title: SIMMLATION OF BENT CRYSTAL SPECTROMETERS

DISCLAIMER

This report was prepared as an account of work sponsored by ail agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

AUTHORS):
 G. A. Kyrala

 employees, makes any warranty, express or implied, or assumes any legal liability or responaibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights, Referonce herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recombmendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.submitted to: The American Physical Society
to be published in the Proceedings of the 5th Topical Conference on High Temperature Plasma Diagnostics.

- y acceptance of this article, the publisher ecognizes that the U.S. Government retains a nonexclusive, royaliy-liee license to publish or reproduce the published form of this contribution, of to allow others to do iv, for U.S. Government purposes.

Simulation of Bent Crystal Spectrometers
 George A. Kyrala
 Los Alamos National Laboratory Los Alamos, NM 87545

Abstract
In crystal spectrometers one traditionally labels each pusition in the dispersion/recording plane by a single wavelength value. A simple examination of the crystal spectrometers shows that different sreas of the crystal contribute different wavelengtha at the same position in the recording plane. Using collimators and apertures one may reduce these effecta, as well as reduce ine collected signal. Convolving the aytem response, in that case, may not allow simple analytic eatimates of the sensitivity/responsivity of the syatem. A Monte-Carlo ray-trace prugram was written in order to study and simulate the real geometry including finite source size effects. The results of using the code will be presented, demonstrating the contributions to the resolution and absolute responsivity, for a particular parabolically bent crystal spectrometer.

I. INTRODUCTION

In deaigning crystal spectrometers, one may use standard optico programs for image formation and for studying the dispersion of the aystem. However, important questions regarding the resolution and throughput of the aytem require careful calculation of the transfer of the x ray intensity through the system. In what follows I will present the details of a program called CRYSTAL that attempts to include the reflectivity of the crystal and the sources' spatial ard anglar distribution in the estimate of the throughput. Section II will describe the geometry used, section III will describe some of the details of the progrem, Section IV will apply the program to the apecific case of a parabolically bent crystal spectrometer.

II. DESCRIPTION

A code CRYSTAL was written to analyze in 1 -D the instrumental layout shown in Figure 1. The source emits x-rays in random directions, with random spatial distributions, (the distributions to de sampled can be apecified by the user). The default distributions were uniform distributions. The rays reflect from the crystal which was placid with its vartex at the origin of coordinates. The axis of symmetry was the x axis. The reflectivity of the cryatal follows the bragg condition and the focking curve of the cryatal. Aparture otups can be placed any place Sn the system. Howaver, we specifically put an aperture at the focus of the ayotem on the x-axis. The ray that make it then intercept an arbitrarily positioned receiving plane called the film plane. The output of the program ara the atatiatics on the raya, e.g., number of rayn that mase the cryatal, number of rays that miss the aparture, number of rays
that miss the film, etc. Another most useful output is a plot of the intensity that made it to the film as a function of position on the film and as a function of the energy of the x-ray. The program allows for a quick study of the effect of varying parameters on the output on the film.
III. DETAILS

The program starts by choosing a ray on the surface of the source. The ray is chosen from a source angular and spatial distributions. A helpful festure of the code was the source spectral distribution function used. Delta function bins (see Fig. 2) distributed about a central energy bin were used. Their spacing increased geometrically with the difference between the bin number and the central bin number. This is analog, in energy space, to using a variably ruled pattern to test the spatial MTF of an optical system. The $\lrcorner s e$ of 11 energies was judged to be sufficient for the purpose of our studies. One can, of course, choose the intensity at each of these energy bins to replicate some line shape or spectral shapes at the source.

Reflection was assumed to follow Bragg'a law. Thus for each energy and crystal spacing there is a central angle called the Bragg angle where the ray at that energy eflects with a peak reflectivity. At other incident angles the ray was reflected with a reflectivity that depended on the difference of the angle the ray makes with the arface and the Bragg angle. La the simulacions the reflectivity function, also known as the rocking curve, was assumad to be gaussian:

$$
k=a-\left(\frac{\theta-\theta_{B}}{\sigma}\right)^{2}
$$

where sigma equals fwhm/l.6651. Of course, lorentzian, or other line shapes, could have been easily used by changing the appropriate subroutine AMPL in the code.

