PLASMA PHYSICS LABORATORY

PRINCETON PRINCETON, NEW JERSEY

This work was supported by the U. S. Department of Energy Contract No. EY-76-C-02-3073, Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States Coverumint is perifitted.

MONTE CARLO SIMULATION OF ION TRAJECTORIES IN THE modified pdx thermal charge exchange analyzer

by

R. Kaita, S. L. Davis, and S. S. Medley Plasma Physics Laboratory, Prince ton University Princetori, N. J. 08540

ABSTRACT
An improved design for the present $P D X$ thermal charge exchange analyzer (MACE) has been proposed by one of the authors, in which the five cylindrical electrostatic plates for mass separation are replaced by a single flat, electrostatic deflection plate. An existing Monte Carlo code that simulated the passage of ions through the MACE analyzer was modified to examine the feasibility of this change. The resulting calculations were used to optimize detector positions and collimation requirements. The first analyzer to be placed on PDX will be of the old design, similar to the present PLT analyzer. However, if the design reported here is successful on the test stand, the future PDX analyzers will all be of the new, single electrostatic plate variety. A further advantage will be the ability to install as many as ten detectors instead of the current five, thus providing twice as many energy channels for each shot. A1so, both mass species (H, D) can be measured concurrently, if desired.

I. INTRODUCTION

The present PLT and PDX charge exchange analyzer consists of a stripping cell, a 120° deflection magnet for energy resolution, and a set of five cylindrical electrostatic deflection plates for mass separation. The magnet is used to focus only particles of E and $E / 2$ onto the entrance apertures of the electrostatic plates, so by setting the voltage on a given plate, only one ion species will follow a trajectory of the proper curvature to pass through the system and be detected (Fig, la.).

Since it is only necessary to separate hydrogen and deuterium ions, however, the geometry can be greatly simplified by installing a flat, electrostatic deflection plate in place of the iylindrical plates (Fig. 1b.). The electric field is now normal to the plane of the diagram, and charge separation is effected because particles of E and $E / 2$ are deflected by different amounts in this vertical direction after :raversing the same horizontal distance across the plate.

A Monte Carlo code (MACE.FOR) ${ }^{2}$ was originally written to estimate the absolute efficiency of the existing analyzer. It simulates a source of particles having a spread in both energy and angle as specified by the user. The trajectory of each particle is calculated in accordance with the electromagnetic fields it passes through in the varfous parts of the analyzer. If the coordinates of the particle exceed those for an aperture, pole face, or plate it encounters, the particle is recorded as "lost" at that location and the trajectory for a new particle is initiated at the particle source.

II. SIMULATION CODE FOR THE MODIFIED MACE ANALYZER

The new simulation code (MACSYM.FOR) is the same as MACE.FOR, except for slight modifications in the input structure, until the calculations for
the passage across the electrostatic deflection plate are done. Referring to Fig. 2, a given particle enters the analyzing magnet and is deflected away from the 1 -axis according to $\mathrm{mv}^{2} / \mathrm{r}=\mathrm{qvB}$. That is, if ds is the element of path length along the particle trajectory, the I and v coordinates of the particle are generated according to:

$$
\begin{gather*}
r_{i}=1_{i-1}+\left(\frac{d l}{d s}\right)_{i} d s, \tag{1}\\
y_{i}=y_{i-1}+\left(\frac{d y}{d s}\right)_{i} d s, \tag{2}\\
\left(\frac{d l}{d s}\right)_{i}=\left(\frac{d l}{d s}\right)_{i-1}-\left(\frac{d y}{d s}\right)_{i} \cdot d s \cdot\left(\frac{1}{R_{\operatorname{mag}}}\right), \tag{3}\\
\left(\frac{d y}{d s}\right)_{i}=\left(\frac{d y}{d s}\right)_{i-1}+\left(\frac{d l}{d s}\right)_{i} \cdot d s \cdot\left(\frac{1}{R_{\text {mag }}}\right) \tag{4}
\end{gather*}
$$

This is because the deflection is proportional to B, and B in turn is inversely proportional to $R_{\text {mag }}$. If 1 is less than

$$
\begin{equation*}
1=1.73 y-6.9 \text {, } \tag{5}
\end{equation*}
$$

the equation for the exit edge of the magnet, the field is "turned off" ($B=1 / R_{\text {mag }}=0$ such that ($\mathrm{dl} / \mathrm{ds}$) and ($\mathrm{dy} / \mathrm{ds}$) are constant).

