MASTER
IS-T-824

THERMODYNAMIC PROPERTIES OF URANIUM-MERCURY SYSTEM

Tsang-Sheau Lee

Based on a M. S. thesis submitted to Iowa State University

Ames Laboratory, USDOE
Iowa State University
Ames, Iowa 50011

Date Transmitted: January 1979

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NO. W-7405-eng-82
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Available from: National Technical Information Service
U. S. Department of Commerce
P. O. Box 1553
Springfield, VA 22161

Price: Microfiche $3.00
Thermodynamic properties of uranium-mercury system

by

Tsang-Sheau Lee

A Thesis Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
MASTER OF SCIENCE

Department: Materials Science and Engineering
Major: Metallurgy

Approved:

In Charge of Major Work

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1978
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>V</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. EXPERIMENTAL PROCEDURE</td>
<td>7</td>
</tr>
<tr>
<td>A. Alloy Preparation</td>
<td>7</td>
</tr>
<tr>
<td>B. Cell Arrangement and Apparatus</td>
<td>8</td>
</tr>
<tr>
<td>C. EMF Measurements Employed to Check the Apparatus</td>
<td>9</td>
</tr>
<tr>
<td>D. Relations between Cell EMF's and the Free Energy of Formation of</td>
<td>13</td>
</tr>
<tr>
<td>Compounds UHg₄, UHg₃ and UHg₂</td>
<td></td>
</tr>
<tr>
<td>III. EXPERIMENTAL RESULTS AND CALCULATIONS</td>
<td>15</td>
</tr>
<tr>
<td>A. Results of EMF Measurements</td>
<td>15</td>
</tr>
<tr>
<td>B. Solubility of Uranium in Mercury</td>
<td>19</td>
</tr>
<tr>
<td>C. Comparison of Thermodynamic Data</td>
<td>19</td>
</tr>
<tr>
<td>D. Relative Partial Molal Excess Free Energy of Uranium at Infinite</td>
<td>24a</td>
</tr>
<tr>
<td>Dilution in Liquid Mercury</td>
<td></td>
</tr>
<tr>
<td>IV. CONSISTENCY OF THE PHASE DIAGRAM DATA WITH MEASURED THERMODYNAMIC</td>
<td>26</td>
</tr>
<tr>
<td>PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>A. Calculations of the Thermodynamic Properties of Liquid Alloys</td>
<td>26</td>
</tr>
<tr>
<td>1. Calculations based on uranium-rich liquidus</td>
<td>26</td>
</tr>
<tr>
<td>2. Calculations based on mercury-rich liquidus and uranium-rich</td>
<td>32</td>
</tr>
<tr>
<td>liquidus</td>
<td></td>
</tr>
<tr>
<td>B. Construction of a Tentative Phase Diagram</td>
<td>33</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>39</td>
</tr>
<tr>
<td>VI. REFERENCES</td>
<td>41</td>
</tr>
<tr>
<td>VII. ACKNOWLEDGEMENTS</td>
<td>43</td>
</tr>
<tr>
<td>VIII. APPENDIX A. X-RAY DATA OF 22 at.% U-Hg ALLOY</td>
<td>44</td>
</tr>
<tr>
<td>IX. APPENDIX B. EXPERIMENTAL EMF DATA</td>
<td>49</td>
</tr>
</tbody>
</table>
Thermodynamic properties of uranium-mercury system*

by

Tsang-Sheau Lee

The EMF values in the fused salt cells of the type $\text{U(\alpha)|KCl-LiCl-BaCl}_2$ eutectic, $\text{UCl}_3|\text{U-Hg}$ alloy, for the different two-phase alloys in the uranium-mercury system have been measured and the thermodynamic properties of this system have been calculated. These calculated values are in good agreement with values based on mercury vapor pressure measurements made by previous investigators. The inconsistency of the thermodynamic properties with the phase diagram determined by Frost are also confirmed. A tentative phase diagram based on the thermodynamic properties measured in this work was constructed.

*USDOE Report IS-T-824. This work was performed under contract W-7405-eng-82 with the U.S. Department of Energy.
I. INTRODUCTION

The phase diagram of the uranium-mercury system, Fig. 1, was established by Frost (1) and the existence of the three intermediate phases UHg_4 (22.88 wt % U), UHg_3 (28.35 wt % U), and UHg_2 (37.24 wt % U) had been well-established by Rundle and Wilson (2).

Uranium-mercury compound or uranium amalgam is an intermediate product of a nuclear fuel reprocessing method, known as Hermex process (3), in which mercury is used as solvent or extractant. The uranium metal is recovered by volatilizing the mercury in vacuum or inert gas stream, and melting the resulting sponge to massive metal. The thermodynamic properties of the compounds are important in developing and evaluating large-scale nuclear fuel reprocessing and decontamination.

The free energy of formation of the three compounds, based on mercury vapor pressure measurements by the dewpoint method, has been determined by Forsberg (4). The standard free energies of formation, in cal·mol$^{-1}$, with liquid mercury and alpha uranium as standard states are given by Forsberg (4) as:

\[
\Delta G_f^\circ(UHg_2) = -92 - 4.39T \text{ (448-648K)} \\
\Delta G_f^\circ(UHg_3) = -555 - 6.31T \text{ (448-648K)} \\
\Delta G_f^\circ(UHg_4) = -1594 - 6.11T \text{ (448-573K)} \\
\Delta G_f^\circ(UHg_4) = -3777 - 2.35T \text{ (573-648K)}
\]
THE URANIUM-MERCURY SYSTEM AFTER FROST

Fig. 1. Phase diagram of uranium-mercury system from Ref. (1)
The entropies in these equations are positive and unrealistic. One would expect them to be negative. As pointed out by Johnson (5), Forsberg used an unconventional and apparently an improper correction procedure to account for low thermocouple readings of the dewpoint temperature. Forsberg's data were reevaluated by Chiotti et al. (6) and a correction of five degrees Celsius added to each dewpoint temperature. The corrected data yielded the following relations for the free energy of formation for the compounds. Two high temperature data points were discarded in arriving at Eq. 7.

\[
\begin{align*}
\Delta G_f^{\circ}(\text{UHg}_2) & = -4360 + 1.35T \ (448-648K) \\
\Delta G_f^{\circ}(\text{UHg}_3) & = -6520 + 2.56T \ (448-648K) \\
\Delta G_f^{\circ}(\text{UHg}_4) & = -8840 + 4.78T \ (448-648K)
\end{align*}
\]

Jangg and Steppan (7) employed an "isoteniskop" to measure the vapor pressure of mercury and they report the free energies of formation, in cal·mol⁻¹, as

\[
\begin{align*}
\Delta G_f^{\circ}(\text{UHg}_2) & = -13300 + 9.90T \ (583-683K) \\
\Delta G_f^{\circ}(\text{UHg}_3) & = -16000 + 12.2T \ (553-683K) \\
\Delta G_f^{\circ}(\text{UHg}_4) & = -19500 + 16.7T \ (543-633K)
\end{align*}
\]

More recent measurements of the mercury vapor pressure by the dewpoint method by Mason and Chiotti (8) (unpublished data) yielded, in cal·mol⁻¹, with alpha uranium and liquid mercury as reference states the following relations:

\[
\Delta G_f^{\circ}(\text{UHg}_2) = -9422 + 4.83T \ (727-853K)
\]
\[\Delta G_f^o(\text{UHg}_3) = -11461 + 6.25T \quad (433-653\text{K}) \quad (12) \]
\[\Delta G_f^o(\text{UHg}_4) = -14460 + 10.39T \quad (397-634\text{K}) \quad (13) \]

All of these three works involved the measurements of the mercury vapor pressure. However, the results were not very consistent. The thermodynamic data as well as solubility data are not consistent with the phase diagram.

In Fig. 1, the mercury-rich liquidus curve up to 629K can be represented by the relation

\[\ln X_U = -4860T^{-1} + 5.615 \quad (293-629\text{K}) \quad (14) \]

At 629K, the solubility of uranium in mercury is 12 at.%. However, the solubility of uranium in mercury determined by Messing and Dean (9) can be represented by the relation

\[\ln X_U = -3251T^{-1} + 0.5728 \quad (293-629\text{K}) \quad (15) \]

This equation yields 1.0 at.% at 629K. The solubility determined by Jangg and Palman (10) can be represented by the relation

\[\ln X_U = -2804T^{-1} - 0.5721 \quad (293-523\text{K}) \quad (16) \]

which gives 0.65 at.% at 629K. Ahmann et al. (11) also found the solubility of uranium in mercury at 623K to be 0.89 at.%. However, their data cannot be fitted in a linear equation of the above type. As pointed out by Dean (12), Frost's data are in error. Therefore, the best relation for the solubility of uranium in mercury is taken to be the combined data of Eq. 15 and Eq. 16. The result is
\[\ln X_U = -3121T^{-1} + 0.2378 \quad (293-629K) \quad (17) \]

The solubility of uranium in mercury represented by Eq. 14, Eq. 15 and Eq. 16 and Ahmann et al. (11) data are shown in Fig. 2.

The purpose of this investigation is to determine the chemical potential of uranium in these alloys from EMF measurements in fused salt cells. From these measurements, the free energies of formation of the compounds can be obtained. An attempt will be made to resolve the discrepancy between the thermodynamic data and the phase diagram.
Fig. 2. Solubility data of uranium in mercury
II. EXPERIMENTAL PROCEDURE

A. Alloy Preparation

Three uranium-mercury alloys, 5 at.% U-Hg, 22 at.% U-Hg and 30 at.% U-Hg, were prepared for this investigation.

