobe

 MR W

 MReady

 MData

Memory
Interface

Processor
Interface

Reconfigurable

Data

Cache

45

Figure 4-2 Sub-Modules of Proposed Design

The detailed architecture of proposed design is shown in Fig. 4.3, which consists

of sub modules along with connecting logics like Encoder, Tag Comparators, and

several Multiplexers. For simplicity we have chosen the following:

1. 16-bit address bus, which gives us a total address space of 64K as main memory

2. 256 bytes of cache, that means only 8 least significant bits are required to

address the cache and

3. Data bus of 8 bit

Cache

Controller

Tag
RAM

Data
RAM

LRU

Mode
Selector

Unit

Valid
RAM

MAddress

MStrobe

MR W

MReady

MData

Reset Clk

PAddress

PR W

PReady

PStrobe

PData

Mode

46

 The main memory is divided up into 256 blocks of 256 bytes each, where each

block is mapped to the cache. Because only 8 address bits are needed to identify the

address in cache, the 16 bit physical address is divided into 8 bit tag field and 8 bit

index field. Due to reconfigurable architecture, total cache of 256 bytes is divided into

four sets of 64 locations each. Thus, we have used four sets of Tag, Valid, and Data

RAMs in this design.

47

Figure 4-3 Architecture of Reconfigurable Data Cache

48

1. Tag RAM - Contains the TAG fields of the physical addresses which are currently

mapped into the cache.

2. Valid RAM - Contains a valid bit associated with each location of cache memory.

This valid bit indicates whether the cache entry is valid or not. Initially, all entries

are set to invalid. As the data contents are moved from main memory to cache,

the valid bit corresponding to them is set to valid.

3. Data RAM - Contains the data contents of physical addresses which are currently

mapped to cache.

4. Tag Comparators – When a data access request is initiated by the processor,

then all tag comparators simultaneously compare the content of tag array

indicated by index field with the requested address’s tag field. If any of the tag

arrays hold the requested address, the corresponding tag comparator generates

the active high match signal.

5. Line Replacement Unit – When a cache miss occurs, the line replacement unit

determines which line should be removed from the cache. According to the

mode selection signals, this unit will replace the least recently used (LRU) line

from the requested address in case of cache misses.

6. Mode Selector - The data cache can be configured as one, two and four way set

associative according to input value at two bit mode terminal. In order to

generate the enable control signal for each of the four set, these two mode bits

are combined with A9 and A8 bits of physical address. Operation of the mode

selector unit is summarized in Table 4.1. Partition of the total cache memory

space under three modes is shown in Fig. 4.3

49

Table 4-1 Mode Selector Operation

A9 A8

Direct
Mapped 2 Way 4 Way
Mode – 00 Mode - 01 Mode - 11

0 0 S0 S0, S2 S0, S1, S2, S3
0 1 S1 S1, S3 S0, S1, S2, S3
1 0 S2 S0, S2 S0, S1, S2, S3
1 1 S3 S1, S3 S0, S1, S2, S3

(i) When mode = “00”, only one of the four output signal is set to high for a particular

address. Thus, only one set of data, tag and valid array will be active and cache

behaves as one way set associative or direct-mapped.

(ii) With mode = “11”, all the four output signals will set to high which in turn activate

the associated data and tag array. As all four sets are active in this case, cache

works as a four way set associative.

(iii) When mode = “01”, cache works as a two-way set associative, because two

sets of data, tag, and valid arrays will be active for any given address.

(iv) Mode “10” reserved for future use.

50

Figure 4-4 Partition of Available Cache into Three Modes

7. Cache Controller – It controls all operations within the cache and is implemented

using a finite state machine as shown in Fig. 4.4. Control signals asserted during

each state are summarized in Table 4.2.

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

Set

Set0
Set0

Set1

Set1

Set2

Set3

One-way Two-way Four-way

51

Figure 4-5 Cache Controller State Machine

(i) Idle State: No memory access and processor is idle in this state. Controller

will remain in idle state until some read or write operation is requested by the

processor. If a read request is initiated by processor, control transfers to read

state or if a write request is initiated by the processor, control transfers to

write state.

(ii) Read State: In this state, the cache is checked for availability of the requested

address, as the processor initiates a read operation. If the requested address

is currently in cache, a cache hit occurs and control returns to idle state

52

during next active clock. Otherwise, a cache miss occurs and control transfers

to readmiss state to initiate main memory access.