Beyond the magnet edge, the trajectory is unaffected and linear until 1 is less than

$$
\begin{equation*}
1=1.73 y-9 \tag{6}
\end{equation*}
$$

the equation for the leading edge of the flat electrostatic deflection plate. The motion in the $1, y$ plane is still governed by constant $\mathrm{dl} / \mathrm{ds}$ and $\mathrm{dy} / \mathrm{ds}$, but now, a force normal to this plane is introduced. It is given by:

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=q \varepsilon=\frac{v}{d} \tag{7}
\end{equation*}
$$

where d is the gap between the plate and ground potential, and V is the plate voltage. From

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{d s}{d t}\right)^{2} \tag{?}
\end{equation*}
$$

or

$$
\begin{equation*}
(d t)^{2}=\frac{m}{2 E}(d s)^{2} \tag{9}
\end{equation*}
$$

we get

$$
\begin{equation*}
m \frac{d^{2} x}{\left(\frac{m}{2 E}\right)(d s)^{2}}=\frac{v}{d} \tag{10}
\end{equation*}
$$

and hence

$$
\frac{d^{2} x}{d s^{2}}=\frac{V}{2 E d}
$$

The x-ccordinate (normal to the plane of Fig. 2) now shanges by

$$
\begin{align*}
& x_{i}=x_{i-1}+\left(\frac{d x}{d s}\right)_{i} d s \tag{12}\\
& \left(\frac{d x}{d s}\right)_{i}=\left(\frac{d x}{d s}\right)_{i-1}+\left(\frac{d^{2} x}{d s^{2}}\right) d s \tag{13}
\end{align*}
$$

so that

$$
\begin{equation*}
\left(\frac{d x}{d s}\right)_{i}=\left(\frac{d x}{d s}\right)_{i-1}+\left(\frac{V}{2 E d}\right) d s \tag{14}
\end{equation*}
$$

The calculation continues until either x is larger than d, in which case the particle is recorded as having hit the plate, or 1 is less than

$$
\begin{equation*}
1=.74 y=9.4, \tag{15}
\end{equation*}
$$

the equation for the exit edge of the electrostatic plate. Any particle that gets this far is considered detected.

III. RESULTS

Two mass separation cases were tried. The first used particles having energy spreads of $0.85<E<1.15$ and $.425<E<.575$. This simulated the situation where hydrogen ions of energy spread $0.85<E<1.15$ were to be detected. Figure 3 shows a plot of vertical (x-direction) deflection (cm) as a function of distance (cm) along the detector plane. A primary reason for doing a computer simulation was to study the effectiveness of the new mass separation scheme in resolving the hydrogen ions from the deuterium ions. Therefore, although the less energetic deuterium ions would be lost on the electrostatic plate and not detected in this first case (the distance between the plate and ground being 4 cm), the distribution of these ions was still plotted on Fig. 3 to make sure that it did not overlap with the distribution for the hydrogen ions, and hence give spurious contributions to our measurements. What we actually find is that the two ion species are clearly separated, and it appears that a 0.8 cm wide detector centered at 2.5 cm should detect most of the hydrogens. It is important to note that 2.5 is the mean total vertical deflection, so that if particles are assumed, for example, to enter the electrostatic plate region 1 cm above ground, the detector should be placed at a height of 3.5 cm .

Figure 4 shows the dispersion of particles along the plane of the detector as a function of particle energy along this plane. What this suggests is that for an energy resolution of ± 0.1 at $E=1$, a vertical slit of about 1.3 cm in width should be sufficient. For ± 0.1 at $E=5$, however, a slit of width 0.8 cm is needed.

The second case used particles having energy spreads of $1.70: E<2.30$ and $0.85<E<1.15$ (or equivalently, a case where the plate voltage is halved). Here, deuterium ions of energy $0.85<E<1.15$ were to be detected. From Fig. 5, it can again be recommended that we use a 0.8 cm wide detector centered at 2.5 cm . According to Fig. 6 , we also require a vertical slit of about 1.6 cm in width for an energy resolution of ± 0.1 at $E=1$, and a 51 it of about 0.5 cm in width for comparable resolution at $\varepsilon=5$. This tendency of needing a decreasing slit width with increasing energy, incidentally, agrees with experience from the existing five-channel MACE analyzer. In the two cases discussed above, the plate potential was fixed at 1 kV and the angular spread of the incident particles was $\Delta \phi=0.03$ radians (1.7°), or more than enough to flood the entrance of the MACE system.