Uranium metal powder was prepared by the hydride method (13). Uranium shavings were used in this process and were cleaned with trichloro-ethane, then with 1:1 nitric acid and then washed with water and finally with acetone. The cleaned uranium shavings were heated at 230°C for half an hour under 1 atm. of hydrogen gas and then heated at 370°C for one hour under vacuum. The uranium powder was taken out in the glove box under helium gas atmosphere and identified by x-ray diffraction powder pattern.

The exact ratios of uranium powder and triply distilled mercury were sealed in 1/2" tantalum crucibles under a helium atmosphere. The sealed crucible was enclosed in a welded stainless steel jacket and heated in a rocking furnace. The 5 at.% U-Hg alloy was heated at 360°C for three weeks. The other two alloys were heated at 360°C, 400°C and 450°C for one week at each temperature.

The x-ray diffraction powder patterns were taken of the three alloys. The powdered samples were sealed in 0.3 mm glass capillaries under a helium atmosphere. Only a few diffraction lines appeared in 5 at.% U-Hg sample pattern. According to the phase diagram, it is supposed to contain
UHg₄ and free mercury. There is no x-ray file data for the UHg₄ compound, i.e., it is still an unknown crystal structure. For 22 at.% U-Hg alloy, 71 lines were measured in the powder pattern film. This alloy is supposed to contain UHg₄ and UHg₃. However, none of the lines is identical to any line of UHg₃ x-ray file data. Therefore, the lines were taken to be for the UHg₄ compound. The diffraction lines of this alloy are listed in Appendix A. The absence of UHg₃ in the 22 at.% U-Hg alloy can be explained on the assumption that the UHg₃ existed in the center of the particles with UHg₄ surrounding the UHg₃. Because both uranium and mercury are heavy metals, x-ray cannot penetrate to the center of the sample particles and little or no scattering of the UHg₃ is observed. However, some of the strong lines for UHg₃ could be accounted for by some of the weak lines observed and it is assumed that this alloy actually contained both phases, UHg₄ and UHg₃.

The 30 at.% U-Hg alloy contained both UHg₃ and UHg₂ which were identified by the x-ray diffraction patterns.

B. Cell Arrangement and Apparatus

The preparation of the electrodes and the assemblage of the fused-salt cells were all done in a controlled atmosphere glove box filled with helium. The helium was purified by circulating it through a molecular sieve to remove moisture and through zirconium chips and titanium sponge at 650°C to
remove oxygen. An atmosphere of helium was maintained in the
glove box while the EMF was being measured.

A schematic diagram of the cell is shown in Fig. 3. The
cell container is 1 1/2" in diameter and 3" in height and made
from tantalum sheet. The uranium rod anode was cleaned with
1:1 nitric acid and acetone and fastened on the end of 1/8"
tantalum tube. The uranium-mercury cathode was alloy powder
contained in a 3/8" diameter tantalum crucible welded on to a
1/8" tantalum tube. A chromel-alumel thermocouple was located
inside the tantalum tube of the cathode electrode. The
ternary eutectic salt, K₂Cl₂ 37.1 at.%-Li₂Cl₂ 51.4 at.%-BaCl₂
11.5 at.%, was used as electrolyte in the cell and 5 wt.% of
UCI₃ was added.

The cell EMF was measured with a differential voltmeter,
Model 1002 made by Precision Standards Corporation. The tem­
perature of the cell was measured with a chromel-alumel
thermocouple.

C. EMF Measurements Employed to Check the Apparatus

EMF measurements of a 9.0 wt.% U-Zn alloy vs. U were
made to check the experimental apparatus. The EMF of this
alloy vs. U is well-established and its EMF has been reviewed
by Chiotti and Mason (14). The relation for the EMF, in
volts, and the temperature, in degrees Kelvin, is

\[E = 0.76245 - 5.309 \times 10^{-4} T \] \hspace{1cm} (18)
Fig. 3. Apparatus used for EMF measurements

A. Anode lead wire
B. Cap of furnace tube
C. Glove box bottom
D. Cooling water inlet
E. Stainless furnace tube
F. Quartz sleeve for furnace tube
G. Quartz sleeve for electrode
H. Tantalum tube
I. Tantalum cell container
J. Uranium rod as an anode
K. Quartz glass stand
L. Fire brick
M. Tantalum crucible
N. Thermocouple junction
O. Heating furnace
P. Cooling water outlet
Q. "O" ring seal
R. Cathode lead wire
S. Thermocouple lead wires
T. "O" ring seal
for the temperature range from the melting point of zinc, 693°K, to 953°K. The alloy consists of UZn₁₂ in equilibrium with dilute liquid zinc solution. The derived standard free energy of formation of UZn₁₂ from alpha uranium and liquid zinc is

\[\Delta G_f^0 = -52746 + 36.729T \]

(19)

For temperatures below 693°K, the standard free energy of formation of UZn₁₂ can be obtained by summing the free energy change for the following reactions:

\[\begin{align*}
\text{U}(\alpha) + 12 \text{Zn}(l) &\rightarrow \text{UZn}_{12}(s) & \Delta G^0 &= -52746 + 36.329T \\
12 \text{Zn}(s) &\rightarrow 12 \text{Zn}(l) & \Delta G^0 &= 21180 - 30.564T \\
\text{U}(\alpha) + 12 \text{Zn}(s) &\rightarrow \text{UZn}_{12}(s) & \Delta G^0 &= -31568 + 6.141T
\end{align*} \]

(20, 21, 22)

Therefore, the EMF of the above cell for temperatures below 693°K should vary with temperature according to the relation

\[E = 0.4563 - 8.877 \times 10^{-5}T \text{ (volt)} \]

(23)

The EMF of UZn₁₂ vs. U were measured from 603°K to 813°K. The results are expressed by the following equations:

\[\begin{align*}
E &= 0.4355 - 5.593 \times 10^{-5}T \text{ (volt) } (603-693K) \\
E &= 0.7645 - 5.312 \times 10^{-4}T \text{ (volt) } (693-813K)
\end{align*} \]

(24, 25)

The EMF measurements are within ± 1 mv of the previous literature values, Eq. 18, for temperatures above 693°K and within ± 2 mv from Eq. 23 for temperatures below 693°K.

These results are within the uncertainty of the Eqs. 18.
and 23. Consequently, it may be concluded that the experimental apparatus was functioning properly.

D. Relations between Cell EMF's and the Free Energy of Formation of Compounds UHg₄, UHg₃ and UHg₂

For a UHg₄-Hg alloy as a cathode electrode and uranium rod as an anode electrode the reactions of anode, cathode and overall cell are

\[
\text{Anode: } U + 3\text{Cl}^- \rightarrow \text{UCl}_3 + 3e^- \quad (26)
\]

\[
\text{Cathode: } 3e^- + \text{UCl}_3 + 4\text{Hg} \rightarrow \text{UHg}_4 + 3\text{Cl}^- \quad (27)
\]

\[
\text{Overall: } U(a) + 4\text{Hg}(l) \rightarrow \text{UHg}_4(s) \quad (28)
\]

\[
\Delta G_{RXN} = -nF E_{cell} = \Delta G_U(a) = G_U - G_U^o - \Delta G_{U(a)} - \Delta G_{\text{Hg}}
\]

\[
= \Delta G_f^{o}[\text{UHg}_4] - 4\Delta G_{\text{Hg}} \quad (29)
\]

from which the free energy of formation of UHg₄ can be calculated by the relation,

\[
\Delta G_f^{o}[\text{UHg}_4] = -nF E_{cell} + 4 \Delta G_{\text{Hg}} \quad (30)
\]

where \(n \), the number of electrons transferred is 3, \(F \), Faraday's constant is 23060 cal/volt-equivalent, and \(E_{cell} \) is EMF of the cell in volts.

For UHg₃-UHg₄ two-phase alloy as a cathode electrode and uranium rod as an anode electrode, the anode, cathode and overall reactions can be expressed as follows:
Anode \[U + 3Cl^- \rightarrow UCi_3 + 3e^- \] (31)
Cathode \[3e^- + UCi_3 + 3UHg_4 \rightarrow 4UHg_3 + 3Cl^- \] (32)
Overall \[U(\alpha) + 3UHg_4(s) \rightarrow 4UHg_3(s) \] (33)
and
\[\Delta G_{RXN}^\circ = -nFE_{cell} = \Delta G_U(\alpha) - \Delta G_{U}^\circ \]
\[= 4\Delta G_f[UHg_3] - 3\Delta G_f[UHg_4] \] (34)
from which the free energy of formation of the UHg_3 compound can be obtained by the relation,
\[\Delta G_f[UHg_3] = -1/4 nFE_{cell} + 3/4 \Delta G_f[UHg_4] \] (35)
where \(\Delta G_f[UHg_4] \) is obtained from Eq. 30.

