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An Aprronch to Error-Estimation in the
Application of Dimension Algorithms

joachim Holsfuss' and Gottfried Mayer-Kress
Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory
Los Alamos, N.M. 87545, USA

* Permanent address: Drittes Physikalisches Institut, Universitaet
Goettingen, D-3400 Goetiingen, Fed. Rep. of Germany

Three different methods for calculating the dimension of attractors are
analyzed. An approach to error-estimation is presented and is used on various
datase's. It is shown, that in some cases the errors can become very large.

L. Intreduction

The dimension of aturactors reconstructed from a tirae series (1] is of great
physicul interest especially in experimental situations (2,3]. It is a measure for
the number of active modes moduluting a physical process and therefore a
measure of complexity. Many different methods {4,5,8] of calculating the
dimension of attractors have been introduced. Very important questions are,
bhow far these methods are reliable and how large the uncertainty of a calcu-
lated dimension is. Moat of the algorithms used for dimension mexsurements
of attractors, reconstructed from numerical and experimental data, average
over certain variabies, such as the number of nearest neighbors, the mass of a
cube of a certain sidelength or pointwise dimensions from diflerent refcrence
points on the attractor. All these averages must be taken into account, if one
wishes to determine a realistic error estimate of a fractal dimension. In the
literature error estimates are mainly calculated by just averaging over some
vulues of the scaling exponents obtained in different length scales (least
squares fit). This methed can truly underestimate existing errors. The errors
can make it useless for experimentalists to deal with smaller/larger relation-
ships between different definitions of fractal dimensions. The largest error
source is the limitation in the number of data available to reconstruct an
attraztor from a time series. The number of data points necessary for filling
this subset of a phase space with points to get the same probability measure
as given by the attractor of the physical process might be very large and even
increases exponentially with the dimension of the attractor. This also gives

rise to the question, whether an anaiysis of high dimensional attractors is pos-
sible,

We first recall some different methods for calculsting the dimension (II),
and then introduce our approach to determine the error (III). After a short
description of the computer programs and some ideas for automation of the



dimension calculation (IV), we analyze different data sets, including a 5-torus,
gaussian noise and the Lorenz attractor (V).

> Methods for Caloulating the Dimension of

To reconstruct an attractor from a time series of a single probe, we use the
now classical method of time delay coordinates. In this method a vector X (¢, )
in an n-dimensional phase space is constructed by taking delayed samples of
the time series z (¢, ) as coordinates [1), such that

R(t) = (2(4), (6 +T), 2t +2T), -, 2(t+(n-1)T)) ()

where {, is the discrete time with £ running from 1 to the number of data
points and T is an 'arbitrary’, but fixed time delay. The embedding dimen-
sion n is the nuinber of coordinates of the embedding space. If T is chosen to
be equal to the time delay, where there is a minimum in the mutual informa-
tion between two measurements (7], a D-dimensional attractor is constructed
best by taking the embedding dimension larger than 2D +1. For signals with
strong periodic contents this time delay is approximately equal to the frst
zero-crossing of the autocorrelation function.

We used three different methods for calculating the "fractal” dimeasion of
an attractor.
1. The pointwise dimension (mass dimension) (4,8] can be defined as

LNy (r)

n
D, = lim lim——dets (2)
Rggty =00 r =0 log r

log

and it consists of counting the number of data points Nxo(r) within a cube of

sidelength r centered at a point X on the attractor. Due to the fact, that one
does not have an infinite amount of data points and also no iufinite precision,
as required in the definition, one has to average over several reference points
Xo. Fig. 1 shows the scaling behavior of Ngo(r) of different reference points.

We calculate the pointwise dimensions for 200 reference points and take the
average, which yields a good estimate for the dimension of the attractor.

2. Another method we used was the determination of the correlation
diinension D, with the algorithm proposed by GRASSBERGER and PRO-
CACCIA [5]. They showed the scaling of the correlation integral C(r) for
small r

C(r)- r Do (3)

with
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Fig 1. Scaling behavior of Ngo(r) at 80 reference points X', on the Loren:
attractor. The embedding dimension is 5.
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with Ny equal to the rightmost sum in eq. (4). C(r) counts the number of
points !\fx,(r ) in a cube of fixed sidelength r , averages over all the cubes, that

are centered at different reference points f,-, and normalizes. An example
shows, how the averaging is dons.

ﬂ average

T 1

log r
Fir. 2: sketch of the scaling behavior for 2 reference points with different scal-
ing regions [r min,” max] and their average (Grassberger and Procaccia method).
The scaling of the contents of the cubes with respect to r in two different
regions on the attractor (fig. 2) is discribed by
Nir)=(a;r)? and Ny(r)=(azr)? a;ay=conat. (8)

The Grassberger and Procacci:x algorithm averages over the N-values, while r
is fixed;

oty = ML Nlr) 1 -
Mir) = ro(S0 200 )

Foi infinitely expanded scaling behavior we get the same scaling exponent D
for the averaged values. Large differences in the o 's and small scaling regions
distort the scaling properties of C(r ).