These calculations were repeated using entrance and exit fringe fields for the MACE magnet of the form:

$$
\begin{equation*}
B_{\text {fringe }}(u)=1 / 2(1-\tanh (u)) \tag{16}
\end{equation*}
$$

where u is the distance between the ion and magnet edge. A plct of vertical deflection of particles having energy spreads of $1.70<E<2.30$ and $0.85<E<1.15$ as a function of distance along the detector plane if these fringe fields are imposed is shown in Fig. 7. The relationship between partirile energy and distance traveled in the electrostatic fiejd is not linear for a fixed vertical deflection, and because the exit edge is straight, we
continue to see a slight curvature in the mean locatior of the particles across the detector plane. This can be easily corrected when the plate is actually built, but even in the design studied here, the ion species, though s!ifted slightly in absolute position, are still clearly separated. Furthermome, the dispersion curve shown in Fig. 8 indicates that the slit requirements for an energy resolution of ± 0.1 are essentially the same.
IV. CONCLUSIONS

The Monte Carlo simulation studies indicate that the modified MACE analyzer should have sufficient mass separating capability. Furthermore, according to the second case, the design would allow the detection of both ion species simultaneously if a 0.5 cm wide detector were centered at 1.25 cm and a 0.8 cm detector were centered at 2.5 cm . Although this configuration is possible with the channeltrons now installed, using channel plates instead would be both more convenient and economical. The present MACE analyzer, in contrast, could only be adjusted for one type of ion at a time. Calculations that include the effects of a realistic drift distance between the electrostatic plate exit and the detector face and the presence detector apertures are planned to make the simulation more complete.

ACKNOWLEDGMENTS

The authors would like to thank R. J. Goldston for many helpful discussions. This work was supported by the United States Department of Energy contract number EY-76-C-02-3073.

REFERENCES

1. S.L. Davis, S.S. Medley, and M. Brusati, "The Charge Exchange Analyzer for the Mass Resolved Ion Temperature Measurements on PLT," PPPL-1478 (1978).
2. S. L. Davis and R. J. Goldston, MACE.FOR (unpublished).

Figure la. Field geometry of present PLT and PDX charge exchange analyzer.
(785362)

Figure 1b. Proposed new design for PDX charge exchange analyzer.
(786362)

Figure 2. New PDX charge exchange analyzer showing coordinate system used in ion trajectory calculations.
(786361)

Figure 3. Scatter plot for particles of energy $E / 2$ and E on detector plane.
(785364)

Figure 4. Dispersion of particles of energy $\mathrm{E} / 2$ and E along detector plane as function of particle energy. (785360)

Figure 5. Scatter plot for particles of energy $2 E$ and E on detector plane. (786365)

Figure 6. Dispersion of particles of energy $2 . E$ and E along detector plane as function of particle energy.
(786363)

Figure 7. Scatter plot for particles of energy $2 E$ and E on detector plane with magnet fringe fields included.
(786396)

Figure 8. Dispersion of particles of energy 2 E and E along detector plane as a function of particle energy with magnet fringe fields included.
(a)

(b)

Fig. 1. 786362

Fig. 2. 786361

ALLCATEGORLES

\＆．Asisern，Auburio liniversity，Alabatta

！nshinte hor Energy Studies．Stunlora University
1．1）．（imppell，University of Florida
V．L．Clesun，University of South Florida
3．．．．Stacev，Georgia Institute of Technology
is？junim Wa，lowa State University
V．ase kirstiansen，Texas Tech．University
B．L．W＇！nee，Nut＇l bureau of Standards，Wash．，D．C． suralial Mational IJniversity，Canberra
\therefore 勺．is stson－Mumra，Univ．of Sydney，Australia
！．i if．Insi．for Tineo．Physics，Austria

ㅅ． …i：i：：Do，Commo of Eur．Comm．，Belgium

A．Hints，！faversity of Alberta，Canada

$\therefore!\because$ Misurshurd，Unv，of Sa katchewan，Canada

．\therefore ．，llaws，Litorary，C．E．N．－G，Grenoble，France
（ivetal leas．list．for Physics，Hungary
R．？Minnl，hicerut College，India
U．Nurughi，Atomic Energy Org，of Iran
B：oliotecd，Fruscati，Italy
Biblinteca，Milano，Italy
G，Kostagni，Univ．Di Padova，Padova，Italy
Pre，rint Library，Inst，de Fisica，Pisa，Italy
Lior ary，Plusma Physics Lab．，Gokasho，Uji，Japan
4．Uuri，7epun Atomic Energy Res．Inst．，Tokai－Uura
Kistai i，mforination Center，Nagoya Univ．，Japan
ヶ．Vi．ne．．，Tokyo Inst．of Tech．，Jidean