(iii) ReadMiss State: Main memory read access is initiated by the cache

controller and control handed over to readmemory state.

(iv) ReadMemory State: Controller has to wait until main memory finds the

requested address and reads the data from that location. Once main memory

loads the data contents on data bus, it asserts a ready signal to controller and

control transfers to readdata state.

(v) ReadData State: Now requested data is available on data bus. Write this data

to least recently used cache line and simultaneously load it to processor’s

data bus to complete the read request. After the completion of processor’s

initiated read operation control go back to idle state.

(vi) Write State: In this state, cache is checked for availability of the requested

address, as processor initiates a write operation. If the requested address is

currently in cache, a cache hit occurs and control returns to writehit state

during next active clock. Otherwise, a cache miss occurs and control transfers

to writemiss state. Whether it is a write hit or miss, data must be written to

cache and simultaneously updated to main memory also.

(vii) WriteHit Data: On a cache hit for write operation, controller stimulates the

write control signal of data cache to write the data contents sent by the

processor and also initiates write through for main memory. Control transfers

to writedata state on next active clock.

53

(viii) WriteMiss State: On a cache miss for write operation, data contents sent

by the processor are written to least recently used cache line and associated

tag and valid rams are also updated. Controller initiates write through policy

for main memory and transfers control to writedata state on next active clock.

(ix) WriteData State: Controller has to wait until main memory completes the

write operation and sends back a ready signal to controller. After completing

the requested write operation, controller will come back to idle state.

Table 4-2 Active High Control Signal During Each State

State Active High Control Signals

Idle None

Read PStrobe, PR W , PDataOE, PReadyEnable, Hit (in

case of read hit)

ReadMiss PR W , PDataOE, Miss, Mstrobe,

ReadMemory PR W , PDataOE, MR W

ReadData PR W , MR W , PDataOE, PDataSelect,

CacheDataSelect, Ready

Write PStrobe

WriteHit Hit, MStrobe, MDataOE

WriteMiss Miss, MStrobe, MDataOE

WriteMemory MStrobe, Ready

54

 CHAPTER 5

PROTOTYPING AND SIMULATION RESULTS

This chapter presents the simulation and synthesis results of the reconfigurable

data cache. The mode selector unit has been considered as the basis of the proposed

architecture, which provides the reconfigurability of the design. A trace file of 20

different test cases has been used for functional simulation of the design. In order to

study the comparative performance of the proposed design, direct mapped, two-way

and four-way set-associative caches are also implemented on the same target device.

5.1 Basic Design Considerations

A typical design flow for designing VLSI systems with the Verilog HDL is shown

in Fig. 5.1. The design flow usually begins with design specification and then moves to

behavioral and structural level (gates and registers). Finally, the physical description of

the system is obtained [34].

There are two basic approaches to design VLSI circuits: a top-down approach

and a bottom-up approach [34]. In top-down approach, we first define top-level design

module and then find the sub-modules required to build this main module. The bottom-

up approach is reverse of top-down approach, where we first define the basic building

blocks and then build main design module using these blocks. A digital designer can

chose any of these two approaches. However, a top-down approach is always preferred

as system level design can be done through HDL design, which can be converted into

RTL, gate and physical level with the help of EDA tools. It is easier to decode and fix

any error or fault at the system level. This thesis has performed the system level

55

implementation of the reconfigurable data cache in Xilinx ISE 9.1i and simulation using

ModelSim. The code is written in Verilog on windows XP platform.

Figure 5-1Typical Design Flow

Verilog is a hardware description language which can be used to model a digital

module, which can be as simple as a logic gate or as complex as a complete electronic

system. Once the Verilog code is written, it can be loaded onto an FPGA board and

implemented, based on its complexity.

5.2 Elements of Verilog

Constructs of the Verilog language are designed for describing hardware

modules and primitives [23]. The basic building block in Verilog is module. Module

Design
Specification

Behavioral
Description

RTL
Description

Gate Level
Netlist

Physical
Layout

56

consists of keyword module, which is the name of design unit, list of I/O ports,

statements to describe design functionality, and keyword endmodule. Design within

each module can be defined at four levels of abstraction, in order to fulfill design

specifications. The four levels of abstractions are as follows [34].

1. Behavioral or Algorithmic level: It is the highest level of abstraction in Verilog

HDL design. At this level, module is described in terms of algorithm.

