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          CHAPTER 1 

INTRODUCTION 

The need for mobile systems, portable devices, and many other appliances used 

in our modern life results in a growing demand for embedded computing systems. As 

this growth occurs at tremendous rate, it reduces the window for time-to-market, which 

in turn is motivating us to design new core-based system-on-chip (SOC) architectures. 

In such systems’ design, embedded processors (microprocessor cores) are playing a 

vital role [30]. Several programming languages and electronic design automation (EDA) 

tools are available currently for embedded processors, which make programming 

straightforward and offer different solutions to overcome design challenges and 

simultaneously optimize design metrics. Designers have to maintain a balance of these 

metrics and compromise between power, cost, performance and time-to-market. Cache 

memory, a crucial part of embedded systems, is responsible for consuming approx. half 

of the total power consumption by these systems. Research in design of optimal cache 

architectures for portable and mobile devices is being actively pursued. According to 

certain studies, the use of separate data and instruction cache is one way of improving 

the performance of today’s microprocessors. Proper cache architecture can bring down 

the time overhead of accessing data and instructions from off-chip main memory, 

thereby reducing power consumption. High gains in performance have been achieved 

by tuning appropriate cache architectures to the application set of embedded systems. 

Cache sizes, degree of associativity, block replacement algorithms, write policies, block 

size (cache line) are the core parameters for optimizing the cache architecture. Suitable 
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selection of these design parameters can enhance cache performance in terms of 

power consumption, hit ratio, access time and hardware requirements.  

1.1 Motivation 

Embedded systems have always been cost sensitive. Cache occupies approx. 

fifty percent of the total area and also accounts for approximately fifty percent of a 

processor’s total power in embedded systems, including both static and dynamic 

components [5][6]. Thus, cache governs the performance and cost of application 

specific embedded systems. The direct-mapped (DN) cache architecture is very popular 

in embedded systems because of its simplicity, faster access time and low power 

consumption. A DM cache is more energy efficient and uses less power than the same 

sized two-way or four-way set associative cache since it accesses only one location of 

tag and data arrays per access [2]. Moreover, a direct-mapped cache has faster access 

time as it does not require a multiplexer to select the requested data from multiple 

accessed data items in different sets.  Although direct mapped cache has the 

advantage of consuming less area and power, it suffers from poor performance.  One 

way to improve the performance of such systems is to use set associative cache at the 

expense of larger area and higher power consumption compared to direct mapped 

cache. Other ways of improving the performance of direct-mapped cache are discussed 

in section 2.1. The data cache architectures of most commonly used embedded 

microprocessors are summarized in Table 1.1.  
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Table 1-1 Data Cache Associativities of Popular Embedded Microprocessors [2]. 

Processor Associativity Processor Associativity 
Hitachi SH7750S (SH4) 1 Hitachi SH7727 4 

NEC VR4181 1 IBM PPC 7603 4 
NEC VR4181A 1 Motorola MPC8240 4 
NEC VR4121 1 Motorola MPC823E 4 

Sun Ultra SPARC lie 1 Motorola MPC8540 4 
AMD-K6- IIIE 2 PMC Sierra RM9000X2 4 
IBM403GCX 2 PMC Sierra RM7000A 4 

IBM Power PC 405CR 2 SandCraft sr71000 4 
Intel 960IT 2 SuperH 4 

TI TMS320C6414 2 Triscend A7 4 
Xilinx Virtex IIPro 2 IBM PPC 750CX 8 
Alchemy AU1000 4 IBM750FX 8 

ARM 7 4 Motorola MPC7455 8 
 

From Table 1.1, it is clear that the associativity requirement of data cache for almost all 

the embedded systems is one way, two-way or four-way. In order to match the cost, 

performance, and power goals with targeted time-to-market, a new N-way 

reconfigurable data cache is proposed. The proposed design can be configured as 

direct-mapped, two-way or four-way set associative according to the system’s 

requirement. 

 1.2 History 

Recent advances in chip technology, such as the ability to place more transistors 

on the same die together with increased operating speeds, has led to a tremendous gap 

between processor’s and main memory’s speed. According to Moore’s law, there is an 

annual increase in performance of processor and main memory approximately by 60% 
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and 10%, respectively [4].  Thus, this gap between processor and main memory speed 

is growing at a rate of 50% per year as shown in Fig. 1.1.  

 

Figure 1-1 CPU-Memory Speed Gap [31] 

 

With advancements in technology, this speed gap is gradually reduced as the 

processor has to access on-chip cache memory instead of off-chip main memory. 

Cache is a small on-chip memory situated between a high speed processor and low 

speed main memory. A cache is implemented using SRAM (Static Random Access 

Memory) which makes the cache fast, unlike the main memory which comprises of 

DRAM (Dynamic Random Access Memory). Fig. 1.2 illustrates the memory hierarchy 

for embedded microprocessors. 
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As cache is very fast and on-chip, the processor can access it more quickly than 

main memory. A cache is local memory in a computing system that stores a copy of 

data and instructions currently used by the processor. The architecture of cache 

memory is largely determined by the behavior of the application using that cache. Single 

functioned embedded systems like scanners, fax machines, digital cameras, etc. are 

designed to execute a small range of well defined tasks in the system’s lifetime, 

requiring a small, high performance, low power cache. In contrast, a desktop computer 

has to support various applications, like word processors, spreadsheets, CAD software, 

etc. which need large amounts of cache [14]. Desktop systems afford greater flexibility 

for the design of cache memories in terms of cache size, associativity, block size, line 

size, and multi-level cache. Due to limitations on the physical size and energy budget, 

design of cache for embedded applications is more stringent than those for desktop 

applications. 

On Chip  

Memory 

D- Cache 

I - Cache 

 

 

 

Processor 

 

Custom 

 

 

Off Chip 

Main 

Memory 

Figure 1-2  Memory Hierarchy for Embedded Microprocessor [35] 
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 1.3 Principles of Cache Memory  

At any given time, the processor needs only small amount of data [28]. The 

cache memory tries to predict the range of memory locations, which the processor will 

need in the near future and copies the content of these locations in advance. Whenever 

the processor needs any data, first it attempts to retrieve it from cache and if data is not 

available there, it has to wait until the data is loaded from main memory to cache. At this 

time data from nearby locations of the requested address are also copied to cache. 

The basic principle behind cache operation is locality of reference, also known as 

principle of locality. According to this principle, any program or application running on a 

processor needs to access only a small portion of their total available address space at 

a given point of time [26]. There are two basic types of reference locality: 

1. Temporal locality (locality in time): At a given instant of time, if a particular 

data item is used, then there is a high probability that it will be required again 

in near future [33].  

2. Spatial locality (locality in space): If a data item from a particular memory 

address is used at a given instant of time, then there is a high probability that 

data items from nearby addresses will be required soon [33]. 

1.4 Operation of Cache Memory  

Main memory with n-bit address lines has a total space of 2n words. It is divided 

into numbers of blocks containing k words each. Thus, it has total 2n/k = MB (main 

memory blocks). Cache memory is also divided into a number of lines containing k 

words each. The total number of cache lines (CL) is considerably smaller than the 
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number of main memory blocks (MB). Thus, only few main memory blocks are mapped 

to cache at any point of time. When a read request is initiated by the processor not 

present in the cache, then the whole block containing that requested data item is 

mapped to one of the cache lines [24]. A cache line cannot be uniquely assigned to 

individual main memory block because of the large number of blocks compared to 

cache lines. Hence a tag is associated with each cache line to identify the physical 

address corresponding to that particular line. Fig. 1.3 illustrates the structure of cache 

and main memory. 
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Figure 1-3  Cache and Main Memory Structure [24] 

1.5 Cache Memory Performance  

The performance of the cache is based on how efficiently it provides the 

requested data. It is measured in terms of the hit or miss ratio, and access time. When 

the requested data is found in the cache then it is called a cache hit, otherwise a cache 

miss. Hit ratio is defined as the number of memory accesses found in cache with 

respect to the total requested memory accesses. Miss ratio is given as (1 - hit ratio) 

[28]. The time taken by the cache to provide the requested data in case of a hit is called 

hit time. When there is a cache miss, then the requested data is fetched from main 
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memory and mapped to cache. The time required for fetching and mapping of the data 

is called miss penalty. Conventional approaches to improve the performance of cache 

(by increasing the hit ratio or by decreasing the miss ratio) are generally categorized as: 

(1) increasing block size and cache size, (2) increasing associativity, (3) cache probing, 

(4) supplementing the regular cache with victim cache, (5) hardware prefetching of data, 

and (6) including additional cache hierarchy [25]. 