For UHg_3-UHg_2 two-phase alloy as a cathode electrode and uranium rod as an anode, the anode, cathode and overall cell reactions are
Anode \[U + 3Cl^- \rightarrow UCi_3 + 3e^- \] (36)
Cathode \[3e^- + UCi_3 + 2UHg_3 \rightarrow 3UHg_2 + 3Cl^- \] (37)
Overall \[U(\alpha) + 2UHg_3(s) \rightarrow 3UHg_2(s) \] (38)
and
\[\Delta G_{RXN}^\circ = -nFE_{cell} = \Delta G_U(\alpha) \]
\[= 3 \Delta G_f[UHg_2] - 2 \Delta G_f[UHg_3] \] (39)
from which the free energy of formation of UHg_2 can be obtained by the relation
\[\Delta G_f[UHg_2] = -1/3 nFE_{cell} + 2/3 \Delta G_f[UHg_3] \] (40)
where \(\Delta G_f[UHg_3] \) is obtained from Eq. 35.
III. EXPERIMENTAL RESULTS AND CALCULATIONS

A. Results of EMF Measurements

The EMF values of the three two-phase alloys vs. temperature are shown graphically in Fig. 4. A least mean square linear equation of EMF, in volts, as a function of temperature, in degrees Kelvin, was determined for each of the alloys. For the 5 at.% U-Hg alloy which is in the Hg-UHg\textsubscript{4} two-phase region and EMF data were measured over the temperature range, 613 K to 627 K, the equation is

\[E = (0.2694 - 2.388 \times 10^{-4} T) + 0.00073 \text{ (volts)}. \] (41)

For the 22 at.% U-Hg alloy which is in the UHg\textsubscript{4}-UHg\textsubscript{3} two-phase region and EMF measured from 613 K to 648 K the equation is

\[E = (0.04607 + 7.178 \times 10^{-5} T) + 0.001 \text{ (volts)}. \] (42)

For the 30 at.% U-Hg alloy which is in UHg\textsubscript{3}-UHg\textsubscript{2} two-phase region and EMF measured from 613 K to 684 K the equation is

\[E = (0.08195 - 3.747 \times 10^{-5} T) + 0.00038 \text{ (volts)}. \] (43)

The data were taken after the cell reaction attained equilibrium, i.e., the EMF reading was steady and reproducible. With the 5 at.% U-Hg and 22 at.% U-Hg alloys, it took one week to attain equilibrium and data were then taken for another week. With the 30 at.% U-Hg alloy, the cell reaction attained equilibrium after two weeks and EMF data were taken for another two weeks.
Fig. 4. Measured EMF versus temperature
The relative partial molal free energy of uranium in cal·mol\(^{-1}\), in the Hg-UHg\(_4\) two-phase region is obtained directly from Eq. 41 by multiplication by -3x23060 to give

\[\Delta G_U(\alpha) = -18639 + 16.52T. \]

If we accept Eq. 17 as the best solubility equation of uranium in mercury, then the molar fraction of mercury, \(X_{\text{Hg}}\), at 625 K is 0.9914 and \(\Delta G_{\text{Hg}} = RT \ln X_{\text{Hg}} = -10.7\) cal/mole at 625 K. Therefore, \(\Delta G_{\text{Hg}}\) was assumed to be negligible and according to Eq. 30, the free energy of formation of UHg\(_4\) is

\[\Delta G_f(UHg_4) = (-18639+16.52T) + 50 \text{ (613-627 K).} \]

For UHg\(_3\) and UHg\(_4\) two-phase region, the partial molal free energy of uranium can be calculated from Eq. 34 and Eq. 42 and can be represented by the following equation in cal·mol\(^{-1}\),

\[\Delta G_U(\alpha) = -3187 - 4.966T. \]

and, from Eq. 35, the free energy of formation of UHg\(_3\) is

\[\Delta G^\circ (UHg_3) = (-14776+11.15T) + 70 \text{ (613-648 K).} \]

For UHg\(_2\) and UHg\(_3\) two-phase region, the partial molal free energy of uranium which is calculated from the Eq. 39 and Eq. 43

\[\Delta G_U(\alpha) = -5669 + 2.59T \]

and, from the Eq. 40, the free energy of formation of UHg\(_2\) is

\[\Delta G_f(UHg_2) = (-11740+8.30T) + 30 \text{ (613-684 K).} \]
Seven samples, 0.2, 0.3, 0.6, 1, 8, 15 and 18 at.% U-Hg alloys, which are all in Hg-UHg$_4$ two-phase region, were prepared by the addition of pure mercury to the 22 at.% U-Hg alloy. The EMF values of these seven samples relative to pure uranium were also measured. The results are summarized in Table 1. For these alloys, it took two or three days to attain equilibrium and data were taken for another three days to one week. Because of the high vapor pressure of mercury, the cell EMF could only be measured from the melting point of the ternary electrolyte salt, 339°C, to 356°C. In Table 1, the EMF data are listed for 350°C and 340°C only.

Table 1. EMF data of alloys in Hg-UHg$_4$ two-phase region

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>EMF, mv at 340°C</th>
<th>EMF, mv at 350°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18 at.% U-Hg</td>
<td>121.1</td>
<td>120.4</td>
</tr>
<tr>
<td>B</td>
<td>15 at.% U-Hg</td>
<td>121.1</td>
<td>120.1</td>
</tr>
<tr>
<td>C</td>
<td>8 at.% U-Hg</td>
<td>122.4</td>
<td>120.7</td>
</tr>
<tr>
<td>D</td>
<td>1 at.% U-Hg</td>
<td>121.1</td>
<td>120.4</td>
</tr>
<tr>
<td>E</td>
<td>0.6 at.% U-Hg</td>
<td>121.1</td>
<td>120.8</td>
</tr>
<tr>
<td>F</td>
<td>0.3 at.% U-Hg</td>
<td>140.4</td>
<td>142.4</td>
</tr>
<tr>
<td>G</td>
<td>0.2 at.% U-Hg</td>
<td>142.6</td>
<td>147.0</td>
</tr>
</tbody>
</table>
B. Solubility of Uranium in Mercury

According to the phase diagram, Fig. 1, the alloys A and B in Table 1 are in the same two-phase region up to 365°C and the alloys C, D, E, F and G are in the liquid phase region above 340°C. Therefore, the EMF values of alloys A and B should be the same and the emf values of alloys C, D, E, F and G should be higher. However, the EMF values of alloys A, B, C, D and E at 350°C and 340°C in Table 1 have the same value within the experimental error and the values for alloys F and G are higher. This means that the alloys A, B, C, D and E are in the same UHg_4-Hg two-phase region and alloys F and G are in the liquid phase region above 340°C. Therefore, it may be concluded that the mercury-rich liquidus curve in Fig. 1 is wrong and Eq. 17 is accepted as the best representation for the solubility of uranium in mercury.

C. Comparison of Thermodynamic Data

Relations for the free energy of formation of the uranium compounds based on data obtained by various workers and in the present investigation are summarized in Table 2. The calculated free energies of formation at the peritectic temperatures are listed in Table 3. These values are in fair agreement except for Forsberg's (4) data.

The relative partial molal free energies of mercury and uranium in various two-phase regions of uranium-mercury system are listed in Table 4 and Table 5 respectively. It is
Table 2. Parameters A and B for equations for the standard free energy of formation of uranium compounds

\[\Delta G_f^\circ = A + BT \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔG_f° in cal/mole</th>
<th>Temp. span</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>$^\circ$K</td>
</tr>
<tr>
<td>UHg$_2$</td>
<td>-4360</td>
<td>1.35</td>
<td>448-648</td>
</tr>
<tr>
<td></td>
<td>-9422</td>
<td>4.83</td>
<td>727-853</td>
</tr>
<tr>
<td></td>
<td>-13300</td>
<td>9.90</td>
<td>583-683</td>
</tr>
<tr>
<td></td>
<td>-11740</td>
<td>8.30</td>
<td>613-684</td>
</tr>
<tr>
<td>UHg$_3$</td>
<td>-6520</td>
<td>2.56</td>
<td>448-648</td>
</tr>
<tr>
<td></td>
<td>-11461</td>
<td>6.25</td>
<td>433-653</td>
</tr>
<tr>
<td></td>
<td>-16000</td>
<td>12.20</td>
<td>553-683</td>
</tr>
<tr>
<td></td>
<td>-14776</td>
<td>11.15</td>
<td>613-648</td>
</tr>
<tr>
<td>UHg$_4$</td>
<td>-8840</td>
<td>4.78</td>
<td>448-648</td>
</tr>
<tr>
<td></td>
<td>-14460</td>
<td>10.39</td>
<td>397-634</td>
</tr>
<tr>
<td></td>
<td>-19500</td>
<td>16.8</td>
<td>543-633</td>
</tr>
<tr>
<td></td>
<td>-18639</td>
<td>16.52</td>
<td>613-627</td>
</tr>
</tbody>
</table>
Table 3. Calculated free energy of formation of uranium compounds at peritectic temperatures based on various investigators, this investigation and phase diagram

<table>
<thead>
<tr>
<th>ΔG_f°(UHg$_2$) at 728K</th>
<th>ΔG_f°(UHg$_3$) at 663K</th>
<th>ΔG_f°(UHg$_4$) at 638K</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3377</td>
<td>-4823</td>
<td>-5790</td>
<td>(4)</td>
</tr>
<tr>
<td>-5905</td>
<td>-7317</td>
<td>-7831</td>
<td>(8)</td>
</tr>
<tr>
<td>-6092</td>
<td>-7911</td>
<td>-8782</td>
<td>(7)</td>
</tr>
<tr>
<td>-5698</td>
<td>-7384</td>
<td>-8099</td>
<td>this work</td>
</tr>
<tr>
<td>-732</td>
<td>-1002</td>
<td>-1214</td>
<td>from U-rich liquidusa</td>
</tr>
<tr>
<td>-1920</td>
<td>-3491</td>
<td>-4335</td>
<td>from Hg-rich liquidusb</td>
</tr>
</tbody>
</table>

aThe data are obtained from the uranium-rich liquidus shown in the following section IV A-1.

bThe data are obtained from the mercury-rich liquidus shown in the following Section IV A-2.
Table 4. Relative partial molal free energy of uranium,
\[\Delta \tilde{G}_U = (\tilde{G}_U - \tilde{G}_{U\alpha}) \], for various two-phase regions of the U-Hg system