2. Dataflow level: At this level, the module is implemented using hardware registers.

3. Gate level: At this level, the design in implemented using logic gates.

4. Switch level: It is the lowest level of abstraction in Verilog HDL design. At this

level, module can be implemented using switches, storage nodes and

interconnections between them.

Verilog provide the flexibility to mix and match all four levels of abstractions in a

single module. Generally the design is technology independent and more flexible at

higher level of abstraction. It becomes inflexible and technology dependent at lower

levels of abstraction.

Once Verilog code is written to run on an FPGA, a stimulus or testbench is

required for functional verification. A stimulus block serves two main purposes

1. It generates test cases for simulation

2. It applies test cases to the design under test (DUT) and also collects the output

responses, which is compared with the expected output.

57

5.3 FPGA Prototyping

The architecture of reconfigurable data cache was modeled using Verilog and the

functional simulation was carried out using Modelsim SE 6.3 e. The code is written in a

hierarchical fashion and is a combination of structural and behavioral type of coding.

This Verilog code was compiled using Xilinx ISE 9.1i. The implementations are targeted

for Xilinx’s Virtex-5 family of FPGAs. The Virtex-5 family of FPGA from Xilinx is built in a

65-nm copper CMOS technology. The Virtex-5 Configurable Logic Blocks (CLBs) are

based on 6-input look-up tables and a flip-flop. The CLBs are the main logic resources

for implementing sequential as well as combinatorial circuits. In Virtex-5 FPGA family,

each CLB contains a pair of bit slices; each bit slice further consists of four 6-input look-

up tables and four flip-flops, for a total of eight 6-input look-up tables and eight flip-flops

per CLB [45]. Complete synthesis of all Verilog modules is performed along with its

mapping, placement, and routing.

The RTL schematic and functional simulation result of the direct mapped cache

is shown in Fig. 5.2 and 5.3 respectively. For functional verification of the designed

cache module in direct mapped mode, a trace file of 20 different test cases has been

applied through a driver. The simulation waveform shows only one data access, which

is a cache read miss.

58

Figure 5-2 RTL Schematic of Direct Mapped Cache

Figure 5-3 Simulation Waveform of Direct Mapped Cache Showing Read Miss

Fig. 5.4 shows the RTL schematic of two-way set-associative cache. The same

trace file is used for functional verification. Fig. 5.5 depicts the data access which is a

read hit, during functional simulation.

59

Figure 5-4 RTL Schematic of Two-Way Set-associative Cache

Figure 5-5 Simulation waveform of Two-Way Associative Cache Showing Read Hit

The RTL schematic and functional simulation result of the four-way set-

associative cache is shown in Fig. 5.6 and 5.7 respectively. For functional verification of

the design, the same trace file has been applied through a driver. The simulation

waveform shows only one data access, which is a write miss.

60

Figure 5-6 RTL Schematic of Four-Way Set-associative Cache

61

Figure 5-7 Simulation Waveform of Four-Way Set-Associative Cache Showing Read
Miss

The RTL schematic of the reconfigurable cache is shown in Fig. 5.8. For

functional verification of the designed cache module in all three different modes, the

same trace file of 20 test cases has been applied through a driver. The simulation

waveforms of the reconfigurable cache in direct mapped, two-way and four-way mode

are shown in Fig. 5.9, Fig 5.10 and Fig 5.11.

62

Figure 5-8 RTL Schematic of Reconfigurable Cache

63

Figure 5-9 Simulation Waveform of Reconfigurable Cache in Mode ‘00’ (Direct Mapped)
Showing Read Miss

Figure 5-10 Simulation Waveform of Reconfigurable Cache in Mode ‘01’ (Two-Way Set-
Associative) Showing Write Miss

64

Figure 5-11 Simulation Waveform of Reconfigurable Cache in Mode ‘11’ (Four-Way Set-
Associative) Showing Write Hit.

Complete results obtained from trace file in three different modes are

summarized in Table 5.1. The memory write time for all three configurations (1-way, 2-

way, and 4-way) is same because we have used write through policy for write

operations. In this policy, main memory is simultaneously updated with data cache for

every write access. Total number of hits and misses are same for 2-way and 4-way

configurations, as we have considered a very small trace file for functional simulation of

our design. We can obtain a significant difference in number of hits and misses for

these two configurations by considering a large trace file (which contains approximately

20-30 thousands of test cases).