 1.6 Cache Architecture 

Cache memory is responsible for half of the total power and area usage in 

embedded systems. Effectiveness of the cache memory is determined by its 

architecture, which means how the cache is mapped to the system’s main memory.  

Mapping reduces the chance that a moved-out block will be used again in the near 

future. There are three types of mapping: direct, fully associative, and n-way set 

associative.  

1.6.1 Direct-Mapped Cache 

In direct-mapped cache (also known as one way-set associative cache), each 

block from main memory is assigned to one particular cache line. Mapping is based on 

the following relation [24], CL = (MB mod CL), where MB is the main memory block which 

is mapped to the cache line number CL and CL is the total number of lines in the cache. 

Fig. 1.4 shows how the position of block number 15 from main memory can be placed in 

three different cache organizations. 
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Figure 1-4  Mapping of Main Memory Block 15 in Three Different Cache Architectures 
[25]. 

Simple design and comparatively easy hardware implementation are the two 

benefits of direct mapped cache [29]. However, the only problem associated with this 

design is the mapping of each block from main memory to one specific cache line.  In 

spite of the fact that cache follows the principle of locality, for some programs or 

applications, there is a possibility of requiring few data items very frequently which are 

mapped to the same cache line. These data items will be moved in and out of the cache 

continuously causing a low hit ratio. In single tasking embedded systems, this situation 

is unusual but in multi-tasking systems it can arise fairly often and hence deteriorate the 

performance of direct-mapped cache. 
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1.6.2 Fully Associative Cache 

In fully associative cache each block from main memory can be assigned to any 

of the cache lines, as shown in Fig. 1.4 and thus provides best hit ratio. At the same 

time, it suffers from the overhead of cost, complexity, hardware and access time 

involved in the search of requested address within the cache. All cache blocks are 

simultaneously compared with the requested address to determine whether a requested 

memory address is in the cache. In addition to this, extra logic is required to find out 

which cache line should be replaced when requested data is not available in the cache. 

Generally, fully associative cache is not used due to its high cost, complexity, and 

access time. 

1.6.3 Set Associative Cache 

In set associative cache architecture, the cache memory is divided into a number 

of small, direct mapped modules, where each module is called a set. A cache 

comprising of N sets is called N-way set-associative. A particular main memory block 

can be assigned to any cache line within the set according to the relation [24], CSN = 

(MB mod S), where MB is the main memory block which is mapped to the cache set 

number CSN and S is the number of sets in the cache. In order to determine whether a 

requested memory address is in the cache, locations within the set indicated by an 

index field are compared with the desired address.  

Set associative cache is basically a compromise between direct mapped and 

fully associative cache, thus its performance lies between these two cache 
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architectures. Two-way and four-way set associative caches give the best performance 

in terms of hit ratio and access time for embedded systems [24]. 

Table 1-2 Comparisons of Mapping Functions 

Cache Type Access Time per Access Hit Ratio 
Direct Mapped  Less Poor comparatively 
N-way Set Associative Moderate (worsen as N 

increases) 
Good, (improves 
further as N increases) 

Fully Associative Highest Best 
 

1.6.4 Impact of Cache Associativity  

The associativity of cache memory not only affects its performance but also 

greatly impacts the overall energy consumed. A direct mapped cache consumes less 

energy per access than a two-way or four-way set-associative cache, because only one 

tag and one data array are read during an access, rather than two or four arrays. 

However, for some applications direct mapped cache has a higher miss rate and access 

time, consuming higher energy for accessing the off-chip main memory. In such cases, 

increasing the cache associativity is one way to reduce the miss rate and access time, 

which in turn reduces the overall energy consumed by the cache [2]. Fig. 1.5(a) shows 

the miss rate for the SPEC92 benchmark and Fig. 1.5(b) shows average memory 

access time for these miss rates under the assumption that higher associativity will 

increase the clock cycle [25]. Impact of cache associativity on miss rate and access 

time is described in Table 1.3. 
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Table 1-3 Impact of Cache Associativity on Miss Rate and Access Time 

Associativity Miss Rate Access Time (Clock Cycles) 
1-way 13.3% 7.65 
2-way 10.5% 6.60 
4-way 9.5% 5.44 

As shown in Fig. 1.5(a), the total miss rate for a one-way 1 KB cache is 13.3%, 

for a two-way cache is 10.5% and for four-way cache is only 9.5%. It is clear from Fig. 

1.5(b) that the average memory access time decreases with increase in associativity.  

 

(a) Miss Rate vs. Associativity 

 

(b) Access Time vs. Associativity  

Figure 1-5 Miss Rate (a) and Access Time (b) of SPEC92 Benchmarks on 1KB Data 
Caches of Different Associativities.  
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Although more energy per access is required for accessing a four-way set 

associative cache, due to the additional hardware required to support line replacement, 

the extra energy may be compensated by reduction in access time and energy that 

would have been caused by misses. Thus, choosing the appropriate associativity to a 

particular application is very essential to reduce energy, which motivates the need for 

an N-way set associative cache. 

1.7 Cache Line Replacement Policy  

When a cache miss occurs, the requested address line must be placed into the 

cache. To load a new line into the cache, one of the existing cache lines must be 

replaced. Cache line replacement policy is a technique for selecting the line which 

should be replaced when all the lines in set associative or fully associative cache are full 

[14]. As discussed in section 1.6, there is no choice in a direct-mapped cache, as the 

requested line can go to exactly one location in the cache. In set associative cache the 

requested line can go in one of the fixed number of cache locations. Thus, we have a 

choice as to where to place the requested line and hence a choice of which line to 

replace. In a fully associative cache, the requested line can go to any location in the 

cache. Thus all cache lines are candidates for replacement. The proposed design can 

work either as direct-mapped, which does not need any replacement policy or as set 

associative, which requires some replacement policy for line replacement in case of 

cache miss. There are four most common replacement policies [24]. 

1. Random – A random replacement policy selects the cache line to be replaced 

randomly. 
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2. Least Recently Used (LRU) – A LRU replacement policy replaces a cache 

line which has not been used for a long time. 

3. First in - First out (FIFO) – A FIFO replacement policy uses a queue of size N, 

to keep track of the sequence in which cache locations are being accessed, 

and replaces the cache line that was loaded in the queue in the most distant 

time.  

4. Least Frequently Used (LFU) – A LFU replacement policy replaces the cache 

line that has been referenced the fewest number of times.  

The random replacement policy is simple to implement in hardware but it has 

been found that this policy would be a poor replacement line selection method. In 

reality, it performs worse when compared to any of the other three replacement 

methods mentioned above. The FIFO replacement policy is also easy to implement in 

hardware via a queue of size N for cache lines. The most commonly used replacement 

policy is LRU. It is implemented by maintaining a record of access of each cache line 

within a set, relative to the other lines. According to the principle of locality, a recently 

accessed cache line is more likely to be referenced again in the near future. Thus, LRU 

tends to give the best performance among other methods. This policy provides an 

excellent hit rate but relatively expensive hardware is required for its implementation. 

