Depth to and concentrations of water in large bodies of silicic magma. Progress report, July 1, 1982-June 30, 1983

PDF Version Also Available for Download.

Description

Large bodies of silicic magma are potential sources of geothermal energy and ore. They also pose threats of catastrophic eruptions. The depths of such bodies are related to their economic potential and probably to their eruption mechanisms. The concentrations of water in the magmas are important for their eruptive and dynamical behavior and for the development of ores. Estimates of viscosity and density of melt require knowledge of concentration of water. The concentration of water in melt before ascent and eruption can be measured in inclusions of glass which became trapped in crystals before extrusion. The depth of a magma ... continued below

Physical Description

Pages: 5

Creation Information

Anderson, A.T. March 3, 1983.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Large bodies of silicic magma are potential sources of geothermal energy and ore. They also pose threats of catastrophic eruptions. The depths of such bodies are related to their economic potential and probably to their eruption mechanisms. The concentrations of water in the magmas are important for their eruptive and dynamical behavior and for the development of ores. Estimates of viscosity and density of melt require knowledge of concentration of water. The concentration of water in melt before ascent and eruption can be measured in inclusions of glass which became trapped in crystals before extrusion. The depth of a magma body can be estimated or delimited if we can find out the concentrations of both carbon dioxide and water in the inclusions of glass. Initial results on the Bishop Tuff of Long Valley Caldera, California yield 4.9 +- 0.5 percent H/sub 2/O for glass included in quartz from the Plinian air fall pumice. This result is comparable to the estimates of Hildreth (1977) of about 3.5 to 4.9 percent H/sub 2/O in the lowermost part of the Bishop ash flow. From January 1982 through December 1982, analyses of inclusions of glass in two additional quartz phenocrysts from the Plinian air fall unit of the Bishop Tuff revealed variable H/sub 2/O and CO/sub 2/. The corresponding partial pressures range between about 2000 and 5000 atmospheres, assuming gas saturation. The variation may be natural or caused by an analytical artifact. A computerized data file has been constructed to facilitate the storage and retrieval of published and unpublished chemical analyses of glasses and minerals. Some data on the Bishop Tuff are presently stored.

Physical Description

Pages: 5

Notes

NTIS, PC A02/MF A01; 1.

Source

  • Other Information: Portions are illegible in microfiche products

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE83008082
  • Report No.: DOE/ER/10763-2
  • Grant Number: AC02-80ER10763
  • DOI: 10.2172/6396386 | External Link
  • Office of Scientific & Technical Information Report Number: 6396386
  • Archival Resource Key: ark:/67531/metadc1207382

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 3, 1983

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Oct. 18, 2018, 4:52 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Anderson, A.T. Depth to and concentrations of water in large bodies of silicic magma. Progress report, July 1, 1982-June 30, 1983, report, March 3, 1983; United States. (digital.library.unt.edu/ark:/67531/metadc1207382/: accessed November 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.