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An Ap roach to Error-Estimation in the
rAppl cation of Dimension Algorithms

joachim Holzfuaa* and Gottfried Mayer-Kreas
Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory

Lcs Alamos, N.M. 87545, USA

* Permanent address Drittea Physikdisches Institut, Universitaet
Goettingen, D-34CUIGoetLingen, Fed. Rep. of Germany

Three ditferent methode for calculating the dimension of attractors are
analyzed. h approach to error-estimation is presented and is used on various
dat=e’s. lt is shown, that in come caaes the errors can become very large,

The dimension of attractors reconstructed from a time serie$ [1] is of great
physical interest especially in experimental situations [2,3], It ie a meaaure for
the number of active ❑odes modulating a physical proceaa and therefore a
meaaure of complexity. Many different methods [4,5,6] of calculating the
dimension of’ attractors have been introduced. Very important questions are,
bow far these methods are reliable and how l=ge the uncertainty of a calcu-
lated dlmmsion is, Moat of the algorithms used for dimension meuurements
of ●ttractma, reconetrwcted from numerical and experimental data, average
over certain variables, such an the number of nearest neighbors, the mass of a
cube of a certain aidelength or pointwise dimension from different reftrence
points on the attractor All these averages must be taken inti account, if one
wishes to determine a redintic error estimate of a fractal dimension, In the
literature error estimates are mamly calculated by just averaging over some
WJues of the scaling exponants obtained in different length scales (le@
ciquales fit), This method can truly underestimate existing ●rrom, The errors
can make it useless for experimentaliste to deal with tmdler/larger relation-
ships between different definitions of fractal dimensions, The largest error
source ia the limitation in the number of data ●vailable to reconstruct an
attra:tor from a time series, The number of data pointe necesamy for filling
this subset of a phase space with pointa to getthe oame probability measure
M given by the attractor of the physical pmceaa might be very large and even
increaaes exponentially with the dimension of the attractor. This also gi%es
rise to the question, whether an anaiysio of high dimensional attractors is poR-
sible,

We firet recall come diflerent methods for calculating the dimenoion (II),
and then introduce our ●pproach to determine the error (111), After a short
description of the computer prograrne and mome ide~ for ●utomation of the
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dimension calculation (~’), we analyze diflerent data sets, including a S-torus,
gauesian noise and the Lorenz attractor (V),

To reconstruct an attractor from a time series of a single probe, we uae the
now classical method of time delay coordinates. In this method a vector ~ (th )
in an n -dimensional phase space is constructed by taking delayed samples of
the time series z (tk ) as coordinates [1], such that

X(t~) == (z(t*), z(t*+T), 2(1*+27’), o “ . ,*(t*+(n-l)T)) (1)

where th is the discrete time with k running from 1
points and T is an ‘arbitrary’, but tied time delay.

to the number of data
The embedding dimen-

~ion n is the number of coordinate of the embedding space. If T ia c-boaen to
be equal to the time delay, where there is a minimum in the mutual informa-
tion between two mesaurementa [7], a D-dimensional attractor is constmcted
beat by taking the embedding dimension larger than 2D +1. For signals with
strong periodic contents this time delay is approximately equal to the first
zero-croaaing of the autocorrelation function.

We used three different methods for calculating the “fractal” dimension of
an attractor,
1, The pointwiw dimension (mass dimension) [4,8] can be defined sa

log &N2Jr )

D, - lim lim
n,,,, -w r -00 log r

(2)

and it consists of counting the number of data pointa NyO(r ) within a cube of

cidelength r centered at a point ~. on the attractor. Due to the fact, that one
does not have an infinite amount of data pointa and also no izdlnite precision,
as required in the dellnition, one h= to average over several reference pointa
~o. Fig, 1 shows the scaling behavior of /V%Jr ) of different reference points.

We calculate the pointwiae dimensions for 2W reference points and talw the
average, which yields a good estimate for the dimension of the attractor,

2, bother method we used was the determination of ths correl~tion
dimension D ~ with th~ algori$hm proposed by GRASSBERGER and PRO=
CACCI.A [5], They showed the scaling of the correlation integral C(r) for
small r

C(r). rD9

with

(3)
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Fig 1: Scaling behavior of NyJr ) ● W reference pointe ~. on the LorenZ

●ttractor, The embedding dimension ie 5,
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C(r) = lim J- ‘s _&-njfae(r- If{-Xj I ) (4)

%. ‘w %cJ i-1

and 0 equal to 1 for positive and O for negative arguments.
Also

with Nx equal to the rightmost sum in eq, (4). C (r ) counts the number of

points ,&, (r ) in a cube of fixed sidelength r, averages over all the cubes, that

are cente;ed at different reference points ~j, and normalizes. An example
shows, how the averaging is done.
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Fi~. 2: sketch of the scaling behavior for 2 reference points with dilTerent scal-
ing regions [r~n,r mu] and their average (Grsaaberger and Procaccia method).