The detector plane was divided into 161 bins. The central bin was poaitioned at the intersection of the central ray and the film plane. The central ray was defined as that ray that started from the center of the source parallel to the x-axis. The bin width in micrometers is user chosen. The program keeps tracik of the contribution from each of the energy bins to a specific spatial bin.
IV. RESULTS

The program features will be demonstrated using a specific crystal spectrometer design. The particular geometry is shown in fig. 3. A Lif cryatal was parabolically bent to satisfy the equation $y=\sqrt{2 P x}$, where $p=.375$. The vertex, of course, was on the origin of coordinates. The source was chosen to be equal in size to the crystal y projection, and centered on it. The particular geometry is not particularly advantageoun for the use with a parabolical cryatal: but simulates the effect of putting a finite input aperture a finite distance from the crystal. The begt source distance is at infinity. The film plane resolution was at at 20 micrumeters, to aimulate the apatial resolution attributable to combinatinn of efiberoptics faceplate with a layer of x-ray to viaible fluor converter on the entrance of the faceplate. In all cases an aperture of diameter 100 micrometer was canterad at the focus of the parabola and parallel to the x-axis. Two variations are shown in Figs. 4 and 5 . In Fig, 4 the source cone angle
was veried from 10 to 3000 microradians, keeping the crystal rocking curve fwhm at 10 microradians. In Fig. 5 the source cone angle was fixed at 10 microradians, but the rocking curve fwhm was varied from 10 to 1000 microradians. For the case where fwhm $=10$ then the plot actually gave the dispersion ($1.1 \mathrm{eV} / \mathrm{mic}$ (ometer) on the film. The other cases show the effects of divergence. The increase in width of the pattern with source divergence is 5.7×10^{-4} (eV/microradian). The linewidth variation was $2.13 \times 10^{-3} \mathrm{eV}$ per microradian variation of the crystal findamental rocking curve width. The plots show the contribution from each energy bin. The central energy bin is at 12000 eV , the other bins are separated by $50,100,200,400$ etc. eV, respectively. The present design thus allows for at least 50 eV resolution and at a contrast ratio of .5 allows a reaolution of 20 eV for a source divergence of 3000 microradians and a crystal rocking curve full width at half maximum of 200 wicroradians.

V. SUMMARY

The program "CKYSTAL" has been written to analyze 1-d geometries of cryatal bent spectrometers. The program allows for quick study of the variation of the output properies of the spectrometer with variation of apectromeier design. The program has been written in BASIC for the HP/80 and HP/200 series of compaters and in FORTRAN/77. A typical case with one million starting rays take about 50,000 seconds on the HP87 and 16 seconds on the CHAY/L using the CTSS operating gystem and the RCFT compiler.

FIGURE CAPIIONS

Figure 1. A schematic diagram of the geometry used in CRYSTAL. The central ray path is displayed by the continuous line. A general ray is displayed by the dashed line. The x-axis is an axis of revolution for che crystal. The source position, crystal surface equation, and film location and orientation are arbitrary. The crystal surface musc pass through the origin, however, only the area between YMIN and YMAX are used. Figure 2. The default energy spectrum used in CRYSTAL. The energies are delta functions. The separation between successive peaks increased in geometric progression of power, of 2. Figure 3. The Actual Geometry that was simulated in the presentation. The spectrometer consisted of a parabolically bent crystal, an aperture of diameter 100 micrometers centered at the focus of the parabola parallel to the x axis. The film plane had a resolution of 20 micrometers.

Figure 4. The variation of the line width with the divergence of the source. The divergence was varied from 100 to 3000 microradians. The crystal rocking curve FWHM was kept at 10 microradians for this figure. Ten million random numbers were used. The peak reflectivity was taken as unity.

Figure 5. The variation of the line width witt the FWHM of the rocking curve of the crystal. The source fivergence was kept at 10 micrometers for this figure. FWHM was varied at $10,100,500$, and 1000 microradians. Ten million raadom numbers were used, and the peak crystal retlectivity was taken as uaity.

$$
\begin{aligned}
& E(i)=E(i-1)+(i-6) \Delta \quad i \neq 6 \\
& E(6)=E
\end{aligned}
$$

ENERGY SPECTRUM