3. The third method considered here, is the one nroposed by TERMONIA
and ALEXANDROWICZ [8]. It consists of averaging over the different radii of



cubes, which contain a fixed number of data points. They showed that N,
the 'number of nearest neighbors’, behaves like

N.F(N)F, (9)

where 7(n ) is the average radius of the cubes containing N data points and
Drp+ the "fractal” dimension of the attractor. As an example we consider

again the scaling behavior for two reference points, this time keeping N fixed
and r variabel.

N = (a;r,)? and N = (azrj)?  aa; = conat. (10)
Then
+ L
D
A(’;l_ =n(N) and T = ro(N) (11)
and
.1, 1 1 ri(N)+ra(N)
N D(g(;’" + j;;)) = 2 = F(N) (12)
gives
- 1,1 1 .\
N = '(N)D(;(; * o )" , (13)

which results in the same scaling exponent D for the averaged values as for
the single reference points.

All three methods use a different kind of averaging. The last two methods
have one thing in common: they average over an ensemble of single values (N
in case 2, r in case 3) and don’t care about the crientation of the lines in fig.
1 i.e. the scaling behavior of the attractor at the different reference points.
This may in some cases lead to a misinterpretation of the results, if the aver-
aged values pretend a scaling behavior, that the values obtained from different
reference points may have never had. In method 1 tue additional information
of the reference points is used when the averaged pointwise dimsnsion is cal-
culated.

Each value of the pointwise dimension D, was obtained by calculating the
slope of a fitted straight line to each curve in the log r / log N plot using
least squares fit. In order to determine the spread of values of the D, we con-
sider their standard deviation, given by

AD = \V/D-D? (14)

which sa;z, that 68.3 % of all val:z2s of a normal distribusion lie in the inter-
val [D-AD,D+AD)].



In case 2 and 3 straight lines are also fitted to the values in the doubly loga-
rithmic plot using least squares fit. The least squares fit consists of finding a
straight line

yif = ¢ -+ bz,-,- + z; (15)

such that Y(z;; )% the sum o1 squares of the errors z; is minimized. The
index s denotes the different reference points aud the index i their average
value. It is also possible to use weighted least squares fit, which minimizes

Zw.- Z.'2 = Z‘w.'(v.' -a - bz )2 (16)
with
_ 1
w, = Agyi (17)
and
n,,
Vi = : L ¥i; (18)
Bref smi

z; and z; have the same definivion. Using weizhted least squares fit reduces
the weight of values, if their variance A%y, is large. However, because of the
finite size of the attractor, the variances become very small for large values of
log r (saturation region) and therefore could give rise to a false fit. Therefore
we have to exclude this possibility by e.g. imporing a lower bound for the
slope, which shouid be fitted or by restricting the possible scaling ranges.

In terms of the Grassberger and Procaccia algorithm y; is the average of the
log N;; values of a hxed radius r; over all reference points X,- (fig. 3 a). In
the Termonia and Alexandrowicz method y;, wov'd be the average of the loga-
rithms of the radii lng r;; with a fixed number of nearest neighbors N; (fig.
3b) .

We use the average over the logarithmic values in determining A%y, and
minimize the errors z;; of the straight line in the log r /log N plot. This
gives a good approximation of the fully consistent way of averaging over the
nonlogarithmic values of r or N, which would require a minimizing of

}‘:(ﬂu‘ - “‘.':' )2 {19)

In order to get the standard deviation of the slope, we have
Ay + Az = (bAz)+ (Aa + AbAz). We exclude possible parallel shift-
ings of the lines obtained at the different reference points t. be able to evalu-
ate the largest possible error of the slope. because methcds 2 and 3 yield no
information about the orientation of these lines. This is done by setting 4a to
zero. Now we get for the standard deviation of the slope



Az
Ab = -Z—; (20)

Az is the standard deviation of the differences of the actual y-values to the
y-values of the fitted line. Az is the standard deviation r.f the x-values. From
fig 4a,b we see, that Ab is the standard deviation of all the possible values of

the slope b .
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Fig. 4a : standard deviation of x-values and of the errors 2 of the y-values
b : the possible changes of the slope b

In case 2 the errors are symmetric around the average slope. In case 3, where
we calculate r(N) and therefore get an error for -I%’ they get asymmetric
when solving for the slope D.