The scaling of the cmtcnts of the cubes with respect to r in two different
regions on the attractor (fig. 2) is discribed by

N,(r) - (alr)D and NJr ) - (azr )D ai,aa==con~f, (6)

The Grassberger and Procaccia algorithm averages over the N-values, while r
is fixed:

C’(r) ==
Nl(r) + N2(r) - ~

2 2

D -t a2D
N(r) - rD(Q-~)

(7)

(8)

FOI infinitely expanded scaling behavior we get the same scaling exponent 0
for the averaged values, Large differences in the a ‘s and small scaling regions
distort the scaling properties of C(r),

U, The third method considered here, is the one mopoeed by TERMONIA
and ALEXA.NDROWICZ [6] It consists of averaging over the different radii of
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cubes, which contain a fixed nutnher of data points, They showed that N,
the ‘number of nearest neighbors’, behaves like

N- F(N)D~’, (9)

where F(n ) is the average radius of the cubes containing N data points and
DF I the “fractal” dimension of the attractor. As an example we consider
again the scaling behavior for two reference points, this time keeping N lixed
and r variabel.

N = (txlrl)D and N = (a2r2)D crl,a, = eonet. (lo)

Then

N+ N+—=r l(N) and — = rz(N)
CYj az

(11)

and

All
N ~(z(~ +

rl(N) + r2(N)
*)) = *

gives

N = W)D(+(+ +&))-D

= F(N) (12)

# (13)

which results in the same scaling exponent D for the averaged values aa for
the single reference point~,

All three methods use a dif!erent kind of averaging. ‘l’he last two methods
have one thing in common: they average over an ensemble of single values (N
in case 2, r in c~e 3) and don’t care about the crimtation of the lines in fig,
1 it. the scaling behavior of the attractor at tht diffe~ent reference points,
This may in some caaes lead to a misinterpretation of the results, if the aver-
aged values pretend a scaling behavior, that the values obtained from different
reference points may have never had, In method 1 tile additional information
of the reference points is used when the averaged pointwise dim+nsion is cal-
culated.

Each value of the pointwise dimension D, was obtained by calculati~g the
slope of a fitted straight line to each cutwe in the log r / log N plot u~ing
least squares fit. In order to determine the spread of values of the D, we con-
sider their standard deviation, given by

(14)

which sn;c, that 68,3 90 of all values of a normal distribution lie in the inter-
val ID-AD, D-+-AD].
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in case 2 and 3 straight lines are also fitted to the values in the doubly loga-
rithmic plot using least squares fit. The least squares fit consists of finding a
straight line

yi,r s a + bzij + Zij (15)

such that ~(:ij )2, the sum o] squares of the errm zij is minirmzed. The
index j denotes the different reference points md the index i their average
value. It is also possible to use weighted lerst squares fit, which minimizes

~wiZ,’= ~wi(~i --- bzi)2

with

1
tUi=—

A29i

and

(16)

(17)

(18)

zi and Zi have the same definition, Using weighted least squares fit reduces
the weight of values, if their variance A2~i is large, However, because of the
finite size of the attractor, the variances become very small for large values of
log r (saturation region) and therefore could give rise to a false 6t. Therefore
we have to exclude this possibility by e.g. imposing a lower bound for the
slope, which shouid be fitted or by restricting the possible scaling ranges.

h terms of the Grsasberger and Procaccia algorithm ~i is the average of the
log Nij values of a hxed radius ri over all reference points Xi (6go 3 a). b
the Termonia and A.lexaadrowicz method ~i would be the average of the loga-
rithms of the radii log rij with a tixed number of nearest neighbors Ni (fig,
3b) ,

We use the average over the logarithmic values in determining A2~i and
minimize the errom zij of the straight line in the log r / log N plot, Thi*
gives a good approximation of the fully consistent way of averaging over the
ncmlogarithmic values of r or N , which would require a minimizing of

(19)

In ordw to get the standard deviation of the alope, we have
Ay +Az -(b Az)+( Aa +Ab Az). We exclude possible parallel shift-
ings of the lines obtained at the different refmence points w be able ta evalu-
●te the largest possible error of the slope. because methcds 2 and 3 yield no
information about the orientation of these lines. This is done by setting Aa to
zero, Now we get for the standard deviation of the slope
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(20)

Az is the standard deviation
v-values of the fitted line. Az

of the differences of the actual y-values to the
is the standard deviation ~>fthe x-values. From

~g.4a,b we see, that Ab ia the standard deviation of all the possible values of
the slope b .

4A Az

Ax

Fig. 4a : standard deviation of x-values and of the emcm z of the y-values
b : the possible changes of the slope b

h case 2 the errors are symmetric around the averag: slope. In case 3, where

we calculate r (N) and therefore get an error for —, they get asymmetric
D

when solving for the slope D ~

To modify the definition into a better computable form we have

A2Z p.#
Azb=—=—

A2Z 27 _ ~2
(21)

Due to the lesst squares fit Z ~ O. Taking the average between the differences
of all the log r or log N values and the values of the straight line, which is
fitted to the logarithms of the averages of the nonlogarithmic r or N-values
implies a very small correction Z [ = O, which can be neglected, Therefore we
get

A2b =
nrad nre .,

Prd d (Zij -?)2
l-l J-1

where n,,t is the number of reference points and n,.~ is the number of the
averaged values of distances r sub i. With the average over all reference points
(17), its varimce is given by:
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and with

(28)

(24)

we get

(25)

nrad
~ A2~i +n~d (~i - u - 6zi )2

A2b = ‘-’
i-1

nrad

i~, (Zi - ‘)2

This expression allows to compute the variances of all the ~i’s first and to get
the variance of the slop~ when fitting over a certain number of ~i ‘s. Expres-
sion ( 22 ) can also be modified by using

and

b =
A%

with F and ~ equal to the grand mean into

A2y ~z
A2b=— -

A2Z

(26)

(27)

(28)

The variances are taken over all n,.~ * nrfl points.