T． 1 ＇itdo．Univ．of Tokyo，Japan
11．• r！ntu．Toshiba R．M D．Center，Japan
\therefore ，1nsmhutus．JNERI，Tokaj Res．Est．，Japan

＇，ソ．－1小＇．I nuv．of Wakiato，New Eealand
$\because \quad$ i ，ins bus linvas Norge，Norway
－U．，－（＂ubrat，Linv．de Lisbou，Portugal
\therefore ！？irrs，VL，CUZA Univ．，Romariad
1．W Vhiters，Ntu：nic Energy Rd．，South Africa
\．Batrech，Conisaria De La Energy y Recoursos vinerales，Spain
Library．Royal Institute of Technology，Sweden
Cen．de Res．En Phys．Des Plasmas，5witzerland
Libruriun，Form－Instituut Voor Plasma－Fysica，The vetherlands
V．L．Lolant，A．F．loffe Physical－Tech．Inst．，USSR
R．H．Kadontsev，Kurchatov Inst．of Atomic Energy， ijsk
The K＇tartiov l＇hysical－Tech．Inst．，USSR
II．4．Rabinovich，Academy of Sci，USSR
Biblisthek，Stuttgart，West Germany
R，D．（huhler，Univ．of Stuttgart，West Ciermany
Hax－Planch－inst．Iur Plasmaphysik，W．Germany
Null．Res．Estab．，Julich，west Germany
K．Gethudin：，Inst，Fur Theo．Physik，W．Germany

EXPERIMENTAL THEORETICAL

M．H．Breman，Flinaers Univ．Austraha
H．Barnard，Univ，of British Columbia，Canada
S．Screenivasan，Univ．of Calgary，Canada
J．Radet，C．E．N．－B．F．，Fontenay－aux－Roses，France
Prof．Schatzman，Observatoire de Nire，France
S．C．Sharma，Univ．of Cape Coast，Ghana
R．N．Aiyer，Laser Section，India
B．Buti，Physical Res．Lab．，India
L．K．Chavda，S．Gujarat Univ，India
I．M．Las Das，Banarus Hindu Univ．，India
S．Cuperman，Tel Aviv：iniv．，Israe！
E．Greenspan，Nuc．Res．Center，Israel
P．Rosenau，Israel Inst．of Tech．，Israed
Intli．Center for Theo．Physics，Trieste，Italy
I．Kawakami，Nihon University，Japan
T．Nakayama，Ritsumeikan Univ．．Japan
S．Nagad，Tohoku Univ．，Japan
J．I．Saksi，Toyama Univ．，Japan
S．Tjotta，Univ．I Bergen，Norway
M．A．Hellberg，Univ．of Natal，5outh Airicu
H．Wilhelmson，Chalmers Univ，of Tech．，Sweden
Astro．Inst．，Sonnenborgh Obs．，The Vetherlards
N．G．Tsintsadze，Academy of $\mathrm{Sc}, \mathrm{GSSR}, \mathrm{ISSR}$
T．J．Beyd，Univ．College of North Wales
K．Hubner，Univ．Heidelberg，W．Germany
H．J．Kaeppeler，Univ，of Stuttgart，West Germany
K．H．Spatschek，IJniv．Essen，West Germany

EXPERIMENTAL
 ENGINEERING

B．Grik，Univ．de Quebec，Canada
P．Lukac，Komenskeho Univ．，Czechoslovakia
G．Horikoshi，Nat＇l Lab for High Energy Physies， Tsukuba－Gun，Japan
V．A．Glukhikh，D．V．Efremov Sci．
Res．Instit．of Elect．App．，USSR

EXPERBEATAL

F．J．Paoloni，Univ．of Wollongong，Bustialia
3．Kistemaker，Fom Inst，for Atomir
\＆Molec．Physics，The Netherlunds
THEORETICAL
F．Verheest，Inst．Vor Theo．Mech．，Belgiu．n
J．Teichmann，Univ．of Muntreal，Canada
T．Kahan，Univ，Paris VII，France
R．K．Chhajlani，India
S．K．Trehan，Panjab Univ．，India
T．Namikawa，Osaka City Univ．，Japin
H．Narumi，Univ．of Hiroshitna，Tapan
Korea Atomic Energy Res．Ins1．，Korea
E．T．Karlson，Uppsala Univ．，Sweden
L．Stenflo，Univ．of UMEA，Sweden
J．R．Saraf，New Univ．，United Kingdom

