Engineering and cost analysis of a dry cooling system augmented with a thermal storage pond

PDF Version Also Available for Download.

Description

An engineering and cost study of the capacitive thermal storage pond added to a state-of-the-art dry cooling system is described. The purpose of the study was to assess the potential for reducing the cost of all-dry cooling for thermal electric power plants using a dry cooling system that includes a thermal storage pond. Using the modified BNW-I computer code, the effect of varying significant design parameters was investigated. The parametric study included studying the effects of varying turbine type, pond size, replacement energy costing, capacity penalty methodology, pond location with respect to the dry cooling tower, design temperature, and site ... continued below

Physical Description

Pages: 93

Creation Information

Drost, M.K. & Allemann, R.T. September 1, 1978.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An engineering and cost study of the capacitive thermal storage pond added to a state-of-the-art dry cooling system is described. The purpose of the study was to assess the potential for reducing the cost of all-dry cooling for thermal electric power plants using a dry cooling system that includes a thermal storage pond. Using the modified BNW-I computer code, the effect of varying significant design parameters was investigated. The parametric study included studying the effects of varying turbine type, pond size, replacement energy costing, capacity penalty methodology, pond location with respect to the dry cooling tower, design temperature, and site location (meteorology). Incremental power production costs for dry cooling (i.e., the portion of the cost of bus-bar electricity from the plant which is attributable to the cost of building and operating the heat rejection system) with a thermal storage pond system were determined for meteorologies of both Wyodak, Wyoming and Phoenix, Arizona. For Wyodak the incremental cost of dry cooling with a thermal storage pond was 2.81 mills/kWh as compared to 2.55 mills/kWh for a system without a thermal storage pond. For Phoenix the incremental cost of dry cooling with a thermal storage pond was 3.66 mills/kWh as compared to 4.31 mills/kWh for a system without a thermal storage pond. If the use of a modified conventional turbine with the dry-cooled system is stipulated in order to stay with proven technology for large turbines, then results of this study show that in extremely hot climates the thermal storage pond can reduce the cost of dry cooling. If no cost penalty is assigned to high back pressure turbines and it can be used, then the thermal storage pond has no advantage in hot climates. However, collateral use of the pond for makeup or emergency cooling water storage may decreae the cost. (LCL)

Physical Description

Pages: 93

Notes

Dep. NTIS, PC A05/MF A01.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNL-2745
  • Grant Number: EY-76-C-06-1830
  • DOI: 10.2172/6388964 | External Link
  • Office of Scientific & Technical Information Report Number: 6388964
  • Archival Resource Key: ark:/67531/metadc1207259

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1978

Added to The UNT Digital Library

  • July 5, 2018, 11:11 p.m.

Description Last Updated

  • Sept. 19, 2018, 5:52 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Drost, M.K. & Allemann, R.T. Engineering and cost analysis of a dry cooling system augmented with a thermal storage pond, report, September 1, 1978; United States. (digital.library.unt.edu/ark:/67531/metadc1207259/: accessed November 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.