Bacteria transport through porous material: Final technical report

PDF Version Also Available for Download.

Description

The injection and penetration of bacteria into a reservoir is the most problematic and crucial of the steps in microbial enhanced recovery (MEOR). In the last phase of our work valuable information on bacterial transport in porous media was obtained. A great deal of progress was made to determine chemical bonding characteristics between adsorbed bacteria and the rock surfaces. In order to further enhance our knowledge of the effects of surface tensions on bacteria transport through porous media, a new approach was taken to illustrate the effect of liquid surface tension on bacterial transport through a sandpack column. Work in ... continued below

Physical Description

Pages: 96

Creation Information

Yen, T.F. February 13, 1989.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The injection and penetration of bacteria into a reservoir is the most problematic and crucial of the steps in microbial enhanced recovery (MEOR). In the last phase of our work valuable information on bacterial transport in porous media was obtained. A great deal of progress was made to determine chemical bonding characteristics between adsorbed bacteria and the rock surfaces. In order to further enhance our knowledge of the effects of surface tensions on bacteria transport through porous media, a new approach was taken to illustrate the effect of liquid surface tension on bacterial transport through a sandpack column. Work in surface charge characterization of reservoir rock as a composite oxide system was also accomplished. In the last section of this report a mathematical model to simulate the simultaneous diffusion and growth of bacteria cells in a nutrient-enriched porous media is proposed.

Physical Description

Pages: 96

Notes

NTIS, PC A05/MF A01 - OSTI; 1.

Source

  • Other Information: Portions of this document are illegible in microfiche products

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE89007812
  • Report No.: DOE/BC/10508-38
  • Grant Number: AS19-81BC10508
  • DOI: 10.2172/6483367 | External Link
  • Office of Scientific & Technical Information Report Number: 6483367
  • Archival Resource Key: ark:/67531/metadc1207701

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 13, 1989

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Sept. 5, 2018, 11:46 a.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yen, T.F. Bacteria transport through porous material: Final technical report, report, February 13, 1989; United States. (digital.library.unt.edu/ark:/67531/metadc1207701/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.