 1.8 Cache Write Policies 

It is necessary to check whether the cache line has been modified or not, before 

replacement. If the content of the cache line has not been updated since its arrival in the 

cache, there is no need to modify the main memory corresponding to this cache line 



16 
 

prior to its replacement. When we write to a particular cache line, the data contents of 

the cache will be modified after the write operation therefore it would have a different 

value from the corresponding main memory location. In such a case, there is a need to 

update the main memory before replacement of that cache line. The cache line and 

corresponding main memory location should hold the same data. There are three 

different write policies which can be used to ensure that the cache and main memory 

contents are the same: write-through, write-through with write buffer, and write-back 

[26].  

1. Write-through: It is the simplest method to simultaneously update the main 

memory with modifications in the cache. In this technique the information is 

immediately written to both cache and main memory during write operations. 

Easy implementation and consistency among main memory and cache are 

two major benefits of this policy. On the other hand, the write through policy 

introduces a significant amount of delay as the processor has to wait until the 

write operation to the main memory is completed.  In spite of this delay, most 

Intel microprocessors use a write-through cache design. 

2. Write-through with write buffer: It is one of the solutions to reduce processor 

delay during write operation. This approach uses a write buffer queue that 

holds data which is waiting for it to be written into the main memory. As the 

cache controller writes the data into the cache and into the write buffer queue, 

it immediately returns a ready signal to the processor, so that it can continue 

execution. Thus, the processor does not have to wait to write data into main 

memory and saves valuable clock cycles. If the write buffer queue is 



17 
 

completely full, with pending data to be written on main memory, and a write 

request comes from processor, then the processor has to wait until it gets an 

empty location in the write buffer queue. One way to solve this problem is to 

increase the size of the write buffer queue. 

3. Write-back: It is another alternative to write through, sometimes also called a 

posted write or copy back policy. During a write operation the data is written 

only to the line in cache. This takes less time and allows the processor to 

continue execution immediately. The updated cache line is written to the main 

memory only when it is replaced. In order to keep track of a cache line which 

has been updated and written to main memory before replacement, an extra 

bit called dirty bit is associated with each line. The status of the cache line is 

indicated by this bit, whether the line is updated (dirty) while in the cache or, 

not updated (clean). If the cache line is not updated, there is no need to copy 

its content before replacement on a cache miss. The advantage of the write-

back policy is that it can improve system performance when the processor 

requests write operations faster than writes, which can be handled by main 

memory. Although write-back is a faster alternative to the write-through policy, 

it suffers from the major drawback of content inconsistency between main 

memory and cache, which is called cache coherency problem. Moreover, it is 

more complicated to implement in hardware when compared to the other two 

polices. 
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1.9 Organization of the Thesis 

This thesis is organized as follows; Chapter 1 provided an introduction and 

motivating factors of this research. Related research is discussed in Chapter 2. An 

explanation of design elements of proposed N-way reconfigurable data cache is given in 

Chapter 3. Chapter 4 discusses architectures of reconfigurable data cache. In Chapter 

5, the prototype of the direct-mapped, two-way and four-way associative data cache 

along with proposed reconfigurable data cache is explained. Chapter 6 concludes the 

work and gives suggestions for future research. 
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         CHAPTER 2 

RELATED RESEARCH 

Cache plays a vital role in any processor based embedded system in order to 

achieve high performance. Several cache designs have been proposed by researchers 

either to improve the performance of direct-mapped cache or to reduce the access time 

and power consumption of set associative cache. In this chapter, a review of the 

research work done in the field of cache design is presented. Classification of related 

research is given in Fig. 2.1. Section 2.1 reviews various research works on improving 

the performance of direct-mapped cache by reducing cache misses. Cache misses 

incur accessing to off chip main memory which is both power costly and time 

consuming.  Sections 2.2 and 2.3 discuss in brief various research works done to 

reduce the access time and power consumption in set associative caches. Section 2.4 

covers the work done in the area of reconfigurable caches. FPGA technology overview 

is described in Section 2.5. 
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Figure 2-1 Classification of Related Research 

2.1 Improving Performance of Direct-Mapped Caches by Reducing Miss Rate 

The ever growing need for high performance processors, especially for 

embedded applications, has motivated the computer designers to study and work on 

various techniques for improving the performance of direct-mapped caches. As 

discussed in chapter 1, the most commonly and efficiently used method for increasing 

performance of embedded processors is to use an efficient cache memory which 

accounts for approx. half of the total power consumed by the system. Direct-mapped 

cache is very popular in embedded systems due to its small size and high speed. The 
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key to improving the performance of direct-mapped cache is to reduce the miss rate or 

to increase the hit rate. 

A technique called Column Associative Cache for reducing the miss rate of direct 

mapped caches has been proposed by Agarwal and Pudar [12]. This design uses an 

extra bit for dynamically choosing alternate hashing functions and a multiplexer for the 

address generation to achieve almost the same miss rate as that of a two way set 

associative cache at a cost of extra hardware. The extension of column associative 

cache has multiple alternative locations as described in [13].  

Efficient direct mapped cache [3] architectures reduce the accesses to overused 

cache blocks and increase the accesses to underused blocks without increasing the 

cache access time, associativity, and area. Cache memory is divided into sub arrays in 

order to achieve the best trade-off among power consumption, area, and performance. 

In addition to this, conventional decoders have been replaced by SRAM, CAM (Content 

Addressable Memory), and XCAM (CAM with ‘don’t care’) based configurable decoders 

to maintain the same access time as that of the original direct mapped design. The 

small amount of extra power consumption comes from the fact that instead of the 

original four AND gate decoders, eight rows of five-bit long configurable decoders have 

been used in this design. Total power overhead due to replacing the original decoder 

with modified configurable decoders is 0.18% per access. Compared with a 

conventional two-way set associative cache, efficient cache consumes less energy but 

achieves almost the same hit rate. The design of this cache suffers from the drawback 

that it requires simulation of applications in advance, to find out the best decoding 

scheme for the configurable decoder. 
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Balanced Cache [10] introduces a programmable decoder and block replacement 

policy to increase the access to the underutilized cache blocks in direct-mapped cache 

architectures. The decoder length of a direct-mapped cache is increased by three bits, 

which is further divided into a programmable decoder (PD) and a conventional non-

programmable decoder (NDP). This increase in decoder length potentially reduces 

access to heavily used blocks to one eighth as compared to the original design.  While 

maintaining the same access time as of a traditional direct-mapped cache, balanced 

cache design provides the advantage of block replacement at the expense of 10.5% 

power and 7.98% area overhead. 

The design features of the approaches discussed above are tabulated in Table 

2.1. 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Table 2-1 Table Showing Prior Research Done to Improve the Performance of Direct-
Mapped Cache 

Name Column 
Associative Cache 

[12] 

Efficient Direct –
Mapped Cache [3] 

Balanced Cache 
[10] 

Year 1993 2005 2006 

Miss Rate As two-way As two-way As four-way 

Av. Memory 
Access Time 

As two-way As direct-mapped As direct-
mapped 

Hardware & Area 
Overhead 

Due to rehash bit 
and MUX 

Due to SRAM, 
CAM, XCAM based 
configurable 
decoder 

7.98% due to 
programmable 
decoder 

Power Overhead 
Compared to DM 

 1.8% 10.5% 

Energy Savings 
Compared to 2 

Way-Set 
Associative 

 25% 2% 

Simulation 
Approach 

Trace driven Simpler scalar Simpler scalar 

 

2.2 Reducing Access Time of Set associative Caches  

As discussed in chapter 1, set associative caches offer good performance in 

terms of hit ratio but have relatively higher access time and power consumption than 

same size direct mapped cache. Several approaches have been proposed to improve 

the performance of set associative cache by reducing access time.  