The programs we use are designed for a fully automatic analysis of the data
sets. Fimt of all the program has to find the sc ding region. This is done by
looking for the interval of a given length in the log r / log N plot, where the
root-mean-square error of the deviation from a fitted straight line, which is
defined sa (gee also eqn. (16))

XEF 2’
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is the smallest. In case 1, where we consider the averaged pointwise dimen-
sion, the weights wi are all 1. Here the program calculates the slope of s fitted
line at each reference point. Then it averages over just 20% of the obtained
values of the pointwise dimensions, neglecting all the curves, that don ‘t show
a scaling behavior over the entire range of r-values. After calculating the
average and the standard deviation it repeats these steps in a diflerent embed-
ding dimension. In case 2 and 3 the procedure is about the same, except there
is just one line to be fitted. Also the weights are set to their respective values
(eqn. 17). The procedure also features a “self-blowup” of the length of the
fitted line: If the total length of the scaling region is unknown, the program
starts with a gi}en short interval length and finds the scaling region by
minimizing the RMS error (eqn. 29). Then it repeats this step with an
enlarged interval until a certain threshold value of the R.MS error is reached,
thus indicating, that the fitted interval length exceeds the length of the scal-
ing region. In all cases we find that 0.05 is a “good” threshold value.

In the analysis the total number of data points is always 20,000. We average
over 200 reference points. The time delay T for the reconstruction of the
attractor is chosen according w reference 7 by calculating the mutual informa-
tion. As the first example we consider a 5-torus, constricted from a time
series with a Fourier spectrum of 5 incommensurate frequencies. We analyze
the data with all three methods (fig. 5a, b,c). In all three figures we see, that
the calculated dimension of the attractor converges with increasing embedding
dimension, and it has the value D = 5 from about 2D + 1 = 11. The stan-
dard deviations of the attractor dimension, described by the error bars, con-
verge also to certain values, For the averaged pointwise dimension we get
5 +/- 0.3, for the correlation dimension 5 +/- 0,5 and for the dimension
obtained by the TEFtMOhTL4/ALIZXANDROWICZ [6] method 5 + 0.8 / -0.7.

The calculation of the dimension of the Lorenz attractor (fig 6+b,c) shows
also good convergence at ab~~ 2.D +1. The val ies for D cbtained by the
different methods were 2 +/- 0,15 in the case of the averaged pointwise
dimension, 2 +/- 0,6 in case 2 and 2 + 0.6 / -0.4 in case 3. The growing of
the standard deviation in case 2 and 3 is due to successive shortening of the
scaling region in higher embedding dimensions because of geometrical effects.
Smaller scaling regions with constant variance at each average value in the
log r { log N diagram result in a larger variance of the slope of the fitted
line. The average of the pointwise dimension is not affected by this, when the
length of ‘he fitted line equals the length of the scaling region.

In the third example we analyzed gausaian noise, @ have an easy example
of higher dimensional attractors (fig. 7a, b,c). Noise is considered to be
spacefilling, i.e. each phase space of every embedding dimension is filled. Each
one of the three methods couldn’t produce this result. This is truly seen in the
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deviation from the 4s” line. The deviation is due ti the mcreaaing amount of
data necewa~ for calculating higher dimensions. Also it can be ~d,
that the error increases almoet linearly with the attrac@r dimension. Oom-
pared ta the averaged pointwise dimension, the dimension calculated with the
two other methods showed a veiy large pusaible error.

Three different methods of calculating the dimension of attractor were
analyzed. To each of those an approach to estimate the error was presented,
which was baaed on calculating standard deviationa for certain variablet,
Examples of analyzed data aeta ahowed, that the avemged pointwise dimen-
sion provided the smallest possible error in the cakulated dimension. It &w
seemed b be clozer to the real value. It was ahown, that the pmaible errors in
the methods of G.RA.SSBERGER/ PROCACCIA [5] and -ONIA/ ALEX-
ANDROWICZ [6] can be very large. High dimensional analysis is shown to be
very di~lcult, because of the linear growth of the errom with the ●mbedding
dimension, -

J.H. wants to thanh the Center for Nonlinear Studies for the hospitality and
financial support and W. Lauterborn for ve~ useful discussions, We are dee-
ply indepted to Eric& Jen for permission of using vemions of her codes which
are the basis of parts of ot~r numerical calculations, We also appreciate very
helpful diacusaiona with Erica Jen and J. Doyne Farmer. All computatio~
were done in Los Alamos on CIUY I computers.
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