65

Table 5-1 Summary of Reconfigurable Cache Operation in Three Different Modes

Design Metrics Direct Mapped 2-Way 4-Way

Mode 00 01/10 11

No. of Access 20 20 20

Read Access 11 11 11

Write Access 9 9 9

Read Hits 2 7 7

Read Miss 9 4 4

Write Hits 2 4 4

Write Miss 7 5 5

Total Hits 4 11 11

Total Miss 16 9 9

Memory Read Time 1030 730 730

Memory Write Time 945 945 945

Various design metrics of the proposed design in direct mapped, two-way and

four-way set-associative modes are summarized in Table 5.2. The timing path from a

clock to any other clock in the design indicates the minimum period [47]. The proposed

design possesses smallest minimum period and also highest maximum operating

frequency with respect to 1-way, 2-way, and 4-way set-associative caches. The

maximum path delay is an indicator of maximum path from inputs to outputs. This delay

is smallest for the proposed design. The proposed design has obtained performance

improvement in terms of minimum period, maximum operating frequency and maximum

path delay due to distribution of clock in target device (Virtex-5). In virtex-5 family of

FPGAs, there are total 32 global clocks and each device is divided into regions for

distribution of clock. The design of proposed module is mapped into the target device in

66

a very compact manner as compare to other three configurations, thus producing a

minimum timing path from one synchronous element to other. Since the proposed

design is mapped compactly, maximum delay from any one node to any other node is

also small compare to other designs. The Cell Usage expressed in BELS, reports the

count of all the logical cells that are basic elements of the Virtex technology, for

example, LUTs, MUXCY, MUXF5, MUXF6, MUXF7, MUXF8 [46]. Flip-flops or slice

register count indicates the total number of latches and flip flop used by the design.

Reconfigurable cache design occupies more number of cells, slice registers and LUTs

in order to provide reconfigurability.

Xilinx gives us the flexibility of implementing the HDL code into all the leading

devices of Virtex, Spartan, and Cool Runner families. The reconfigurable cache also

has been targeted to two other FPGA boards. Table 5.3 summarizes design metrics of

reconfigurable data cache for various three different FPGA technologies. The power

consumption has been calculated under ambient temperature of 25ºC. Comparison of

proposed design with other reconfigurable memory is given in Table 5.4.

67

Table 5-2 Comparison of Various Design Metrics of Proposed Design with Direct

Mapped, 2-Way, and 4-Way Set Associative Caches.

Design Metrics Direct
Mapped

2 Way 4 Way Reconfigurable
Cache

Maximum
Frequency (MHz)

154.036 131.683 184.706 212.513

Minimum Period
(ns)

6.492 7.594 5.41 4.706

Maximum
Combinational Path
Delay (ns)

4.901 4.897 3.338 3.342

Cell Usage
(BELS)

399 782 1468 1888

FlipFlops/Slice Reg 267 530 946 1228

Slice LUTs 395 776 1446 1881

IO Utilization 56 56 56 58

No of Bit Slices 638 1006 1666 1991

Power (mW)* - - 1033 1362

Gate Count 135,952 271,795 280,781 288986

*Power calculated incorrectly for small designs (1, 2-way) due to software (Xilinx ISE 9.1) bugs.

68

0
50

100
150
200
250

Maximum Frquency (MHz)

0
1
2
3
4
5
6
7
8

Minimum Period (ns)

0
1
2
3
4
5
6

Maximum Combinational Path Delay (ns)

0

500

1000

1500

2000

2500

No. of Bit Slice

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

Cell Usage (BELS)

0
200
400
600
800

1000
1200
1400

FlipFlops/Slice Regs

69

Figure 5-12 Performance Comparison of Reconfigurable Cache with Direct Mapped,
Two-Way and Four-Way Set-Associative Caches.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Slice LUTs

70

Table 5-3 Comparison of Design Metrics of Reconfigurable Data Cache for Various

FPGA Technologies.

Design Metrics QPro Virtex
Hi-Rel

XQV1000

Automotive
Spartan 3E

Virtex 5

Maximum
Frequency (MHz)

37.111 76.429 212.513

Minimum Period
(ns)

26.946 13.084 4.706

Maximum
Combinational Path

Delay (ns)

21.074 6.280 3.342

Cell Usage
(BELS)

7596 4726 1888

FlipFlops/Slice Reg 1311 1230 1228

Slice LUTs 6361 4014 1881

IO Utilization 58 58 58

No of Bit Slices 3335 2090 1991

Power (mW) - 102 1362

71

Table 5-4 Comparison of Proposed Design with Existing Reconfigurable Memories.