<table>
<thead>
<tr>
<th>Equilibrium phases</th>
<th>Temp. K; cal·mol(^{-1})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>UHg(_2)-UHg(_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -40 - 1.07T)</td>
<td>-468</td>
<td>-682</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -5344 + 1.99T)</td>
<td>-4548</td>
<td>-4150</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -7900 + 5.30T)</td>
<td>-5780</td>
<td>-4720</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -5669 + 2.59T)</td>
<td>-4633</td>
<td>-4115</td>
</tr>
<tr>
<td>UHg(_3)-UHg(_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = 440 - 4.1T)</td>
<td>-1200</td>
<td>-2060</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -2464 - 6.17T)</td>
<td>-4932</td>
<td>-6166</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -5500 - 1.60T)</td>
<td>-6140</td>
<td>-6460</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -3187 - 4.966T)</td>
<td>-5173</td>
<td>-6166</td>
</tr>
<tr>
<td>UHg(_4)-Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -8840 + 4.78T)</td>
<td>-6928</td>
<td>-5972</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -14460+10.39T)</td>
<td>-10304</td>
<td>-8226</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -19500+16.80T)</td>
<td>-12780</td>
<td>-9420</td>
</tr>
<tr>
<td>(\Delta \tilde{G}_U = -18639+16.527)</td>
<td>-12032</td>
<td>-8727</td>
</tr>
</tbody>
</table>
Table 5. Relative partial molal free energy of mercury,
\[\Delta \tilde{G}_{Hg}^\circ = (\tilde{G}_{Hg}^\circ - \tilde{G}_{Hg}(\ell)) \], for various two-phase regions of the U-Hg system

<table>
<thead>
<tr>
<th>Equilibrium phases</th>
<th>Temp. K; cal·mol(^{-1})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>

UHg\(_2\)-U

\[\Delta \tilde{G}_{Hg} = -2180 + 0.675T \]
\[\Delta \tilde{C}_{Hg} = -4711 + 2.42T \]
\[\Delta \tilde{G}_{Hg} = -6650 + 4.95T \]
\[\Delta \tilde{C}_{Hg} = -5870 + 4.15T \]

\[\Delta \tilde{G}_{Hg} = -2160 + 1.21T \]
\[\Delta \tilde{C}_{Hg} = -2039 + 1.42T \]
\[\Delta \tilde{G}_{Hg} = -2700 + 2.30T \]
\[\Delta \tilde{C}_{Hg} = -3036 + 2.85T \]

UHg\(_2\)-UHg\(_3\)

\[\Delta \tilde{G}_{Hg} = -2160 + 0.675T \]
\[\Delta \tilde{C}_{Hg} = -4711 + 2.42T \]
\[\Delta \tilde{G}_{Hg} = -6650 + 4.95T \]
\[\Delta \tilde{C}_{Hg} = -5870 + 4.15T \]

UHg\(_3\)-UHg\(_4\)

\[\Delta \tilde{G}_{Hg} = -2320 + 2.22T \]
\[\Delta \tilde{C}_{Hg} = -2999 + 4.14T \]
\[\Delta \tilde{G}_{Hg} = -3500 + 4.60T \]
\[\Delta \tilde{C}_{Hg} = -3863 + 5.37T \]

Reference: (4), (8), (7), this work
seen that ΔG_U and ΔG_{Hg} for the various two-phase regions are all in fair agreement except for some of Forsberg's (4) data. It should be noted that Forsberg's (4) data for ΔG_{Hg}, Table 5, are in good agreement except for the data for the UHg$_2$-U two-phase alloys. It appears that his vapor pressure data for this region is in error. This error is propagated in the calculation of the thermodynamic properties of the compounds and in some of the calculated quantities given in Table 4. The ΔG_U vs. temperature and ΔG_{Hg} vs. temperature of Jangg and Steppan (7), Mason and Chiotti (8) and this work are shown in Fig. 5 and Fig. 6, respectively. The relative partial molal free energies of mercury, ΔG_{Hg}, are all observed data except for this work. The relative partial molal free energies of uranium, ΔG_U, are all calculated from the free energies of formation of uranium-mercury compounds except for this work wherein ΔG_U was obtained directly from the EMF measurements.

D. Relative Partial Molal Excess Free Energy of Uranium at Infinite Dilution in Liquid Mercury

The data obtained permit a calculation of the relative partial molal excess free energy at infinite dilution relative to pure liquid uranium, $\Delta G_U^{\text{xs,\infty}}$. In the EMF measurements, pure solid α-uranium was the reference electrode. It is necessary to correct to pure uranium liquid as reference state. If we accept the Equation 44 for the partial molal free energy of uranium in the mercury-rich region and use Eq. 74 (which is
Fig. 5. The relative partial molal free energy of uranium in various two-phase regions
Fig. 6. The relative partial molal free energy of mercury in various two-phase regions.
derived in the following section) as the free energy of fusion of uranium for the temperatures below 938 K, then

\[
\begin{align*}
U(\alpha) \rightarrow U(\ell_s) & \quad \Delta \tilde{G}_U(\alpha) \\
U(\ell) \rightarrow U(\alpha) & \quad -\Delta G^0_{U,\alpha \rightarrow \ell} \\
\hline
U(\ell) \rightarrow U(\ell_s) & \quad \Delta \tilde{G}_U(\ell)
\end{align*}
\]

(50)

(51)

(52)

\[
\Delta \tilde{G}_U(\ell) = \Delta \tilde{G}_U(\alpha) - \Delta G^0_{U,\alpha \rightarrow \ell}
\]

\[
= -21146 + 17.456T
\]

(53)

and with Eq. 17 for the solubility of uranium in mercury, leads to

\[
\Delta \tilde{G}^\infty_{U,0}(\ell) = \Delta \tilde{G}_U(\ell) - RT \ln x_U
\]

\[
= -21146 + 17.456T - (-6201 + 0.472T)
\]

\[
= -15130 + 16.98T \quad (293-629K)
\]

(54)
IV. CONSISTENCY OF THE PHASE DIAGRAM DATA WITH MEASURED THERMODYNAMIC PROPERTIES

A. Calculations of the Thermodynamic Properties of Liquid Alloys

1. Calculations based on uranium-rich liquidus

Some of the thermodynamic properties for the liquid alloys can be calculated from the phase diagram, Fig. 1. However, these calculations are valid only if the phase diagram is correct. According to the phase diagram, the liquid phase is in equilibrium with nearly pure solid uranium at temperature above 728°K. Therefore, the partial molal free energy of uranium relative to pure liquid uranium can be expressed as follows:

\[\Delta \tilde{G}_U(\ell) = - \Delta G^\circ (\text{fusion } \gamma-U) \] (1408-1049K)(55)

\[\Delta \tilde{G}_U(\ell) = - \Delta G^\circ (\text{fusion } \gamma-U) - \Delta G_U(\beta \rightarrow \gamma) \] (1049-942K) (56)

\[\Delta \tilde{G}_U(\ell) = - \Delta G^\circ (\text{fusion } \gamma-U) - \Delta G_U(\beta \rightarrow \gamma) - \Delta G_U(\alpha \rightarrow \beta) \] (942-728K) (57)

Therefore, accepting the liquidus curve above 728 K in Fig. 1, \(\Delta \tilde{G}_U \) relative to pure liquid uranium can be calculated from the liquidus data and the known enthalpy of fusion and transformation of uranium, and the heat capacity of liquid, \(\alpha, \beta \) and \(\gamma \) phases. Alpha (\(\alpha \)) uranium is stable up to 942 K, \(\beta \) uranium to 1049 K and \(\gamma \) uranium to 1408 K. These data were obtained from reference (15) and were used in the calcula-
tions. The results are

\[\Delta \tilde{G}_U(\xi) = 1307 - 18.907T + 2.48T \ln T \quad (1408-1049^\circ K) \]
(58)

\[\Delta \tilde{G}_U(\xi) = -994 - 8.992T + 1.37T \ln T \quad (1049-942^\circ K) \]
(59)

\[\Delta \tilde{G}_U(\xi) = 1390 - 59.342T - 4.65 \times 10^{-3}T^2 + 8.994T \ln T \]
(942-298^\circ K) \]
(60)

At temperatures of 1173, 1073, 1049, 973, 873, 773 and 728 K, the mole fractions of uranium in the liquid are 0.606, 0.519, 0.500, 0.452, 0.394, 0.346 and 0.327, respectively. The excess relative partial molal free energy of uranium at these temperatures can be obtained by the following equation

\[\Delta \tilde{G}^{xs}_U = \Delta \tilde{G}_U(\xi) - RT \ln X_U \]
(61)

and the results are listed in Table 6. These data were fitted to a relation of the type

\[\Delta \tilde{G}^{xs}_U / (1-X_U)^2 = (\alpha + \beta T) + (\alpha' + \beta' T)X_U^n \]
(62)

where \(\alpha, \beta, \alpha', \beta' \) and \(n \) are constants. The Gibbs-Duhem equation leads to

\[\Delta \tilde{G}^{xs}_{Hg} / (1-X_{Hg})^2 = (\alpha + \beta T) + (\alpha' + \beta' T)X_{U}^{n-1}(X_{U}-\frac{n}{n+1}) \]
(63)

A computer was employed to obtain the five parameters which best fit the liquidus data. Constants were found to be \(\alpha = -2993, \beta = 6.364, \alpha' = -8908, \beta' = 9.209 \) and \(n = 1.2 \). The comparison of \(\Delta \tilde{G}^{xs}_U \) values from Eq. 61 and Eq. 62 are listed in Table 6. Further details on the use of equations of this type have been presented elsewhere (16).
Table 6. The comparison of $\Delta G^{{xs}}$ values from Eq. 61 and Eq. 62

<table>
<thead>
<tr>
<th>Temp. °K</th>
<th>X_U</th>
<th>$\Delta G_U^{{xs}}^a$</th>
<th>$\Delta G_U^{{xs}}^b$</th>
<th>$\Delta G_U^{{xs}}^b$ - $\Delta G_U^{{xs}}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1173</td>
<td>0.606</td>
<td>855</td>
<td>855</td>
<td>0</td>
</tr>
<tr>
<td>1073</td>
<td>0.519</td>
<td>987</td>
<td>990</td>
<td>3</td>
</tr>
<tr>
<td>1049</td>
<td>0.500</td>
<td>1013</td>
<td>1002</td>
<td>-11</td>
</tr>
<tr>
<td>973</td>
<td>0.452</td>
<td>963</td>
<td>966</td>
<td>3</td>
</tr>
<tr>
<td>873</td>
<td>0.394</td>
<td>828</td>
<td>837</td>
<td>9</td>
</tr>
<tr>
<td>773</td>
<td>0.346</td>
<td>606</td>
<td>609</td>
<td>3</td>
</tr>
<tr>
<td>728</td>
<td>0.327</td>
<td>492</td>
<td>482</td>
<td>-10</td>
</tr>
</tbody>
</table>

$^a \Delta G_U^{{xs}}$ is calculated from Eq. 61.