To modify the definition into a better computable form we have

2 2 2
A%z 22 - 32

Due to the least squares fit ¥ == 0. Taking the average between the differences
of all the log r or log N values and the values of the straight line, which is
fitted to the logarithms of the averages of the nonlogarithmic r or N-values

implies a very small correction ¥ | = 0, which can be neglected. Therefore we
get
Nygg Mye
by Z/ (3i; - 8 - bz )*
A% = =l 7 (22)
Negd  Mye
b Z/ (zi; - T
Y T =

where n,,, is the number of reference points and n,, is the number of the
averaged values of distances r sub i. With the average over all reference points
(17), its variance is given by:
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This expression allows to compute the variances of all the y;’s first and to get

the variance of the slope when fitting over a certain number of y,;’s. Expres-
sion ( 22 ) can also be modified by using

a = §-b7T (26)
and
Nead  Tre ;5 ¥ij e
b = § -] =1 Trad * Doy (27)
A%z
with T and ¥ equal to the grand mean into
A%y
A%h = =, b2 (28)

The variances are taken over all n,,; *# n,, points.
Dascrintion of the P

The programs we use are designed for a fully automatic analysis of the data
sets. First of all the program has to find the scaling region. This is done by
looking for the interval of a given length in the log r / log N plot, where the
root-mean-square error of the deviation from a fitted straight line, which is
defined as (see also eqn. (16))

red
LVt 29
Nead -]



is the smallest. In case 1, where we consider the averaged pointwise dimen-
sion, the weights w; are all 1. Here the program calculates the slope of s fitted
line at each reference point. Then it averages over just 20% of the obtained
values of the pointwise dimensions, neglecting all the curves, that don’t show
a scaling behavior over the entire range of r-values. After calculating the
average and the standard deviation it repeats these steps in a different embed-
ding dimension. In case 2 and 3 the procedure is about the same, except there
is just one line to be fitted. Also the weights are set to their respective values
(eqn. 17). The procedure also features a "self-blowup” of the length of the
fitted line: If the total length of the scaling region is unknown, the program
starts with a given short interval length and finds the scaling region by
minimizing the RMS error (eqn. 29). Then it repeats this step with an
enlarged interval until a certain threshold value of the RKMS error is reached,
thus indicating, that the fitted interval length exceeds the length of the scal-
ing region. In all cases we find that 0.05 is a "good” threshold value.

In the analysis the total number of data points is always 20,000. We average
over 200 reference points. The time delay T for the reconstruction of the
attractor is chosen according to reference 7 by calculating the mutual informa-
tion. As the first example we consider a S5-torus, constructed from a time
series with a Fourier spectrum of 5 incommensurate frequencies. We analyze
the data with all three methods (fig. 5a,b,c). In all three figures we see, that
the calculated dimension of the attractor converges with increasing embedding
dimension, and it has the value D = 5 from about 2D + 1 = 11. The stan-
dard deviations of the attractor dimension, described by the error bars, con-
verge also to certain values. For the averaged pointwise dimension we get
5 +/- 0.3, for the correlation dimension 5 +/- 0.5 and for the dimension
obtained by the TERMONIA/ALEXANDROWICZ [6] method 5 + 0.8 / - 0.7.

The calculation of the dimension of the Lorenz attractor (fig 6a,b,c) shows
also good convergence at abBut 2D +1. The va'ies for D cbtained by the
different methods were 2 +/-0.15 in the case of the averaged pointwise
dimension, 2 +/- 0.6 in case 2 and 2 + 0.6 / - 0.4 in case 3. The growing of
the standard deviation in case 2 and 3 is due to successive shortening of the
scaling region in higher embedding dimensions because of geometrical effects.
Smaller scaling regions with constant variance at each average value in the
log r /log N diagram result in a larger variance of the slope of the fitted
line. The average of the pointwise dimension is not affected by this, when the
length of *he fitted line equals the length of the scaling region.

In the third example we analyzed gaussian noise, to have an easy example
of higher dimensional attractors (fig. 7a,b,c). Noise is considered to be
spacefilling, i.e. each phase space of every embedding dimension is filled. Each
one of the three methods couldn’t produce this result. This is truly seen in the



deviation from the 45° line. The deviation is due to the increasing amount of
data necessary for calculating higher dimensions. Also it can be extracted,
that the error increases almost linearly with the attractor dimension. Com-
pared to the averaged pointwise dimension, the dimension calculated with the
two other methods showed a very large possible error.

8. Conclusicns

Three different methods of caiculating the dimension of attractors were
analyzed. To each of those an approach to estimate the error was presented,
which was based on calculating stendard deviations for certain variabler,
Examples of analyzed data sets showed, that the averaged pointwise dimea-
sion provided the smallest possible error in the calculated dimension. It also
seemed to be closer to the real value. It was shown, that the possible errors in
the methods of GRASSBERGER/ PROCACCIA (5] and TERMONIA/ ALEX-
ANDROWICZ [6] can be very large. High dimensional analysis is shown to be
very difficult, because of the linear growth of the errors with the embedding
dimension. -
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