Cache design with partial address matching [20] uses a hit way predicting 

technique to reduce the access time. The tag field is divided into two arrays: Main 

Directory (MD) and Partial Address Directory (PAD). Both Main Directory and Partial 

Address Directory arrays possess the same parameters such as number of sets and 
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associativity, as the cache. The Main Directory array contains the thirteen most 

significant bits of the original tag field while the remaining least significant five bits are 

moved out to the Partial Address Directory. Only the PAD array is compared to predict 

the hit instead of comparing the full tag field, and this hit is verified by MD comparison. 

This design is faster because initially only the five bit PAD comparison is required to 

predict the hit. If the PAD comparison is not correct then only the MD comparison is 

required to rectify it. 

The Difference-bit Cache [18] is a two-way set-associative cache with an access 

time almost the same as that of a conventional one way set associative cache. This 

cache design is based on the fact that there is a difference of at least one bit among two 

tags of a set. This bit is called difference bit and the corresponding bit position in which 

these two tags differ is called the difference-index. These difference indices and 

difference bits are key design features and are used for way selection. Area overhead 

depends on the size of the cache; it is 2% in the case of 8K and 1% in the case of 16K. 

The design features of the approaches discussed above are tabulated in Table 

2.2. 
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Table 2-2 Table Showing Prior Research Done to Reduce Access Time Set of 

Associative Cache 

Name Partial Address 
Matching Cache 

Design [20] 

Difference Bit 
Cache [18] 

Year 1996 1994 

Memory Access 
Time 

 As DM Cache 

Hardware & Area 
Overhead 

Due to way prediction 
technique 

Due to special 
decoder and 
depends on size 
of cache 
2% for 8K 
1% for 16K 

Associativity N-way 2-way 

Simulation 
Approach 

Benchmark based Cacti Software 

 

2.3 Reducing Power Consumption of Associative Caches  

Filter cache [9] is an unusually small low power direct mapped cache, which is 

positioned in front of the regular cache. In embedded systems most of the processor’s 

time is spent in executing just a few tasks, so most hits would take place in the small 

filter cache.  Therefore, the power hungry regular cache would not be accessed 

frequently. Filter cache designs achieve overall power reduction, at the cost of 

performance loss and extra hardware.  

A CAM based cache [22] is designed to reduce the power consumption of set 

associative caches. Each standard CAM cell consists of ten transistors compare to the 

standard SRAM cell which consists of six transistors, hence occupying about twice the 

area of an SRAM cell. CAM-tag caches have comparable access latency, but give lower 
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hit energy and higher hit rates than RAM-tag set-associative caches at the expense of 

area overhead. CAM-tag caches can provide lower total memory access energy by 

reducing the hit energy cost of the high associativities required to avoid costly misses. 

There is no significant performance overhead associated with CAM designs except for a 

10% area overhead.  

Selective-way-access skewed associative cache [17] is a software controlled low 

power two-way set associative cache for embedded applications. The design consists of 

a modified two-way set associative cache, a decoder for the skewing function, and a 

skewing function controlled way-selecting mechanism. In this approach, both sets 

cooperate logically with each other: one behaves as a main cache and the other 

behaves as a shadow cache to reduce conflict misses. Specialized replacement policy 

in combination with differentiated function based skewing mechanism gives perfect 

prediction for way selection, thereby obtaining higher hit rate. Moreover, this design has 

the ability to be converted into one-way set associative for special applications. This 

cache structure saves up to 55% power over conventional set associative cache. 

Way halting cache [19] is a four way set associative cache with a halt tag array. 

Halt tag array is a small fully associative memory, which stores the lowest four bits of all 

ways tags. There is simultaneous comparison of the halt tag array with the requested 

address tag, in parallel with address decoding of data and tag. This design consumes 

less power as it uses static logic only instead of CAM based dynamic logic which is 

used in modern highly associative cache. The halting tag array is the key component of 

the design, which is responsible for overall power savings. Way halting cache achieves 
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about 55% of energy savings over conventional four-way set-associative cache at the 

expense of area overhead of 2%. 

Another method of reducing memory access power of cache is presented in [21]. 

The design of configurable line size cache is based on the fact that reducing the number 

of switches per access can reduce overall power per access. Configurable line size is 

achieved by a configurable counter which is placed in the cache controller and specifies 

how many words to read at a time from the off chip main memory. 

 The design features of the approaches discussed above are tabulated in Table 

2.3. 

Table 2-3 Table Showing Prior Research Done to Reduce Power Consumption of 
Associative Cache 

Name Filter 
Cache [9] 

CAM 
based 

Cache [22] 

Configurable 
Line Size 

Cache [21] 

Selective-way-
access 
Skewed 

Associative[17] 

Way 
Halting 

Cache[19] 

Year 1997 2005 2003 2004 2005 

Performance
/ Memory 

Access Time 

Reductio
n by 21% 

  As conventi-
onal set asso-
ciative cache 

As 
conventi-
onal 4-way 

Hardware & 
Area 

Overhead 

 10% due 
to CAM 
based tag 
array 

Due to 
configurable 
counter 

Due to decoder 
for skewing 
function and 
way selection 
mechanism 

2% due to 
halting tag 
array 

Associativity Fully  4-way Set 4-way 

Power 
Savings 

Up to 
58% 

 Up to 50% Up to 55% Up to 55% 

Simulation 
Approach 

IMPACT 
Lsim 

HSPICE  Simple Scalar Simple 
Scalar 
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2.4 Reconfigurable Cache Architectures  

In recent years, a lot of research has been conducted towards reconfigurable 

cache design for embedded applications. In [11] the authors propose a reconfigurable 

multi-function computing cache architecture based on the fact that some computing 

related applications use complete cache storage. This reconfigurable cache structure is 

divided into a regular cache and a configurable cache. The configurable part of the 

cache architecture can be converted into a functional unit for either of the two 

computations, Finite Impulse Response (FIR) and Discrete Cosine Transform/Inverse 

Discrete Cosine Transform (DCT/IDCT). Additional logic is embedded into the cache 

structure to convert the cache memory into a functional unit. This cache design 

achieves performance improvement up to a factor of 50 for computational applications 

with about 10-20% area overhead. 

Zhang [2] proposed a highly configurable cache architecture which can be tuned 

to direct mapped, set associative cache according to the requirements of embedded 

systems. This architecture aids the cache system to be configured at the optimal 

configuration. A software controlled technique called way concatenation is used to 

configure the cache into direct mapped two-way or four-way associative architecture. 

This structure achieves static and dynamic power savings with very little size and 

performance overhead. But applications should be profiled before executing to achieve 

this energy efficiency, since there is no simple method to obtain the optimal 

configuration dynamically. 
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A reconfigurable memory architecture is proposed in [16], which can emulate 

many memory structures including cache, a FIFO and a simple scratchpad memory. 

This design comprises of configurable memory mats as a fundamental building block. 

These memory mats consist of a memory array with metadata bits and a small 

peripheral circuitry. In addition to this, extra functional blocks and flexible status bits 

have been used to support reconfigurability. This additional logic accounts for 32% area 

and 23% power overhead. 