$^b \Delta G_U^{{xs}}$ is obtained from Eq. 62 and the five obtained parameters.
The free energies of formation of the three compounds at the peritectic temperatures can be calculated from the phase diagram data and data for the liquid alloys. At 728 K, we have the equilibrium

$$ U_{Hg_2}(s) \nequiv U(\alpha) + 2Hg(\ell s) \quad (64) $$

and

$$ \Delta G_f^o(U_{Hg_2}) = 2\Delta G_{Hg} = 2(\Delta G_{Hg}^{xS} + RT \ln X_{Hg}) \quad (65) $$

where ℓs represents liquid solution with $X_U = 0.327$, according to Frost's phase diagram, Fig. 1. The above parameters and Eq. 63 yield $\Delta G^o(U_{Hg_2}) = -732$ cal/mole. Similarly at the 663°K peritectic, we have the equilibrium

$$ U_{Hg_3}(s) \nequiv U(\ell s) + 3Hg(\ell s) \quad (66) $$

with $X_U = 0.236$. The above equation can be obtained by the summation of the following equations:

$$ U(\alpha) + 3Hg(\ell) \rightarrow U_{Hg_3}(s) \quad \Delta G_f^o(U_{Hg_3}) \quad (67) $$

$$ 3Hg(\ell s) \rightarrow 3Hg(\ell) \quad -3\Delta G_{Hg} \quad (68) $$

$$ U(\ell) \rightarrow U(\alpha) \quad -\Delta G_{U,\ell \rightarrow \alpha} \quad (69) $$

$$ U(\ell s) \rightarrow U(\ell) \quad -\Delta G_{U}(\ell) \quad (70) $$

$$ U(\ell s) + 3Hg(\ell s) \nequiv U_{Hg_3}(s) \quad \Delta G = 0 \quad (71) $$

Therefore

$$ \Delta G_f^o(U_{Hg_3}) = 3\Delta G_{Hg} + \Delta G_{U,\alpha \rightarrow \ell} + \Delta G_{U}(\ell) \quad (72) $$

where $\Delta G_{U,\alpha \rightarrow \ell}$ is the standard free energy of fusion of $-U$. According to Eq. 60

$$ \Delta G_{U,\alpha \rightarrow \ell} = -\Delta G_{U}(\ell) = -1390 + 59.342T + 4.65 \times 10^{-3} T^2 - 8.99 T \ln T \quad (73) $$
for temperatures from 942°K to 298°K. This equation was linearized to \(a+bT\) to simplify subsequent calculation with minor loss in accuracy, the result is

\[
\Delta G^\circ_{U, \alpha+\lambda} = 2507 - 1.936T \ (942-298K)
\]

The free energy of formation of \(\text{UHg}_3\) follows from the relations

\[
\Delta G_{\text{Hg}} = \Delta G_{\text{Hg}}^{\text{Xs}} + RT \ln X_{\text{Hg}}
\]

\[
\Delta G_{U} = \Delta G_{U}^{\text{Xs}} + RT \ln X_{U}
\]

\[
\Delta G_f(\text{UHg}_3) = -1002 \ \text{cal/mole} \ (663K)
\]

At 663 K, we also have the equilibrium

\[
\text{UHg}_3(s) \rightleftharpoons \text{UHg}_2(s) + \text{Hg(\lambda s)}
\]

and

\[
\text{UHg}_3(s) \rightleftharpoons \text{UHg}_2(s) + \text{Hg(\lambda s)} \quad \Delta G = 0
\]

\[
\text{Hg(\lambda s)} \rightarrow \text{Hg(\lambda)} \quad -\Delta G_{\text{Hg}}
\]

\[
\text{UHg}_3(s) \rightarrow \text{UHg}_2(s) + \text{Hg(\lambda)} \quad \Delta G_{\text{RXN}}
\]

\[
\Delta G_{\text{RXN}} = -\Delta G_{\text{Hg}} = \Delta G_f^\circ(\text{UHg}_2) - \Delta G_f^\circ(\text{UHg}_3)
\]

Therefore

\[
\Delta G_f^\circ(\text{UHg}_2) = \Delta G_f^\circ(\text{UHg}_3) - \Delta G_{\text{Hg}}
\]

\[
= -1002 + 250
\]

\[
= -752 \ \text{cal/mole}
\]

At the 638 K peritectic temperature we have the equilibrium

\[
\text{UHg}_4(s) \rightleftharpoons \text{U(\lambda s)} + 4\text{Hg(\lambda s)}
\]
with \(X_U = 0.174 \). This equation can be obtained by the summation of the following relations:

\[
\begin{align*}
 &U(\alpha) + 4\text{Hg}(l) \rightarrow \text{UHg}_4(s) \quad \Delta G_f^\circ(\text{UHg}_4) \quad (85) \\
 &4\text{Hg}(ls) \rightarrow 4\text{Hg}(l) \quad -4\Delta \tilde{G}_{\text{Hg}} \quad (86) \\
 &U(l) \rightarrow U(\alpha) \quad -\Delta G_U^\circ, \alpha \rightarrow l \quad (87) \\
 &U(ls) \rightarrow U(l) \quad -\Delta \tilde{G}_U(l) \quad (88)
\end{align*}
\]

\[
U(ls) + 4\text{Hg}(ls) \rightarrow \text{UHg}_4(s) \quad \Delta G = 0 \quad (89)
\]

Therefore

\[
\Delta G_f^\circ(\text{UHg}_4) = 4\Delta \tilde{G}_{\text{Hg}} + \Delta G_U^\circ, \alpha \rightarrow l + \Delta \tilde{G}_U(l) \quad (90)
\]

and

\[
\Delta G_f^\circ(\text{UHg}_4) = -1214 \text{ cal/mole} \quad (638 \text{ K}) \quad (91)
\]

At 638 K, there also exists the equilibrium

\[
\text{UHg}_4(s) \rightleftharpoons \text{UHg}_3(s) + \text{Hg}(ls) \quad (92)
\]

and

\[
\begin{align*}
 &\text{UHg}_4(s) \rightarrow \text{UHg}_3(s) + \text{Hg}(ls) \quad \Delta G = 0 \quad (93) \\
 &\text{Hg}(ls) \rightarrow \text{Hg}(l) \quad -\Delta \tilde{G}_{\text{Hg}} \quad (94) \\
 &\text{UHg}_4(s) \rightarrow \text{UHg}_3(s) + \text{Hg}(l) \quad \Delta G_{\text{R}XN} \quad (95)
\end{align*}
\]

From Eq. 95

\[
\Delta G_{\text{R}XN} = -\Delta \tilde{G}_{\text{Hg}} = \Delta G_f^\circ(\text{UHg}_3) - \Delta G_f^\circ(\text{UHg}_4) \quad (96)
\]

and

\[
\Delta G_f^\circ(\text{UHg}_3) = \Delta G_f^\circ(\text{UHg}_4) - \Delta \tilde{G}_{\text{Hg}} = -1214 + 186 = -1028 \text{ cal/mole} \quad (97)
\]

These values are summarized in Table 3 and it is seen that all are lower in magnitude than the other values.
2. Calculations based on mercury-rich liquidus and uranium-rich liquidus

The two parameters, \(\alpha \) and \(\beta \), of Eq. 62 are directly related to \(\tilde{\Delta G}^{\infty}_{U}(x) \), the excess partial molal free energy of uranium in liquid mercury at infinite dilution. At infinite dilution \((X_u \to 0) \), \(\tilde{\Delta G}^{\infty}_{U}(x) \) is given by Eq. 54. Therefore, \(\alpha = -15130 \) and \(\beta = 16.98 \), values for \(\alpha' \) and \(\beta' \) with \(n = 1 \) were calculated from the data for the uranium-rich liquidus as described in the preceding section. It was found that \(\alpha' = 28430 \) and \(\beta' = -24.20 \). With these two parameters in Eq. 62, the free energy of formation of \(\text{UHg}_2 \) at 728 K can be obtained by substitution in Eq. 65 to obtain

\[
\Delta G_f^\circ (\text{UHg}_2) = -1920 \text{ cal/mole}
\]

(98)

Similarly, at 663 K Eqs. 72 and 82 were used and the free energy of formation of \(\text{UHg}_3 \) and \(\text{UHg}_2 \) are -3491 cal/mole and -2738 cal/mole respectively. At 638 K, Eqs. 90 and 96 were applied to obtain \(\Delta G_f^\circ (\text{UHg}_4) = -4335 \) cal/mole and \(\Delta G_f^\circ (\text{UHg}_3) = -3835 \) cal/mole, respectively. These values are still lower in magnitude than the values listed in Table 3.