Name Multi-
Function

Computing
Cache [11]

Way
Concatenation

Cache [2]

Reconfigura
ble Memory

[16]

Proposed
Design

Year 2001 2003 2005 2009

Performance
Improvement

Up to factor
of 50-60 for
computation
al
applications

Due to way
concatenation
and way
shutdown
circuitry

 In terms of
Maximum
Frequency,
Combinational
delay

Hardware &
Area

Overhead

~10-20% of
base cache
memory

Negligible ~15% Due to Mode
Selector Unit

Access Time Increased by
1.6%

As 4-way Increased
by ~10%

Associativity/
Configuration

 1,2,4-way Cache,
FIFO,
Scratchpad

1,2,4-way

Power Dynamic
Power savings
up to 40%
compared to
conventional
4-way

Power
Overhead
~10%

Static Power
Overhead
~ 20%

Simulation
Approach

 Simple Scalar ModelSim

72

 CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This thesis presented the architecture and design of a new N-way reconfigurable

data cache for embedded systems. The proposed data cache can be configured as

direct-mapped, two-way and four-way set-associative cache to fulfill the systems’

requirements. We have achieved this reconfigurability with the help of a mode selector

while utilizing the full capacity of cache. The FPGA implementations of the

reconfigurable cache along with direct-mapped, two-way and four-way set-associative

caches have been implemented. The performance of the proposed design is compared

with the direct-mapped, two-way and four-way cache architectures.

The proposed design can be further optimized in terms of speed, area and power

consumption.

73

REFERENCES

[1] C. Zhang, “Reducing Cache Misses Through Programmable Decoders”, ACM
Transactions on Architecture and Code Optimization, Vol. 4, No.4, Article 24, Jan
2008.

[2] C. Zhang, F. Vahid, and W. Najjar, “A Highly-Configurable Cache Architecture
for Embedded Systems”, in Proceedings of the 30th Annual International
Symposium on Computer Architecture, 2003.

[3] C. Zhang,” An Efficient Direct Mapped Instruction Cache for Application-Specific
Embedded Systems”, in Proceedings of the 3rd IEEE/ACM/IFIP International
Conference on Hardware/software Codesign and System Synthesis, Sep 2005.

[4] P. Grun, N. Dutt, and Alexandru Nicolau, “Memory Architecture Exploration for
Programmable Enbedded Systems”, Boston: Kluwer Academic Publishers, 2003

[5] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified Cache Architecture
Providing Power and Performance Flexibility,” International Symposium on Low
Power Electronics and Design, June 2000.

[6] S. Segars, “Low Power Design Techniques for Microprocessors,” International
Solid-State Circuits Conference Tutorial, 2001

[7] Crisu, D., “An Architectural Survey and Modeling of Data Cache Memories in
Verilog HDL”, in Proceedings of International Semiconductor Conference,
Vol. 1, pp.139-142, 1999.

[8] T.S.B. Sudarshan, Rahil Abbas Mir, and S.Vijayalakshmi,”Highly Efficient LRU
Implementations for High Associativity Cache Memory”, in Proceedings of 12th
IEEE International Conference on Advanced Computing and Communications,
pp.24-35, Dec 2004.

[9] J. Kin, M. Gupta and W. Mangione-Smith, “The Filter Cache: An Energy Efficient
Memory Structure,” International Symposium on Microarchitecture, Dec 1997, pp.
184-193.

[10] C. Zhang, “Balanced Cache: Reducing Conflict Misses of Direct-Mapped Caches
Through Programmable Decoders”, in Proceedings of the 33rd International
Symposium on Computer Architecture (ISCA), 2006.

74

[11] H. Kim, A.K. Somani, and A. Tyagi, “A Reconfigurable Multi-Function Computing
Cache Architecture,” IEEE Transactions on VLSI, Vol. 9, No. 4, pp. 509-523, Aug.
2001.

[12] A. Agarwal and S. D. Pudar, “Column-Associative Caches: A Technique for
Reducing the Miss Rate of Direct-Mapped Caches.” in Proceedings of the
International Symposium on Computer Architecture, pp. 179-180, 1993.

[13] C. Zhang, X. Zhang, and Y. Yan, “Two Fast and High- Associativity Cache
Schemes,” IEEE Micro, Vol. 17(5), pp. 40-49, Sep/Oct 1997.