The design features of the approaches discussed above are tabulated in Table 

2.4. 
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Table 2-4 Table Showing Prior Research Done for Reconfigurable Cache 

Name Multi-function 
Computing 
Cache [11] 

Way Concatenation 
Cache [2] 

Reconfigurable 
Memory [16] 

Year 2001 2003 2005 

Performance 
Improvement 

Up to factor of 
50-60 for 
computational 
applications 

Due to way 
concatenation and 
way shutdown 
circuitry  

 

Hardware & 
Area 

Overhead 

~10-20% of 
base cache 
memory 

Negligible ~15% 

Access Time Increased by 
1.6% 

As 4-way Increased by 
~10% 

Associativity/ 
Configuration 

 1,2,4-way Cache, FIFO,  
Scratchpad 

Power  Dynamic Power 
savings up to 40% 
compared to 
conventional 4-way 

Power Overhead 
~10% 
 

Simulation 
Approach 

 Simple Scalar  

 

2.5 Field Programmable Gate Array Technology 

FPGA is a programmable device that can be configured by the designer after 

manufacturing. A typical FPGA consists of combinational logic, interconnect, and I/O 

blocks [38]. Fig. 2.2 shows the basic structure of an FPGA that incorporates all these 

elements. The combinational logic is further divided into small units called combinational 

logic blocks (CLBs) or logic elements (LEs). Fig. 2.3 shows the architecture of the 

combinational logic block (CLB). A typical CLB consists of a look-up table (LUT), which 

can be configured to a specific type of logic function and a flip-flop, thus providing 



31 
 

combinational as well as sequential logic [39].  A typical FPGA contains hundreds or 

thousands of CLBs. 
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Figure 2-2  Basic Structure of an FPGA 
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The interconnections between these CLBs are made using programmable 

interconnect. FPGAs usually offer various types of interconnect based on the distance 

between the CLBs which are to be connected. Interconnects are organized in 

routing/wiring channels that run horizontally and vertically through the chip. I/O blocks 

are used as an interface between package pins and the internal configurable logic and 

often provide other features such as high-speed or low power connections. FPGAs are 

slower than ASICs, and cannot accommodate complex designs, but are ideal to check 

the functionality of designs. Once the logic design of any module is written using a 

hardware description language, it needs to be mapped onto the low-level logic blocks of 

the FPGA. When a program is loaded onto an FPGA, three specific functions are 

carried out: 

1. Mapping: The logic design is placed onto CLBs. 

2. Placement: CLBs are placed on the FPGA. 

3. Routing: Interconnections between CLBs and I/O blocks. 

Verilog and VHDL are common hardware description languages. A single FPGA can 

be reprogrammed by various HDL or schematic-driven flows [44]. 

Look-up 

Table 

LUT 
 

  D Flip Flop Output 

Inputs 

Enable 

Clock 

Figure 2-3 FPGA CLB [36] 
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2.6 Contributions of This Thesis 

This thesis proposes a new N-way reconfigurable data cache architecture. The 

proposed design is capable of operating in three configurations: (i) one-way associative 

(ii) two-way associative, and (iii) four-way associative. We have designed a Mode 

Selector module within the data cache which allows the data cache to work in any of 

these three configurations. This N-way reconfigurable data cache has been designed to 

target embedded systems, as most of the popular embedded systems use direct-

mapped, two-way or four-way data cache, as given in Table 1.1. The proposed 

architecture has been prototyped using Verilog in Xilinx ISE 9.1i and simulated through 

the ModelSim SE 6.3e simulator. 
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           CHAPTER 3 

ELEMENTS OF CACHE DESIGN 

The overall performance of cache is determined by the basic elements of cache 

design, such as cache size, mapping function, replacement policy, write policy, and 

block size. Table 3.1 gives the design features of the proposed architecture. 

3.1 Cache Size  

Performance of the cache depends on its size. Table 3.2 shows the effect of 

cache size on miss rate and access time. The performance of the cache increases with 

increase in cache size, but at the same time there is an increase in power consumption 

and per bit storage cost. 

Table 3-1 Effect of Cache Size on Miss Rate and Access Time [25] 

Cache Size Miss Rate Av. Access Time  
(Clock cycles) 

1 KB 13.3% 7.65 
2 KB 9.8% 5.90 
4 KB 7.2% 4.60 
8 KB 4.6% 3.30 

16 KB 2.9% 2.45 
32 KB 2.0% 2.00 

 

The size of the cache should be small enough to reduce the per bit storage cost 

and it should be large enough to provide better hit rate. Currently, a range of cache 

sizes from a few words to several mega words are available. For simplicity we have 

chosen a cache size of 256 bytes. 
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Table 3-2 Elements Available for Cache Design and Possessed by the Proposed 

Reconfigurable Cache Architecture [24].  

Elements Existing Proposed Architecture 

Cache Size Few bytes to several Kbytes 256 bytes 

Mapping Function Direct 

Fully Associative 

N-way Set Associative 

Direct Mapped 

Two-way Set-associative 

Four-way Set-associative 

Replacement Policy Least Recently Used (LRU) 

First-in-first-out (FIFO) 

Least Frequently Used 

(LFU) 

Random  

Least Recently Used 

(LRU) 

 

Write Policy Write through 

Write Buffer 

Write Back 

Write through 

 

Block Size Multiple Words 1 Word 

 

3.2  Mapping Functions 

3.2.1 Direct-Mapped Cache  

In direct mapping, illustrated in Fig. 3.1 [14], the physical address is divided into 

three fields: tag, index, and offset. The tag bits (most significant bits) are unique 
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identifiers for each memory block, which are currently mapped to the cache. Index 

(middle) bits specify the location of the requested address within the cache and also 

determine the size of the cache. Offset (least significant) bits represent a particular word 

within the cache line. Whenever the processor initiates a request to access a particular 

memory address, the tag comparator compares the contents of the indexed tag with the 

tag of the desired address and simultaneously reads the content of the indexed data 

array. If the requested address is currently in the cache, it generates a high Match 

signal. The cache produces a high on the hit line if the requested address is in cache 

and valid.  

 

Figure 3-1 Direct Mapped Cache Architecture 
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3.2.2 Two-Way Set-Associative Cache 

In a two-way set associative configuration, the full capacity of the cache is 

divided into two sets of direct-mapped cache. Each set has its separate tag, and valid 

and data arrays as shown in Fig. 3.2. Whenever the processor initiates a request to 

access a particular memory address, both tag comparators compare the contents of the 

indexed tag with the tag of desired address and simultaneously the cache read the 

contents of indexed data array from both sets. In case of a case hit, the multiplexer with 

the help of the encoder routes the corresponding data to the cache output. 
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Figure 3-2 Two-Way Set-Associative Cache Architecture 

3.2.3 Four-Way Set-Associative Cache 

Fig. 3.3 depicts the architecture of a four-way set-associative cache where the 

physical address is divided into tag field, index field, and line offset field. Being four-way 

set associative, the cache consists of four sets of tag, valid and data arrays. During an 

access initiated by the processor, the cache first decodes the address bits of the index 

field and then concurrently read out the contents from appropriate locations of all sets of 

tag, valid and data arrays. The cache simultaneously compares the content of all four 
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selected tag locations with the content of physical address’ tag field. If any of the 

selected tags matches the requested address’s tag, the corresponding comparator 

generates a high match signal. 

 

 

Figure 3-3 Four-Way Set-Associative Cache Architecture. 
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Valid data contents in the requested location with high match signal produces a high hit 

corresponding to that set. If there is a hit in any of the sets, the multiplexer in 

combination with the encoder passes the corresponding data to the cache output.  

3.3 Replacement Policy  

An efficient replacement policy can reduce the power consumption for set 

associative cache. The replacement policy basically reduces the number of cache 

misses, which in turn reduces power consumption [43]. The performance of the 

replacement policy depends on the accuracy of prediction of future access locations by 

the cache based on past accesses. LRU is the most popular replacement policy which 

gives higher performance for set associative and fully associative cache design. There 

are various ways to implement LRU policy in hardware. The complexity of 

implementation increases with increase in cache associativity, which additionally 

increases the delay associated with reaching the best candidate for replacement. Even 

though a highly associative cache with LRU policy is designed, its performance can be 

degraded because of inappropriate implementation.  

Various ways of implementing LRU policy for an N-way set associative cache are 

as follows [8]: 

1. Square Matrix Implementation 

2. Skewed Matrix Implementation 

3. Counter Implementation 

4. Phase Implementation 

5. Link List Implementation 

6. Systolic Array Implementation 
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In the proposed design of reconfigurable data cache, we have implemented the 

LRU policy using the counter implementation method. In this method, each set has its 

own LRU unit which has a log2N bits down counter corresponding to each cache line 

within a set. The value of the counter shows the order in which the associated cache 

line is used within the set. The larger value indicates the most recently used line, while 

the smallest value shows the least recently used cache line within a set. Whenever a 

cache line is accessed, the corresponding counter value is compared with other 

counters’ values within set. The counter values which are greater than the counter value 

of the currently accessed line, are decremented by one and the counter value of the 

currently accessed line is set to highest value (N-1). Initially all counters are set to zero. 

The proposed design can work either as two-way set associative or as four-way 

set-associative. In a two-way set associative configuration the realization of LRU policy 

is straightforward. Only a single bit (log22 = 1) is required corresponding to each line 

within the set.  Whenever a particular cache line within a set is referenced, the 

corresponding LRU bit is set to 1, to indicate the most recently used line and the LRU 

bit of the other cache line is set to zero to indicate the least recently used line. The 

cache line whose LRU bit is currently 0, is selected for replacement whenever a miss is 

occurred. To implement the LRU policy for a four way set associative configuration, a 2-

bit (log24) counter is needed corresponding to each cache line within the set. The 

counter implementation method provides good performance only for low associativity 

(two or four) caches. Complexity of implementation increases with increase in 

associativity [8]. 
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3.4 Write Policy 

A write operation can create discrepancy between cache and main memory if 

only the cache is updated after a write operation [42]. In our design, to prevent this 

discrepancy we have employed a write-through policy, which ensures synchronization 

of cache and main memory during write operation. 

3.5 Block/Line Size  

Another element of cache design is the size of cache line or main memory block.  

It indicates the number of words per cache line. Whenever there is a cache miss, the 

whole block of main memory containing the requested word is mapped to cache. 

According to the reference of locality, the hit ratio increases with increase in line size. At 

the same time, if block size is increased further, the hit ratio will start to decrease 

because a chance of using newly fetched block is less than the one which has been 

replaced.  
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       CHAPTER 4 

PROPOSED DESIGN OF RECONFIGURABLE DATA CACHE FOR 
EMBEDDED SYSTEMS 

4.1 Overview of the Proposed Design 

A data cache memory lies between the processor and the main memory [7]. Fig. 

4.1 shows the high level block diagram of the proposed design along with the signals 

that the cache needs to communicate with the processor and main memory interface. 

The processor interface consists of address bus (PAddress), data bus (PData), and 

three control signals (PR W  , PStrobe, PReady). The processor starts a bus 

transaction when PStrobe is high and a requested address is placed on the address 

bus. The cache sends a PReady signal to the processor when the bus transaction is 

completed. The PR  W  signal is low for write operation and high for read operation. The 

main memory interface consists of address bus (MAddress), data bus (MData), and 

three control signals (MR W  

In order to access the main memory, the requested address is first placed on 

MAddress bus along with MStrobe and MR

, MStrobe, MReady).  

W  control signals. The MR  W  signal is low 

for write operation and high for read operation. MReady is used to signal the cache 

memory that the bus transaction is completed by main memory. Two global signals, Clk 

and Reset are used to synchronize the cache operation with the processor. There is an 

additional signal called mode, which makes the cache reconfigurable. Depending upon 

the value of mode signal, the proposed design of reconfigurable data cache can work in 

any of the following three configurations: 
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1. Direct-Mapped Cache 

2. Two-Way Set Associative Cache 

3. Four-Way Set Associative Cache 

 

 

Figure 4-1 High Level View of Proposed Architecture of Reconfigurable Data Cache. 

 

4.2 Architecture of the Reconfigurable Data Cache 

We have used top down approach to design our module. The top-level design 

module shown is further divided into sub modules to build the main module as shown in 

Fig. 4.2. The proposed reconfigurable cache consists of six sub modules:Tag RAMs, 

Valid RAMs, Data RAMs, Line Replacement unit, Mode Selector Unit, Cache Controller.  
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Figure 4-2 Sub-Modules of Proposed Design 

 

The detailed architecture of proposed design is shown in Fig. 4.3, which consists 

of sub modules along with connecting logics like Encoder, Tag Comparators, and 

several Multiplexers. For simplicity we have chosen the following:  

1. 16-bit address bus, which gives us a total address space of 64K as main memory  

2. 256 bytes of cache, that means only 8 least significant bits are required to 

address the cache and  

3. Data bus of 8 bit  
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  The main memory is divided up into 256 blocks of 256 bytes each, where each 

block is mapped to the cache. Because only 8 address bits are needed to identify the 

address in cache, the 16 bit physical address is divided into 8 bit tag field and 8 bit 

index field. Due to reconfigurable architecture, total cache of 256 bytes is divided into 

four sets of 64 locations each. Thus, we have used four sets of Tag, Valid, and Data 

RAMs in this design. 
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Figure 4-3 Architecture of Reconfigurable Data Cache 
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1. Tag RAM - Contains the TAG fields of the physical addresses which are currently 

mapped into the cache.  

2. Valid RAM - Contains a valid bit associated with each location of cache memory. 

This valid bit indicates whether the cache entry is valid or not. Initially, all entries 

are set to invalid. As the data contents are moved from main memory to cache, 

the valid bit corresponding to them is set to valid. 

3. Data RAM - Contains the data contents of physical addresses which are currently 

mapped to cache.  

4. Tag Comparators – When a data access request is initiated by the processor, 

then all tag comparators simultaneously compare the content of tag array 

indicated by index field with the requested address’s tag field. If any of the tag 

arrays hold the requested address, the corresponding tag comparator generates 

the active high match signal. 

5. Line Replacement Unit – When a cache miss occurs, the line replacement unit 

determines which line should be removed from the cache.  According to the 

mode selection signals, this unit will replace the least recently used (LRU) line 

from the requested address in case of cache misses.  

6. Mode Selector - The data cache can be configured as one, two and four way set 

associative according to input value at two bit mode terminal. In order to 

generate the enable control signal for each of the four set, these two mode bits 

are combined with A9 and A8 bits of physical address. Operation of the mode 

selector unit is summarized in Table 4.1. Partition of the total cache memory 

space under three modes is shown in Fig. 4.3 
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Table 4-1 Mode Selector Operation 

A9 A8 

Direct 
Mapped 2 Way 4 Way 
Mode – 00 Mode - 01 Mode - 11 

0 0 S0 S0, S2 S0, S1, S2, S3 
0 1 S1 S1, S3 S0, S1, S2, S3 
1 0 S2 S0, S2 S0, S1, S2, S3 
1 1 S3 S1, S3 S0, S1, S2, S3 

 

(i) When mode = “00”, only one of the four output signal is set to high for a particular 

address. Thus, only one set of data, tag and valid array will be active and cache 

behaves as one way set associative or direct-mapped.  

(ii) With mode = “11”, all the four output signals will set to high which in turn activate 

the associated data and tag array. As all four sets are active in this case, cache 

works as a four way set associative. 

(iii)  When mode =  “01”, cache works as a two-way set associative, because two 

sets of data, tag, and valid arrays will be active for any given address. 

(iv)  Mode “10” reserved for future use.  
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Figure 4-4  Partition of Available Cache into Three Modes 

 

7.  Cache Controller – It controls all operations within the cache and is implemented 

using a finite state machine as shown in Fig. 4.4. Control signals asserted during 

each state are summarized in Table 4.2. 
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Figure 4-5 Cache Controller State Machine 

 

(i) Idle State: No memory access and processor is idle in this state. Controller 

will remain in idle state until some read or write operation is requested by the 

processor. If a read request is initiated by processor, control transfers to read 

state or if a write request is initiated by the processor, control transfers to 

write state.  