Although the Eqs. 62 and 63 may not be exact functional relations for the temperature and composition dependence of the excess thermodynamic properties of the liquid alloys, they should be reasonably good approximations. The results summarized in Table 4 indicate the phase diagram is not consistent with the measured thermodynamic data.
B. Construction of a Tentative Phase Diagram

The above calculations indicate the phase diagram, Fig. 1, is inconsistent with the thermodynamic data and the mercury-rich liquidus of Fig. 1 is not consistent with solubility data obtained by other investigators. A tentative phase diagram based on the free energies of formation of U-Hg compounds obtained from this work and the solubility of uranium in mercury reported by Dean (12) was constructed and shown in Fig. 7. In the derivation of the phase diagram the parameters α, β, α', β' and n were reevaluated as described below.

According to Dean (12), the solubility of uranium in mercury exceeds 19 at.% at 600°C. It was assumed that the solubility of uranium in mercury is 20 at.% at 600°C. The liquidus curve was extrapolated from 600°C to 350°C to meet data for Eq. 17 to obtain the values listed in Table 7.

In the following calculations, the assumption is made that the equilibrium phases are liquid and UHg_2 above 390°C in the mercury-rich region. Therefore, from the temperature 390°C up to 600°C, we have the equilibrium reaction

$$\text{UHg}_2(s) \rightleftharpoons \text{U}(s) + 2\text{Hg}(s) \quad \Delta G = 0 \quad (99)$$

and this reaction can be obtained by the summation of the following reactions
\[U(\alpha) + 2Hg(\ell) + UHg_2(s) \quad \Delta G^o_f(UHg_2) \] (100)

\[U(\ell) = U(\alpha) \quad -\Delta G^o_U,\alpha\rightarrow\ell \] (101)

\[U(\ell s) + U(\ell) \quad -\Delta G_U(\ell) \] (102)

\[2Hg(\ell s) + 2Hg(\ell) \quad -2\Delta G_{Hg} \] (103)

\[U(\ell s) + 2Hg(\ell s) \not\simeq UHg_2(s) \quad \Delta G = 0 \] (104)

Therefore

\[\Delta G_U(\ell) = \Delta G^o_f(UHg_2) - \Delta G^o_U,\alpha+\ell - 2\Delta G_{Hg} \] (105)

and

\[\Delta G^{xs}_U(\ell) = \Delta G^o_f(UHg_3) - \Delta G^o_U,\alpha+\ell - 3\Delta G_{Hg} - RT \ln X_U \] (106)

The equilibrium reaction between 365°C and 390°C leads to the Eq. 66. According to the Eq. 72 the excess molal free energy of uranium is

\[\Delta G^{xs}_U(\ell) = \Delta G^o_f(UHg_3) - \Delta G^o_U,\alpha+\ell - 3\Delta G_{Hg} - RT \ln X_U \] (107)

and the equilibrium reaction below 365°C is the same as the Eq. 84 and the excess molal free energy of uranium in this region is expressed as

\[\Delta G^{xs}_U(\ell) = \Delta G^o_f(UHg_4) - \Delta G^o_U,\alpha+\ell - 4\Delta G_{Hg} - RT \ln X_U \] (108)

which is derived from Eq. 90.

The excess molal free energies of uranium up to 600°C were calculated from these equations and the equations of the standard free energies of formation of the U-Hg compounds of this work listed in Table 2. The results are listed in Table 7.

If we assume the values of \(\Delta G^{xs}_U/(1-X_U)^2 \) below 455°C can
be represented by a relation of $\alpha + \beta T$ type, then the best values for α and β are -12671 and 13.41, respectively. With these two constants, solubility data and the $\Delta \tilde{G}^{X S}_{U(\lambda)}$ data of columns 2 and 3 in Table 7, for temperatures above 455°C, values of $\Delta \tilde{G}^{X S}_{U(\lambda)}/(1-X_U)^2$ were calculated. The best values of α' and β' obtained by a least mean square method are 17130 and -30.27, respectively, and n is equal to one. Substituting these parameters into Eq. 62 and Eq. 63 yields

$$\Delta \tilde{G}^{X S}_{U(\lambda)} = [(-12671+13.41T)+(17130-30.27)X_U](1-X_U)^2$$ \hspace{0.5cm} (109)

and

$$\Delta \tilde{G}^{X S}_{Hg} = [(-12671) +13.41T)+(17130-30.27)(X_U-0.5)]X_U^2$$ \hspace{0.5cm} (110)

The $\Delta \tilde{G}^{X S}_{U(\lambda)}$ values calculated from Eq. 109 and from Eqs. 106, 107 and 108 are listed in Table 7, column 4 and 3, respectively, for comparison.

Equations 109 and 110 were employed to calculate the free energy of formation of UHg4, UHg3 and UHg2 at 365°C, 390°C and 455°C, to obtain

$$\Delta G^o_f(UHg^4) = -8158 \text{ cal/mole at 365°C}$$ \hspace{0.5cm} (111)

$$\Delta G^o_f(UHg^3) = -7096 \text{ cal/mole at 390°C}$$ \hspace{0.5cm} (112)

and

$$\Delta G^o_f(HUg^2) = -5965 \text{ cal/mole at 455°C}$$ \hspace{0.5cm} (113)

These values compare favorably to the values of the free energy of formation of U-Hg compounds of this work listed in Table 3.

The free energy of fusion of UHg2 can be obtained by the
Table 7. The comparison of \(\Delta G^\text{xs}_{U} \) values calculated from Eq. 109 and from Eqs. 106, 107 and 108 and \(\Delta G^\text{xs}_{Hg} \) values calculated from Eq. 110 at different temperatures in the tentative phase diagram.

<table>
<thead>
<tr>
<th>Temp. (^\circ \text{K})</th>
<th>(X_U)</th>
<th>(\Delta G^\text{xs}_{U}(\ell)) (^a)</th>
<th>(\Delta G^\text{xs}_{U}(\ell)) (^b)</th>
<th>(\Delta G^\text{xs}_{Hg}) cal/mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>873</td>
<td>0.200</td>
<td>-1745</td>
<td>-1807</td>
<td>73</td>
</tr>
<tr>
<td>858</td>
<td>0.176</td>
<td>-1843</td>
<td>-1848</td>
<td>53</td>
</tr>
<tr>
<td>838</td>
<td>0.150</td>
<td>-1969</td>
<td>-1928</td>
<td>33</td>
</tr>
<tr>
<td>823</td>
<td>0.134</td>
<td>-2065</td>
<td>-2008</td>
<td>21</td>
</tr>
<tr>
<td>773</td>
<td>0.090</td>
<td>-2346</td>
<td>-2376</td>
<td>3</td>
</tr>
<tr>
<td>728</td>
<td>0.057</td>
<td>-2482</td>
<td>-2835</td>
<td>-2</td>
</tr>
<tr>
<td>663</td>
<td>0.030</td>
<td>-3868</td>
<td>-3640</td>
<td>-2</td>
</tr>
<tr>
<td>638</td>
<td>0.015</td>
<td>-3970</td>
<td>-4025</td>
<td>-1</td>
</tr>
<tr>
<td>573</td>
<td>0.0055</td>
<td>-4672</td>
<td>-4934</td>
<td>0</td>
</tr>
<tr>
<td>473</td>
<td>0.0017</td>
<td>-6417</td>
<td>-6302</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\)The \(\Delta G^\text{xs}_{U}(\ell) \) values are calculated from Eqs. 106, 107 and 108 at the different temperatures.

\(^b\)The \(\Delta G^\text{xs}_{U}(\ell) \) values are obtained from Eq. 109.
Following cycle

\[
\begin{align*}
U(\alpha) + 2\text{Hg}(l) & \xrightarrow{\Delta G_f(U\text{Hg}_2)} \text{UHg}_2(s) \\
\alpha \rightarrow & \gamma,
\end{align*}
\]

where \(\Delta G_m\) is the molal free energy of mixing

\[
\Delta G_m = X_U \Delta \tilde{G}_U + X_{\text{Hg}} \Delta \tilde{G}_{\text{Hg}}
\]

where \(X_U\) is equal to 0.333 and \(X_{\text{Hg}}\) is 0.667. The Eq. 113 for \(\Delta G_f(U\text{Hg}_2)\) and Eq. 74 for \(\Delta G_{U,\alpha+\gamma}\) are applied in Eq. 116 and the result is

\[
\Delta G_{\text{UHg}_2}^{\text{fus}} = 7704 - 8.439T
\]

From this equation, the melting point of \(\text{UHg}_2\) is 913 K or 640°C.

The liquidus curves on either side of \(\text{UHg}_2\) compound also can be determined by the above cycle. The liquidus curve with the solid uranium as an equilibrium phase is determined by the relation

\[
\Delta \tilde{G}_U(l) = RT \ln X_U + \Delta \tilde{G}_{U(l)}^{\text{xs}}
\]

The Eqs. 58, 59 and 60 were used for \(\Delta \tilde{G}_{U(l)}\) for the \(\alpha, \beta\) and \(\gamma\) phases, respectively, and Eq. 109 was applied for \(\Delta \tilde{G}_{U(l)}^{\text{xs}}\). A eutectic point was found at 375°C and \(X_U = 0.65\). The calculated phase diagram is shown in Fig. 7.
Fig. 7. Tentative phase diagram of U-Hg system
V. CONCLUSIONS

(1) The temperature spans of the EMF measurements in this investigation are narrow, especially in UHg_4-Hg two-phase region, but the precision is better than that obtained by the other investigators. The results of this work are in fair agreement with the other works.