[14] Frank Vahid, and Tony Givargis, “Embedded System Design: A Unified
Hardware/Software Introduction”, John Wiley & Sons, Inc., 2002.

[15] N. H. E. Weste and D. Harris, “CMOS VLSI Design: A Circuit and Systems
Perspective”, Addison Wesley, 2005.

[16] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M.A. Horowitz, “ Architecture
and Circuit Techniques for a 1.1-GHz 16-kb Reconfigurable Memory in 0.18-μm
CMOS” , IEEE Journal of Solid-State Circuits, Vol.40, No.1, pp. 261-275, Jan
2005

[17] J.W. Park, C.G. Kim, J.H. Lee, and S.D. Kim, “An Energy Efficient Cache
Memory Architecture for Embedded Systems”, in Proceedings of the ACM
symposium on Applied Computing, pp. 884-890, 2004.

[18] T. Juan, T. Lang, and J. Navarro. “The Difference-Bit Cache.” in Proceedings of
the 27th International Symposium on Computer Architecture, 1996.

[19] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A Way-Halting Cache for Low-
Energy High-Performance Systems,” ACM Transactions on Architecture and
Code Optimization, Vol. 2, Issue 1, pp. 34-54, March 2005.

[20] L. Liu, “Cache Design with Partial Address Matching,” in Proceedings of the
International Symposium on Microarchitecture, 1994.

[21] C. Zhang, F. Vahid, and W. Najjar, “Energy Benefits of a Configurable Line Size
Cache for Embedded Systems,” International Symposium on VLSI Design, 2003.

75

[22] M. Zhang and K.Asanovic,“Highly-Associative Caches for Low-Power
Processors,” Kool Chips Workshop, in conjunction with International Symposium
on Microarchitecture, Dec. 2000.

[23] Z. Navabi, “Verilog Digital System Design”, New York: McGraw-Hill, 1999.

[24] http://www.faculty.iu-bremen.de/birk/lectures/PC101
2003/07cache/cache%20memory.htm

[25] J. L. Hennessy and D .A. Patterson, “Computer Architecture Quantitative
Approach,” 2nd edition, Morgan-Kaufmann Publishing Co., 1996.

[26] J. L. Hennessy and D .A. Patterson, “Computer Organization and Design: The
Hardware/Software Interface,” 4th edition, Morgan-Kaufmann Publishing Co.,
2009.

[27] http://www.pcguide.com/ref/mbsys/cache/funcComparison-c.html

[28] http://webster.cs.ucr.edu/AoA/Windows/HTML/MemoryArchitecturea2.html

[29] www.cse.uconn.edu/~huang/spring08_340/May_5/Wei_Zeng.ppt

[30] T. Givargis, “Improved Indexing for Cache Miss Reduction in Embedded
Systems,” in Proceedings of Design Automation Conference, 2003.

[31] http://blogs.sun.com/toddjobson/resource/Memory_Latency.png

[32] B, Jacob, “Cache Design for Embedded Real-Time Systems”, Embedded
Systems Conference, Danvers MA, June 30, 1999.

[33] A. J. Smith, “Cache memories”, ACM Computing Surveys, Vol.14, Issue 3, pp.
473-530, Sep.1982.

[34] S. Palnitkar, “Verilog HDL: A Guide to Digital Design and Synthesis”, SunSoft
Press, 1996.

[35] P.R. Panda, N. Dutt, and Alexandra Nicolau, “Memory Issues in Embedded
Systems-On-Chip: Optimizations and Exploration”, Kluwer Academic Publishers,
1999.

http://www.faculty.iu-bremen.de/birk/lectures/PC101%202003/07cache/cache%20memory.htm�
http://www.faculty.iu-bremen.de/birk/lectures/PC101%202003/07cache/cache%20memory.htm�
http://www.pcguide.com/ref/mbsys/cache/funcComparison-c.html�
http://webster.cs.ucr.edu/AoA/Windows/HTML/MemoryArchitecturea2.html�
http://www.cse.uconn.edu/~huang/spring08_340/May_5/Wei_Zeng.ppt�
http://blogs.sun.com/toddjobson/resource/Memory_Latency.png�

76

[36] Wlison Peter R., “Design Recipes for FPGAs”, Elsevier/Newnes, 2007.

[37] Wolf, Wayne Hendrix, “FPGA-based System Design”, Prentice Hall PTR, 2004.