(ii) Read State: In this state, the cache is checked for availability of the requested 

address, as the processor initiates a read operation.  If the requested address 

is currently in cache, a cache hit occurs and control returns to idle state 
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during next active clock. Otherwise, a cache miss occurs and control transfers 

to readmiss state to initiate main memory access. 

(iii)  ReadMiss State: Main memory read access is initiated by the cache 

controller and control handed over to readmemory state. 

(iv)  ReadMemory State: Controller has to wait until main memory finds the 

requested address and reads the data from that location. Once main memory 

loads the data contents on data bus, it asserts a ready signal to controller and 

control transfers to readdata state. 

(v) ReadData State: Now requested data is available on data bus. Write this data 

to least recently used cache line and simultaneously load it to processor’s 

data bus to complete the read request. After the completion of processor’s 

initiated read operation control go back to idle state. 

(vi)  Write State: In this state, cache is checked for availability of the requested 

address, as processor initiates a write operation. If the requested address is 

currently in cache, a cache hit occurs and control returns to writehit state 

during next active clock. Otherwise, a cache miss occurs and control transfers 

to writemiss state. Whether it is a write hit or miss, data must be written to 

cache and simultaneously updated to main memory also. 

(vii) WriteHit Data: On a cache hit for write operation, controller stimulates the 

write control signal of data cache to write the data contents sent by the 

processor and also initiates write through for main memory. Control transfers 

to writedata state on next active clock. 



53 
 

(viii) WriteMiss State: On a cache miss for write operation, data contents sent 

by the processor are written to least recently used cache line and associated 

tag and valid rams are also updated. Controller initiates write through policy 

for main memory and transfers control to writedata state on next active clock. 

(ix)  WriteData State: Controller has to wait until main memory completes the 

write operation and sends back a ready signal to controller. After completing 

the requested write operation, controller will come back to idle state. 

Table 4-2 Active High Control Signal During Each State 

State Active High Control Signals 

Idle  None   

Read  PStrobe, PR W  , PDataOE, PReadyEnable, Hit (in 

case of read hit)   

ReadMiss  PR W  , PDataOE, Miss, Mstrobe,   

ReadMemory  PR W  , PDataOE, MR  W    

ReadData   PR W  , MR  W , PDataOE, PDataSelect, 

CacheDataSelect, Ready 

Write  PStrobe  

WriteHit  Hit, MStrobe, MDataOE  

WriteMiss  Miss, MStrobe,  MDataOE  

WriteMemory  MStrobe,  Ready   
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          CHAPTER 5 

PROTOTYPING AND SIMULATION RESULTS 

This chapter presents the simulation and synthesis results of the reconfigurable 

data cache. The mode selector unit has been considered as the basis of the proposed 

architecture, which provides the reconfigurability of the design. A trace file of 20 

different test cases has been used for functional simulation of the design. In order to 

study the comparative performance of the proposed design, direct mapped, two-way 

and four-way set-associative caches are also implemented on the same target device. 

5.1 Basic Design Considerations  

A typical design flow for designing VLSI systems with the Verilog HDL is shown 

in Fig. 5.1. The design flow usually begins with design specification and then moves to 

behavioral and structural level (gates and registers).  Finally, the physical description of 

the system is obtained [34]. 

There are two basic approaches to design VLSI circuits: a top-down approach 

and a bottom-up approach [34]. In top-down approach, we first define top-level design 

module and then find the sub-modules required to build this main module. The bottom-

up approach is reverse of top-down approach, where we first define the basic building 

blocks and then build main design module using these blocks. A digital designer can 

chose any of these two approaches. However, a top-down approach is always preferred 

as system level design can be done through HDL design, which can be converted into 

RTL, gate and physical level with the help of EDA tools. It is easier to decode and fix 

any error or fault at the system level. This thesis has performed the system level 
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implementation of the reconfigurable data cache in Xilinx ISE 9.1i and simulation using 

ModelSim. The code is written in Verilog on windows XP platform.  

 

Figure 5-1Typical Design Flow 

 

Verilog is a hardware description language which can be used to model a digital 

module, which can be as simple as a logic gate or as complex as a complete electronic 

system. Once the Verilog code is written, it can be loaded onto an FPGA board and 

implemented, based on its complexity. 

5.2 Elements of Verilog 

Constructs of the Verilog language are designed for describing hardware 

modules and primitives [23]. The basic building block in Verilog is module. Module 
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consists of keyword module, which is the name of design unit, list of I/O ports, 

statements to describe design functionality, and keyword endmodule. Design within 

each module can be defined at four levels of abstraction, in order to fulfill design 

specifications. The four levels of abstractions are as follows [34]. 

1. Behavioral or Algorithmic level: It is the highest level of abstraction in Verilog 

HDL design. At this level, module is described in terms of algorithm. 

2. Dataflow level: At this level, the module is implemented using hardware registers. 

3. Gate level: At this level, the design in implemented using logic gates. 

4. Switch level: It is the lowest level of abstraction in Verilog HDL design. At this 

level, module can be implemented using switches, storage nodes and 

interconnections between them. 

Verilog provide the flexibility to mix and match all four levels of abstractions in a 

single module. Generally the design is technology independent and more flexible at 

higher level of abstraction. It becomes inflexible and technology dependent at lower 

levels of abstraction. 

Once Verilog code is written to run on an FPGA, a stimulus or testbench is 

required for functional verification. A stimulus block serves two main purposes 

1. It generates test cases for simulation 

2. It applies test cases to the design under test (DUT) and also collects the     output 

responses, which is compared with the expected output. 
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5.3 FPGA Prototyping 

The architecture of reconfigurable data cache was modeled using Verilog and the 

functional simulation was carried out using Modelsim SE 6.3 e. The code is written in a 

hierarchical fashion and is a combination of structural and behavioral type of coding. 

This Verilog code was compiled using Xilinx ISE 9.1i. The implementations are targeted 

for Xilinx’s Virtex-5 family of FPGAs. The Virtex-5 family of FPGA from Xilinx is built in a 

65-nm copper CMOS technology. The Virtex-5 Configurable Logic Blocks (CLBs) are 

based on 6-input look-up tables and a flip-flop. The CLBs are the main logic resources 

for implementing sequential as well as combinatorial circuits. In Virtex-5 FPGA family, 

each CLB contains a pair of bit slices; each bit slice further consists of four 6-input look-

up tables and four flip-flops, for a total of eight 6-input look-up tables and eight flip-flops 

per CLB [45]. Complete synthesis of all Verilog modules is performed along with its 

mapping, placement, and routing.  

The RTL schematic and functional simulation result of the direct mapped cache 

is shown in Fig. 5.2 and 5.3 respectively. For functional verification of the designed 

cache module in direct mapped mode, a trace file of 20 different test cases has been 

applied through a driver. The simulation waveform shows only one data access, which 

is a cache read miss.  
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Figure 5-2 RTL Schematic of Direct Mapped Cache 

 

 

Figure 5-3 Simulation Waveform of Direct Mapped Cache Showing Read Miss 

Fig. 5.4 shows the RTL schematic of two-way set-associative cache. The same 

trace file is used for functional verification. Fig. 5.5 depicts the data access which is a 

read hit, during functional simulation.  
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Figure 5-4 RTL Schematic of Two-Way Set-associative Cache 

 

 

Figure 5-5 Simulation waveform of Two-Way Associative Cache Showing Read Hit 

The RTL schematic and functional simulation result of the four-way set-

associative cache is shown in Fig. 5.6 and 5.7 respectively. For functional verification of 

the design, the same trace file has been applied through a driver. The simulation 

waveform shows only one data access, which is a write miss.  
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Figure 5-6 RTL Schematic of Four-Way Set-associative Cache 
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Figure 5-7 Simulation Waveform of Four-Way Set-Associative Cache Showing Read 
Miss 

 

The RTL schematic of the reconfigurable cache is shown in Fig. 5.8. For 

functional verification of the designed cache module in all three different modes, the 

same trace file of 20 test cases has been applied through a driver. The simulation 

waveforms of the reconfigurable cache in direct mapped, two-way and four-way mode 

are shown in Fig. 5.9, Fig 5.10 and Fig 5.11.  
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Figure 5-8  RTL Schematic of Reconfigurable Cache 
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Figure 5-9 Simulation Waveform of Reconfigurable Cache in Mode ‘00’ (Direct Mapped) 
Showing Read Miss 

 

 

Figure 5-10 Simulation Waveform of Reconfigurable Cache in Mode ‘01’ (Two-Way Set-
Associative) Showing Write Miss 
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Figure 5-11 Simulation Waveform of Reconfigurable Cache in Mode ‘11’ (Four-Way Set-
Associative) Showing Write Hit. 

 

Complete results obtained from trace file in three different modes are 

summarized in Table 5.1. The memory write time for all three configurations (1-way, 2-

way, and 4-way) is same because we have used write through policy for write 

operations. In this policy, main memory is simultaneously updated with data cache for 

every write access. Total number of hits and misses are same for 2-way and 4-way 

configurations, as we have considered a very small trace file for functional simulation of 

our design. We can obtain a significant difference in number of hits and misses for 

these two configurations by considering a large trace file (which contains approximately 

20-30 thousands of test cases).   
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Table 5-1  Summary of Reconfigurable Cache Operation in Three Different Modes 

Design Metrics Direct Mapped 2-Way 4-Way 

Mode 00 01/10 11 

No. of Access 20 20 20 

Read Access 11 11 11 

Write Access 9 9 9 

Read Hits 2 7 7 

Read Miss 9 4 4 

Write Hits 2 4 4 

Write Miss 7 5 5 

Total Hits 4 11 11 

Total Miss 16 9 9 

Memory Read Time 1030 730 730 

Memory Write Time 945 945 945 

 

Various design metrics of the proposed design in direct mapped, two-way and 

four-way set-associative modes are summarized in Table 5.2. The timing path from a 

clock to any other clock in the design indicates the minimum period [47]. The proposed 

design possesses smallest minimum period and also highest maximum operating 

frequency with respect to 1-way, 2-way, and 4-way set-associative caches. The 

maximum path delay is an indicator of maximum path from inputs to outputs. This delay 

is smallest for the proposed design. The proposed design has obtained performance 

improvement in terms of minimum period, maximum operating frequency and maximum 

path delay due to distribution of clock in target device (Virtex-5). In virtex-5 family of 

FPGAs, there are total 32 global clocks and each device is divided into regions for 

distribution of clock. The design of proposed module is mapped into the target device in 
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a very compact manner as compare to other three configurations, thus producing a 

minimum timing path from one synchronous element to other. Since the proposed 

design is mapped compactly, maximum delay from any one node to any other node is 

also small compare to other designs. The Cell Usage expressed in BELS, reports the 

count of all the logical cells that are basic elements of the Virtex technology, for 

example, LUTs, MUXCY, MUXF5, MUXF6, MUXF7, MUXF8 [46]. Flip-flops or slice 

register count indicates the total number of latches and flip flop used by the design. 

Reconfigurable cache design occupies more number of cells, slice registers and LUTs 

in order to provide reconfigurability.  

Xilinx gives us the flexibility of implementing the HDL code into all the leading 

devices of Virtex, Spartan, and Cool Runner families. The reconfigurable cache also 

has been targeted to two other FPGA boards. Table 5.3 summarizes design metrics of 

reconfigurable data cache for various three different FPGA technologies. The power 

consumption has been calculated under ambient temperature of 25ºC. Comparison of 

proposed design with other reconfigurable memory is given in Table 5.4. 
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Table 5-2 Comparison of Various Design Metrics of Proposed Design with Direct 

Mapped, 2-Way, and 4-Way Set Associative Caches. 

Design Metrics Direct 
Mapped 

2 Way 4 Way Reconfigurable 
Cache 

Maximum 
Frequency (MHz) 

154.036 131.683 184.706 212.513 

Minimum Period 
(ns) 

6.492 7.594 5.41 4.706 

Maximum 
Combinational Path 
Delay (ns) 

4.901 4.897 3.338 3.342 

Cell Usage 
(BELS) 

399 782 1468 1888 

FlipFlops/Slice Reg 267 530 946 1228 

Slice LUTs 395 776 1446 1881 

IO Utilization 56 56 56 58 

No of Bit Slices 638 1006 1666 1991 

Power (mW)* - - 1033 1362 

Gate Count 135,952 271,795 280,781 288986 

*Power calculated incorrectly for small designs (1, 2-way) due to software (Xilinx ISE 9.1) bugs. 
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Figure 5-12 Performance Comparison of Reconfigurable Cache with Direct Mapped, 
Two-Way and Four-Way Set-Associative Caches. 
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Table 5-3 Comparison of Design Metrics of Reconfigurable Data Cache for Various 

FPGA Technologies. 

Design Metrics QPro Virtex 
Hi-Rel 

XQV1000 

Automotive 
Spartan 3E 

Virtex 5 

Maximum 
Frequency (MHz) 

37.111 76.429 212.513 

Minimum Period 
(ns) 

26.946 13.084 4.706 

Maximum 
Combinational Path 

Delay (ns) 

21.074 6.280 3.342 

Cell Usage 
(BELS) 

7596 4726 1888 

FlipFlops/Slice Reg 1311 1230 1228 

Slice LUTs 6361 4014 1881 

IO Utilization 58 58 58 

No of Bit Slices 3335 2090 1991 

Power (mW) - 102 1362 
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Table 5-4 Comparison of Proposed Design with Existing Reconfigurable Memories. 

Name Multi-
Function 

Computing 
Cache [11] 

Way 
Concatenation 

Cache [2] 

Reconfigura
ble Memory 

[16] 

Proposed 
Design 

Year 2001 2003 2005 2009 

Performance 
Improvement 

Up to factor 
of 50-60 for 
computation
al 
applications 

Due to way 
concatenation 
and way 
shutdown 
circuitry  

 In terms of 
Maximum 
Frequency, 
Combinational 
delay 

Hardware & 
Area 

Overhead 

~10-20% of 
base cache 
memory 

Negligible ~15% Due to Mode 
Selector Unit 

Access Time Increased by 
1.6% 

As 4-way Increased 
by ~10% 

 

Associativity/ 
Configuration 

 1,2,4-way Cache, 
FIFO,  
Scratchpad 

1,2,4-way 

Power  Dynamic 
Power savings 
up to 40% 
compared to 
conventional 
4-way 

Power 
Overhead 
~10% 
 

Static Power 
Overhead  
~ 20%  
 

Simulation 
Approach 

 Simple Scalar  ModelSim 
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             CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

This thesis presented the architecture and design of a new N-way reconfigurable 

data cache for embedded systems. The proposed data cache can be configured as 

direct-mapped, two-way and four-way set-associative cache to fulfill the systems’ 

requirements. We have achieved this reconfigurability with the help of a mode selector 

while utilizing the full capacity of cache. The FPGA implementations of the 

reconfigurable cache along with direct-mapped, two-way and four-way set-associative 

caches have been implemented. The performance of the proposed design is compared 

with the direct-mapped, two-way and four-way cache architectures. 

The proposed design can be further optimized in terms of speed, area and power 

consumption.   
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