(2) The best values of the free energies of formation of UHg_2, UHg_3 and UHg_4 compounds at temperatures 728 K, 663 K and 638 K, respectively, obtained by taking the mean value of the data of Mason and Chiotti (8), Jangg and Steppan (7) and this work as listed in Table 3, are

\[
\Delta G_f^o(\text{UHg}_2) = -5906 \text{ cal/mole at } 728 \text{ K}
\]
\[
\Delta G_f^o(\text{UHg}_3) = -7550 \text{ cal/mole at } 663 \text{ K}
\]
\[
\Delta G_f^o(\text{UHg}_4) = -8254 \text{ cal/mole at } 638 \text{ K}
\]

(3) The solubility of uranium in mercury does not exceed 1 at.% at 350°C as indicated by Jangg and Palman (10), Ahman et al. (11), Messing and Dean (9) and the EMF measurements of this work. Therefore, we may conclude that the liquidus in the mercury-rich region of Frost's (1) phase diagram, Fig. 1, is wrong. The equation which best represents the solubility of uranium in mercury is Eq. 17

\[
\ln X_U = -3121T^{-1} + 0.2378 \text{ (293-623K)}
\]

(4) The thermodynamic data imply that the UHg_2 compound should not decompose peritectically at 455°C (728 K) and
exist in equilibrium with α-uranium and mercury-rich liquidus. (5) The tentative phase diagram, Fig. 7, may not be realistic. The assumption is made in the construction of the phase diagram that the equilibrium phases at 455°C are liquid and UHg₂ instead of liquid, α-uranium and UHg₂. The result is the formation of a eutectic point at 375°C and X_U = 0.65, however, no such phenomenon has been reported to date. The α', β', α and β parameters in Eqs. 109 and 110 may need modification to yield a more realistic phase diagram. (6) It should be noted that the U-Hg alloys need a long time to reach equilibrium. When the alloys are heated above the peritectic temperatures and cooled down, the reverse reaction requires more than two weeks at the temperatures just below the peritectic temperatures to attain equilibrium. Consequently time did not permit a detailed thermal analysis of the U-Hg alloys.
VI. REFERENCES

VII. ACKNOWLEDGEMENTS

I wish to express my extreme gratitude to Dr. Premo Chiotti for his guidance and encouragement throughout this work.

I would also like to thank John T. Mason for his helpful discussions concerning various aspects of this investigation.

I also wish to express special thanks to Miss Verna Thompson for typing this manuscript.

I wish to express my deepest appreciation to my parents for their encouragement during the period of my graduate study.
VIII. APPENDIX A. X-RAY DATA OF 22 at.% U-Hg ALLOY
Camera: 114.2 cm diameter Debye-Scherrer camera
X-ray target: copper
Filter: nickel
Exposure time: 12 hours
Table A1. X-ray data of the 22 at.% U-Hg alloy

<table>
<thead>
<tr>
<th>Line no.</th>
<th>Wavelength</th>
<th>Intensity</th>
<th>Anglea</th>
<th>Sin θ</th>
<th>Spacings a d, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA</td>
<td>WC</td>
<td>15.96</td>
<td>0.27499</td>
<td>2.80339</td>
</tr>
<tr>
<td>2</td>
<td>AA</td>
<td>W</td>
<td>17.00</td>
<td>0.29234</td>
<td>2.63700</td>
</tr>
<tr>
<td>3</td>
<td>AA</td>
<td>VVSd</td>
<td>17.60</td>
<td>0.30243</td>
<td>2.54896</td>
</tr>
<tr>
<td>4</td>
<td>AA</td>
<td>W</td>
<td>18.10</td>
<td>0.31067</td>
<td>2.48137</td>
</tr>
<tr>
<td>5</td>
<td>AA</td>
<td>VVWe</td>
<td>19.63</td>
<td>0.33590</td>
<td>2.29501</td>
</tr>
<tr>
<td>6</td>
<td>AA</td>
<td>VVW</td>
<td>19.95</td>
<td>0.34124</td>
<td>2.25906</td>
</tr>
<tr>
<td>7</td>
<td>AA</td>
<td>VVVWf</td>
<td>20.54</td>
<td>0.35084</td>
<td>2.19728</td>
</tr>
<tr>
<td>8</td>
<td>AA</td>
<td>W</td>
<td>20.89</td>
<td>0.35656</td>
<td>2.16201</td>
</tr>
<tr>
<td>9</td>
<td>AA</td>
<td>VWG</td>
<td>21.38</td>
<td>0.36447</td>
<td>2.11510</td>
</tr>
<tr>
<td>10</td>
<td>AA</td>
<td>VVVW</td>
<td>23.44</td>
<td>0.39784</td>
<td>1.93767</td>
</tr>
<tr>
<td>11</td>
<td>AA</td>
<td>W</td>
<td>25.35</td>
<td>0.42817</td>
<td>1.80043</td>
</tr>
<tr>
<td>12</td>
<td>AA</td>
<td>W</td>
<td>29.11</td>
<td>0.48645</td>
<td>1.58472</td>
</tr>
<tr>
<td>13</td>
<td>AA</td>
<td>W</td>
<td>29.57</td>
<td>0.49354</td>
<td>1.56196</td>
</tr>
<tr>
<td>14</td>
<td>AA</td>
<td>W</td>
<td>30.18</td>
<td>0.50279</td>
<td>1.53324</td>
</tr>
<tr>
<td>15</td>
<td>AA</td>
<td>VSh</td>
<td>31.55</td>
<td>0.52327</td>
<td>1.47322</td>
</tr>
<tr>
<td>16</td>
<td>AA</td>
<td>VVW</td>
<td>32.58</td>
<td>0.53853</td>
<td>1.43148</td>
</tr>
<tr>
<td>17</td>
<td>AA</td>
<td>VVW</td>
<td>33.75</td>
<td>0.55557</td>
<td>1.38756</td>
</tr>
<tr>
<td>18</td>
<td>AA</td>
<td>VVW</td>
<td>34.34</td>
<td>0.56405</td>
<td>1.36671</td>
</tr>
<tr>
<td>19</td>
<td>AA</td>
<td>VW</td>
<td>35.31</td>
<td>0.57804</td>
<td>1.33363</td>
</tr>
<tr>
<td>20</td>
<td>AA</td>
<td>VW</td>
<td>36.17</td>
<td>0.59017</td>
<td>1.30621</td>
</tr>
<tr>
<td>21</td>
<td>AA</td>
<td>Si</td>
<td>37.10</td>
<td>0.60322</td>
<td>1.27796</td>
</tr>
<tr>
<td>22</td>
<td>AA</td>
<td>VVVW</td>
<td>38.09</td>
<td>0.61693</td>
<td>1.24956</td>
</tr>
<tr>
<td>23</td>
<td>AA</td>
<td>S</td>
<td>42.37</td>
<td>0.67397</td>
<td>1.14380</td>
</tr>
</tbody>
</table>

aThe angles have been corrected by the film shrinkage factor.

bAA = average wavelength, 1.54178Å.

cW = weak.

dVVS = very very strong.

eVVW = very very weak.

fVVVW = line intensity is hard to distinguish.

gVVW = very weak.

hVSh = very strong.

iS = strong.
Table Al. (Continued)

<table>
<thead>
<tr>
<th>Line no.</th>
<th>Wavelength</th>
<th>Intensity</th>
<th>Angle</th>
<th>Sin θ</th>
<th>Spacings d, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>AA</td>
<td>VVVW</td>
<td>43.28</td>
<td>0.68551</td>
<td>1.12455</td>
</tr>
<tr>
<td>25</td>
<td>AA</td>
<td>VVVW</td>
<td>43.91</td>
<td>0.69355</td>
<td>1.11151</td>
</tr>
<tr>
<td>26</td>
<td>AA</td>
<td>W</td>
<td>44.72</td>
<td>0.70368</td>
<td>1.09551</td>
</tr>
<tr>
<td>27</td>
<td>AA</td>
<td>VVV</td>
<td>45.53</td>
<td>0.71367</td>
<td>1.08017</td>
</tr>
<tr>
<td>28</td>
<td>AA</td>
<td>VVVW</td>
<td>47.69</td>
<td>0.73949</td>
<td>1.04246</td>
</tr>
<tr>
<td>29</td>
<td>AA</td>
<td>W</td>
<td>48.88</td>
<td>0.75328</td>
<td>1.02338</td>
</tr>
<tr>
<td>30</td>
<td>AA</td>
<td>W</td>
<td>49.37</td>
<td>0.75894</td>
<td>1.01575</td>
</tr>
<tr>
<td>31</td>
<td>AA</td>
<td>VVVW</td>
<td>50.23</td>
<td>0.76864</td>
<td>1.00292</td>
</tr>
<tr>
<td>32</td>
<td>AA</td>
<td>VVVW</td>
<td>50.54</td>
<td>0.77210</td>
<td>0.99843</td>
</tr>
<tr>
<td>33</td>
<td>AA</td>
<td>VVVW</td>
<td>51.06</td>
<td>0.77784</td>
<td>0.99106</td>
</tr>
<tr>
<td>34</td>
<td>AA</td>
<td>VVVW</td>
<td>51.76</td>
<td>0.78548</td>
<td>0.98143</td>
</tr>
<tr>
<td>35</td>
<td>AA</td>
<td>W</td>
<td>52.88</td>
<td>0.79739</td>
<td>0.96677</td>
</tr>
<tr>
<td>36</td>
<td>AA</td>
<td>VVVW</td>
<td>53.63</td>
<td>0.80523</td>
<td>0.95735</td>
</tr>
<tr>
<td>37</td>
<td>AA</td>
<td>VVV</td>
<td>54.27</td>
<td>0.81177</td>
<td>0.94965</td>
</tr>
<tr>
<td>38</td>
<td>AA</td>
<td>VVVW</td>
<td>54.84</td>
<td>0.81760</td>
<td>0.94287</td>
</tr>
<tr>
<td>39</td>
<td>AA</td>
<td>VVV</td>
<td>55.30</td>
<td>0.82215</td>
<td>0.93765</td>
</tr>
<tr>
<td>40</td>
<td>AA</td>
<td>VVVW</td>
<td>57.36</td>
<td>0.84211</td>
<td>0.91542</td>
</tr>
<tr>
<td>41</td>
<td>AA</td>
<td>VVVW</td>
<td>58.64</td>
<td>0.85392</td>
<td>0.90276</td>
</tr>
<tr>
<td>42</td>
<td>AA</td>
<td>W</td>
<td>60.28</td>
<td>0.86845</td>
<td>0.88766</td>
</tr>
<tr>
<td>43</td>
<td>Al(^j)</td>
<td>W</td>
<td>60.57</td>
<td>0.87099</td>
<td>0.88434</td>
</tr>
<tr>
<td>44</td>
<td>Al(^k)</td>
<td>VVW</td>
<td>61.25</td>
<td>0.87669</td>
<td>0.88078</td>
</tr>
<tr>
<td>45</td>
<td>A1</td>
<td>VVW</td>
<td>61.63</td>
<td>0.87986</td>
<td>0.87543</td>
</tr>
<tr>
<td>46</td>
<td>A1</td>
<td>VVW</td>
<td>62.00</td>
<td>0.88296</td>
<td>0.87236</td>
</tr>
<tr>
<td>47</td>
<td>A1</td>
<td>VW</td>
<td>64.06</td>
<td>0.89929</td>
<td>0.85651</td>
</tr>
<tr>
<td>48</td>
<td>A1</td>
<td>VW</td>
<td>64.40</td>
<td>0.90184</td>
<td>0.85410</td>
</tr>
<tr>
<td>49</td>
<td>A2</td>
<td>VVV</td>
<td>64.75</td>
<td>0.90446</td>
<td>0.85373</td>
</tr>
<tr>
<td>50</td>
<td>A1</td>
<td>VVVW</td>
<td>65.65</td>
<td>0.91106</td>
<td>0.84545</td>
</tr>
<tr>
<td>51</td>
<td>A1</td>
<td>VVVW</td>
<td>66.05</td>
<td>0.91389</td>
<td>0.84283</td>
</tr>
<tr>
<td>52</td>
<td>A2</td>
<td>VVV</td>
<td>67.13</td>
<td>0.92142</td>
<td>0.83801</td>
</tr>
<tr>
<td>53</td>
<td>A1</td>
<td>W</td>
<td>67.98</td>
<td>0.92706</td>
<td>0.83086</td>
</tr>
<tr>
<td>54</td>
<td>A1</td>
<td>VVW</td>
<td>69.26</td>
<td>0.93522</td>
<td>0.82361</td>
</tr>
<tr>
<td>55</td>
<td>A2</td>
<td>VVW</td>
<td>69.62</td>
<td>0.93743</td>
<td>0.82167</td>
</tr>
<tr>
<td>56</td>
<td>A1</td>
<td>VVW</td>
<td>70.54</td>
<td>0.94288</td>
<td>0.81692</td>
</tr>
<tr>
<td>57</td>
<td>A1</td>
<td>VW</td>
<td>71.05</td>
<td>0.94581</td>
<td>0.81439</td>
</tr>
<tr>
<td>58</td>
<td>A2</td>
<td>VW</td>
<td>71.42</td>
<td>0.94786</td>
<td>0.81464</td>
</tr>
<tr>
<td>59</td>
<td>A1</td>
<td>VVVW</td>
<td>72.42</td>
<td>0.95332</td>
<td>0.80798</td>
</tr>
<tr>
<td>60</td>
<td>A1</td>
<td>S</td>
<td>73.02</td>
<td>0.95643</td>
<td>0.80534</td>
</tr>
</tbody>
</table>

\(^j\)Al = K alpha one wavelength, 1.54051 Å.

\(^k\)A2 = K alpha two wavelength, 1.54433 Å.
Table A1. (Continued)

<table>
<thead>
<tr>
<th>Line no.</th>
<th>Wavelength</th>
<th>Intensity</th>
<th>Angle</th>
<th>Sin θ</th>
<th>Spacings d, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>A2</td>
<td>S</td>
<td>73.43</td>
<td>0.95847</td>
<td>0.80562</td>
</tr>
<tr>
<td>62</td>
<td>A1</td>
<td>W</td>
<td>74.06</td>
<td>0.96156</td>
<td>0.80105</td>
</tr>
<tr>
<td>63</td>
<td>A2</td>
<td>W</td>
<td>74.61</td>
<td>0.96413</td>
<td>0.80089</td>
</tr>
<tr>
<td>64</td>
<td>A1</td>
<td>S</td>
<td>75.20</td>
<td>0.96682</td>
<td>0.79669</td>
</tr>
<tr>
<td>65</td>
<td>A2</td>
<td>S</td>
<td>75.74</td>
<td>0.96918</td>
<td>0.79672</td>
</tr>
<tr>
<td>66</td>
<td>A1</td>
<td>S</td>
<td>77.01</td>
<td>0.97439</td>
<td>0.79050</td>
</tr>
<tr>
<td>67</td>
<td>A1</td>
<td>VVW</td>
<td>77.66</td>
<td>0.97690</td>
<td>0.78847</td>
</tr>
<tr>
<td>68</td>
<td>A2</td>
<td>VVW</td>
<td>78.29</td>
<td>0.97920</td>
<td>0.78857</td>
</tr>
<tr>
<td>69</td>
<td>A1</td>
<td>W</td>
<td>79.15</td>
<td>0.98212</td>
<td>0.78428</td>
</tr>
<tr>
<td>70</td>
<td>A2</td>
<td>W</td>
<td>79.90</td>
<td>0.98449</td>
<td>0.78433</td>
</tr>
<tr>
<td>71</td>
<td>A1</td>
<td>S</td>
<td>80.87</td>
<td>0.98732</td>
<td>0.78014</td>
</tr>
<tr>
<td>72</td>
<td>A2</td>
<td>S</td>
<td>81.80</td>
<td>0.98977</td>
<td>0.78014</td>
</tr>
</tbody>
</table>
IX. APPENDIX B. EXPERIMENTAL EMF DATA
<table>
<thead>
<tr>
<th>Composition</th>
<th>Temp., °K</th>
<th>EMF, mv</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 at.% U-Hg</td>
<td>683</td>
<td>56.3</td>
</tr>
<tr>
<td></td>
<td>678</td>
<td>56.6</td>
</tr>
<tr>
<td></td>
<td>666</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>655</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>646</td>
<td>57.3</td>
</tr>
<tr>
<td></td>
<td>645</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>643</td>
<td>57.4</td>
</tr>
<tr>
<td></td>
<td>638</td>
<td>57.9</td>
</tr>
<tr>
<td></td>
<td>636</td>
<td>57.9</td>
</tr>
<tr>
<td></td>
<td>635</td>
<td>58.2</td>
</tr>
<tr>
<td></td>
<td>634</td>
<td>58.4</td>
</tr>
<tr>
<td></td>
<td>628</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td>624</td>
<td>58.1</td>
</tr>
<tr>
<td></td>
<td>623</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td>622</td>
<td>59.0</td>
</tr>
<tr>
<td></td>
<td>619</td>
<td>59.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.9</td>
</tr>
<tr>
<td>22 at.% U-Hg</td>
<td>648</td>
<td>92.8</td>
</tr>
<tr>
<td></td>
<td>645</td>
<td>93.6</td>
</tr>
<tr>
<td></td>
<td>642</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td>638</td>
<td>91.6</td>
</tr>
<tr>
<td></td>
<td>634</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>631</td>
<td>92.6</td>
</tr>
<tr>
<td></td>
<td>629</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>627</td>
<td>90.2</td>
</tr>
<tr>
<td></td>
<td>624</td>
<td>89.8</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>90.9</td>
</tr>
<tr>
<td>5 at.% U-Hg</td>
<td>627</td>
<td>119.0</td>
</tr>
<tr>
<td></td>
<td>626</td>
<td>119.7</td>
</tr>
<tr>
<td></td>
<td>625</td>
<td>120.7</td>
</tr>
<tr>
<td></td>
<td>623</td>
<td>119.9</td>
</tr>
<tr>
<td></td>
<td>622</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120.7</td>
</tr>
</tbody>
</table>
Table B1. (Continued)

<table>
<thead>
<tr>
<th>Composition</th>
<th>Temp., °K</th>
<th>EMF, mv</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 at.% U-Hg</td>
<td>621</td>
<td>121.2</td>
</tr>
<tr>
<td></td>
<td>620</td>
<td>120.9</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>122.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.1</td>
</tr>
<tr>
<td></td>
<td>617</td>
<td>120.6</td>
</tr>
<tr>
<td></td>
<td>616</td>
<td>122.6</td>
</tr>
</tbody>
</table>