[38] S. Brown, J. Rose; “Architecture of FPGAs and CPLDs: A tutorial,” Department of
Electrical and Computer Engineering, Toronto University.

[39] Christoph Scholl, “Functional Decomposition with Application to FPGA
Synthesis”, Kluwer Academic Publishers, 2001.

[40] S. Tarigopula, “A CAM-based, High-Performance Classifier-Scheduler for a
Video Network Processor”, Thesis, Department of Computer Science and
Engineering, University of North Texas, May2008.

[41] O. B Adamo, “VLSI Architecture and FPGA Prototyping of a Secure Digital
Camera for Biometric Application”, Thesis, Department of Computer Science and
Engineering, University of North Texas, Aug2006.

[42] P. Yiannacouras and J. Rose, “A Parameterized Automatic Cache Generator for
FPGAs”, in Proceedings of IEEE International Conference on Field-Programmable
Technology, pp.324-327, Dec 2003.

[43] B.K. Raveendran, T.B.S. Sudarshan, P.D. Kumar, P. Tangudu, and S.
Gurunaravanan, “LLRU: Late LRU Replacement Strategy for Power Efficient
Embedded Cache”, International Conference on Advanced Computing and
Communications, pp.339-344, Dec 2007.

[44] K. Coffman, “Real World FPGA Design with Verilog”, Prentice Hall Modern
Semiconductor Design Series, 2000.

[45] www.xilinx.com

[46] S. P. Mohanty, R. Kumara C., and S. Nayak, "FPGA Based Implementation of an
Invisible-Robust Image Watermarking Encoder", in Lecture Notes in Computer
Science (LNCS), CIT 2004,Springer-Verlag, Vol. 3356, pp. 344-353, 2004.

[47] S. P. Mohanty, E. Kougianos, and N. Ranganathan, "VLSI Architecture and Chip
for Combined Invisible Robust and Fragile Watermarking", IET Computers &
Digital Techniques (CDT), Vol. 1, Issue 5, pp. 600-611, Sep 2007.

http://www.xilinx.com/�
http://www.cse.unt.edu/~smohanty/research/ConfPapers/2004/MohantyLNCS2004.pdf�
http://www.cse.unt.edu/~smohanty/research/ConfPapers/2004/MohantyLNCS2004.pdf�
http://www.cse.unt.edu/~smohanty/research/ConfPapers/2004/MohantyLNCS2004.pdf�
http://www.cse.unt.edu/~smohanty/research/JournalPapers/2007/MohantyCDT2007Sep.pdf�
http://www.cse.unt.edu/~smohanty/research/JournalPapers/2007/MohantyCDT2007Sep.pdf�
http://www.cse.unt.edu/~smohanty/research/JournalPapers/2007/MohantyCDT2007Sep.pdf�

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 Motivation
	1.2 History
	1.3 Principles of Cache Memory
	1.4 Operation of Cache Memory
	1.5 Cache Memory Performance
	1.6 Cache Architecture
	1.6.1 Direct-Mapped Cache
	1.6.2 Fully Associative Cache
	1.6.3 Set Associative Cache
	1.6.4 Impact of Cache Associativity

	1.7 Cache Line Replacement Policy
	1.8 Cache Write Policies
	1.9 Organization of the Thesis

	2. RELATED RESEARCH
	2.1 Improving Performance of Direct-Mapped Caches by Reducing Miss Rate
	2.2 Reducing Access Time of Set associative Caches
	2.3 Reducing Power Consumption of Associative Caches
	2.4 Reconfigurable Cache Architectures
	2.5 Field Programmable Gate Array Technology
	2.6 Contributions of This Thesis

	3. ELEMENTS OF CACHE DESIGN
	3.1 Cache Size
	3.2 Mapping Functions
	3.2.1 Direct-Mapped Cache
	3.2.2 Two-Way Set-Associative Cache
	3.2.3 Four-Way Set-Associative Cache

	3.3 Replacement Policy
	3.4 Write Policy
	3.5 Block/Line Size

	4. PROPOSED DESIGN OF RECONFIGURABLE DATA CACHE FOR EMBEDDED SYSTEMS
	4.1 Overview of the Proposed Design
	4.2 Architecture of the Reconfigurable Data Cache

	5. PROTOTYPING AND SIMULATION RESULTS
	5.1 Basic Design Considerations
	5.2 Elements of Verilog
	5.3 FPGA Prototyping

	6. CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES

